
Exploiting MDE for Platform-Independent Testing

of Service Orchestrations

Lucas Leal

Institute of Computing

University of Campinas

Campinas, Brazil

ra163140@students.ic.unicamp.br

Leonardo Montecchi

Institute of Computing

University of Campinas

Campinas, Brazil

leonardo@ic.unicamp.br

Andrea Ceccarelli

Dip. Matematica e Informatica

University of Florence

Florence, Italy

andrea.ceccarelli@unifi.it

Eliane Martins

Institute of Computing

University of Campinas

Campinas, Brazil

eliane@ic.unicamp.br

Abstract—Service Oriented Architecture (SOA) is a common
design pattern that allows building applications composed of
several services. It promotes features as interoperability, scal-
ability, and software reuse. Services composing a SOA system
may evolve and change during runtime, often outside the control
of the owner of the application, which makes the verification
and validation processes complex. Among all the automated
techniques to validate the behavior of an SOA application, is
Model-Based Testing (MBT). MBT requires an accurate model of
the application in order to generate suitable test cases. However,
the intrinsic of a SOA application sets significant challenges to
MBT effectiveness. In this paper we discuss the challenges in the
testing of SOA applications, and we propose the use of Model-
Driven Engineering (MDE) to improve the flexibility of testing
tools. Finally, we outline our plan for realizing MDE-driven MBT
within an existing online testing framework.

Index Terms—model-driven engineering, model-based testing,
SOA, orchestration.

I. INTRODUCTION

The architectural paradigm of service-oriented architecture

(SOA, [2]) allows building software by assembling indepen-

dent, loosely coupled services, which are autonomous and

platform-independent computational entities. New applications

are created by connecting services, which are often controlled

and managed by different entities [3]. The SOA paradigm

comprises two main composition patterns: web service (WS)

orchestration and WS choreography [4]. In this paper, we

focus on WS orchestrations, although concepts are broadly

extensible to other forms of SOA coordinations.

In an orchestration, there is one participant (the orchestrator)

which controls the others services, as opposed to a chore-

ography, which relies on protocols between the composition

services to achieve its goal. Service orchestrators are often in

charge of coordinating the interactions between the different

services that contribute to the target application. The orches-

trated services may be unaware of the fact that they take part

in a more extensive process. The orchestrator is usually a web

service (WS) that belongs to the SOA composition owner [4].

This work was Financed by CAPES Brazilian Federal Agency for Support
and Evaluation of Graduate Education within the Ministry of Education of
Brazil. This work has received funding from the European Union’s Horizon
2020 research and innovation program under the Marie Sklodowska-Curie
grant agreement No 823788 “ADVANCE”.

Orchestrations typically have a central coordinator con-

trolled by the SOA composition owner, which usually facili-

tates the process of monitoring and controlling. Web services

are integrated blind to their participation in compositions,

which makes service replacement easier if the required quality

of service is not attended [4].

However, orchestrations also raise essential challenges. Ap-

plications built as a combination of multiple services strictly

depend on successful services interactions and proper services

behavior. Further, services can change or evolve in ways not

anticipated by the developers of the orchestration and service

integration. Thus, it is fundamental to assure through time

that the orchestration implements the intended application as

expected. Identifying the proper time to execute tests on WS

composition is challenging because the chance of a change

occurring increases with the number of services involved, and

the third parties that provide these services are not under

control of the orchestration owner [5].

Testing is usually considered the most viable strategy to

mitigate the above challenges and validate the system. How-

ever, since dynamic binding postpones the knowledge about

the concrete services used, it is often necessary to delay part

of tests to the integration and runtime phases. Consequently,

runtime testing is essential to service-oriented applications: it

ensures that the services, messages, interfaces, and business

processes are working as expected [6]. Nevertheless, the un-

predictability of third-party services update and their possible

unavailability, the ever-changing application requirements, and

quick cycles of application deployment create problems to the

use of runtime testing on SOA applications [18].

In this paper, we advocate that Model-Driven Engineering

(MDE) could be used to tackle some of these problems if

applied to a test framework or process. MDE uses model

abstractions of complex systems or phenomenon to simplify

their management and development. Among the techniques

of MDE are methods of model transformation, and model

generation, which can be used to improve the interoperability

of distributed systems [7].

This short paper is structured as follows: Section 2 intro-

duces basic concepts; Section 3 presents the research idea and

experiment design; Section 4 presents the selected framework,

with a brief description of its components, how they interact,



and its current limitations; Section 5 shows a comparison of

available MBT frameworks. Lastly, Section 6 brings the main

conclusions and expectations for the proposed research.

II. CONCEPTS

A. Model-based testing

Model-based testing (MBT) is a variant of black-box testing,

which implies that the test cases are generated without knowl-

edge of the system under test (SUT) source code. Therefore,

the tests target the interfaces, giving inputs and assessing the

outputs. MBT relies on models that reflect the behavior of the

SUT and its environment. The models are used to generate

test cases, which are executed on the original system [8].

Many algorithms can be used to generate the test case, for

example, random or shortest path [16], depending on the test

designers or any other that better fits the test designers needs.

Since MBT can generate an infinite number of test cases from

a single model, test designers often define criteria to stop

the test case generation process and limit this number [16].

Usually, the test cases produced by MBT tools are high-level

sequences of actions or events on the system under test (SUT),

similar to high-level test sequence designed by a tester [8].

B. Model-driven engineering

MDE is a software development methodology that relies

on model abstractions to represent knowledge from a specific

domain. These models can be applied to system simulation,

automation, code transformation, and many other applications

depending only on the user’s need [15]. MDE paradigm can be

explained as a division of levels of conceptualization and orga-

nized in levels of implementation. The conceptualization levels

are usually organized in application-level (M1), application-

domain (M2), and meta-level (M3) [7].

Figure 1 presents the MDE paradigm using as an example a

model transformation process, divided into conceptualizations

levels from bottom up, and application levels from left to

right. M1 focuses on the model definition, transformation

mechanism, code and script generation. M2 is responsible for

the specification of the modeling language, and the transfor-

mation rules that will guide the mapping process. M3 settles

the languages and facilities (metametamodels) to which the

metamodels, models, and transformations should conform [7].

C. Self-adaptabilty

A system able to modify its behavior and/or structure during

runtime in response to the dynamic operational conditions,

with little or no human interference, is called self-adaptive

[9]. There are two main components of a Self-adaptive sys-

tem: a managed system and the managing system [13]. The

managing system is responsible for handling the evolution of

the managed systems, and to respond to such changes [9]. Self-

adaptive systems have several implementation paradigms, as

the MAPE-K control loop. The MAPE-K feedback control

loop is an engineering approach to realize self-adaptation,

usually applied in dynamic adaptive systems, used to overcome

problems related to dynamicity [13]. MAPE-K is a sequence

Fig. 1. MDE applied to input file transformation

of four independent computational phases: Monitor, Analyze,

Plan, and Execute, that share and manipulate the same Knowl-

edge [13].

III. RESEARCH AND EXPERIMENT

A. Research idea

Among the applications of MDE there are platform-neutral

abstractions, used to improve the interoperability between dif-

ferent languages/tools/platforms. Although MBT approaches

are in the opposite situation regarding interoperability, accord-

ing to Utting et al. [16], there are six dimensions of MBT

approaches, all use different modeling standards, syntaxes, and

maintain a certain level of independence.

MBT approaches require a model of the SUT to perform

the test-case generation process. Therefore, it is critical that

the model generation is correct and reflects the actual behav-

ior of the SUT or its environment. MDE could extend the

functionalities of models, enlarging the frontiers of MBT. Its

techniques could enlarge the frontiers of MBT. MDE defines a

metamodel that can hold information about business processes

of SOA applications, thus enabling model transformations and

generations according to the needs of any model-based test

case generation tool. It could also store any information that

testers might establish necessary, just like the adoption of

Extended Finite State Machines (EFSM) did to MBT [17],

MDE could enable the solution of open problems and the study

of new applications of MBT.

B. Research Questions

We aim to apply the MDE paradigm into an MBT frame-

work, guided by the following research questions.

1) Is it possible to leverage the automation of MBT

approaches using a metamodel? What are the current

challenges for the automation of MBT approaches?

What are, and how can we measure, the benefits of using

metamodel in an automated test process?

2) Is it possible to use the same metamodel to model

systems of alternative domains besides SOA appli-

cations? For example, what do SOA application and



cyber-physical systems have in common? Is it possible

to explore the same MBT approach to perform tests in

cyber-physical systems?

C. Proposed methodology

It is necessary to design or adapt an MBT framework to

work with the MDE paradigm to try to answer the research

questions. An available MBT framework that would meet the

requirements of the experiment is the SAMBA Framework [1].

SAMBA (Self-Adaptive Model-BAsed) generates online

regression tests for SOA orchestrations, and executes them at

runtime. Test cases are created from an up-to-date model of

the target orchestration by a model-based test case generation

tool, like Graphwalker [1].

SAMBA is a great candidate to be adapted to the MDE

paradigm. The model generation process is a SAMBA frame-

work core feature since it defines i) what kind of orchestrations

can be tested, ii) the model-based testing tool that can be

used, and iii) its operational parameters. Figure 2 illustrates

the central role a SAMBA metamodel would have in the

model conversion process. This metamodel would allow fea-

ture would make SAMBA flexible, a metamodel would allow

the framework to be easily extended to further models without

the need to implement the conversion to different MBT tools.

Framework updates would require minimum effort, and the

metamodel would improve the automation level of the testing

process.

Fig. 2. SAMBA metamodel applications

Furthermore, defining a metamodel allows to store this

information in an abstract notation, enabling SAMBA to

generate specific models required by any model-based testing

tool. Figure 3 exhibits a possible SAMBA workflow using

MDE model transformation process.

Another aspect on which SAMBA would benefit from the

application of MDE techniques is the test case execution. By

defining a customized metamodel for the SAMBA framework,

we could include the information about inputs and outputs

of the web service operations in an abstract notation, thus

enabling SAMBA to automate the test case execution and

assessment in completely distinct environments.

The proposed research plan is to solve the limitations of

SAMBA’s current implementation using MDE, focusing on

improving its features and making it more flexible to test

different applications, thus enabling the possibility to answer

the research questions.

Fig. 3. Proposed SAMBA workflow with MDE

IV. CONCRETE DESIGN: SAMBA REVIEW AND

CRITICALITIES

A. SAMBA overview

SAMBA (Self-Adaptive Model-BAsed) is an online test

framework designed to perform service composition regression

tests. SAMBA generates and executes online regression tests

on orchestrated SOA applications. It uses the information

available in BPEL files to extract the business sequence of

an orchestrated SOA application and generates a model from

it, which is used in the test case generation process [1].

SAMBA was designed to perform as a MAPE-K control loop.

Figure 4 presents the framework components and their role in

the control loop. SAMBA is implemented with the following

functionalities:

1) update the model when required or when changes in the

orchestration are detected.

2) Extract a model from the orchestration’s description

files.

3) Automatically generate test cases from the models.

4) Automatically execute tests from the generated test

cases.

5) Automatically generate test reports.

SAMBA is composed of four main components: service

assemble monitor (SAM), model generator (MG), model-

based online test case generator (MOT), and test service (TS).

The components are organized as MAPE-K stages and have

distinct functions. SAM is responsible for monitoring the

evolution of the target SOA application, and it informs the

MG which orchestration changed, MG analyzes the evolution

of target SOA application and generates updated models, MOT

plans the test cases and updates the test report, and TS executes

the runtime test [1].

B. Implementation issues

SAMBA’s current implementation is working only with

business process execution language (BPEL) compositions. A

metamodel would enable the framework to work with different



Fig. 4. SAMBA’s MAPE-K components

orchestration descriptors. The model-based test tool used by

the current SAMBA implementation is Grapwalker [1]. Graph-

walker has built-in REST API with methods to load models,

fetch data from the generated test cases, restart or abort the

test case generation. The model transformation techniques of

MDE would decouple SAMBA from Graphwalker, and allow

the framework to use different MBT tools and asses additional

aspects of an application. The TS component uses an oracle,

which is responsible for storing the parameters and assertions

necessary to execute and assess the generated test cases. The

Oracle holds the proper inputs and outputs of each operation of

every web service consumed by the SUT. MDE metamodels

can be designed to store any information, making it easier

accessed by the framework and updated by the users.

V. RELATED WORKS

There are many works that face MBT testing in SOA, but

here we review the closest to the approach we are proposing.

To the best of our knowledge, no work explicitly applies MBE

and meta-modeling to MBT of SOAs. The work of Bentakouk

et al. (2009) [10] presents an orchestration testing framework.

The service composition is translated to a symbolic transition

system (STS), then a symbolic execution tree is generated

from the STS. The tester inputs the coverage criteria for

the test case generation process and the results are a set of

execution paths, that later are executed using a test oracle. The

framework described by Cao et al. (2010) [11], uses a gray-

box approach, since the tester knows about the interactions

between the web services that compose the orchestration,

but does not have access to the services source code. The

framework automatically generates and executes online tests

for orchestrated services. The orchestration is converted to

a timed extended finite machine (TSFM) model, which can

represent time constraints and data variables. The main dif-

ferences between these approaches compared to SAMBA is

that neither addresses the problem of dynamicity of the SOA

environment, and the frameworks are not available for the

community to experiment.

VI. CONCLUSION

By applying the MDE methodology, we aim to improve

the compatibility and integration of MBT solutions when

applied to different orchestrations and MBT tools. As future

works, we plan to apply our strategy along with other V&V

processes such as anomaly-based error detectors, which rely

on unsupervised algorithms to suit dinamicity of SOAs [19],

and evaluate the possibility of improving the automated test

case execution, by using the metamodel as a source for the

information needed by the test case executioner to perform

and assess the results.

REFERENCES

[1] Leal, Lucas. ”Self-adaptive model-based online testing for dynamic
SOA”. Master’s thesis, Institute of Computing, UNICAMP (2017).

[2] Erl, Thomas. Service-oriented architecture. Vol. 8. New York: Prentice
hall, 2005.

[3] Paik, Hye-young, et al. ”Web Service Composition: Overview.” Web
Service Implementation and Composition Techniques. Springer, Cham,
2017. 149-158.

[4] Peltz, Chris. ”Web services orchestration and choreography.” Computer
36.10 (2003): 46-52.

[5] Belli, Fevzi, et al. ”A holistic approach to modelbased testing of Web
service compositions.” Software: Practice and Experience 44.2 (2014):
201-234.

[6] Bozkurt, Mustafa, Mark Harman, and Youssef Hassoun. ”Testing and
verification in serviceoriented architecture: a survey.” Software Testing,
Verification and Reliability 23.4 (2013): 261-313.

[7] Topu, Okan, et al. Distributed simulation: A model driven engineering
approach. Springer, 2016.

[8] Dias Neto, Arilo C., et al. ”A survey on model-based testing approaches:
a systematic review.” Proceedings of the 1st ACM international work-
shop on Empirical assessment of software engineering languages and
technologies, in conjunction with the 22nd International Conference on
Automated Software Engineering (ASE) 2007. ACM, 2007.

[9] Krupitzer, Christian, et al. ”A survey on engineering approaches for self-
adaptive systems.” Pervasive and Mobile Computing 17 (2015): 184-206.

[10] Bentakouk, Lina, Pascal Poizat, and Fatiha Zadi. ”A formal framework
for service orchestration testing based on symbolic transition systems.”
Testing of Software and Communication Systems. Springer, Berlin,
Heidelberg, 2009. 16-32.

[11] T.-D. Cao, P. Felix, R. Castanet, and I. Berrada. Online testing frame-
work for web services. In Third International Conference on Software
Testing, Verification and Validation (ICST), pp. 363-372. IEEE, 2010.

[12] Standard, O.A.S.I.S. (2007). Web services business process execu-
tion language version 2.0. http://docs.oasis-open.org/wsbpel/2.0/OS/
wsbpel-v2.0-OS.html.

[13] Arcaini, P., Riccobene, E., & Scandurra, P. (2015, May). Modeling and
analyzing MAPE-K feedback loops for self-adaptation. In Proceedings
of the 10th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems (pp. 13-23). IEEE Press.

[14] Dijkman, R. M., Dumas, M., & Ouyang, C. (2008). Semantics and
analysis of business process models in BPMN. Information and Software
technology, 50(12), 1281-1294.

[15] Schmidt, D. C. (2006). Model-driven engineering. COMPUTER-IEEE
COMPUTER SOCIETY-, 39(2), 25

[16] Utting, M., Pretschner, A., & Legeard, B. (2012). A taxonomy of model-
based testing approaches. Software Testing, Verification and Reliability,
22(5), 297-312.

[17] Anand, S., et al. (2013). An orchestrated survey of methodologies
for automated software test case generation. Journal of Systems and
Software, 86(8), 1978-2001.

[18] Sogeti. 2018. World quality report 2017-18 9th edition (2017). https:
//www.sogeti.com/explore/reports/world-quality-report-2017-2018/. Re-
trieved Jun 10, 2019.

[19] Zoppi, T., Ceccarelli, A., & Bondavalli, A. (2019). MADneSs: a Multi-
layer Anomaly Detection Framework for Complex Dynamic Systems.
IEEE Transactions on Dependable and Secure Computing, page(s): 1-14.

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
https://www.sogeti.com/explore/reports/world-quality-report-2017-2018/
https://www.sogeti.com/explore/reports/world-quality-report-2017-2018/

	Introduction
	Concepts
	Model-based testing
	Model-driven engineering
	Self-adaptabilty

	Research and Experiment
	Research idea
	Research Questions
	Proposed methodology

	Concrete Design: SAMBA Review and Criticalities
	SAMBA overview
	Implementation issues

	Related works
	Conclusion
	References

