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Abstract

A variety of machine learning methods such as Naïve Bayesian, support vector machines and more 

recently deep neural networks are demonstrating their utility for drug discovery and development. 

These leverage the generally bigger data sets created from high throughput screening data and 

allow prediction of bioactivities for targets and molecular properties with increased levels of 

accuracy. We have only just begun to exploit the potential of these techniques but they may already 

be fundamentally changing the research process for identifying new molecules and/or repurposing 

old drugs. The integrated application of such machine learning models for end-to-end (E2E) 

application is broadly relevant and has considerable implications for developing future therapies 

and their targeting.

Learning from history

‘Those who do not remember the past are condemned to repeat it’ (Santayana). This 

observation applies as much to drug discovery as it does to other aspects of human 

endeavor1. The history of drug discovery is a prelude to the emerging potential of computer-

assisted data exploration. One constant in drug discovery is that every few years the 

estimated cost to develop drugs rises further. Less than 20 years ago, developing a drug took 

~12 years, cost under a billion dollars, and the biggest challenges were failures due to 

efficacy or toxicity-induced attrition2. in vitro pharmacological profiling implemented 

earlier in the drug discovery process helped to identify some predictable undesirable off-
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target activity profiles, which would hinder drug candidate development or even lead to 

market withdrawal if discovered after drug approval3. These technologies did not shorten the 

time or decrease the cost required to get a candidate drug to market, as now the costs of 

development are upwards of $2.8 billion4. These methods have also not been able to predict 

clinical failures due to idiosyncratic toxicity and this may be due to the lack of in vitro-in 
vivo correlation5 while efficacy is as complex to predict6.

Today’s pressures are likely different in each company, depending on the target market and 

available resources, although bottlenecks are common7. The biggest cost and most time-

consuming component associated with drug development is conducting clinical trials. This is 

reflected in the high prices of these chronic treatments, which puts pressure on the United 

States healthcare and insurance systems as well as on the patients. Resolutions to these 

problems include efforts to speed up regulatory review and simplify clinical trials. Less than 

a decade ago one solution proposed was to increase the number and quality of innovative, 

cost-effective new medicines without incurring unsustainable research and development 

(R&D) costs8. The R&D process itself is recognized as far from the linear pathway 

commonly described (Fig 1). This is clarified in a Drug Discovery, Development, and 

Deployment Map (4DM)7. Another way to possibly improve productivity in this complex 

environment is to implement machine learning across all areas of drug discovery and 

development9 for which there is sufficient data to train models. Machine learning is a 

growing field of artificial intelligence that uses different statistical techniques to enable 

computers to learn from various data types without being explicitly programmed. This 

would be analogous to converting the 4DM from a 2D map into a functioning computational 

model that can be used to make predictions and requires radically re-thinking of the whole 

R&D process, learning from it and optimizing it (Fig 1). If models were available for all 

aspects of drug discovery and development, they could be used seamlessly to predict 

whether a compound was likely to be ultimately clinically viable (Fig 1). This process could 

be described as end-to-end (E2E). Potential limitations of a linear combination of models 

might appear as errors could accumulate depending on the accuracy of each model, which 

may then influence the overall utility and prediction. Other optimal combinations of models 

could also be developed as customized pipelines are developed depending on the disease, 

target and therapeutic type. These efforts build on the recent proposal that machine learning 

will impact the future of design, synthesis, characterization and application of molecules and 

materials10.

Many classification and clustering solutions in biology, medicine, precision phenotyping, 

and clinical diagnostic support systems have leveraged machine learning methods. A subset 

of these methods are “unsupervised learning” techniques that can be used to model and learn 

from multi-omics type data. Generically, this type of machine learning approach attempts to 

identify meaningful inferences from datasets that lack classification and categorical labels. 

For example, an approach called computational phenotyping has emerged to embrace the 

complexity inherent in disease mechanisms with machine learning to define accurate 

phenotypes and has been used to predict antibiotic resistance phenotypes in a variety of 

bacterial species11. Rather than thinking of these different efforts in isolation we will need to 

integrate them in the complete discovery and development pathway.
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Instead of proposing a single algorithm or approach as the optimal one, we subscribe to the 

concept that the limits of machine learning are likely to be exposed by experimental data 

inconsistency and dataset size, rather than the flaws of any individual modeling 

framework12. The impact of this viewpoint is that machine learning can be applied for the 

same cost to identify treatments for a variety of diseases and may level the drug development 

field for smaller companies and researchers. Access to a collection of predictive models for 

many of the known diseases or related targets could help find additional compounds for 

testing that may have previously been overlooked13. Models for multiple targets already 

assist in the prediction of off-target effects14 as well as predicting the most potent 

compound-target interactions15.

The tipping point for machine learning

In order to build machine learning models high quality data are needed. The last ten years 

have seen a dramatic increase in the amount of public chemical and biological data in 

PubChem16, ChEMBL17, and other databases that include screening data. We now have 

millions of molecules and bioactivities for different disease targets as well as for absorption, 

distribution, metabolism, excretion and toxicology (ADME/Tox) properties. These data are 

an extremely valuable resource for drug discovery machine learning applications. We would 

suggest for many of the targets and diseases we now have plentiful data as indicated by the 

wide use of ChEMBL and the accuracy of the models generated18. A considerable limitation 

of many databases is the data are not ‘model-ready’ or machine-readable19 which is needed 

to successfully use any machine learning methodology. When you can download data in 

electronic formats, expert curation is always required to ensure compatibility of data and 

domain expertise is important to build and use machine learning models. ChEMBL does a 

much better job of curation of data but it still takes some effort to prepare for building a 

machine learning model.

Machine learning models such as support vector machines20, k-Nearest Neighbors21, Naïve 

Bayes22, Random Forest23 and many other methods24, have long been utilized for drug 

discovery. However, recent interest in deep learning or deep neural networks (DNNs) for 

drug discovery has catalyzed interest in machine learning in this field more broadly. DNNs 

have been used in pattern recognition and machine learning25, sparking their use in 

pharmacology and drug discovery26 and becoming a source for numerous recent reviews12. 

DNNs have been used in various pharmaceutical applications from docking to virtual 

screening and beyond (Table 1), but the rise in prominence is linked to increased 

computational power and the availability of larger datasets. While DNNs are inspired by 

biological neural networks and consist of layers of interconnected neurons; much of the 

interest in them is centered around the flexibility of their architecture27 which allows the 

generation of models for single task or multitask machine learning28 as well as predicting 

drug-target interactions29. The use of DNNs is still in its relative infancy and has limited 

applications for cheminformatics as compared with other methods30. While DNN algorithms 

are increasingly available9, they are not ‘plug and play’ and their use takes significant time 

to optimize. Also, the selection of which machine learning algorithm to use with each 

dataset is not readily predictable and there is really no agreement as to which algorithm is 

the best for cheminformatics versus other uses. One group has suggested using several 
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“benchmark” datasets for comparing the predictive ability of different molecular machine 

learning algorithms31, while others have performed comparisons using target related datasets 

from ChEMBL18. The assessments for DNNs could also be applied to essentially any public 

drug discovery relevant small molecule bioactivity dataset32, but to date this algorithm has 

rarely been used for prospective prediction and in some respects this is a limitation of many 

of the machine learning drug discovery studies published. DNNs have also been used to 

create novel features / descriptors from their molecular structure as an alternative to 

traditional molecular descriptors33. 2D structures of molecules have seen use as an input to 

predict toxicity using the Tox21 benchmark set34, which is also part of a platform called 

MoleculeNet35. Generative DNNs have also been described for the generation virtual 

libraries of molecules and these enable de novo drug design with optimized properties36. 

However, it should be pointed out that such proof of concept studies have not synthesized 

molecules to validate the predictions and this needs to happen to provide evidence of their 

value. The closest example to this ideal scenario has purchased close analogs to the 

molecules generated with generative DNNs and tested them against different kinases at 

10μM, identifying several hits37.

While there are several machine learning frameworks and tools available today aimed at 

using small molecules and related data, they are therefore not at the point where they are 

universally accessible to all scientists. The requirement for expert users in many ways has 

been the Achilles’ heel of cheminformatics, whereas computational tools for bioinformatics 

have found broader use due to their accessibility. Therefore, we need to rethink how to 

generally make the machine learning models for pharma more usable and user-friendly to 

increase the number of potential users and applications possible. We are at a clear tipping 

point for machine learning and deep learning in particular, but it has taken decades to reach 

this point and yet full integration of these models is still likely to be a work in progress.

Machine learning models in action

Machine learning methods in the pharmaceutical industry are most commonly used for 

virtual screening of compounds, reducing the need to generate more high-throughput 

screening data by cherry-picking compounds and performing low to medium-throughput 

screening38. The same machine learning algorithms have been used widely in both 

pharmaceutical and toxicological research30 (Table 1). Statistical machine learning methods 

have also been used to interrogate, model, and learn from complex multi-omics data to help 

to address uncertainties about the connections between different types of data39. For 

example, machine learning methods have been applied to electronic health records to 

accurately predict multiple medical events from different centers without site-specific data 

harmonization, with recent data suggesting that deep learning was comparable to regularized 

logistic regression in this case40.

Several of our own recent cheminformatics prospective testing efforts have identified 

compounds active in vitro and in vivo against Chagas disease13 and the Ebola virus41 using 

Bayesian algorithms. This Bayesian approach has also been widely applied to ADME 

properties by predicting aqueous solubility, mouse liver microsomal stability42, Caco-2 cell 

permeability43, cytotoxicity44 and interactions with transporters45. We have also used many 
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different machine learning algorithms and descriptors in parallel to identify the optimum 

combination46 and address complex problems facing the pharmaceutical industry related to 

the challenges of improving solubility or metabolic stability47 while retaining bioactivity. 

These challenges still persist partly because the datasets may not cover sufficient chemical 

space, and the test molecules could be outside the applicability of the training set of the 

models. Optimization and understanding the application of machine learning models is 

generally not trivial. Instead the field has tended to emphasize discovering the ‘perfect 

individual model’ and using various forms of cross validation to evaluate them.

We and others have recently performed several analyses using diverse drug discovery 

datasets and metrics to compare different machine learning methods using one type of 

frequently used molecular descriptor, namely FCFP6 fingerprints48. After 4-fold cross 

validation and ranked normalized scores of metrics, DNNs ranked higher than all the other 

machine learning methods across all datasets48. Other researchers have also compared 

several machine learning approaches with different datasets from ChEMBL using random 

split and temporal cross validation to show the superiority of DNNs49, or 5-fold cross 

validation and leave out 40% as a validation set50. A nested cluster-cross validation strategy 

has also been used to show that DNNs outperform these other machine learning methods18. 

We followed these studies by assessing different machine learning methods and molecular 

descriptors with 18,886 compounds screened against Mycobacterium tuberculosis51. This 

comparison demonstrated that DNNs and support vector machines appear to be superior 

methods regardless of the descriptor type for training and 5-fold cross validation. 

Conversely, external testing of DNN models with a large test set did not perform as well as 

other machine learning methods. More recently we have evaluated these same machine 

learning algorithms and descriptors for multiple estrogen receptor datasets46. For predicting 

compounds within the training set, DNNs had higher accuracy than other methods in 5-fold 

cross validation. For external test set predictions DNN and most classic machine learning 

models perform similarly regardless of dataset or molecular descriptors46. The fact that 

DNN does not always outperform other methods for external testing and in several cases is 

not the best, is important to consider due to the computational cost of DNN. This therefore 

deserves more exhaustive assessment to determine which algorithm to use with each dataset. 

Our own efforts continue to reflect this pattern, namely that while DNN excels at cross 

validation assessments it is generally no better than other machine learning methods for 

external testing.

Models for all diseases

The majority of global pharmaceutical companies are focused on the major diseases (e.g. 

cancer, cardiovascular, pain, diabetes, arthritis) that conform to a robust business model, and 

most research scientists are similarly engaged in these endeavors. However, other diseases 

that in aggregate involve large patient populations and represent major unmet medical needs 

are gaining attention. There are neglected and tropical diseases (e.g. malaria, tuberculosis 

and others) and rare diseases (defined as affecting less than 200,000 people in the United 

States) in which interest has increased as the FDA priority voucher52 has provided an 

incentive for companies to develop new treatments. While we have focused our efforts on 

neglected and tropical disease machine learning models for tuberculosis and malaria, these 
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diseases are in the enviable position of having very large datasets (>300,000 compounds) 

from high-throughput screening which can be utilized for machine learning53. While NIH 

funding has gone into the high throughput screening54, until recently there have not been 

comparable efforts on data mining or machine learning with this data16. Recently, we have 

stressed the need to scale and “industrialize” rare disease drug discovery55 and move 

towards higher throughput and collaborative approaches. We have also proposed that 

machine learning could be used to find treatments for rare diseases using an iterative 

approach56. This methodology would involve first linking the targets for rare diseases, 

building models for targets related to these diseases, and then use machine learning to 

identify additional molecules for future testing and validation (Fig 2). Currently available 

chemical and biological data relevant for rare disease drug discovery is available but diffuse, 

existing in an array of public or private databases. Several recent efforts have focused on 

developing pipelines using natural language processing and human curation to mine 

promising targets for drug development for rare diseases57. These examined diseases with 

late onset, but clearly there is also an urgent need to address rare diseases with an early 

onset. Others have initiated different approaches to combat rare diseases through the 

development of a comprehensive global genotype-phenotype database58, sharing genomics 

data59 or other aspects of rare diseases60, as well as assist patients and caregivers61. To date 

there are no efforts specifically using machine learning to identify drugs for rare diseases 

that leverage the relevant datasets for targets that are in the public domain. These approaches 

could learn from the work performed on neglected and tropical diseases which has used 

public datasets to identify new compounds54.

Making models more accessible and interpretable

If we can combine high-quality curated screening data with cutting edge machine learning 

algorithms and molecular descriptors, there is the opportunity to build models that can be 

used to reliably predict new molecules for most areas of drug discovery. An iterative loop 

can be created where a group leverages its expertise with data and models to propose 

molecules, the experimentalists procure them and measure bioactivities, and the results are 

returned in a form that can be inserted directly into the model building process (Fig 2). This 

type of simplistic approach while limited to drug discovery is amenable to both large and 

small company efforts and can be used across many projects simultaneously to create a 

pipeline of internal and external projects. We have taken this strategy with our own machine 

learning software called Assay Central46 (Fig 2) representing an accessible approach to scale 

drug discovery8. There is now increasing focus on machine learning in drug discovery which 

suggests the utility of such approaches is increasing. This is exemplified by the number of 

deals between start-up machine learning-based drug discovery companies and big pharma, 

biotechs, or VC investors62. While making machine learning models and predictions more 

accessible is important to demonstrate impact, efforts to increase the interpretability of these 

models beyond the “black box” are critical63. We and others have taken different routes to 

improve this aspect including tools to highlight contributions of models to test molecules64, 

identifying training compounds in the same neighborhood as test molecules and scores of 

model applicability or overlap46, 63.
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Nanoparticles and nanomedicines

Machine learning may be applicable to developing nanomedicines by exploiting large 

datasets, in an analogous manner to other areas of drug discovery34. These efforts can enable 

the quantitative prediction of desirable molecules before synthesis and focus research on 

experiments with the most promising candidates. The field of nanomedicine has led to the 

development of nanoinformatics and the use of data mining and machine learning to develop 

nano-QSARs to predict functional and structural properties of nanoparticles. A relatively 

wide array of machine learning approaches34 have been applied to prediction of different 

biomedical properties of nanoparticles such as predicting cellular uptake, cytotoxicity, 

molecular loading, molecular release, nanoparticle adherence, nanoparticle size and 

polydispersity65. Computational methods can be used to predict the particle self- assembly 

process for targeted drug carrier nanoparticles. Quantitative structure-nanoparticle assembly 

prediction models have been used to generate predictions of nano-assembly which were 

found to encapsulate drugs with high loadings and have then also been validated in cancer 

models66. Interestingly, a machine learning method has also been described to identify 

clinical trials involving nanodrugs and nanodevices from ClinicalTrials.gov67. While drug 

discovery has seen decades of applications of machine learning, for nanoparticle research 

there are far fewer examples and data available for model building are limited to select 

nanomaterial databases68. As most of the published examples use small datasets (10–100s of 

molecules), deep learning has limited value and has rarely been applied. Commercially 

available tools that could enable scientists to develop nanomedicines using these models 

have yet to be developed to date. The relevance of nanomaterial-related approaches is in 

drug formulation or delivery and should be considered an integral part of E2E.

Machine Learning repurposing

Our thinking need not be limited to discovering just new molecular entities as machine 

learning can help explore the patterns of known drugs and their interactions with drug 

targets and potentially repurpose already approved molecules. Much of this information on 

potential repurposing opportunities can already be gleaned from public sources69. This 

suggests that we may not even need to screen large numbers of compounds in future. We 

now have an abundance of data, powerful and plentiful computing, public and private efforts 

to develop databases and models and accessible ways to test compounds on a fee-for-service 

basis. Multiscale models defining networks for a given disease can also be used to construct 

gene expression assays for high-throughput screening. While these are relatively nascent as 

we learn more about biology their impact will also expand. For example, in a classic 

paradigm inflammatory bowel disease (IBD) signatures were derived from surgical 

specimens and intersected with Connectivity Map70 data representing transcriptional 

readouts across a number of cell lines in response to treatment with many hundreds of drugs 

using a novel pattern-matching algorithm71. From this research the anticonvulsant drug 

topiramate was identified and experimentally validated as a novel treatment for IBD. The 

same approach has been applied to transcriptional profiles of non-small cell lung cancer 

(NSCLC) which identified imipramine, bepridil, and promethazine and cimetidine as 

NSCLC inhibitors72. The increasing number of drug-repositioning investigations, suggests 

that the reuse of medications for common, rare or orphan diseases is a viable approach26. 
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Machine learning can help to assess whether a drug can be repositioned for a novel 

indication73 There are likely many examples of approved drugs finding additional uses for 

various diseases54 and obviously the key is to ensure that these reach the patient in a timely 

manner.

Repurposing efforts could be greatly assisted by obtaining data from inside companies and 

academic research institutes. Often a major concern about making predictions with 

computational models is the vastness of chemical space and the potential for selecting 

compounds with unfavorable properties. These limitations would be mitigated to some 

extent if previously approved drugs that have extensive ADMET data (or better still have 

reached phase I trials) could be repurposed.

The complete E2E model

In summary, while much of the focus of this review has been on cheminformatics, we 

propose that many areas across the pharmaceutical R&D spectrum and outside of it are ripe 

for machine learning (Table 1). Machine learning can learn from almost any data type, such 

as that from research papers, patient records, images, genes, symptoms, diseases, proteins, 

tissues, species and drug candidates or compounds that have been shown to affect any of the 

preceding74. We could also imagine a complex interaction network between proteins 

upstream and downstream in the pathway that might dictate if the drug/s will work. Proteins 

have isoforms and redundancy, thus, inhibition of one might not be enough to illicit the 

desired response. In the same way, inhibition of one pathway might not be enough to achieve 

the response, since the cell has other pathway mechanisms that would be activated to 

circumvent the one that has been inhibited. In this context, we can apply machine learning to 

the whole pathway to evaluate how a network of protein interactions will react to a 

perturbation in the system such as the drug that is acting on a particular target and this in 

turn could lead to more personalized medicine75. Rather than repeating the mistakes of the 

past, it is necessary to understand the biological context that gives rise to the disease and 

which gene network and proteins are operating before beginning drug discovery screens.

Using machine learning to integrate diverse, large-scale data can provide a path to predict 

which drug effects might best counteract the molecular networks underlying disease or result 

in less toxicity. This leads us to selecting the best targets and may ultimately help us to 

predict efficacy. Some approaches using machine learning methods have been developed to 

detect drug-target interactions76, which is fundamental to both new drug discovery and drug 

repositioning. CRISPR-Cas9, has the potential to edit and renovate the harmful genes for 

personalized therapy and machine learning methods have been applied to predict the off-

targets of CRISPR-Cas9 gene editing77. Recently, a Cancer Drug Response profile scan 

(CDRscan) was developed, that predicts somatic mutation profile-based drug responsiveness 

by linking the tumor genomic fingerprint and its sensitivity to drugs and identified 14 

oncology and 23 non-oncology drugs as having new potential cancer indications which may 

result in treatments tailored for each individual patient78. In the area of drug safety, a 

random forest classifier was used to predict the effect of drugs on the fetus. The models 

successfully identified category C drugs that are likely to be harmful and those likely to be 

safe for fetal loss or congenital anomalies79.
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The future drug discovery and development process will use machine learning E2Ewhich 

will impact training of the workforce. There will be a much heavier computational emphasis 

as they manage a dashboard of projects, molecules, and targets across all the aspects of the 

process and outcomes are predicted in parallel (Fig 1). Small pharmaceutical companies may 

then be able to address tens to hundreds of diseases computationally before narrowing to the 

most promising projects based on a wide variety of these computational models. Using 

machine learning more broadly across the industry could allow us to move beyond the 

limitations defined by researcher specialty and data silos but it will be important to perform 

prospective validation of the models to demonstrate progress. These efforts will increasingly 

demonstate that machine learning algorithms can help us to discover the next generation of 

drugs.
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Figure 1. Implementing end-to-end (E2E) machine learning models at all stages of drug 
discovery and development illustrating some of the key areas that could be modeled.
A drug discovery and development dashboard for E2E machine learning provides the go-no-

go decisions based on inputs of machine learning algorithms (SVM – support vector 

machine; DL – deep learning; BNB – Naïve Bayesian; KNN – K-nearest neighbors; RF – 

random forest; ADA-AdaBoost) or a consensus.
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Figure 2. Demonstrating iterative drug discovery using machine learning.
A. The prospective machine learning approach. B. Demonstration of linkage between 

disease, target and machine learning model using Pitt Hopkins Syndrome as an example95.
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Table 1.

Illustrating E2E machine learning: Areas of relevance to drug discovery and development with substantial 

data available where machine learning models have been applied.

End points modeled

Target discovery14, 15

Molecule Synthesis36, 37

Small molecule physicochemical properties80

Solubility81

Drug Induced Liver Injury82

hERG83

ADME properties82

Blood Brain Barrier penetration84

Skin Permeability85

Transporters45

Mutagenicity86

Drug Induced Liver Injury82

In vivo pharmacokinetics87

Reproductive toxicology88

Formulation89

Environmental impact90

Pharmacoeconomics / cost effectiveness analysis / policy decisions91

Clinical trial: recruiting, design, optimization, success and failure6

Manufacturing92

Counterfeit drug detection93

Post marketing surveillance adverse event prediction94

Electronic Health Records40
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