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Instabilities in solids and structures are ubiquitous across all length and time scales, and
engineering design principles have commonly aimed at preventing instability. However,
over the past two decades, engineering mechanics has undergone a paradigm shift, away
from avoiding instability and toward taking advantage thereof. At the core of all
instabilities—both at the microstructural scale in materials and at the macroscopic,
structural level—lies a nonconvex potential energy landscape which is responsible, e.g.,
for phase transitions and domain switching, localization, pattern formation, or structural
buckling and snapping. Deliberately driving a system close to, into, and beyond the
unstable regime has been exploited to create new materials systems with superior, inter-
esting, or extreme physical properties. Here, we review the state-of-the-art in utilizing
mechanical instabilities in solids and structures at the microstructural level in order to
control macroscopic (meta)material performance. After a brief theoretical review, we
discuss examples of utilizing material instabilities (from phase transitions and ferroelec-
tric switching to extreme composites) as well as examples of exploiting structural insta-
bilities in acoustic and mechanical metamaterials. [DOI: 10.1115/1.4037966]

1 Introduction

The long history of mechanics is rife with prominent examples
of instabilities in solids and structures that have led to material
failure or structural collapse, spanning all scales from atomic-
scale void growth, failure, and stress-induced transformations to
buckling and delamination in micro- and nano-electronics all the
way up to tectonic events. Examples of causal mechanisms for
mechanical instability are ubiquitous: buckling of structures,
crushing of cellular solids, plastic necking, strain localization in
shear or kink bands, wrinkling and crazing, void growth, fracture,
and collapse. Through its more than 250-year-old history—going
back to Euler’s buckling studies [1–3] and involving such promi-
nent mechanicians as Kirchhoff [4], Love [5], and the Lords
Kelvin [6] and Rayleigh [7]—the theory of material and structural
stability has resulted in analytical theories and numerical tools
that have provided engineers with safe design guidelines. Starting
with structures and advancing to continuous media within the
frameworks of linear and later nonlinear elasticity as well as
inelasticity, the theory of stability in solids and structures has
evolved and resulted in many seminal contributions, see, e.g.,
Refs. [8–19] for a nonexhaustive list of classics in the field.

Over the past two decades, an exciting paradigm shift has been
initiated away from traditional design against instability and
toward novel performance through controlled instability: engi-
neering mechanics is exploring the advantages of operating sys-
tems near, at, or beyond the critical point. (In)stability is
instrumentalized for beneficial material or structural behavior
such as, e.g., soft devices undergoing dramatic shape changes
[20–22], propagating stable signals in lossy media [23] or control-
ling microfluidics [24], large reversible deformation of cellular
solids [25,26], morphing surfaces and structures [27,28], high-
damping devices and energy-absorbing technologies from
nanotubes to macrodevices [29–32], acoustic wave guides and
metamaterials [33–36], composites with extreme viscoelastic per-
formance [37–40], or materials with actively controllable physical

properties [41,42]. Especially at the macroscopic level, structural
instability and the associated large deformation of soft matter
have produced many multifunctional devices that exploit buck-
ling, snapping, and creazing to result in beneficial acoustic or
mechanical performance, see Ref. [43] for a recent survey. Like in
structures, instability at the material level stems from non-(quasi)-
convex energy landscapes [44,45]; here, however, instability is
not tied to multiple stable or metastable structural deformation
modes but involves multiple stable microstructural configurations
such as those in phase transitions and phase transformations [46],
domain switching and domain patterning [47–49], deformation
twinning [50,51], or strain localization, shear banding, and
patterning in plasticity [52]. From a mathematical standpoint,
non-(quasi)convex energetic potentials entail instability of a
homogeneous state of deformation, thus leading to energy-
minimizing sequences which, physically, translate into complex
microstructural patterns, see, e.g., Refs. [49] and [52–56].

In addition to structures and materials, metamaterials—
somewhere in the diffuse interface between solids and
structures—have gained popularity in recent decades. These engi-
neered media commonly have a structural architecture at smaller
scales, which is hidden at the larger scale where only an effective
medium with effective properties is observed. The advent of addi-
tive manufacturing has fueled the design of complex metamateri-
als, see, e.g., Refs. [57–59], with instabilities now occurring
across multiple scales.

Here, we present a survey of exploiting instabilities in solids
and structures. Since the field has grown tremendously in recent
years, we limit our review to concepts that exploit microscale
instabilities to effect macroscale behavior, which applies to both
structures (e.g., trusses or architected metamaterials) and materials
(e.g., composites and other heterogeneous solids). The effective,
macroscopic properties of heterogeneous solids and metamaterials
are commonly identified by averaging over a representative vol-
ume element (RVE), including asymptotic expansions [60,61],
numerical tools based on periodic boundary conditions (BCs)
[62–65], as well as various upper and lower bounds on effective
properties, especially for linear properties such as the (visco)elastic
moduli, see, e.g., Ref. [66]. Besides the quasi-static mechanical
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properties such as stiffness, strength, and energy absorption, a
major focus of architected metamaterials has been on wave
motion. Here, the effective wave propagation characteristics of
periodic, microstructured media can be obtained from the disper-
sion relations computed at the RVE level [67,68]. Unlike in con-
ventional continuous media, structural metamaterials such as
multiscale truss lattices can be exploited to independently control
elastic moduli and dispersion relations [69]. We note that if the
wavelength approaches the RVE size (in particular in acoustic
metamaterials), classical homogenization approaches may lose
their validity, which is why new theories have been proposed for
the effective property extraction in more general settings, e.g., see
Refs. [70–75], which is closed under homogenization and can be
linked to Bloch–Floquet analysis [76]. Alternatively, computa-
tional techniques have obtained the effective dynamic performance
even in transient, nonlinear, or inelastic settings [77,78]. These
concepts have been applied to both materials and structures, result-
ing in interesting, extreme, peculiar, or controllable effective
(meta)material properties to be reviewed in the following.

We first give a concise review of the fundamental concepts of
stability theory to the extent required for subsequent discussions,
followed by a survey of first material and then metamaterial strat-
egies that take advantage of instability. Finally, we discuss the
state-of-the-art and point out ongoing directions and topical
opportunities.

2 Stability Theory

2.1 Notions of Stability. From a theoretical viewpoint, stabil-
ity problems have traditionally been treated by either energetic
principles, linking stability to the uniqueness of solutions or min-
ima in the potential energy landscape [79–81] or alternatively by
dynamic analysis, defining stability as bounded solutions over
time in the sense of Lyapunov [82,83]. Both definitions coincide
for conservative systems under small perturbations [84] but may
deviate otherwise (e.g., in the presence of gyroscopic forces [85])
where only dynamic methods generally yield the correct stability
conditions [86].

For a dynamical system characterized by @u=@t ¼ fðu; t; cÞ
with unknown variables u 2 R

n, time t 2 R, control parameter
c 2 R, and generally nonlinear driving forces f : Rn �R

�R ! R
n, a solution u0ðtÞ is stable if for any bounded perturba-

tion ev such that uðtÞ ¼ u0 þ ev

jjuðtÞ � u0ðtÞjj ! 0 as e ! 0 (1)

uniformly for all t > t0 after some initial time t0. A solution is
asymptotically stable if

kuðtÞ � u0ðtÞk ! 0 as t ! 1 (2)

for sufficiently small e > 0 [82,83]. For elastic solids, perturba-
tions oftentimes occur in the form of free vibrations about an equi-
librium solution u0. In this case, one has a harmonic perturbation

vðtÞ ¼ v̂ expðixtÞ (3)

with amplitude v̂ and frequency x 2 R (or, more generally,
superpositions of harmonic solutions of the above form with dif-
ferent eigenfrequencies). Stability requires ImðxÞ � 0 to avoid
exponential growth of vðtÞ with time. Note that for linear elastic-
ity, we must have x 2 R for stable waves, so that instability
implies x2 < 0.

The system is in a state of (static) equilibrium when
fðu; cÞ ¼ 0, which may have one or more (or no) solutions. Upon
perturbation, we have

@f

@u
� duþ @f

@c
dc ¼ 0; ) @u

@c
¼ � @f

@u

� ��1
@f

@c
(4)

which defines an equilibrium path. At a critical point, @f=@u
becomes singular so that there exists either no solution or a non-
unique solution (point of bifurcation). Note that imperfections
generally lower the critical point (i.e., they reduce the critical load
c) and affect the postbifurcation behavior, which is of importance
both in structures (where, e.g., geometric or fabrication-induced
imperfections may dominate the mechanical response) and in
materials (where, e.g., thermal fluctuations lead to temperature-
dependent transformation and switching kinetics).

2.2 Stability of Continuous Bodies. The previously men-
tioned notions of stability can be applied to discrete systems and
continuous solids alike. A continuous body X � R

d is described
by the deformation mapping u : X�R ! R

d, so that the
deformed and undeformed positions, x and X, respectively, are
linked via x ¼ uðX; tÞ. Such body is governed by linear momen-
tum balance

PiJ;J þ q0bi ¼ q0
D2ui

Dt2
inX (5)

where

PiJ ¼
@W

@FiJ

(6)

are the components of the first Piola-Kirchhoff stress tensor, FiJ ¼
ui;J denotes the deformation gradient, D/Dt is the material time
derivative, q0 is the mass density in the reference configuration,
and W is the strain energy density. Moreover, q0b is the body
force field, which is assumed to be known and independent of
deformation. Here and in the following, we use index notation
with Einstein’s summation convention and comma indices denot-
ing partial derivatives. Note that the above applies directly to elas-
tic media and can also be extended to inelastic continua when
using a variational formulation, see, e.g., Refs. [52] and [87].

Instabilities are often investigated in the framework of incre-
mental deformations _u superimposed upon a given equilibrium
state of finite deformation u0. Let us consider a perturbation that
takes the body to a new equilibrium configuration where Eq. (5) is
still satisfied and leaves the body force density unchanged. The
incremental problem is governed by

_PiJ;J ¼ q0
D2 _ui

Dt2
inX (7)

where a dot denotes a small increment in the respective quantity
caused by the perturbation. Assuming that all incremental quanti-
ties are sufficiently small (i.e., infinitesimal), the constitutive
equation (6) can be linearized as

_PiJ ¼ C
0
iJkL

_FkL (8)

with the mixed elasticity tensor given by

C
0
iJkL ¼ @PiJ

@FkL

�

�

�

�

F0

¼ @2W

@FiJ @FkL

�

�

�

�

F0

(9)

where F0 ¼ Gradu0. Finally, we note that it is often convenient to
investigate instabilities by formulating the incremental boundary
value problem in an updated-Lagrangian formulation, where the
reference configuration changes with time and is identified with the
current configuration. In this case, the linearized form of the gov-
erning equation in the current configuration can be expressed as

rij;j ¼ q
d2ui

dt2
inu0

Xð Þ (10)

where u : u0ðXÞ �R ! R
d represents the incremental displace-

ment field in the spatial description, and q ¼ q0 detF denotes the
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current density. Employing push-forward transformations based
on linear momentum, one obtains

rij ¼ C
0
ijkluk;l with C

0
ijkl ¼

1

detF0
C

0
iJkLF

0
jJF

0
lL (11)

Note that in the special case of linear elastic media, the elastic
moduli are independent of deformation, so that C

0 ¼ const (and
one often omits the superscript).

When considering the (in)stability of continuous solids, one
generally differentiates between pointwise stability (which refers
to material-level stability at smaller scales or localization) and
structural stability (which depends on the specific macroscopic
boundary value problem and corresponds to bifurcation). In the
context of (in)stability in structures, analogous concepts exist for
short- and long-wavelength instabilities, see, e.g., Refs. [17], [88],
and [89].

2.3 Pointwise Stability. The conditions of material stability
or pointwise stability are local in nature and derive from the
(pointwise) governing differential equations of the medium. Con-
sider, e.g., a solid which becomes locally unstable and localizes
deformation through the formation of a discontinuity. This implies
a jump in the velocity gradient field, specifically ½½ _ui;J �� ¼ aiNJ ,
where N denotes the unit normal on the plane of discontinuity,
and a characterizes the jump. Equilibrium across the discontinuity
implies that ½½ _PiJNJ �� ¼ 0. Insertion into the incremental balance
equation (8) gives the condition for localization

C
0
iJkLaiNJNL ¼ 0 (12)

for some choice of a;N 6¼ 0. Stability requires that localization
does not occur for all directions, so that pointwise/material stabil-
ity is ensured by

C
0
iJkLðXÞaiNJakNL > 0 8 a;N 6¼ 0 8X 2 X (13)

which guarantees the strong ellipticity of the governing equations
[90]. By van Hove’s theorem, this also ensures unique (and thus
stable) solutions if the entire boundary @X is rigidly constrained
[91].

Alternatively, pointwise stability conditions are obtained from
a linear dynamic analysis. Linear momentum balance in a linear
elastic medium is governed by Eq. (7) with Eq. (8), so that one
may seek separable solutions of the incremental displacement
field of traveling wave form. To this end, consider the motion of a
plane wave propagating at some speed c in the direction character-
ized by normal vector N, so that most generally _u ¼ û f ðct� N �
XÞ with some differentiable f : R ! R. The linearized form of
linear momentum balance, Eq. (7), now becomes

ðC0
iJkLNJNL � q0c

2dikÞûk f 00ðct� NJXJÞ ¼ 0 (14)

Consequently, real-valued wave speeds require that the acoustic
tensor

AikðNÞ ¼ C
0
iJkLNJNL (15)

is positive definite for all directions N 6¼ 0 (see, e.g., Refs. [92]
and [93]), which in turn confirms the necessary, pointwise stabil-
ity condition thatC

0
must be strongly elliptic, cf., Ref. 13.

For the special case of homogeneous, isotropic, linear elasticity,
we have

C
0
ijkl ¼ kdijdkl þ lðdikdjl þ dildjkÞ (16)

where k and l are the Lam�e moduli; let j ¼ kþ ð2=3Þl denote
the bulk modulus in three-dimensional (3D) (for two-dimensional

(2D) conditions of plane strain, we have instead j ¼ kþ l). The
longitudinal and shear wave speeds in 3D are obtained from the
eigenvalue problem (14) as, respectively,

clong: ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kþ 2l

q0

s

; cshear ¼
ffiffiffiffiffi

l

q0

r

(17)

so that strong ellipticity imposes the necessary conditions of sta-
bility (in 3D) as

l > 0 � kþ 2l > 0; () l > 0 � jþ 4

3
l > 0 (18)

These conditions are included in the Lam�e modulus map in Fig. 1.
Note that the 2D (plane-strain) stability conditions can be derived
analogously [94].

2.4 Global Stability. The conditions of structural stability or
global stability, in contrast, are nonlocal and ensure stability of an
overall body in dependence of the boundary conditions. Satisfying
those guarantees that an arbitrary infinitesimal perturbation of the
displacement field from an equilibrium state remains bounded for
all time. The conditions of structural stability are derived from
either energetic considerations, enforcing uniqueness of solutions
[4,44,79,95] or from a dynamic approach that seeks to analyze the
eigenmodes of a free vibration with respect to stability in the
sense of Lyapunov [82].

Starting with a separable solution of the infinitesimal displace-
ment field (with x 2 R in general)

Fig. 1 Map of stable regions in the k–l plane of a homogene-
ous, isotropic, linear elastic solid. Dark-gray regions are unsta-
ble by violation of ellipticity, whereas the requirement of
positive definiteness further restricts the stable region by also
making the light-gray region unstable (the three key inequalities
from Eqs. (18) and (23) are shown separately).
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uðx; tÞ ¼ ûðxÞexpðixtÞ (19)

linear momentum balance for a linear elastic body (or a general
body in the linearized setting), Eq. (10), becomes

ðC0
iJkLûk;LÞ;J þ q0x

2ûi ¼ 0 (20)

Multiplication by ûi, integration over X, and application of the
divergence theorem lead to the eigenvalue problem

x2

ð

X

q0ûiûidV ¼
ð

X

ûi;JC
0
iJkLûk;LdV (21)

Since the integral on the left-hand side is non-negative by defini-
tion, real-valued wave speeds (i.e., x 2 R or x2 > 0), and there-
fore, the stability of an elastic body requires that

ð

X

ûi;JC
0
iJkLûk;LdV > 0 (22)

For a homogeneous linear elastic body with constant moduli,
positive-definiteness of C

0
is therefore a sufficient condition of

stability (which is weaker than the necessary condition of elliptic-
ity). When introducing the concept of negative stiffness in Sec.
3.1.1, we will refer to a body with nonpositive-definite elastic
moduli as one having negative stiffness.

For a homogeneous, isotropic, linear elastic body satisfying
Eq. (16), the conditions of positive-definiteness (in 3D) reduce
to

l > 0 � kþ 2

3
l > 0; () l > 0 � j > 0 (23)

which are tighter than those of strong ellipticity in Eq. (18). This
is illustrated in the map of Fig. 1 by the shaded regions (positive
definiteness imposing tighter restrictions on the moduli than ellip-
ticity). As shown, the isotropic moduli can also be expressed in
terms of engineering measures such as Young’s modulus and
Poisson’s ratio

E ¼ l
3kþ 2l

kþ l
and � ¼ k

2 kþ lð Þ (24)

respectively, which yields the classical bounds �1 < � < 1=2 for
positive-definiteness in 3D. Note that, if a body is rigidly con-
strained on its entire surface @X, then ellipticity and Eq. (18)
become the sufficient conditions of stability—in that case, nega-
tive Young’s and bulk moduli as well as Poisson’s ratios outside
the above bounds can be stable, see, e.g., Refs. [94] and [96].

Equation (21) can be rearranged to yield Rayleigh’s quotient,
viz.,

x2 �

ð

X

ûi;JC
0
iJkLûk;LdV

ð

X

q0ûiûidV

(25)

which bounds the lowest eigenfrequency from above. Since the
denominator is by definition positive and stability of a linear elas-
tic body again requires x 2 R and thus x2 � 0, the numerator
must be positive for elastic stability. This ensures stability in the
sense of dynamic, elastic systems.

2.5 Effective Properties. With the advancement of computa-
tional and experimental capabilities, multiscale investigations
have gained importance and have linked stability to effective
properties. In media with two (or more) relevant length scales,
where a separation between micro- and macroscales may be

assumed, homogenization techniques extract macroscale proper-
ties from representative unit cells at the microscale, see, e.g.,
Refs. [64] and [65]. Here, (pointwise) stability at the macroscale
has been linked to structural stability at the microscale [13,62,97].
When including materials that violate elastic positive-definiteness
such as in solids undergoing structural transitions, extra care is
required as common assumptions of continuum elasticity theory
may no longer hold [98,99].

Here and in the following, we generally refer to larger and
smaller scales as macro- and microscales, irrespective of the par-
ticular length scales involved. The effective quasi-static macro-
scale properties are then defined as averages over an RVE,
defining

h�i ¼ 1

jXj

ð

X

�ð ÞdV (26)

with jXj denoting the volume of RVE X.
For example, in linear elasticity, effective stress and strain ten-

sors hri and hei are linked by an effective modulus tensor C
	

such that hriji ¼ C
	
ijklhekli, see Ref. [66]. In case of linear visco-

elastic behavior, harmonic stress and strain fields rðx; tÞ ¼
r̂ðxÞexpðixtÞ and eðx; tÞ ¼ êðxÞexpðixtÞ, respectively, with gener-
ally complex-valued amplitudes are linked through a complex-

valued effective modulus tensor C
	
such that hr̂ iji ¼ C

	
ijklhêkli,

see Refs. [100] and [101]. For particular loading scenarios, one
can characterize the effective material damping by the loss tan-
gent tan d, defined by the phase lag d in the time domain. For
example, for uniaxial loading, we have eðtÞ ¼ êðtÞexpðixtÞ and
rðtÞ ¼ r̂ expðiðxt� dÞÞ. In case of nonlinear material behavior,
the effective response depends on deformation and, e.g., the effec-
tive incremental modulus tensor is given by

C
0	
iJkL ¼ @hPiJi

@hFkLi

�

�

�

�

hFi¼F0

(27)

Other effective properties can be defined analogously.

3 Exploiting Instabilities in Solids and Structures

As pointed out earlier, both local and global instabilities may
occur in solids and structures. In recent years, both of them have
been exploited to produce interesting, peculiar, extreme, or benefi-
cial macroscopic material behavior. Most such concepts can be
grouped into two categories to be explained in great detail in
Secs. 3.1 and 3.2. Section 3.1 focuses on using the loss of
positive-definiteness (often referred to as negative stiffness) as a
material property. While unstable in a free-standing solid, we will
discuss how nonpositive-definite phases can be stabilized in a
composite and how such stable negative stiffness is utilized to
control the effective, overall composite properties. By contrast,
Sec. 3.2 reviews examples in which (i) structural instabilities are
exploited to induce large deformations that enable the control and
tuning of the effective properties of the system (without necessar-
ily using nonpositive-definite constituents) and (ii) the rather
recent concept of utilizing instability to propel stable, large-
amplitude nonlinear wave motion.

3.1 Negative Stiffness and Material Instability

3.1.1 The Concept of Negative Stiffness. The strategy of
exploiting so-called negative-stiffness components in structures
and solids is based on a simple yet powerful idea. Most engineer-
ing design principles achieve target material properties by com-
bining constituents which—individually or jointly—contribute the
properties of interest. For example, combining a lossy viscoelastic
material with a stiff elastic material can result in composites offer-
ing both stiffness (i.e., the ability to carry loads) and damping
(i.e., the ability to absorb vibrational energy) [102–105]. In the
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design of such composite systems, one commonly works with
constituents having positive definite-elastic moduli—this ensures
stability of each phase under arbitrary boundary conditions. A key
observation was that the geometric constraints between the vari-
ous phases in a composite provide a means of stabilization, so that
phases with nonpositive-definite elastic moduli (phases having
negative stiffness) may, in principle, exist and be stable if con-
strained. In other words, while a homogeneous linear elastic
medium must have positive-definite moduli for stability under
general boundary conditions, a composite may not necessarily
require all of its constituents to satisfy positive-definiteness for
stability. This led to a careful analysis of both stability and effec-
tive properties of such composites containing negative-stiffness
phases. The full analysis of multiphase composites is
mathematically involved, which is why—before analyzing com-
plex, higher-dimensional composite materials—we first turn to
mass–dashpot–spring systems as simple structural analogs that
admit intuitive, closed-form solutions. In fact, spring systems
have been used early on to study the presence of negative-
stiffness phases, see, e.g., Ref. [106]. While the loss of stability in
solids is linked to checking the above local and global conditions
imposed upon the components of the incremental stiffness tensor,
the stability of a spring is simply linked to the sign of its scalar
stiffness. Composites, difficult to deal with in 2D/3D, in general,
because of geometric effects and complex boundary conditions,
are easily assembled by multiple springs in one-dimensional
(1D)—like the classical Reuss and Voigt composites. Even the
transition from elastic to viscoelastic composites can be discussed
by adding dashpots to the spring analogs (while requiring more
complex tensorial counterparts in higher-dimensional systems).
For all those reasons, we introduce the basic concepts of negative
stiffness, multistability, and effective properties by simple spring
examples.

3.1.2 Springs as Structural Analogs. Structural instability
emerges, e.g., in a bistable system (i.e., a structure having two sta-
ble equilibrium configurations which correspond to two local
energy minima). If the energy potential is continuous, then there
must also be local energy maximum which corresponds to an
unstable state.

Consider, e.g., the mass–spring toy example shown in Fig. 2(a).
The system consists of two linear elastic springs of stiffness k and
a point mass m which is assumed to move only horizontally. The
mass has two stable equilibrium positions at x ¼ 6l, correspond-
ing to two energy minima, while the central position x¼ 0 corre-
sponds to a local maximum (hence, an unstable equilibrium), as
shown by the total potential energy E plotted in Fig. 2(c). This is
as a prototype of a bistable elastic system. The potential
energy landscape is inherently nonconvex, which comes with non-
linearity in the physical constitutive behavior since F ¼ @E=@x.
Displacement-controlled loading here results in a nonmonotonous
force–displacement relation, whereas load control leads to snap-
ping from one equilibrium branch to another.

Since we restrict the mass’ motion to be horizontal, the effec-
tive static stiffness k	a of the overall system depends nonlinearly
on the mass’ position x via

k	a xð Þ ¼ @2E

@x2
¼ 2k 1� h2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2 þ l2
p

h2 þ x2ð Þ3=2

 !

(28)

see Fig. 2(a) for the definition of the geometric parameters. There-
fore, negative effective stiffness, k	a < 0, occurs when

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðh4ðh2 þ l2Þ � h2Þ1=3
q

< x <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðh4ðh2 þ l2Þ � h2Þ1=3
q

(29)

but is unstable in an unconstrained system (under load control, the
mass will snap through the unstable, concave region of E in
Fig. 2(c)).

As an extension, the composite system shown in Fig. 2(b) adds
in series another linear spring of constant stiffness k2 > 0. Imag-
ine the application of a force F0, resulting in a position x0 of the
(left) mass in the composite system. Assuming that the system is
stable in that configuration, we may linearize about x0 with respect
to small perturbations in the load and displacement. The resulting
system with incremental load–displacement relation _F ¼ k	 _x is
visualized in Fig. 2(d), where we redefined k1 ¼ k	a for simplicity,
and it yields the effective static stiffness

k	 ¼ k1k2

k1 þ k2
(30)

Stability requires k	 � 0 so that (assuming k2 > 0), we must also
have

k1 � 0 (31)

for stability under general boundary conditions (any k1 < 0 is
unstable under load control). Note that if we add a third spring

Fig. 2 Simple spring examples: (a) bistable mechanical system
and (b) composite spring system; the energy and stiffness of
system (a) is illustrated in (c); (d) linear spring reduction of sys-
tem (b) where k1 5 k 	

a and (e) its viscoelastic extension; (f) com-
posite system

Applied Mechanics Reviews SEPTEMBER 2017, Vol. 69 / 050801-5

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

s
m

e
d
ig

ita
lc

o
lle

c
tio

n
.a

s
m

e
.o

rg
/a

p
p
lie

d
m

e
c
h
a
n
ic

s
re

v
ie

w
s
/a

rtic
le

-p
d
f/6

9
/5

/0
5
0
8
0
1
/5

9
6
3
8
6
5
/a

m
r_

0
6
9
_
0

5
_

0
5

0
8

0
1

.p
d
f b

y
 g

u
e
s
t o

n
 1

7
 A

u
g
u
s
t 2

0
2
2



with stiffness k3 > 0 in parallel to the other two springs, see
Fig. 2(f), then the effective stiffness becomes

k	 ¼ k3 þ
k1k2

k1 þ k2
(32)

in which case stability requires

k1 � k1;crit ¼ � k2k3

k2 þ k3
(33)

That is, for k2; k3 > 0 negative values of k1 can indeed be stable
under general loading. Apparently, infinite effective stiffness
k	 ! 1 is predicted for k1 ! �k2 from below, but this is neces-
sarily unstable because k1 � k1;crit > �k2 unless k3 ! 1 (in
which case, the system is infinitely stiff anyways). Note that nega-
tive values of k1 can serve to create systems with very low effec-
tive stiffness k	, which may be of interest for controlling the
resonance frequencies of the system [107].

It is important to note that we here refer to the positive or nega-
tive static stiffness of the elastic system or its components, which
should not be confused with the effective dynamic stiffness which
has also been tuned to negative values in acoustic metamaterials
exploiting, e.g., local resonators [108–110]. In our case, negative
stiffness refers to the quasi-static load–displacement relation and
is tied to the release of internal energy (such as energy release
upon snapping of the bistable spring system).

Finally, consider the viscoelastic system obtained from
replacing the elastic springs by viscoelastic spring–dashpot
combinations, see Fig. 2(e). In case of linear dashpots (i.e.,
velocity-proportional damping) with viscosities gi > 0, the effec-
tive complex-valued quasi-static stiffness of the simple composite
under harmonic excitation with frequency x (inertial effects are
neglected) is by the correspondence principle [100]

k	 ¼ k	1k
	
2

k	1 þ k	2
(34)

with

k	j ¼ kj þ ixgj (35)

The resulting effective stiffness (assuming k2 > 0) is

jk	j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Im k	ð Þ2 þ Re k	ð Þ2
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g21x
2 þ k21

� �

g22x
2 þ k22

� �

x2 g1 þ g2ð Þ2 þ k1 þ k2ð Þ2

s

(36)

and the effective damping is characterized by

tan d ¼ Im k	ð Þ
Re k	ð Þ ¼ x

g2k
2
1 þ g1k

2
2 þ g2 g1x

2 g1 þ g2ð Þ
� �

x2 g22k1 þ g21k2
� �

þ k1k2 k1 þ k2ð Þ (37)

Figure 3 illustrates the effective stiffness and damping and dem-
onstrates the impact of negative values of k1 (assuming k2 > 0).
Recall that stability requires (31) (which remains unaffected by
the addition of viscosity). Results in Fig. 3 indicate that, as k1
approaches the stability limit (k1 ! 0 from above), significant
increases in damping can be achieved, while the effective stiffness
is reduced considerably. The same was shown for more complex
two-phase composites consisting of negative-stiffness inclusions
embedded in a stabilizing matrix phase [101]. Note that these
analyses ignore inertial effects, which can easily be added and
provide altered results that also depend on the masses and may
produce local resonance effects [107].

The previously mentioned concept of utilizing mechanical sys-
tems near instability to create an effective negative stiffness was
first utilized in structures, e.g., for vibration isolation [29,111].

Constrained snap-through instabilities in precompressed, buckled
beams (as a more practical implementation of the scenario in
Fig. 2(a)) were used to reduce the stiffness of elastic suspensions
and to achieve low natural frequencies, see also Ref. [31]. Appli-
cations ranged from vibration isolation for nano-instrumentation
[112] to vibration reduction in vehicles [113] and structures [32],
to seismic protection technologies [114]. Negative incremental
stiffness has also been reported in foams [115] and structures with
interlocked elements [116]. Further examples of structures
exploiting constrained bistable, negative-stiffness elements can be
found in Refs. [117–120] with nonlinear extensions in Ref. [121].
The concept of operating a stabilized mechanical system close to
a critical point had also been found in biological systems such as
myofibrils [122], muscles [123], and hair cell walls [124],
where—among others—the high, controllable sensitivity near the
critical point is exploited.

At the material level, negative stiffness implies nonpositive-
definite (incremental) elastic moduli C, which may result from
constrained material instabilities (e.g., from phase transforma-
tions). For example, the potential energy of materials undergoing
second-order phase transformations is often described by Lan-
dau’s theory [46]: having only a single well at high temperature,
the potential energy turns into a multiwelled landscape below the
transformation temperature. Upon cooling through the transition
temperature, the initially stable high-temperature energy mini-
mum turns into a local maximum below the transformation point
which becomes unstable but, if sufficiently constrained, may be
stabilized to display nonpositive-definite moduli [40].

Early approaches to take advantage of the negative-stiffness
concept in materials were based on theoretical predictions of
stiffness and damping in composites. For example, by evaluating
the property bounds of Hashin–Shtrikman composites [125],
nonpositive-definite phases were shown to produce extreme visco-
elastic properties [38]. Similar to later predictions based on fractal
composite models [126], those investigations predicted extreme
variations in the composite’s effective stiffness and damping due
to the presence of negative-stiffness phases (where the term
extreme stands for effective properties that surpass those of each
constituent).

As an example, Fig. 4 illustrates the effective dynamic Young’s
modulus and the effective damping obtained from evaluating the
Hashin–Shtrikman lower bound for a composite composed of a
metal matrix (with moduli lmat ¼ 19:2 GPa, jmat ¼ 41:6 GPa,
and three values of tan d ¼ 0:01, 0.02, and 0.04) with 5 vol %
ceramic inclusions (linc ¼ 50 GPa and tan d ¼ 0:001) whose bulk
modulus jinc is varied from positive to negative values. For
jinc > 0, the few inclusions have little impact on the effective
response. For jinc 
 �24 GPa, strong variations in Young’s mod-
ulus and loss tangent are predicted (these are even more remark-
able as only 5 vol % inclusions are responsible for the shown

Fig. 3 Effective (normalized) stiffness and damping of the lin-
ear viscoelastic composite system of Fig. 2(e) versus (normal-
ized) spring stiffness k1 (shown for gx5 0:01 and k2 >0)
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changes in the overall properties). As shown later in Refs. [127]
and [128], composite bounds also predicted the piezo-, pyro-, or
thermomechanical coupling coefficients to assume extreme values
in particulate composites with negative-stiffness inclusions in a
viscoelastic matrix, similar to Fig. 4. Composites were further
shown to serve as waveguides with exceptional damping due to
negative-stiffness phases [129].

The combination of high stiffness and high damping is of par-
ticular technological interest as those properties are naturally
exclusive [130], owing to the distinct responsible microscale
mechanisms (high stiffness favors perfect crystallinity, whereas
high damping requires high mobility of defects or related mecha-
nisms of internal friction). In fact, plotting the stiffness versus
damping of many natural and manmade materials (see Fig. 5)
revealed a seemingly natural upper bound on the combined figure
of merit of stiffness times damping, E� tan d, for all known mate-
rials [131]; the region of high stiffness and damping in Fig. 5
remained empty. The negative-stiffness strategy offered opportu-
nities to achieve composites having both high stiffness and high
damping (with optimal combinations sought, e.g., via topology
optimization [132]), which can enter the empty parameter range,
as discussed in Secs. 3.1.3 and 3.1.4.

3.1.3 Composite Materials: Theoretical Studies. Following
those early estimates based on composite bounds, more theoretical
studies of specific composites followed with the aim to contrast
extreme property predictions with stability restrictions. After all,
the question had remained whether or not extreme composite
properties due to negative-stiffness phases could be stable under
general loading/boundary conditions.

Coated cylinders and spheres are prototypical examples of two-
phase composite bodies with Lam�e-type solutions in small strains.
A first continuum-mechanics analysis of both 2D and 3D configu-
rations (i.e., coated cylinders and spheres) showed that negative
stiffness in the inclusion may indeed lead to extreme overall
increases in the overall bulk modulus in case of linear and nonlin-
ear elastic composites [133]. Dynamic stability analysis using the
same two-phase composite bodies within linear elasticity further
revealed that nonpositive-definite inclusions can indeed be stable
if sufficiently constrained, e.g., when embedded in a stiff coating
or matrix [98,134]. Specifically, for homogeneous, isotropic linear
elastic phases, it was shown that a negative inclusion bulk modu-
lus can be stable if the surrounding coating is sufficiently stiff and
thick.

The global stability conditions were derived in the two ways
described in Sec. 2. As shown in Ref. [98], one can solve the
dynamic, linear elastic eigenvalue problem for macroscopic
bodies X to determine the infinite set of eigenfrequencies (or at
least the lowest few). That is, one solves Eq. (20) with suitable
boundary conditions (e.g., pure traction boundary conditions over
@X as the weakest constraint) for the eigenfrequencies xi. For lin-
ear elastic bodies, stability requires that xi 2 R. Therefore, once
the lowest nonzero eigenfrequency x0 is known as a function of
elastic moduli and geometry, stability conditions on the elastic
moduli can be established. Alternatively, stability conditions were
derived by evaluating Eq. (22) for specific composite geometries
[134]. Furthermore, by exploiting Rayleigh’s coefficient (25),
finite element analysis was conveniently used as an inexpensive
alternative [94] (which requires checking the positive-definiteness
of the global stiffness matrix). As could be expected for conserva-
tive systems (such as linear elastic media), all the three
approaches led to the same conclusion, viz., that nonpositive-
definite inclusion phases can be stable if sufficiently constrained.
For example, Fig. 6 shows the stable and unstable moduli combi-
nations for the shown coated-sphere two-phase body as light and
dark regions, respectively, clearly indicating that the inclusion’s
bulk modulus, ji, can be negative and stable if the coating’s bulk
modulus, jc, is sufficiently high [107].

For conservative linear systems, one can exploit the equiva-
lence of static and dynamic stability, following Hill [79] and
Koiter [84], which led to simplified stability analyses. For exam-
ple, for rotational-symmetric bodies such as coated cylinders or
coated spheres, the lowest (nonzero) eigenfrequency typically cor-
responds to a rotational-symmetric deformation mode and is
therefore linked to the effective bulk modulus of the two-phase
body [96]. Therefore, the stability limit can alternatively be
obtained by computing hji as a function of constituent moduli
and geometry and enforcing hji � 0 for stability (in close analogy
to the spring example of Sec. 3.1.1). Based on this approach, new
closed-form stability bounds were derived for 2D and 3D compos-
ite bodies [96].

Finally, an alternative protocol was proposed in Ref. [135] to
derive closed-form stability bounds: by exploiting the uniqueness
of solutions in linear elasticity, the static boundary value problem
is solved and instability is linked to the existence of nontrivial sol-
utions. Using this approach, an expanded stability regime was
reported for composites with multiple positive/negative-stiffness
phases [135].

It is important to note that all of the aforementioned stability
analyses were concerned with deriving the structural or global

Fig. 4 Effective viscoelastic Young’s modulus and loss tan-
gent for a Hashin–Shtrikman composite composed of metal
matrix (lmat 5 19:2 GPa, jmat 541:6 GPa, and three values of
tan d50:01;0:02; and 0:04) and 5 vol % ceramic inclusions
(linc 550 GPa, tan d50:001, and varying jinc). The shown effec-
tive modulus refers to the absolute value of the complex-valued
viscoelastic Young’s modulus E	

5Ere1iEim.

Fig. 5 Stiffness (Young’s modulus) versus damping (loss tan-
gent) versus mass density for a variety of natural and manmade
materials; the shadowed prism highlights the desirable but chal-
lenging region of combined high stiffness and high damping
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conditions of stability. Independently, every composite constitu-
ent must locally satisfy the necessary conditions of stability, viz.,
the strong ellipticity of the elastic modulus tensors (which is
equivalent to positive-definiteness of the acoustic tensor in Eq.
(15)). The sufficient conditions of stability thus result from the
satisfaction of both local and global stability constraints for any
given composite.

Now that detailed stability conditions and effective property
calculations were available for 2D and 3D composite examples, a
comparison of both unfortunately revealed that linear elastic com-
posites with negative-stiffness phases cannot produce stable
extreme effective stiffness [107,136], because the composite loses
stability before the negative-stiffness phase can lead to extreme
stiffness increases, see, e.g., the stable region in Fig. 6 and the line
labeled x¼ 0 which indicates moduli combinations leading to
extreme (i.e., positive infinite) overall stiffness under static condi-
tions. This was confirmed by rigorous bounds derived for multi-
phase linear elastic composites with nonpositive-definite phases.
In particular, it was shown that the Voigt bound for general com-
posites as well as the Hashin–Shtrikman bound for isotropic com-
posites can be reinterpreted as stability conditions. Exceeding
those bounds (which is required for extreme overall stiffness) ren-
ders the composite necessarily unstable [99]. Figure 7 shows an
example that the effective bulk modulus j	 of a coated spherical
inclusion (whose bulk modulus ji is assumed to become negative)
shows extreme variations but only for negative values of the
inclusion bulk modulus beyond the stability limit, both for rigid-
displacement and general boundary conditions (Dirichlet and
Neumann problems, respectively). The former adds some stabili-
zation as can be seen by the shifted stability limit, but that stabili-
zation is insufficient to allow for stable extreme bulk stiffness
j	 ! þ1. Based on the aforementioned link between composite
bounds and stability limits, this conclusion can be generalized to
other elastic moduli including those of anisotropic solids.

In contrast to the elastic stiffness, extreme viscoelastic damping
was shown to be theoretically stable, like in the simple spring
example of Sec. 3.1.1. Discrete spring–mass–dashpot structures
played a central role in early studies deriving effective visco-
elastic properties and stability without the need for a full contin-
uum analysis, see, e.g., Refs. [137–141]. These studies confirmed
that, although extreme composite damping (and compliance) can

be achieved, extreme stiffness cannot be stable [106]. For linear
viscoelastic solids, stable extreme damping was derived for two-
phase composites [142], see also Ref. [143] and the numerical
confirmation by finite elements in Ref. [144]. Multiscale simula-
tions of viscoelastic composites with negative-bulk-modulus
inclusions [101] and with phase-transforming inclusions [145], in
both cases embedded in a viscoelastic matrix material, confirmed
that extreme increases in the composite’s effective damping
capacity under dynamic excitation can be stable.

Since viscoelastic experiments using time-harmonic loading
had revealed extreme properties (including extreme damping),
further stabilization was sought from dynamic loading. Similar to
the vibration of an inverted pendulum [146,147], the dynamic
excitation of composites was shown to expand the stable regime.
Here, the effect of nonconservative forces plays an important role,
e.g., by spinning a composite at sufficiently high frequency, gyro-
scopic forces can provide stabilization, as shown for both contin-
uum composites at the example of a coated cylinder [85] and for
discrete mass–spring systems [148]. For the latter, it was shown
that even extreme stiffness can be stabilized by the gyroscopic
forces. Further stabilization was reported in nonequilibrium sys-
tems with energy flux [149].

The influence of inertial effects in two-phase solids was investi-
gated in Ref. [107] and showed that the presence of a nonpositive-
definite phase can significantly reduce the spectrum of resonant
frequencies, resulting in strong stiffness variations due to reso-
nance. The solid lines in Fig. 6 illustrate modulus combinations
leading to extreme effective dynamic stiffness of the composite
(considering the action of inertia) at different excitation frequen-
cies x, i.e., the loading is as the same as in Fig. 7 but with pðtÞ ¼
p̂ expðixtÞ resulting in the effective dynamic bulk modulus
j	 ¼ p̂b=3ûrðbÞ. For an elastic solid, those lines correspond to
positive-infinite stiffness; for a viscoelastic solid, the effective
stiffness would be bounded but high. Results in Fig. 6 show how
the predicted strong stiffness increases shift into the stable region
of moduli combinations with increasing excitation frequency.

Fig. 7 Stability map showing stable (light) and unstable (dark
gray) regions of ji/li, where ji and li are, respectively, the bulk
and shear moduli of a spherical inclusion (radius a) embedded
in a concentric coating (outer radius b and moduli jc; lc). The
stability limit for ji/li depends on the applied BCs. Plotted is
the effective bulk modulus j	 5pb/3ur (b) for uniform applied
pressure p, resulting in a rotational-symmetric expansion of the
coated-sphere composite with radial displacement field ur (r ).
Consequently, under both types of BCs, the solid loses stability
before the effective modulus tends to 1‘ with decreasing ji/li.
Note that positive-definiteness corresponds to j/l � 0, so that
the elastic coating expands the stable regime of the inclusion
phase.

Fig. 6 Stable and unstable moduli combinations for a coated
spherical inclusion (stable and unstable combinations are
shown as light and dark gray regions, respectively); both
phases are homogeneous, isotropic, linear elastic (with
lc; li > 0 for pointwise stability). Under static conditions, an infi-
nite effective bulk modulus of the two-phase body is unstable
(shown by the x5 0 line are all moduli combinations resulting
in a positive-infinite bulk modulus). Under dynamic excitation,
resonance effects lead to strong stiffness variations which,
with increasing excitation frequency x shift in to the stable
region (x0 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lc/qcb
p

). When admitting negative stiffness ji <0,
these become stable at significantly lower frequencies [107].
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3.1.4 Composite Materials: Experimental Studies. Although
we discussed theoretical and numerical studies first, experimental
research was underway at the same time and has fueled the former
by giving insight into the effective behavior of systems with con-
strained negative-stiffness constituents. Experiments also pro-
vided evidence that interesting properties could be attained in this
fashion.

Beginning with structural instabilities, experiments on compos-
ite structures such as postbuckled, embedded silicone rubber tubes
indeed showed significant damping peaks [37] with maximum
damping observed orders of magnitude in excess of the damping
of pure silicone rubber. Similarly, buckling was later utilized in
carbon-nanotube composites [30], where applied compression
brought the nanotubes near their critical points.

At the material level, most experiments used phase transforma-
tions in solids to induce nonpositive-definite phases: when embed-
ded in a stiff matrix, phase-transforming inclusions are
geometrically constrained and the delayed phase transformation
may result in temporarily stable negative stiffness in the inclusion
phase. Probably the first example, VO2 inclusions embedded in a
tin matrix displayed extreme damping and large variations in stiff-
ness due to the phase transformation in the inclusion phase [39].
Figure 8 illustrates the viscoelastic compliance and damping
measured in torsion at 100Hz. Experiments on composites with
VO2 particulate inclusions showed that extreme properties could
indeed be achieved with low VO2 concentrations (below 5 vol %)
but that this no longer applied at higher concentrations [150,151]
due to a reduction in stabilization.

As a further example, Sn–BaTiO3 composites showed extreme
viscoelastic stiffness and damping variations under time-harmonic
bending [40], as shown in Fig. 9. Like in the VO2 example, tem-
perature was used to control the phase transformation, and meas-
ured data showed varied responses with increasing numbers of
thermal cycles. This effect was primarily attributed to the progres-
sive weakening of particle-matrix bonding, failure and damage
mechanisms, as well as accumulating plastic strains surrounding
the inclusions (see Ref. [145] for a computational analysis show-
ing damage and degradation surrounding the inclusion phase).
Experiments on indium–thallium alloys showed damping peaks
and sigmoid-shaped anomalies in the shear modulus at high cool-
ing rates due to the temperature-induced martensitic transforma-
tion [152], which was also attributed to constrained negative
stiffness. Further experiments were reported for BaZrO3–ZnO
[153] and Zn80Al20–BaTiO3 [154]. In many of the aforementioned
ferroelectric perovskite inclusions, the negative-stiffness mecha-
nisms were theoretically associated with an oxygen vacancy
mechanism [153].

Experiments on unconstrained phase-transforming materials
demonstrated strong variations in the (visco)elastic moduli during
the ferroelastic transition of, e.g., BaZrO3–BaTiO3 [155] (shown
were variations in Poisson’s ratio and the effective bulk modulus).
In unconstrained samples, the transformation was shown to result
in pronounced softening. However, such stiffness reduction during
the transformation could at most reach zero stiffness (and not dis-
play negative stiffness) in an unconstrained sample. It was theor-
ized that in a constrained system (such as particles embedded in a
matrix), negative stiffness can be stabilized as derived theoreti-
cally [96,98,107,134]. Negative stiffness was detected in uncon-
strained phases by special nanoindentation techniques [156], and
it was also reported in phase-transforming systems such as
ZrW2O8 during a ferroelastic cubic-orthorhombic pressure-
induced phase transition [157]. Ferroelectric switching in perov-
skite ceramics is another mechanism that induces instability (by
applied electric fields). The resulting variations in stiffness and
damping were measured, e.g., for lead zirconate titanate where a
strong viscoelastic softening was observed during the switching
process [42,158].

It is important to note that all of those material-level experi-
ments characterized the dynamic (visco)elastic moduli and dem-
onstrated extreme increases in the effective damping and
significant variations in the effective stiffness (some stiffness var-
iations reaching extreme values orders of magnitude above those
of the constituent materials). By contrast, theory showed that the
classical upper composite bounds on the elastic moduli presented
stability conditions [99], implying that negative-stiffness constitu-
ents (even though possibly stable when embedded in a stiff
matrix) can never lead to a composite performance surpassing the
stiffness of individual constituents. Those theoretical conclusions,
however, applied to the quasi-static elastic moduli and, as men-
tioned earlier, theoretical/numerical studies indeed revealed the
potential for extreme damping and stiffness in dynamically
excited solids and the importance of potential resonant effects
[107]. Even though experiments were generally designed to oper-
ate far below the first specimen resonance, this did not necessarily
account for the specimen stiffness decreasing significantly as a
consequence of the phase transformation in the inclusion phase
[107], as described in Fig. 6. The full range of opportunities in
exploiting instability in the dynamic setting still poses many ques-
tions and fuels ongoing research.

3.2 Structural Instability and Metamaterials

3.2.1 Instability-Driven Pattern Formation. Periodic and
porous structures made of elastic materials such as elastomers and
gels undergo significant and reversible deformation in response to
diverse stimuli, including mechanical loading, swelling, and

Fig. 8 Torsional compliance (inverse stiffness) and loss tangent
versus temperature of a composite composed of 1 vol % VO2 par-
ticles embedded in a pure tin matrix (damping of pure tin is
included for reference). Measurements were conducted well below
sample resonance at 100Hz. Reprinted with permission from
Lakes et al. [39]. Copyright 2001 by Nature PublishingGroup.

Fig. 9 Dynamic stiffness and damping variations in visco-
elastic Sn–BaTiO3 composites under harmonic loading.
Adapted from Ref. [40].
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changes in temperature and electric signals. When excessive
deformation is applied, they may eventually become unstable.
Beyond the instability threshold, rapid and dramatic changes of
the structural geometry occur, and a careful design of the initial
architecture may lead to the formation of new and homogeneous
periodic patterns [159–162]. Interestingly, it has been recently
shown that such dramatic geometric rearrangements induced by
instabilities can be exploited to rapidly tune the macroscopic
response and functionalities of the structures [22,34,163–174].

The recent developments in the field have been enabled by the
convergence of advances in computational tools and experimental
techniques, which now make it possible to easily simulate and fab-
ricate structures of complex form. Experimentally, recent advances
in digital fabrication have enabled manufacturing of systems with
arbitrary shapes across length scales and made out of a wide ranges
of materials, facilitating the exploration of the design space [175].
On the computational side, to reduce the time and make sure the
behavior of the systems is not dominated by boundary effects, most
of the studies have focused on infinite periodic systems, considering
unit cells with appropriate boundary conditions. Despite the fact
that instabilities often alter the periodicity of the structure, buckling
can be still studied on the initial unit cell by investigating the propa-
gation of small-amplitude waves of arbitrary wavelength superim-
posed on a state of finite deformation [162,176–179]. Specifically,
the onset of buckling corresponds to the first point along the loading
path for which a wave with vanishing natural frequency exists
(assuming that rigid-body modes are suppressed).

To conduct such analysis, the unit cell is first subjected to a
state of finite deformation u0. Then, the propagation of small-
amplitude elastic waves in the predeformed cell is investigated by
applying Bloch-type boundary conditions [68]

uðx; tÞ ¼ ûðxÞeiðk�x�xtÞ (38)

where ûðxÞ satisfies the periodicity of the underlying lattice and x
is the frequency. Moreover, k denotes the wave vector

k ¼ b1
m1

þ b2
m2

þ b3
m3

(39)

where mi (I¼ 1, 2, 3) are the numbers of unit cells contained in a
full wavelength along the direction of the ith lattice vector, and bi
are the reciprocal primitive vectors defined as

b1 ¼ 2p
a2 � a3

jjzjj2

b2 ¼ 2p
a3 � a1

jjzjj2

b3 ¼ 2p
a1 � a2

jjzjj2

(40)

ai being the lattice vectors spanning the unit cell and
z ¼ a1 � ða1 � a2Þ. Substitution of Eq. (38) into Eq. (10) leads to
the eigenvalue problem

½�C
0
ijklkj þ iC

0
ijkl;j�klûk � qx2ûi ¼ 0 (41)

to be solved over the continuous body X for different combina-
tions of m1, m2, and m3. An instability is detected at the lowest
value of applied deformation for which m1, m2, and m3 exist such
that the corresponding wave has vanishing frequency x.

One of the simplest examples of instability-driven pattern for-
mation in elastic metamaterials is that observed in a square array
of circular holes in a 2D elastomeric matrix. Bloch wave stability
calculations first showed that for such structure, a microscopic
bifurcation instability occurs before the macroscopic loss of ellip-
ticity, resulting in an antisymmetric bifurcation mode character-
ized by a pattern of alternating, mutually orthogonal ellipses [162]
(see Fig. 10(a)). These predictions have then been confirmed by
experiments [159,160] (see Fig. 10(b)). Note that this metamate-
rial can be seen as an array of rigid domains (gray squares in
Fig. 10(b)) connected by beamlike thin ligaments (green lines in
Fig. 10(b)). Each beam buckles into the energetically most
favored configuration—a half-sinusoid—and induces rotation of
the rigid domains, resulting in the formation of a pattern of mutu-
ally orthogonal ellipses.

Building on these initial results, a library of 2D
[21,174,180,181] and 3D [164] porous structures and structured
porous shells [22,169,182] in which buckling induces pattern
transformations has been identified (see Fig. 11). Moreover, while
in most of the cases mechanical loading is used to deform the
structures and trigger the instabilities, it has also been shown
that other stimuli including swelling [160,165–168,183] (see
Fig. 12(a)), capillary pressure [172] (see Fig. 12(b)) and magnetic
fields [184] (see Fig. 12(c)) can result in instability-driven pattern
formation.

Fig. 10 (a) Macroscopic (continuous line) and microscopic (dashed line) onset-of-bifurcation surfaces in the principal macro-
scopic logarithmic strain space for a perfectly periodic neo-Hookean solid (characterized by a bulk to shear moduli ratio equal
to 9.8) with a square distribution of circular voids. The eigenmode of the microscopic bifurcation instability is shown on the
right. Reprinted with permission from Triantafyllidis et al. [162]. Copyright 2006 by ASME. (b) Experimental images of an elasto-
meric structure comprising a square array of circular holes for increasing values of the applied deformation. Note that after
instability, the lateral boundaries of the sample bend inward, a clear signature of negative Poisson’s ratio behavior. Adapted
from Ref. [180].
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The pattern transformations triggered by instability in porous
structures have been found to be robust and only marginally
affected by small imperfections and edge effects [178]. However,

their emergence can be compromised in structures characterized
either by low levels of porosity or by multiple nucleation sites
[163,166,185]. By progressively reducing the porosity, a transition

Fig. 11 (a) Experimental images of an elastomeric structure comprising a triangular array of circular holes when compressed
horizontally (top), vertically (center), and equibiaxially (bottom). Three distinct buckling-induced patterns are formed. Adapted
from Ref. [174]. (b) Orthogonal side views (onto the y–z and x–z planes) for a cylindrical sample pattern with a square array of
circular holes at different levels of deformation. The structure was made watertight by a thin membrane that covered the inner
surface of the voids and was then loaded hydraulically. Adapted from Ref. [169]. (c) The Hoberman Twist-O is a commercial toy
which comprises a rigid network of struts connected by rotating hinges and can easily collapse into a ball having a fraction of
its original size. Adapted from Ref. [22]. (d) The Buckliball is inspired by this popular toy but translates the mechanism design
to the structure of an elastic spherical shell—which under pneumatic actuation undergoes buckling-induced folding, opening
avenues for a new class of active and reversible encapsulation systems. Adapted from Ref. [22].

Fig. 12 (a) Experimental snapshots during the swelling process for a square lattice made of plates sandwiched between two
thin and stiff layers. Buckling induces an effective negative swelling ratio in this structure. Reprinted with permission from Liu et
al. [165]. Copyright 2016 by John Wiley & Sons. (b) An instability is induced by capillary forces during evaporation of water from
a swollen hydrogel membrane with micron-sized holes in a square array. Scale bars: 10lm. Reprinted with permission from Zhu
et al. [172]. Copyright 2012 by Royal Society of Chemistry (c) Slow variations in the current through several electromagnetic coils
embedded in a soft cellular elastomer induce visible strain and snap-through behavior. Reprinted with permission from Tipton et
al. [184]. Copyright 2012 by Royal Society of Chemistry.
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occurs from instabilities with a short wavelength to instabilities
characterized by a wavelength much larger than the scale of the
microstructure [163]. Differently, the presence of multiple nuclea-
tion sites results in domains of uniform buckling patterns sepa-
rated by antiphase boundaries [166,185] (see Fig. 13(a)).

For elastic materials, these geometric reorganizations triggered
by the instability are both reversible and repeatable. Furthermore,
they occur over a narrow range of the applied load. Therefore,
they do not only result in the formation of complex patterns but
can also be instrumental to design materials with new modes of
functionality. Recently, instabilities in periodic structures have
been exploited to design metamaterials with tunable negative
Poisson’s ratio [163,164] (see Fig. 10) and effective negative
swelling ratio [165] (see Fig. 12(a)), reversible encapsulation
systems [22] (see Fig. 11(d)), structures capable of switching
between achiral and chiral configurations [166–168] (see
Fig. 13(a)), soft actuators [169] (see Fig. 11(b)) and robots [170]
(see Fig. 13(b)), materials with tunable optical properties
[171,172] (see Fig. 13(c)), and as described later, metamaterials
with tunable dynamic response [34,173,174].

While most elastic instabilities are the result of compressive
forces, elastic bodies may also become unstable under tensile
loading. For example, a tension instability can be triggered in a

block of incompressible elastic material under plane-strain condi-
tions subjected to equibiaxial tension, resulting in its sudden flat-
tening [186,187]. When a mechanical metamaterial is built by
arranging such elastic blocks on a square lattice, an instability is
triggered under equibiaxial tension resulting in a checkerboard
pattern of pores with two different sizes [161,187,188]. Moreover,
sequential snap-through instabilities triggered under tensile load-
ing in mechanical metamaterials comprising 1D arrays of curved
beams [189] (see Fig. 14(a)) and 2D arrays of rotating units [190]
result in large extension and a range of nonlinear mechanical
responses. Finally, mechanical instabilities in flat thin sheets with
an embedded array of cuts subjected to uniaxial tension can result
in out-of-plane deformation and the formation of 3D architectures
[191,192] (see Fig. 14(b)), providing opportunities for the design
of highly stretchable devices [193–198] and morphable structures
[191,199,200].

It is also important to note that the formation of instability-
driven patterns requires all building blocks to cooperatively
deform (i.e., the metamaterial should be frustration-free). To
achieve this, all slender elastic elements within the structure
should buckle into the energetically most favored configuration
and at the same time preserve the angles with their neighbors to
minimize the deformation energy (see Fig. 15(a)). In two

Fig. 13 (a) Buckling-induced reversible pattern formation in a supported microscale honeycomb lattice upon
rapid swelling. Depending on the geometry of the plates, buckling induces either an achiral pattern or a chiral
pattern. Multiple domains with different chirality are observed, whose boundaries are highlighted by the dashed
lines. The insets show magnified images of the buckled patterns within the domains (top) and at the domain
boundaries (bottom). The color-coded arrows indicate the handedness of the vertices. Adapted from Ref. [166].
(b) A soft gripper made of a buckling actuator. The claws of the gripper close upon deflation of the buckling
actuator and the buckling gripper picks up a piece of chalk. Scale bars: 1 cm. Adapted from Ref. [170]. (c)
Buckling-induced pattern transformation in shape-memory polymer membranes comprising a hexagonal array
of micron-sized circular holes results in dramatic color switching. Adapted from Ref. [171].
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dimensions, this rule can easily be satisfied on a square lattice, but
not on a triangular one, so that the system becomes frustrated.
While it has been shown that in periodic 2D beam lattices, geo-
metric frustration favors the formation of complex ordered pat-
terns [181] (see Fig. 15(b)), and in aperiodic architectures, it
typically prevents a coherent and predictable response. However,
a combinatorial strategy was introduced recently to design aperi-
odic and frustration-free mechanical metamaterials that exhibit
spatially textured functionalities [201].

3.2.2 Tunable Acoustic Metamaterials. In recent years,
rationally designed periodic structures have received increasing
interest also because of their ability to manipulate and control the
propagation of mechanical waves [202], opening avenues for a
broad range of applications such as wave guiding [203,204],
cloaking [205], noise reduction [206–208], and vibration control
[209,210]. An important characteristic of these structured systems
is their ability to tailor the propagation of waves due to the exis-
tence of band gaps—frequency ranges of strong wave
attenuation—which can be generated either by Bragg scattering
[211] or localized resonance within the medium [108].

While most of the proposed acoustic metamaterials operate in
fixed ranges of frequencies that are impractical to tune and control
after the assembly [212–217], it has been recently shown that
instabilities provide an opportunity to alter in situ their dynamic
response [34,35,173,218–221].

To study how instabilities and large deformations affect the
propagation of small-amplitude elastic waves in periodic media,
we consider an infinitesimal dynamic perturbation field u of the
Bloch wave form (38) applied around an equilibrium state of final
deformation u0. Insertion of Eq. (38) into Eq. (10) leads to the
eigenvalue problem (41) to be solved on the periodicity of the
irreducible Brillouin zone [222]. This eigenvalue problem is typi-
cally solved numerically using a number of techniques, including
the plane-wave expansion method, the finite difference method,
and the finite element method [202].

Equation (41) clearly indicates that the deformed solid or struc-
ture thus has a deformation-dependent (effective) incremental
elasticity tensor C

0
with generally anisotropic components.

Therefore, predeformation allows for the controllable variation of
elastic moduli and dispersion properties [221,223–225]. Such tun-
ability can be further enhanced by triggering mechanical instabil-
ities along the loading path, since these result in dramatic
geometric reconfigurations.

Focusing on the structure presented in Fig. 10 (i.e., a square
array of circular holes in an elastomeric matrix), it has been
shown numerically that the pattern transformations occurring at

instability strongly affect its Bragg-type band gaps [173,218].
More specifically, in the post-buckling regime some of the pre-
existing band gaps close and new ones open (see Fig. 16), opening
avenues for the design of acoustic switches to filter sound in a
controlled manner. For weakly nonlinear materials (characterized
by negligible stiffening effects induced by the applied deforma-
tion), the position and width of the band gaps are mainly deter-
mined by the geometric nonlinearities induced by the applied
deformation, and the inhomogeneous stress state induced by the
applied deformation has minimal effect. By contrast, for materials
whose response is characterized by significant stiffening induced
by the applied deformation, the material nonlinearity provides an
additional tool to tune the position and width of the band gaps
[218].

The topological changes induced by mechanical instabilities
not only affect the band gaps but are also found to have a pro-
nounced effect on the directionality of the propagating waves
[218]. In the undeformed configuration (before buckling), an
acoustic metamaterial comprising a square array of circular holes
is anisotropic with larger wave speed along preferential directions
[218]. More specifically, the phase velocity shows a preferred
direction of propagation at h ¼ 45 deg for mode 1 (shear-domi-
nated mode) and at h ¼ 0 deg for mode 2 (pressure-dominated
mode) (see Fig. 17(a)). Moreover, the group velocity in the

Fig. 14 (a) Snapshots of a bistable mechanical metamaterial in response to tensile loading. The system comprises an array of
double-curved beams which can snap between two stable configurations. Adapted from Ref. [189]. (b) Response of an elastic
sheet perforated with a square array of mutually orthogonal cuts under uniaxial tension. In the thick limit, the perforated sheet
deforms in-plane and identically to a network of rotating squares (left). For sufficiently small values of thickness, mechanical
instabilities triggered under uniaxial tension result in the formation of complex 3D patterns, which are affected by the loading
direction (center and right). Scale bars: 6mm. Adapted from Ref. [192].

Fig. 15 (a) Analogously to antiferromagnetic systems—in
which nearest-neighbor spins cannot align in opposite direc-
tions when arranged on a triangle—in triangular frames, the
beams cannot buckle into a half sinusoid and at the same time
preserve angles at joints. As a result, the system becomes frus-
trated. (b) Geometric frustration in periodic 2D beam lattices
favors the formation of complex buckling-induced ordered pat-
terns. Adapted from Ref. [181].
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undeformed configuration exhibits two preferred directions at h ¼
10 deg and 80 deg for mode 1 (see Fig. 17(c)), whereas it does not
show a significant preferential direction of propagation for mode
2. In contrast, the buckled configuration does not exhibit any
strong preference in directions for both phase and group velocities
in both modes (see Figs. 17(b) and 17(d)), so that it behaves as a
nearly isotropic medium. Finally, it has been shown that material
nonlinearities do not affect the directionality of the propagating
waves at low frequency and that only changes in geometry can be
effectively used to tune the directional characteristics of the lower
bands. This is due to the fact that the wavelengths of the low-
frequency propagating modes are very long compared to the
length scale of the local variations of the stress field.

Building on those results, tuning of Bragg-type band gaps has
been demonstrated numerically for a number of systems, includ-
ing hierarchical lattices [219], multilayers [35], and 3D architec-
tures [220]. Moreover, enhanced tunability has been shown for

acoustic metamaterials based on hexagonal honeycombs [174],
since multiple and distinct buckling-induced patterns can be trig-
gered by changing the loading direction [226–232].

Wave control through buckling is not limited to acoustic meta-
materials with Bragg-type band gaps and can also be extended to
systems with locally resonant band gaps. Experiments on acoustic
metamaterials comprising resonating units consisting of a metallic
core connected to the elastomeric matrix through elastic beams
(see Fig. 18(a)) have shown that buckling can be intentionally
exploited as an effective approach to control the propagation of
elastic waves [34]. When the system is compressed statically, the
beams connecting the resonators to the matrix buckle at a rela-
tively low level of applied uniaxial (see Fig. 18(b)). Such buckling
dramatically alters the stiffness of the beams and consequently the
natural frequency of the resonating units, which in turn determines
the frequency range of the band gap (see Fig. 18(c)). Interestingly,
a moderate level of applied uniaxial strain (e 
 0:10) is found to

Fig. 16 Phononic band structure for a square array of circular voids in an elastic matrix subjected to equibiaxial compression
in (a) the undeformed configuration and (b) after buckling. Adapted from Ref. [218].

Fig. 17 Effect of deformation on the directionality of the propagating waves for a square array of circular voids in an elastic
matrix subjected to equibiaxial compression. (a) and (b) Effect of deformation on the directionality of the phase velocity. (c) and
(d) Effect of deformation on the directionality of the group velocity. Adapted from Ref. [218].
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be enough to entirely suppress the band gap, so that the proposed
metamaterial can be utilized as an on-or-off acoustic switch.

Finally, in addition to using instability to induce large deforma-
tions which in turn affect wave propagation, there has also been
interest in acoustic metamaterials that exploit wave propagation
through stabilized negative-stiffness components. For example,
composites with negative-stiffness phases were shown to serve as
waveguides with exceptional damping [129], and simple physical
mass–spring models showed how the inclusion of negative-
stiffness phases can lead to ultra-low resonant frequencies and
tunable band gaps in the low-frequency regime [233].

3.2.3 Multistability and Nonlinear Metamaterials. Unlike
most of the nonlinear elastic systems discussed earlier (which
show patterns under applied loads or displacements), multistable
systems possess two or more stable equilibrium states and can
snap from one to another under applied external stimuli. The sim-
ple spring system of Fig. 2 is a classical example of a bistable
structure with two stable equilibria, where the application of a
load can drive the system from one equilibrium into the other
(i.e., upon removal of the load, the system rests in the new equilib-
rium state). Multistability arises from a nonconvex, multiwelled
potential energy landscape that results in inherently nonlinear
behavior, see, e.g., Ref. [234]. Periodic arrays of multistable ele-
mentary unit cells produce interesting quasi-static patterns as in

the soft hyperelastic metamaterials [174] discussed in Sec. 3.2.2.
Those patterns can be tuned to either be space-filling, such as in
most examples in Sec. 3.2.2 or in the 2D lattices made of bistable
rods investigated in Ref. [235], or highly localized as in the selec-
tive buckling modes in the topological mechanical metamaterials
of Ref. [236]. In the dynamic regime, multistability has been
exploited in periodic metamaterials primarily in two ways.

First, the large mechanical hysteresis absorbs significant
amounts of energy, so that multistable structures form exquisite
building blocks for energy-absorbing media for applications such
as impact mitigation and shock absorption. Examples range from
the macroscale—where 3D-printed stacks of bistable beams
absorb impact energy [237,238]—down to the nanoscale—where
carbon nanotube buckling was explored to serve the same purpose
[239]. In a similar spirit, multistable magnetoelastic structures
(where multistability arises from the combination of magnetic and
elastic interactions) were shown to efficiently absorb impact
energy [240]. In all of these examples, the mechanical hysteresis
associated with bi- or multistability absorbs large amounts of
kinetic energy upon impact.

Second, periodic arrays of coupled multistable elements give
rise to interesting dynamic phenomena involving large-amplitude
nonlinear wave motion. As an introductory example, consider the
spring–mass system of Fig. 2(a), which was shown to have the
bistable energy landscape of Fig. 2(c). When the mass is excited
dynamically, it may enter three regimes of motion: (i) infinitesi-
mal excitations result in linear elastic vibrations of infinitesimal
amplitude about one of the two equilibrium ground states, (ii)
moderate-amplitude excitations lead to weakly nonlinear motion
with fluctuations about one of the energy minima, and (iii) large
excitations cause strongly nonlinear motion and snapping
between the two equilibria. Under sustained forced loading, a
large-amplitude oscillatory motion can be observed [241,242],
which has been exploited, e.g., for energy harvesting [243,244]
and vibration control [245]. For a thorough survey of the dynamic
stability of elastic systems, see also Ref. [246].

Like in a metamaterial, let us periodically repeat the bistable
unit cell of Fig. 2(a), which results in a chain of particles
grounded nonlinearly and in a bistable onsite potential [247].
Again, small, moderate, and large excitations of the chain will
result in, respectively, linear, weakly nonlinear, and strongly non-
linear wave motion [248]. To treat the problem more generally,
consider an infinite 1D chain of particles at positions x ¼
fx�1;…; x1g with xj ¼ ja and particle spacing a. Each particle
has a mass m and is connected to its n neighbors on either side by
an elastic potential V that depends on the strain eij ¼ ðxj �
xiÞ=jj� ija between two particles i and j 6¼ i. Assume that each
particle is grounded in a nonlinear, multistable potential w (such
as the bistable spring potential of Fig. 2(c)). The resulting total
HamiltonianH of the chain is

H x; _xð Þ ¼
X

1

i¼�1

m

2
j xi
: j2 þ

X

n

j ¼ �n

j 6¼ 0

Vj

xiþj � xi

ja

� �

þ w xið Þ
2

6

4

3

7

5

(42)

The governing equations for all the particles follow from Hamil-
ton’s equations of motion. In the special case of linear springs of
stiffness k connecting nearest-neighbor particles, we have VjðeÞ ¼
ðk=2ÞðejaÞ2 and n¼ 1, and consequently

H x; _xð Þ ¼
X

1

i¼�1

m

2
j xi
: j2 þ k

2
xiþ1 � xið Þ2 þ w xið Þ

� 	

(43)

Hamilton’s equations yield the equation of motion for mass i in
this case as

m€xi � k xiþ1 � 2xi þ xi�1ð Þ þ @w

@xi
¼ 0 (44)

where the final term gives rise to nonlinearity.

Fig. 18 Tunable acoustic metamaterial: (a) the undeformed
configuration comprises resonating units dispersed into an
elastomeric matrix. Each resonator consists of a metallic mass
connected to the matrix through elastic beams, which form a
structural coating. The black regions in the picture indicate
voids in the structure. The unit cell size is A0 5 50:0 mm. (b)
When a compressive strain e520:10 is applied in the vertical
direction, buckling of the beams significantly alters the effec-
tive stiffness of the structural coating. (c) Experimentally meas-
ured transmittance at different levels of applied deformation.
The band gap frequency first decreases linearly as a function of
e and then it completely disappears as e approaches 0.10.
Adapted from Ref. [34].
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A classic example of the previously mentioned form is the
Frenkel–Kontorova model for dislocation motion in crystals
[249,250] (based on an original model by Prandtl [251]). In this
model, the periodic atomic lattice creates a multiwelled nonlinear
potential with periodically repeating energy minima, which is
approximated by the equation of motion

m€xi � k xiþ1 � 2xi þ xi�1ð Þ þ sin
2p

a
xi

� �

¼ 0 (45)

We note that in case of smooth solutions with negligible discrete-
ness or size effects [252], the continuum governing equations
obtained from the limit a ! 0 may provide for closed-form solu-
tions. For the Frenkel–Kontorova model, the continuum limit
yields the Sine-Gordon equation [249,253]. An instructive experi-
mental demonstration of the associated nonlinear wave motion
was achieved in a 1D chain of rotating pendula coupled by elastic
rotational springs [254].

As a further example of the same general structure, the
Fermi–Pasta–Ulam model [255] describes, e.g., thermal equilibria
of solids or hydrodynamic surface waves and is governed by

m€xi � kðxiþ1 � 2xi þ xi�1ÞþFðxiþ1 � xiÞ � Fðxi � xi�1Þ ¼ 0

(46)

with nonlinear interaction forces F(r). Its continuum limit is the
Korteweg-de Vries equation [256,257].

Depending on the choice of the interaction potential and the
multistable potential, such systems can propagate nonlinear sig-
nals, e.g., in the form of solitary waves. Under infinitesimal-
amplitude loading, linear waves propagate in the classical acoustic
sense. When excited by moderate and large amplitudes, the chain
propagates weakly nonlinear solitons or strongly nonlinear transi-
tion waves [248].

Especially the propagation of transition waves has been of
recent interest due to its potential for pulse propagation in lossy
media. Consider the general form of the equation of motion
obtained from Eq. (42) as

m€xi þ g _xi þ w0 xið Þ�
X

n

j¼1

V0
j

xiþj � xi

ja

� �

� V0
j

xi � xi�j

ja

� �� 	

¼ 0

(47)

where we included a velocity-proportional damping term with vis-
cosity g > 0 (every realistic system includes some level of energy
dissipation).

As the multistable potential favors one of the multiple energy-
minimizing equilibrium states while the interaction potential
penalizes distance changes between particles, the chain under
quasi-static conditions will form domains of equal particle equi-
librium states separated by diffuse or sharp domain walls (across
which the particles transition from one equilibrium to another),
see Fig. 19. This phenomenon is well-known from materials that
undergo, e.g., phase transformations [258], ferroelectric/magnetic
domain switching [259–261], phase separation [262,263], or
deformation twinning [51]. As shown in Fig. 15, similar domain
patterns have also been observed in hyperelastic metamaterials
when deformed nonlinearly to promote instabilities [181].

Under the action of loads or other external stimuli, domain
walls move, which is a dissipative process that produces a macro-
scopically observable hysteresis and is of importance at the mate-
rial level for, e.g., shape-memory alloys [264], ferroelectric poling
[42], and multiferroics [265]. A moving domain wall is a transi-
tion wave (a topological soliton), which is propelled by the energy
release of the snapping actions (each element switches from one
stable equilibrium into another). In fact, it was shown that stable
transition waves in a dissipative environment as described by Eq.
(47) (in the continuum limit) obey the energy scaling law [266]

Dw

2c
¼ E

v
with E ¼

ð1

�1

1

2
_x2ds (48)

Here, Dw ¼ wþ � w� is the difference in the nonlinear energy
potential before and after the transition wave, and v is the speed of
the moving domain wall. c is the continuum damping density
(related to g, see Ref. [266] for details) and x(s, t) is the continuum
limit of the discrete particle positions in the chain described by a
spatial coordinate s. E represents the kinetic energy per mass den-
sity of the moving domain wall. Since E � 0 by definition and
c � 0 by the second law of thermodynamics, we must have Dw � v
> 0 for a transition wave to exist. In other words, in the presence
of damping, a domain wall will only move in a direction that
jumps from a high-energy equilibrium to a low-energy equilib-
rium. This is of interest for the support of unidirectional wave
propagation such as in mechanical diodes [23,267].

Moreover, for linear damping, the amount of energy released
by snapping from the high-energy to the low-energy state is dissi-
pated, which leads to a transition wave moving at constant speed
[266]. This is quite remarkable as it predicts the propagation of a
nonlinear, large-amplitude wave of constant speed over, in princi-
ple, infinite distances in a lossy medium. This concept was
recently demonstrated experimentally in two distinct settings.
First, experiments in Ref. [267] realized transition waves in a
chain of bistable, buckled composite shells (creating a bistable,
asymmetric potential w) which were coupled by repelling perma-
nent magnets (producing a nonlinear interaction potential V with
practically beyond-nearest-neighbor interactions), see Fig. 20.
Second, experiments in Ref. [23] used 3D-printing to produce
long chains of linear elastically coupled, buckled, bistable beams,
see Fig. 21. In both cases, experiments indeed revealed stable
transition waves of constant speed over long distances (see, e.g.,

Fig. 19 Illustration of domains (constant polarization p within
each domain) separated by domain walls in structures and
materials. Under excitation, the domain walls move at speed v.
The general structure of both systems is schematically shown
with an interaction potential V and multistable potential w.
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the measured x–t-diagram of the moving transition wave in Fig.
21(b), having a constant slope and thus constant speed after a brief
initial transient phase). Especially, the 3D-printed setup made of
lossy polymeric base materials displayed significant damping
which quickly attenuated all linear waves but allowed the propa-
gation of the constant-speed transition wave.

These structural 1D examples do not only qualitatively resem-
ble domain wall motion in materials (as schematically shown in
Fig. 19). Phase transitions or ferroelectric switching are com-
monly modeled by phase field models. The time evolution in those
models is usually derived from the assumption of gradient flow,
resulting in the Allen–Cahn equation [268]

g _v ¼ � dW

dv
¼ �w0 vð Þ þ jr2v (49)

where v denotes a polarization field (or phase field parameter), W
is the energy density, and its variational derivative involves a non-
linear term (stemming from the multistable potential w) and a
nonlocal term accounting for interfacial energy in this diffuse-
interface setting. For example, in ferroelectrics v ¼ p denotes the
ferroelectric polarization vector [260,261,269] and w is a multiw-
elled potential having 2d symmetric minima in d dimensions

(whose symmetry is broken by an applied electric field). Notice
that, with V ¼ ðj=2Þjjrvjj2, Eq. (49) has the same structure as the
continuum limit of Eq. (47) except that m¼ 0. As the scaling law
(48) is independent of the mass (or mass density) of the chain, it
still applies. Therefore, Eq. (49) obeys quantitatively the same
scaling laws as Eq. (47).

Similar nonlinear kinetics showing the general structure of Eq.
(47) can be found in models for dislocation motion [249], ferro-
magnetic domain wall motion [270], proton mobility in hydrogen-
bonded chains [271], rotation of DNA bases [272], chains of
rotating pendula [254], dynamics of carbon nanotube foams
[239,273], magnetic flux propagation in Josephson junctions [274],
pulse propagation in cardiophysiology [275] and neurophysiology
[276], or chemical surface adsorption [277]. Over decades, those
have motivated numerous theoretical studies to characterize the
motion of domain walls and phase boundaries particularly in 1D
periodic physical, chemical, or biological systems, see, e.g., Refs.
[117] and [278–285]. A related phenomenon is the transition wave-
like propagation of signals in chains made of rigid elements with
zero-energy modes [286]. Here, mechanisms result in edge modes
that can propagate along the chain.

At the structural level, those concepts have been extended to
higher dimensions, which have resulted in metamaterials or

Fig. 20 A chain of laterally compressed, bistable membranes coupled by nonlinear permanent
magnets obeys Eq. (47) and displays unidirectional transition wave motion upon impact [266]

Fig. 21 Stable transition waves in a 3D-printed chain of bistable elements [23]: (a) a compressive transition wave propagates
by releasing stored elastic energy, which is dissipated due to material-internal damping mechanisms. (b) A stable transition
wave of constant speed v and width w is recorded (after an initial transient period).
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structures displaying complex domain walls. Recently, the con-
cept was extended to promote nonlinear dynamic domain evolu-
tion in 2D structures or metamaterials. Guided by the same
principles and governing equations discussed earlier for 1D
chains, the setup of Fig. 22 is made of rotational masses and linear
spring connections. In addition to linear elastic bands connecting
the rotational masses (producing interaction potential V), eccentri-
cally attached elastic springs and gravity are exploited to produce
a bistable onsite potential w for each mass, favoring one of two
symmetric equilibrium angles (the rotational angle u serves as the
“polarization” field here). Under the action of gravitational forces,
tilting of the whole system mimics the application of an electric
field in that it favors one of the two stable equilibria. This setup
was shown to follow the same governing equations discussed ear-
lier, and it reproduced typical behavior found in materials during
domain switching as well as during second-order phase transfor-
mations [287].

4 Discussion

Exploiting instability in solids and structures has offered new
opportunities and opened new directions in mechanics research.
The broad range of materials and applications taking advantage of
instability extends from buckling and swelling in soft elastomeric
structures to topological transformations in structures, solids, and
metamaterials in between those. Properties of interest include the
quasi-static behavior (such as stiffness, strength, and energy
absorption) as well as the dynamic response (such as in photonic,
phononic, acoustic, or nonlinear wave guides and metamaterials).
Although exciting research has been reported in all those direc-
tions, as described in this review, a number of open challenges
have remained, summarized in this nonexhaustive list:

� Research has focused primarily on either the linear—static
and dynamic—response of structures and solids (targeting,
e.g., the effective stiffness or wave dispersion) or on their
nonlinear quasi-static behavior (e.g., maximizing strength or
inducing large configurational changes through finite-
deformation instabilities in soft matter). Nonlinearity and
dynamics have most commonly been combined in the form
of large quasi-static preloads, upon which linear waves are
superimposed. Nonlinear dynamic effects are much richer
but also much more complex and have been investigated
only recently, as described in Sec. 3.2.3, and leave room for
further investigation.

� Most research on stability-induced acoustic waveguides, as
described in Sec. 3.2.2, has employed methods of additive
manufacturing, specifically 3D printing of polymeric struc-
tures. Those come with high internal friction which prevents
effective wave propagation over long distances. Realizing
comparable well-controlled instabilities in stiff structures
(which would allow for stable wave propagation with low
losses) is a challenge and has been limited to, primarily,
impact mitigation. Stiff bistable structures have been made,
e.g., out of bulk metallic glass [288]. Key is to design slender
structures that accommodate large deformations with small
strains. However, this considerably restricts the design space.
Recoverability is another concern in stiff systems, which
may hint at advantages at very small scales where size effects
alter the recoverability of, e.g., hollow nanolattices [25].

� Structural instabilities are scale-independent (and may enter
only through size effects that affect the base material proper-
ties). For simplicity, metamaterials exploiting instability are
typically investigated at the macroscopic centimeter-scale (see
Sec. 3.2), whereas most applications require miniaturization

Fig. 22 Periodic array of bistable rotational elements (polarization angle u)
coupled to nearest neighbors by elastic bands [287]. The combination of an
excentrically attached linear spring and the action of gravity results in a tunable
bistable potential w which can be biased as in domain switching (by tilting the
whole setup by an angle a) and which can also mimic a second-order phase
transition (by adjusting the position fx of the spring anchor points, switching
between a bistable potential and a single-well potential).
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down to smaller scales with unit cell sizes on the order of
microns and below. This calls for improved, scalable fabrica-
tion tools to produce computationally optimized metamaterial
designs at relevant scales. Of course, this also comes with the
need for high-precision experimental techniques at small
scales to verify the performance.

� With decreasing size, one ultimately reaches scales at which
fluctuations matter significantly more than at the macro-
scopic scale. Imperfections affect the performance of struc-
tures and metamaterials at all scales (such as geometric or
local material imperfections), especially when it comes to
instabilities. However, imperfections tend to play greater
roles with decreasing size. For example, fabrication-induced
imperfections in 3D-printed structures are small compared to
feature sizes at the centimeter-scale, whereas the printing of
structures and metamaterials at the micron-scale necessarily
produces imperfections that are—relatively—considerably
larger compared to feature sizes. This calls for, again, new
high-precision fabrication techniques but also for theoretical-
computational tools to reliably predict the performance of
metamaterials with realistic imperfections. Another type of
fluctuations, thermal effects in nano- to micron-scale systems
generally affect all kinetic processes but especially those
associated with instabilities, owing to their high sensitivity to
small perturbations [289]. Such thermalization has no
macroscopic analog, which results in an interesting break-
down of micro–macro analogies between materials and
metamaterials.

� Most of the examples reviewed earlier have focused on insta-
bilities and multistability arising in mechanical systems. By
contrast, multiphysics systems such as magnetomechanically,
electromechanically, or electromagnetomechanically coupled
materials as well as chemomechanically coupled solids offer
a myriad of opportunities for coupled phenomena—both in
the quasi-static response as well as in terms of coupled wave
propagation and nonlinear dynamic behavior. Only few
examples exist where metamaterials deliberately exploit the
multiphysics setting to create multistability, see, e.g., Ref.
[240]. In addition, the response of materials to external stim-
uli such as electric, magnetic, or thermal fields, chemical or
biological agents, or physical stimuli such as light offers
opportunities that have not been fully explored in the context
of instability.

� The negative-stiffness concept is one of the few examples
where multiphysics in the form of (thermoelectromechani-
cally coupled) phase transformations have played a central
role (see Sec. 3.1). To date, only a few representative exam-
ples of composite materials realizing this phenomenon have
been reported (see Sec. 3.1.4). In addition, the reported
strong variations in stiffness and damping in response to tem-
perature changes are hard to control, which is why replacing
temperature control by, e.g., electric or magnetic fields
would be a welcome alternative but has not yet resulted in
viable applications of actively tunable materials systems.
Negative stiffness in structures was primarily exploited for
vibration attenuation in macroscopic devices. Metamaterials
that stabilize small-scale structural instabilities to create pos-
itive- and negative-stiffness composite systems have
remained a rare find.

� The metamaterials community has targeted a number of
interesting material properties and material property combi-
nations (some of which have been discussed earlier). Classics
are stiffness, strength, damping, energy absorption, linear
wave dispersion, and refraction, and more recently nonlinear
waves. In many of those examples, inspiration was drawn
from structure–property relations in materials, whose mim-
icking at the structural scale resulted in metamaterials with
controllable properties. There are probably many further
material properties or performance metrics that allow for a
similar micro-to-macro correspondence and that may benefit

from exploiting instabilities. Fracture toughness is an exam-
ple that may involve path-dependent material behavior and is
harder to control than the classical, linear properties of inter-
est. Instability has played a role both at the structural scale
(e.g., by exploiting “waiting links” and delocalizing damage
[117,290]) and at the material level (e.g., by exploiting phase
transformations ahead of the crack tip to effect transforma-
tion toughening [291]).

5 Conclusions

We have reviewed the state-of-the-art in utilizing instabilities
in solids and structures to achieve beneficial effective perform-
ance. To this end, we first reviewed the fundamental principles of
stability theory, followed by examples of exploiting instability in
both materials (e.g., through the negative-stiffness concept) and in
structures and metamaterials (e.g., through instability-inducing
large shape changes that allow the control of the effective proper-
ties). We believe that this is a still young area which—despite the
tremendous recent progress surveyed in this contribution—has
still left many open questions and opportunities for future
research.
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