
Exploiting Main Memory DBMS Features to Improve
Real-Time Concurrency Control Protocols

Ozgfir Ulusoy °
Department of Computer Engineering

Bilkent University

Ankara, TURKEY

Ale jandro B u c h m a n n
D e p a r t m e n t of C o m p u t e r Sc ience
Technical Univers i ty D a r m s t a d t

D a r m s t a d t , G E R M A N Y

1 I n t r o d u c t i o n
The Real-Time Database Systems (RTDBSs)

Project at Bilkent University is concerned with var-
Ious aspects of transaction scheduling in RTDBSs.
Within the REACH (REal-time, Active and Het-
erogeneous Systems) Project at Darmstadt we have
been working on engineering real-time DBMSs on
top of the Chorus RTOS with a special emphasis on
~eroviding predictability and the ability to map high-

vel RT-protocols to basic RTOS schedulers. We
are also working on combining active and real-time
functionality [2]. Recently, both groups started to
cooperate. The work described in this paper is joint
work that resulted from this cooperation.

Predictability of transaction execution is a basic
issue in RTDBSs. Because of the unpredictability
of page faults and the time required for I /O (3-4
orders of magnitude higher than memory accesses)
the work on RTDBS concurrency control has made
one of two possible assumptions: either the perfor-
mance metric used is simply the percentage of trans-
actions finishing their execution within their dead-
line, without giving any guarantees for an individual
transaction, or the underlying database is memory-
resident. Main memory databases become increas-
ingly feasible due to the drastically falling mem-
ory prices and growing memory sizes. However, the
concurrency control protocols developed so far for
RTDBSs are derived from disk-resident DBMS con-
currency control algorithms and do not exploit the
inherent properties of main memory datab~es.

An assumption underlying the recently published
concurrency control protocols for RTDBSs is that
predeclaration of locks is impractical because it is
impossible to predict which instance of a relation
will actually be accessed by a transaction. There-
fore, the model of dynamic resource acquisition is
assumed. Those protocols spend considerable CPU
time for the detection and resolution of data con-
flicts and fine-grained lock management. This over-
head reduces the effective CPU utilization, and
leads to an increase in the number of missed trans-
action deadlines.

It has been demonstrated that very large lock

"The work of Ulusoy was supported by the Research
Council of Turkey (TfJBITAK) grant no. EEEAG-137.

granularities (e.g., relations) are most appropriate
in main memory databases [3], [4]. When I/O is
eliminated, the primary advantage of small lock
granularities is effectively removed. Under the con-
siderations for lock granularity in main-memory
databases, we believe that concurrency control and
scheduling with predeclaration of resources should
be revisited for RTDBSs. It is simple to determine
by purely syntactic means during transaction com-
pilation the read and write sets of the transaction
at the relation level. If the lock granularity is the
relation, it becomes feasible to use simple but ef-
ficient concurrency control and scheduling mecha-
nisms based on resource predeclaration.

In this paper, we propose a simple, predec-
laration-based concurrency control protocol for
main-memory RTDBSs. Predeclaration protocols
require the knowledge of what resources will be used
ahead of t,.'me and the granularity at which resources
are locked. A transaction, when submitted, is al-
ways parsed and compiled into an internal, opti-
mizable form. During parsing it is possible to detect
with simple syntactical means which relations will
be accessed by a given transaction. It is further pos-
sible to detect in the same parsing step whether the
proposed access is for reading or writing purposes.
Under these conditions the read and write sets for
a transaction can be established a priori, and the
transaction can be scheduled in a conflict-free man-
ner by preacquiring the necessary resources. By do-
ing this, a transaction will execute without blocking
and will minimize its time in the system. Data re-
sources will be locked only the time required for the
actual computation of a transaction. The CPU as
the limiting resource will be fully used and less time
will be wasted on lock management. We claim that
our protocol is much more efficient than previously
proposed protocols with dynamic resource acquisi-
tion. it also offers the possibility of determining ex-
ecution times without the effects of blocking thereby
allowing us to give guarantees for the execution of
high-priority transactions.

We also describe a performance model designed
for studying various issues in main-memory RT-
DBSs. We are using this model to compare our
protocol against other concurrency control proto-
cols from the literature. The performance results

S I G M O D Record, Vol. 25, No. 1, M a r c h 1996 23

For each transaction T submitted to the system,
OFF-LINE:

Parse transaction T, identify the relations to be accessed, and
construct read_set[T] and write_set[T].

ON-LINE:
Set read_blocked[T] and write.blocked[T] to empty.
For each transaction T * that is either executing or in the ready-queue,

read_btocked[T] = read_btocked[T] V (read-set[T] n write.~a[T'])
write_blocked[T] = write_blocked[T] U (write.set[T] n read_set[T'])

U (write_set[T] n w','ite..set[T'])
EndFor.
If both read_blocked[T] and wriie_blocked[T] are empty

insert T into ready-queue.
else,

insert T into wait-queue.
EndIf.

When a transaction T commits,
The locks on the relations in read_set[T] and write-s.set[T]
are released.
For each transaction T e in the wait-queue,

read_blocked[T],= read_blocked[T'l, write_set[T]
write_blocked[T'] = write_blocked[T']- write_set[T]- read_set[T]
If both read_blocked[T'] and wrile_blocked[T'] become empty

T ~ is transferred to the ready-queue.
Endlf.

EndFor.
The highest priority transaction in the ready-queue is started to
execute after granting its locks.

Figure 1: The concurrency control protocol.

will be presented in the full version of the paper.

2 T h e C o n c u r r e n c y C o n t r o l P r o t o c o l
For each transaction submitted to the system,

the list of relations to be accessed by the transac-
tion, and the mode of each access (i.e., eiLher read
or write) are determined. Then, a conflict check is
performed between the relations to be accessed by
the new transaction and the relations in the access
list of already scheduled transactions. If no con-
flict is detected, the transaction is inserted into the
ready-queue. Otherwise, the transaction is inserted
into the wait-queue, and two sets of blocked rela-
tions, one for read access and one for write access,
are established for the transaction. Both the ready-
queue and the wait-queue are organized on the basis
of transaction priorities. A variety of criteria can be
used to determine a transaction's priority.

When a transaction is committed, its read and
write locks are released. The set of relations which
were write-accessed (read/write-accessed) by the
committed transaction is intersected with the read-
blocked (write-blocked) relation set of each trans-
action in the wait-queue. The intersecting elements
are eliminated from the blocked relations sets. If,
for any transaction in the wait-queue, both the

read-blocked and write-blocked relations sets be-
come empty, that transaction is transferred to the
ready-queue. Following each commitment, the first
transaction in the ready queue is started to execute.
2.1 F o r m a l D e s c r i p t i o n o f t h e Protoco l

The data structures associated with the protocol
are:

• read.set[T]: The set of relations to be read by
transaction T.

• write.set[T]: The set of relations to be updated
by transaction T.

• read_blocked[T]: The set of relations in
read-set[T], but currently write-locked by some
other transactions.

• write_blocked[T]: The set of relations in
write_set[T], but currently read or write-locked
by some other transactions.

• ready-queue: The list of transactions that are
ready to execute.

• wait-queue: The list of transactions that have
some access requests conflicting with the sched-
uled transactions.

24 S I G M O D Record , Vol. 25, No. 1, March 1996

1 . O - - - ~ - - A

0 . 8

l ~ r o l o c o l

0'%.0 7:o 9:o , ;.o , ;.o ,5.o
A v t r l l ~ e In l - t r l l r r tv l l TIn-1Q

Figure 2: Real-time performance of the protocols as
a function of the average interarrival time of trans-
actions.

Figure 1 provides a formal description of our
RTDB concurrency control protocol.

3 A Real-Time Database System

Model and Preliminary Results
In this section, we sketch the RTDBS simula-

tion model used to evaluate the performance of
the proposed concurrency control protocol and give
some preliminary results. The model is based on an
open queuing model of a multiprocessor, memory-
resident database system.

The entire database is kept in main memory,
while a stable copy, possibly out of date, is kept on
disk. For each transaction the disk is only accessed
once to write the log record onto disk and guar-
antee write-ahead logging. The disk-resident copy
of the database can be updated asynchronously by
applying the log (possibly on a separate processor).
In the case of system failure, the database can be
recovered from the stable copy and the log. Since
application of the log records to the disk-resident
version of the database can be done off-line, it is
safe to assume that this process does not interfere
with regular transaction processing. Therefore, the
only I /O cost paid by a transaction is the writing
of the log. A feasible alternative for writing to the
disk is broadcasting the log to other machines, thus
reducing the delay by almost an order of magnitude.

Transaction arrivals are assumed to be Poisson.
Each transaction is associated with a real-time con-
straint in the form of a deadline. The transactions
are prioritized based on the earliest deadline first
policy; i.e., a transaction with an earlier deadline
has higher priority than a transaction with a later
deadline.

The details of the main-memory RTDBS model
were captured in a simulation program. The per-
formance of our protocol was studied and compared
against the performance of some other concurrency
control protocols proposed recently for RTDBSs.

1.0

0 9

0.8

0.7

0.6

0 .SS., ~

~ 0 O P A
, , , , I P I , , 1

7.0 g.C 11 .0 13.0 15.0
AvecmOe Interm-rlvm! T i m e

Figure 3: Useful CPU time results.

Two protocols selected for comparison are the Pri-
ority Abort protocol [1] and the Priority Inheritance
protocol [5]. The initial results we obtained under
different levels of transaction load are quite encour-
aging for the performance of our protocol. Figure
2 presents the preliminary results obtained for the
relative performance of the protocols in terms of the
fraction of transactions that satisfy their deadlines.
The new protocol provides considerably better per-
formance than the others. It enables the system to
spend more useful CPU time on transaction pro-
cessing, and as a result, even under very high loads
only a few transactions miss their deadlines. Figure
3 presents the results obtained for useful CPU time
which specifies the fraction of CPU time that is not
wasted (i.e., used for processing the operations of
committed transactions).

References
[I] R. Abbott, H. Garcia-Molina, 'Scheduling

Real-Time Transactions: A Performance Eval-
uation', ACM Transactions on Database Sys-
tems, vo1.17, no.3, pp.513-560, 1992.

[2] H. Branding, A. Buehmann, 'On Providing
Soft and Hard Real-Time Capabilities in an
Active DBMS', International Workshop on Ac-
tive and Real-Time Database Systems, Skovde,
Sweden, 1995.

[3] H. Garcia-Molina, K. Salem, 'Main-Memory
Database Systems', IEEE Transactions on
Knowledge and Data Engineering, vol.4, no.6,
pp.509-516~ 1992.

[4] T.J. Lehman, M.J. Carey, 'A Recovery Al-
gorithm for a High-Performance Memory-
Resident Database System', ACM SIGMOD
Conference, pp.104-I17, 1987.

[5] L.Sha, R.Rajkumar, S.H.Son, C.H.Chang, 'A
Real-Time Locking Protocol', IEEE Transac-
tions on Computers, vol.40, no.7, pp.793-800,
1991.

S I G M O D Record , Vol. 25, No. 1, M a r c h 1996 25

