
 Open access Journal Article DOI:10.1007/S10270-012-0260-1

Exploiting model driven technology: a tale of two startups — Source link

Tony Clark, Pierre-Alain Muller

Institutions: Middlesex University, University of Upper Alsace

Published on: 01 Oct 2012 - Software and Systems Modeling (Springer-Verlag)

Topics: Software development and Context (language use)

Related papers:

 Transition to model-driven engineering: what is revolutionary, what remains the same?

 Empirical assessment of MDE in industry

 Adopting model driven software development in industry: a case study at two companies

 Model-driven engineering practices in industry

 Model-Driven engineering in a large industrial context — motorola case study

Share this paper:

View more about this paper here: https://typeset.io/papers/exploiting-model-driven-technology-a-tale-of-two-startups-
3fb8924jdz

https://typeset.io/
https://www.doi.org/10.1007/S10270-012-0260-1
https://typeset.io/papers/exploiting-model-driven-technology-a-tale-of-two-startups-3fb8924jdz
https://typeset.io/authors/tony-clark-4fh47jp5ai
https://typeset.io/authors/pierre-alain-muller-37btno0f5y
https://typeset.io/institutions/middlesex-university-2vmzsg57
https://typeset.io/institutions/university-of-upper-alsace-2gsbc5qg
https://typeset.io/journals/software-and-systems-modeling-399kyzuc
https://typeset.io/topics/software-development-1vxoqmyk
https://typeset.io/topics/context-language-use-18vh7dju
https://typeset.io/papers/transition-to-model-driven-engineering-what-is-revolutionary-2dkci8xtt2
https://typeset.io/papers/empirical-assessment-of-mde-in-industry-2p8z6xupgu
https://typeset.io/papers/adopting-model-driven-software-development-in-industry-a-4w3jxssho6
https://typeset.io/papers/model-driven-engineering-practices-in-industry-1hmwbb32dw
https://typeset.io/papers/model-driven-engineering-in-a-large-industrial-context-prcht8olfr
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/exploiting-model-driven-technology-a-tale-of-two-startups-3fb8924jdz
https://twitter.com/intent/tweet?text=Exploiting%20model%20driven%20technology:%20a%20tale%20of%20two%20startups&url=https://typeset.io/papers/exploiting-model-driven-technology-a-tale-of-two-startups-3fb8924jdz
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/exploiting-model-driven-technology-a-tale-of-two-startups-3fb8924jdz
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/exploiting-model-driven-technology-a-tale-of-two-startups-3fb8924jdz
https://typeset.io/papers/exploiting-model-driven-technology-a-tale-of-two-startups-3fb8924jdz

HAL Id: hal-00851977
https://hal.archives-ouvertes.fr/hal-00851977

Submitted on 19 Aug 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploiting model driven technology: a tale of two
startups

Tony Clark, Pierre-Alain Muller

To cite this version:
Tony Clark, Pierre-Alain Muller. Exploiting model driven technology: a tale of two startups. Software
and Systems Modeling, Springer Verlag, 2012, 11 (4), pp.1134 - 1143. 10.1007/s10270-010-0172-x.
hal-00851977

https://hal.archives-ouvertes.fr/hal-00851977
https://hal.archives-ouvertes.fr

Exploiting Model Driven

Technology

A Tale of Two Startups

Tony Clark1 and Pierre-Alain Muller2

1 Middlesex University, The Burroughs, Hendon,
London NW4 4BT, UK t.n.clark@mdx.ac.uk
2 Universite de Haute-Alsace 12, rue des Freres

Lumiere F-68093 Mulhouse Cedex France
pierre-alain.muller@uha.fr

Abstract. This article describes the
experiences of two independent start-
up companies that were created in
the white-heat of the early days of
model based engineering. Each com-
pany aimed to revolutionise software
development by raising the level of
abstraction through modelling. The
article describes the context, techni-
cal innovations, business experiences,
demise and lessons learned by each
company.

Keywords: Startup, Tool Company,
Model Driven Development.

1 Introduction

“It was the best of times, it was the
worst of times, it was the age of wisdom,
it was the age of foolishness, it was the
epoch of belief, it was the epoch of in-
credulity, it was the season of Light, it
was the season of Darkness, it was the
spring of hope, it was the winter of de-
spair, we had everything before us, we
had nothing before us, we were all go-
ing direct to heaven, we were all going
direct the other way. ” [A Tale of Two
Cities, Charles Dickens (1859)]

A revolution in Software Engineering occurred
in the late 1990s with the rise of UML and asso-
ciated Model Driven Development (MDD) ap-
proaches to software development. At this time
many disparate threads of object-oriented de-
sign were fused into a single unified notation.
Tools that supported the single notation started

to emerge and the risk of technological obsoles-
cence reduced to the point where many compa-
nies felt able to adopt UML as part of the con-
struction and maintenance of software systems.

The research community saw an opportunity
to contribute to this technology wave by for-
malizing and extending UML in various ways.
Since UML was adopted so widely by industry,
the opportunity to deploy high-technology re-
sults from these research activities became irre-
sistible. The MDD approach to software devel-
opment promised to revolutionize how systems
are created and maintained. Technology evan-
gelists spread the word to whoever would listen.
Several startup companies were formed in order
to promulgate their founders’ technological rev-
olutionary zeal.

This article describes the experiences of
two high-technology MDD startups that were
formed independently by the authors as part of
the whirlwind of activity that occurred at this
time. We briefly review the key features that
led to the creation of the companies in section
2 and then give an overview of their creation
and eventual demise in section 3. Finally we re-
view some of the key lessons that can be drawn
from the experiences of both companies in sec-
tion 4. Whilst the article aims only to present
the personal experiences of the authors, we have
attempted to place these in the context of a typ-
ical technology wave by relating them to a spin-
out life-cycle. Our contribution is to document
the experiences and lessons learned typical to
high-tech startups, and to provide a historical
record of two attempts to exploit model-driven
development as it was emerging.

2 The MDD Landscape

The two companies described in this article
cover the ten years from around 1998 to 2008.
In order to place the histories of the compa-
nies in context, this section describes key trends
and events that relate to the development of the
MDD landscape:

1980s The 1980s saw the introduction of
object-oriented (OO) programming lan-
guages including Smalltalk, C++ and
Objective-C.

1990s OO Development methods started to
emerge and to replace structured methods.
At this time there were many different meth-

ods all of which had different notations and
proposed different life-cycle steps.

1997 Around 1997 several competing OO
methods were merged to become the Uni-
fied Modeling Language (UML). The single
notation and significant commercial backing
made the notation attractive to tool ven-
dors. The Rational Rose toolkit became the
first to support UML and achieved strong
sales across the world. At this time, Ratio-
nal Rose was essentially an editor for con-
structing UML diagrams.

2000 UML versions 1.x were generally viewed
to be too small-scale to represent large
systems. The Object Management Group
(OMG) initiated the design of UML 2.0
that would see a considerable increase in
notational size and complexity. In addition,
the OMG introduced Model Driven Archi-
tecture (MDA) [30,18,23], a way of using
UML to transform from high-level models
to lower-level implementations (essentially
code generation). The OMG introduced the
notion of the Meta-Object Facility (MOF)
as a means to describe the relationships be-
tween various elements of a modelling lan-
guage architecture. The architecture con-
sists of 4 levels: the language definition level
(M3) that is used to define languages, MOF
is defined at this level; the modelling lan-
guage level (M2) where languages are de-
fined as instances of M3-models, UML is
defined at this level; the model level (M1)
that contains user-models as instances of
M2-models, all UML models exist at this
level; the instance level (M0) that contains
occurrences of elements that are instances of
M1-models. MOF and the 4-level architec-
ture was important for two reasons: exten-
sibility of UML and interoperability. Exten-
sibility was defined in terms of additions to
the definition of UML at level M3 (manipu-
lated as instances of M4-models). Interoper-
ability was defined in terms of a serialization
format defined in terms of M4-features.

2001 The Eclipse toolkit had been developed
in the late 1990s and started to emerge as
a tool platform for software systems engi-
neering. It was designed with a plug-in ar-
chitecture to allow multiple tools to co-exist
and to co-ordinate. Eclipse could be used
to develop commercial tools, however the
Eclipse Public License was developed to en-
courage open-source collaborative develop-

ment. Graphical libraries on Eclipse could
be used to develop modelling tools.

2002 To Support MDA the OMG initiated the
development of queries views and transfor-
mations on models. This led to the QVT
standard and to other open-source tech-
nologies to implement model transformation
and code generation from models. Around
this time several modelling tools emerged
that started to compete in the market-place.
The open-source tools generally supported
limited modelling (often class-based) which
matched the predominant industrial use of
modelling.

2004 The Eclipse Modeling Framework (EMF)
emerged as an open-source Java based
technology for implementing modelling lan-
guages [31].

2006 The Eclipse Graphical Modelling Frame-
work (GMF) emerged as an open-source
Java based technology for implementing
graphical modelling languages and their as-
sociated editors.

2008 By this stage hundreds of modelling tools
had become available. Some tools were com-
mercial, but many were open-source. Some
tools were general purpose and some were
linked to specific technologies, for example
to generate code for Java or C++.

2012 Currently model-driven approaches to
system development are used in a wide va-
riety of commercial application areas in-
cluding telecomms, automotive, and mobile
phones industries. They are used through-
out the development life-cycle from require-
ments through to executable models for em-
bedded systems. A recent study [16] reports
a high degree of continued support for MDE
amongst practitioners despite the lack of
hard evidence (over 10 years after the field
erupted) to support the claim. The study
goes on to state: Even allowing for a rea-
sonable number of tool vendors in the sur-
vey sample, [...] indicates a significant level
of disaffection with the tools used for MDE
alongside a belief that the tools on offer are
too expensive.

3 Startups and Shutdowns

The previous section has described the MDD
landscape during the period 1998-2008. This
section describes the experiences of two MDD

startups during this period from startup to shut-
down. In each case we give the company back-
ground, the technical basis for the company, the
commercial experiences of the company and the
reasons for its demise. The following section will
analyse the company histories and propose a col-
lection of lessons that can be learned.

3.1 Critical Junctures

There is little research into high-tech university
spinout companies (USOs), however the authors
of [32] report on phases of USO growth and the
associated critical junctures (reproduced in fig-
ure 1). The phases of growth are:

Research The commercial basis for a USO
emerges from academic research that is typ-
ically motivated by a publish or perish men-
tality.

Opportunity Framing The commercial op-
portunities of the research are identified,
usually in conjunction with non-academic
input.

Pre-Organization A business plan is created
that targets specific markets. The knowl-
edge and resources necessary to bring the
research to market are identified. Seed fund-
ing is acquired.

Re-orientation Continuous reconfiguration of
a commercial offering based on the research
until a product or products of value to cus-
tomers is identified.

Sustainable Returns The USO has achieved
traction in the marketplace and substantial
revenue streams have been established.

The associated critical junctures occur between
successive phases. The junctures must be suc-
cessfully negotiated in sequence if a USO is to
become commercially sustainable:

Opportunity Recognition Breakthrough
ideas are captured that can trigger an eval-
uation as a precursor to the formalization
of a commercialization effort. [29]

Entrepreneurial Commitment The ideas
and intentions of an entrepreneur play a
critical role in the success of a venture.

Credibility The commercial basis for the ex-
ploitation of research must be commercially
credible. Sources of knowledge and resource
must be sufficiently convinced to partici-
pate. It is usual for software startups to rely
on venture capital funding [21].

Sustainable Returns In order to negotiate
the final hurdle, a USO must establish sus-
tainable returns in the form of sales chan-
nels, milestone payments, or further invest-
ment.

3.2 XMF-Mosaic

Background Around 1999 the OMG started
to think about UML 2.0 in order to rational-
ize and extend UML 1.x. At that time the Ob-
ject Constraint Language (OCL) had joined the
UML family. The pUML group had started to
promote the idea of a ‘precise’ UML and there
was interest from academic researchers in con-
tributing to the new UML 2.0 initiative.

Some of the pUML researchers started to at-
tend the OMG meetings and to contribute to
discussions. Bran Selic and Steve Cook were
prominent members of the OMG and were keen
on developing UML 2.0 as a family of languages.
This idea was taken up by Tony Clark, Andy
Evans, Stuart Kent (CEK) and others who were
supported by Bran, Steve and others to produce
a proposal showing how UML 2.0 could be de-
veloped as an extensible language family [8].

Work by CEK led to an approach for model-
based language engineering [5,4,3,7]. This ap-
proach was based on models for languages and
their denotations with modelled relationships
between them. This tripartite approach: syntax;
denotations; semantics, could be used to explain
a variety of languages including text-based and
graphics-based.

The approach to language definition was de-
veloped in 2000-2001 and was validated by im-
plementing a tool called MMT [6] that sup-
ported a template mechanism for language mod-
ules and their instantiation. MMT was written
in Java and supported a graphical user inter-
face for modelling similar to Rational Rose ex-
tended with a text-based language. The interest-
ing thing about MMT that continued through-
out its subsequent evolution was its basis in lan-
guages such as Lisp and Smalltalk and its rela-
tionship to OCL.

At this stage the OMG was developing ideas
that came to be called Model Driven Archi-
tecture (MDA). Clark and Evans (CE) came
to the conclusion that Model Driven Develop-
ment (MDD) and MDA could not be fully re-
alised without some key technology features: ex-
ecutable modelling, meta-modelling, language-

Fig. 1. Critical Junctures for University Spin-Outs [32]

engineering; and that a tool supporting these
technologies would lead the way.

Unfortunately, MMT had been developed to
support the UML 2.0 work and was too bound
up with package instantiation and merge mech-
anisms that were needed to define a static mod-
elling language. CE wanted the ability to pro-
gram in terms of models and then to execute
the models. A new initiative was started that
aimed to generalize MMT so that its core con-
cepts were meta-modelling and executable mod-
elling.

XMT was a refinement of MMT that imple-
mented xMOF (a proposal for an executable
MOF) and the initial proposal for QVT [19].
Since Xactium’s background was in a variety of
languages with meta-facilities including CLOS
[2], ObjVLisp [11] and Smalltalk [14], it un-
derstood how to define a small extensible exe-
cutable meta-kernel. Such a meta-kernel was im-
portant because it supported arbitrary extensi-
bility compared to the limited extensibility pro-
vided by MOF. Whilst the UML world was fixed
to a 4-level architecture rooted at MOF (a static
language), XMF could support any number of
levels rooted at XCore (a dynamic language).
Like the designers of Smalltalk, arbitrary exten-
sibility was viewed as being essential for defin-
ing languages and their supporting tools. How-
ever, unlike the meta-kernel of Smalltalk, XCore
meta-classes were not limited to having a sin-
gle instance. Therefore, language features could
be factored into single meta-classes that were
shared by multiple classes.

XMT was also designed to include plug-ins
because of recent exposure to Eclipse and its
extensible framework for tailored tools. XMT
started to provide a basis for extensible syntax,
like lisp-macros, but did not provide a mecha-
nism for programming/modelling graphical lan-
guages. XMT was implemented as a Swing ap-
plication.

Startup Around this time CE had become
Model Driven Development (MDD) evangelists
and had interest from several organizations in-
cluding a large avionics company who were in-
terested in using MDD on a particular project.
They were convinced that MDD would be the
right approach to make progress and that the
XMT toolset could be used to do this. Their in-
vestment in the technology allowed Xactium to
be founded and CE as co-founders to leave their
respective academic jobs.

Technical Rationalization In 2004 Eclipse
was starting to become well-known. Two re-
searchers joined Xactium, bringing the staff
number to four. Their experience and enthu-
siasm for Eclipse, together with the rather
academic-looking state of XMT, led to the de-
cision that XMT should be ported to Eclipse.

The Eclipse port afforded the opportunity to
review XMT and the possibilities for MDD. It
was realized that whilst XMT provided a vanilla
class-based graphical modelling experience, peo-
ple were starting to be interested in graphi-
cal domain specific modelling. In addition, it

was argued that any technology supporting true
MDD needed to be able to be an extensible lan-
guage workbench, and therefore by extension
needed to be completely reflexive.

In 2004/5 XMT was completely rewritten
for Eclipse and became XMF [20,9,1]. The key
features of XMF were: an executable meta-
kernel (XCore); an executable version of OCL
including higher-order functions (XOCL); a
byte-coded VM in Java that supported meta-
object protocols (MOPS); model transforma-
tions; monitors on objects (daemons); threads;
garbage collection; a foreign function interface
to Java; a code template mechanism; a graph-
ical library for Eclipse (MOSAIC) supporting
browsers, diagrams and editors; various import-
export formats including a language for pars-
ing XML. The compiler and run-time system
were completely boot-strapped so that the only
things not written in XMF-Mosaic were the low-
level graphics primitives and the VM. In partic-
ular, most technical features of the tool were
written as embedded DSLs.

Commercialization Xactium tried to gener-
ate business based on XMT and XMF. Business
with the Avionics company continued along with
small-scale projects with several major compa-
nies, e.g. [13]. Commercial sales of the tool were
small with prices that approximated those of
Rational Rose. It became increasingly clear that
customers viewed XMF as very leading edge
technology and not commercially realistic. Xac-
tium was viewed as short term consultants but
not as commercial suppliers. The Xactium sales
team was exclusively technical with no commer-
cial experience.

Around 2004 the market for such tools be-
came much smaller since tools were becoming
available open-source. The market was disap-
pearing and the Xactium directors could not
agree whether the product should be open-
source or not. Xactium had spent over a year
exclusively in product development, cushioned
by a handful of customers and had not spent
much effort raising the profile of the company
and technology through conferences and per-
sonal visits.

Raising Money In 2005 it became clear that
Xactium needed to raise more funds. It also be-
came clear that there was a strong technical di-
rection to the company, but commercial exper-

tise was very weak. This imbalance caused fric-
tion that the company did not recover from as
things went from bad to worse.

Xactium directors visited TogetherSoft (re-
cently acquired by Borland) offices in Prague
in the summer of 2005. The visit led to a rec-
ommendation from the TogetherSoft technical
management to buy Xactium. In the end, a
concrete offer did not materialise, however this
strengthened Xactium’s belief that it had a very
strong technical offering.

The conviction that XMF was right for MDD
was as strong as ever and various small-scale
activities were initiated to raise funds. Regional
development agencies (government business de-
velopment grants) of various types were ap-
proached with some success. One such organiza-
tion had set itself up as a form of venture capital
based on a grant with 50% of the funds raised
from high net-worth individuals.

Unfortunately, given the nature of such
grants, the organization was not a specialist in
the market and was not in a position to offer
practical help. After a few attempts, Xactium
was successful in raising approx 500K of capi-
tal with various strings attached. One condition
was to take on commercial expertise since it was
clear that Xactium had technical expertise but
no idea how to monetize it.

In 2006, and after several false starts, Xac-
tium recruited a commercial manager with a
background in a relevant area. The investment
also allowed Xactium to take on people with fi-
nancial expertise and an office manager. It was
clear that an injection of commercial expertise
was essential for Xactium to continue.

The commercial manager was chosen because
of long experience with software startups. Un-
fortunately, this turned out to be fatal since the
individual concerned made no attempt to de-
velop any business for the company and started
to play politics with existing staff. A lack of
hunger for making the business a success seemed
to be an influencing factor.

A Commercial Saviour? In 2005/6 Xactium
used XMF-Mosaic to implement a tool for a new
method being trialled by a large US bank. This
led to some funded development work and a
large contract being negotiated in early 2007.
However, the expectations of the customer were
not met by the current state of the technol-
ogy. In addition the size of the company (3 de-

Fig. 2. The XModeler Tool

velopers and 2 commercial managers) did not
give sufficient confidence regarding support and
longevity. The Bank issued the contract and
then rescinded it the following day citing inter-
nal reorganization (a sign of the looming finan-
cial crash?).

Shutdown At this point Xactium had put all
of its commercial eggs into a single basket. It
claimed to be a MDD company with a product.
Unfortunately, the amount of investment in the
product and therefore the size of the company
made it almost impossible to do business of suf-
ficient value despite being independently evalu-
ated as the leading software engineering devel-
opment platform [15] in terms of support for lev-
els of abstraction.

The company directors were unable to agree
how to continue and, as is typical in small star-
tups when things go wrong, positions became
entrenched and progress became difficult. One
option was to retain the technical basis upon
which the company had been started and to aim
to partner with a large company (or even be ac-
quired) effectively becoming a branch of a re-
search lab. Another option was to completely
change direction and use any remaining funds

to start a new business. The former was not re-
ally commercial and the latter was at odds with
the basis on which the company had been cre-
ated in the first place not to mention lacking any
coherent focus.

The company eventually split in 2008, with all
but one of the early-stage members leaving. The
remaining director adopted the company name
for a commercial endeavour unrelated to model-
driven technologies after having tried several dif-
ferent market offerings. This is perhaps an ex-
treme example of the claims made in [24] that
startups should be managed through a succes-
sion of exploratory projects.

All outgoing members have continued with
model-driven technologies in one form or an-
other in a professional capacity. XMF and XMF-
Mosaic (now called XModeler) is available un-
der the Eclipse Public License3. It is shown
in figure 2 with sub-panels shown clockwise
from top-left: a file browser; a model-integrated
web-browser; a class diagram editor (an in-
stance of a user-extensible diagram tool meta-
model); a property editor (an instance of a user-
extensible property editor meta-model); a com-
mand console (showing the output after load-

3 http://www.xmodeler.org/

ing XOCL text files); the XOCL definition of
a model (including a textual DSL for a mod-
elling language); a model browser (an instance of
a user-extensible browser tool meta-model). An
overview of XModeler capabilities is described
in [10].

Conclusion A key reason for Xactium’s inabil-
ity to progress from startup to a stable company
was its lack of commercial expertise from the
outset. The founding members were too focussed
on technology and lacked the flexibility and
commercial acumen to achieve sufficient regu-
lar income. However, this is probably not the
only reason for commercial failure. Model-driven
technologies are abstract and general in nature,
and incomplete because of their immaturity. A
market for MDD tools probably did not exist
at the time the company was set up, despite all
the hype and enthusiasm. There are a number of
current success stories of small companies with
technology and individuals who evangelise lead-
ing edge technologies including MDD; however,
they do not appear to scale which indicates that
their revenue streams are perhaps not based on
technology sales but on know-how. It would also
not be unrealistic to suggest that such compa-
nies are existing on income from mundane soft-
ware development that is used to fund more in-
teresting activities.

In terms of the critical junctures described in
section 3.1, Xactium based its opportunity recog-
nition on the hype surrounding MDA and a sin-
gle successful engagement with a large company.
This, together with entrepreneurial commitment
from established academics from two different
institutions, was used to establish funding from
a variety of sources that was necessary to ne-
gotiate the threshold of credibility. However, it
could be argued that this was achieved prema-
turely and Xactium fell into a re-orientation cy-
cle from which it never recovered.

The last decade has seen a number of
high profile commercial MDD tools fail; recall
Optimal-J or XDE? These tools were very ex-
pensive to produce and maintain, probably con-
tributing to their demise. There are a num-
ber of open-source success stories, but it is not
clear that these systems can support a business
model. There have been some suggestions that
many of the tools that failed, were based on
UML, and that it is likely that if MDD tools
succeed in the future then they are more likely

to be based on domain-specific modelling lan-
guages. This may be true, however there is no
clear evidence to support the claim either way.

It seems reasonable to suggest that there is no
significant MDD tools market currently waiting
to be exploited and that it is more likely that
MDD has started to become fragmented and
embedded within more traditional approaches
where it makes sense.

3.3 ObjeXion

Background In June 1998 Pierre-Alain Muller
and Jean Bezivin created the UML series of con-
ferences, originally intended to bring together
academics and practitioners, around the emerg-
ing modeling language UML. Clearly, UML was
becoming a hot topic in the software engineering
community.

At that time, Pierre-Alain Muller who had
been consulting and mentoring on object-
oriented methods (Booch, OMT and then UML)
during the previous decade, felt that a model-
level prototyping tool would greatly help engi-
neers to build models, and started to discuss this
idea with potential users. The idea was well re-
ceived and several companies agreed to beta-test
the tool once it was available.

Startup Tool development was initiated as an
add-on of Rational Rose. The idea was to tightly
integrate the prototyping tool with the model-
ing tool to facilitate round-trip engineering. In
early 1999 a new company was created and a
marketing partnership was created with Ratio-
nal Software (the owners of Rational Rose). The
agreement allowed ObjeXion to resell Rational
Rose, and also allowed Rational sales teams to
propose the prototyper as an add-on to Rational
Rose. ObjeXion Software acquired seed funding
(about 250K euros) and accelerated technical
development. The team grew up to 5 software
engineers, and mid-1999 a sales person joined
the team and started to develop a marketing
strategy.

During the summer of 1999, a first version
of the model prototyper was available and beta-
testing was conducted with an avionics com-
pany. Three other companies that had originally
accepted to be part of the beta program were
either no longer available or unable to devote
enough attention to make the beta worthwhile.
Having only one beta site turned out to be a sig-
nificant disadvantage because it gave too much

weight to one specific point of view. This led the
team to develop specific tool functionality from
a single perspective that was not of general in-
terest.

Commercialization and Rationalization

The business model was based on selling soft-
ware licences where the price of a single license
was similar to that of Rational Rose. Despite a
lot of commercial efforts the tool sold very few
copies. Certainly sales figures were not enough
to generate sustainable revenues nor to convince
potential investors that more marketing would
produce more revenues.

The marketing partnership with Rational was
not as efficient as originally expected. There was
a double problem with this partnership. Firstly,
customers were not inclined to pay as much for
an add-on as for the base product; secondly, cus-
tomer’s budgets tended to be fully consumed by
Rational Rose tokens, leaving little opportunity
for buying add-ons.

By the end of 1999, it was clear that the
original business model was not realistic. After
several discussions with business angels it was
decided to develop a standalone product that
would be able to go beyond prototyping and
that would not require prior acquisition of Ra-
tional Rose.

However, the model-prototyping technology
had been optimized for prototyping and was
not suitable for production code. A lot of ef-
fort had been put into model evolution (for ex-
ample migrating instances as much as possible
when classes are modified) but not for execution
speed, nor for scalability.

Therefore the team decided to refactor the
technology, and to move from model interpre-
tation to code generation. It was decided to
develop in Java for the IDE and the front
end and to use XSLT for code generation via
model transformation. Experience showed that
this was not very practical. Over time the
XSLT components were deprecated and more
and more parts of the back-end were developed
in plain Java.

Technical Features Netsilon (shown in fig-
ure 3) [28,27] is a standalone tool for model-
driven web engineering with UML class diagram
modeling facility (borrowed from Argo UML),
executability (Xion language that is a mix of
Java and OCL), and model to text generation

(a DSL for HTML code generation). A lot of
effort was put into infrastructure functionality
(for instance persistence) since at that time the
Eclipse platform was not available.

Netsilon implements the Platform Indepen-
dent Model (PIM) vision. The company de-
signed a persistent language named Xion based
on UML for it’s structural part and an action
language based on Java for the executable part.
Code is generated in either Java or PHP, ob-
ject persistence is achieved on top of relational
databases (Oracle, MySQL and PostGres).

Amazingly, the ability of being able to re-
target different language and database combi-
nations was of no interest to most commercial
prospects. In practice, people were comfortable
with a given technology mix and wanted to stay
with that mix.

Dealing with Commercial Reality In 2000
the .com bubble burst and open-source develop-
ment platforms such as Eclipse started to ap-
pear. Together, these factors made it impossible
for ObjeXion to raise further development fund-
ing. The company managed to survive for two
years by selling software development services
that were realized with Netsilon. Several com-
mercial applications were successfully developed
one of which is still in production today (almost
ten years later!).

Providing services was badly perceived by the
team who viewed services as the price one has
to pay for being able to develop the tool.

Shutdown Despite the new product and
notwithstanding the fact that the technology
provided realistic performance for real applica-
tion development (as proven by several running
commercial deployments) the company still had
to face a lack of trust from potential customers.
The key problem was that the company was try-
ing to sell long term sustainability (the idea that
models would be more stable in time than code),
while being itself unstable (a common feature
of startups). This created a chasm between the
company value proposition and its perception
by prospective customers. ObjeXion was able
to find customers for professional services (per-
formed using its own technology) but was not
able to convince others (such as software houses)
that using the technology would bring sufficient
benefits (as compared to more traditional devel-
opment techniques).

Fig. 3. Netsilon Tool

Pierre-Alain Muller went back to academia,
and initiated the development of Kermeta (an
open-source effort to build an executable meta-
modeling language and dedicated environment,
with a lot of similarities to XMF from Xactium)
[25,26,17]; he is currently professor of Software
Engineering, and involved in a university spin-
off which is not using model-driven technologies.

Two other developers joined academia and
are currently associate professors, still involved
in model-driven matter. One developer became
teacher of electrical engineering at high-school.
The remaining engineers do not work in the
MDD area.

Conclusion ObjeXion missed several critical
junctures as described in section 3.1. First, the
opportunity recognition was over-estimated, but
as entrepreneurial commitment was very high,
the founder was able to convince other peo-
ple (including seed capitalists) to provide early
stage funding. Over time it became obvious
that the value proposal was unclear. As cash
was still available, the company then identified
another opportunity and basicaly started an-
other business plan. The threshold of credibil-
ity was never reached. ObjeXion then entered
into a survival mode, providing professional ser-

vices (which was basicaly yet another business
model).

4 Lessons and Observations

This section outlines some lessons and observa-
tions arising from the authors’ experiences de-
scribed in the previous section. Section 4.1 de-
scribes some issues that, although general, are
essential and can easily be ignored when estab-
lishing a high-tech startup. Section 4.2 describes
issues that are specific to the MDD experiences
of the two companies.

4.1 General Issues

The following general issues should be at the
heart of any high-tech startup decision-making:

1. You might be right - but who cares? It is no
good having the highest possible technical
standards and knowing how to do something
the right way, if no-one will listen. Learn to
compromise.

2. Leaping too soon. It is easy to get caught
up in the moment and drop everything else
in order to create a high-tech startup. More
often than not, this is a mistake.

3. Business is commercially not technically
driven. Technical founders tend to forget
that their company needs to make money,
not technical innovation.

4. One swallow does not make a summer. Just
because you have a single initial sale does
not make it certain you will get many more.

5. Think business development. Institutional
seed funding is very focussed on technical in-
novation, while venture capitalists are look-
ing for business. Don’t burn all your seed
funding in technology, develop a business
strategy and act on it as early as possible.

6. The Swiss Army Knife. A commercial prod-
uct that does one thing well beats a prod-
uct that does everything badly. Simplicity is
a key feature that helps to sell technology -
look at Google.

7. Tool vendors cannot appear too small. If a
company is going to invest in a development
tool then they need to be reassured that the
company will exist in 6 months time.

8. Tool development is expensive. However
much you think it will cost in terms of time
and effort to develop a business based on
a modelling tool, multiply by 10. Be pre-
pared to be patient and support develop-
ment through other activities.

9. Don’t sit in a dark room. A typical problem
with developers is that they want to contin-
ually develop technology. Stop early and sell
what you have. Get out to the conferences
and evangelize.

10. Don’t sell the next product. A typical prob-
lem with sales-people is that they always
want to sell the next version of the prod-
uct. Sell what you have, not what would be
nice to have.

11. Be hungry. All the major players in a com-
pany must be absolutely committed to its
success. A major technical or commercial
lead who lacks the hunger can easily sink
a company.

12. Don’t put all eggs in one basket. It is easy
for a technical startup to construct initial
designs and to continually develop a prod-
uct based on the requirements of a single
customer. Don’t (unless your exit strategy
depends on it).

13. Sell Solutions It is hard to sell technology
and especially hard to sell new technology.
It is much easier to sell business solutions
that lead to a competitive edge.

4.2 MDD Issues

Both companies described in this article can be
viewed as significant technical success stories.
They managed to put together successful teams,
raise development money, develop industrial-
scale software tools to support leading-edge
MDD techniques, and to support themselves via
commercial activities based on the tools.

However, both companies failed to move from
startups to established commercial vehicles.
Some of the reasons for this failure are common
to startups and are listed above. This section
describes some of the technology-specific issues
that led to failure.

1. UML Usage The current state-of-the-art
in industrial MDD ranges from informal
sketch-based modelling to the generation of
code skeletons from blueprints. Practition-
ers are often sceptical about UML CASE
tools and their ability to generate complete
applications. It is not currently realistic for a
small company to make grand claims about
the ability of MDD to deliver large-scale
business value in the general case.

2. Investor Confidence Investors need to know
that there is a significant business that will
arise from the use of MDD. Industry scep-
ticism and the lack of high-profile business
cases makes it difficult for MDD startups to
attract seed funding.

3. Novelty MDD approaches are still consid-
ered novel and this raises a significant bar-
rier for adoption by large companies. In
most situations companies will trust the
technologies that they are familiar with.

4. Maturity Industry would like to use MDD
as a shrink-wrapped black-box process. Cur-
rent technologies expose a great deal of the
inner workings of PIM, PSM and trans-
formation design. Developers feel that they
need to have a detailed knowledge of all as-
pects of the technology which undermines
its commercial value compared to the use
of more trusted mature technologies such as
compilers.
Model management is a problem for large-
scale MDD adoption where multi-developer
distributed projects are a requirement. Both
companies described in this article under-
took a major rewrite of their technology.
This is typical of advanced technology plat-
forms and is very difficult to achieve success-

fully where existing customers have large
model repositories.

5. Opinions It is hard to challenge precon-
ceived opinions about MDD. In our experi-
ence, some industrial uses of MDD are badly
performed and lead to misjudged opinions.
This is perhaps related to the immaturity
of MDD and the high-levels of technical ex-
pertise required to use tools. Furthermore,
attempts to take corrective action through
training and mentoring can have a negative
effect due to increased use of resources.

6. Familiarity Experience suggests that Soft-
ware Engineers can feel trapped by MDD
tools, which they feel compare unfavourably
with their favourite development technolo-
gies. Software Engineers like to program not
to model.

7. Text vs Diagrams There is a large amount
of evidence that software engineers prefer
textual representations for system artifacts
rather than diagrams. Even when generat-
ing programs from models, the temptation
to edit the resulting code is overwhelming.
This places MDD tools that are unable to
cope with the scale of the changes, in an
unfavourable light.

8. Platform Independence MDA relies on de-
veloping platform independent models. A
lack of consensus regarding what this term
means in any given context can undermine
confidence in MDD. Practitioners often ar-
gue that the risk associated with generat-
ing code from platform independent models
is too great and of limited practical value.
Where consensus is reached, it is often the
case that PIMs include many aspects of the
target platforms in order to support code
generation.

9. Relational vs OO Database administrators
will often complain about the impedance
mismatch between a relational and an OO
model [22].

10. Maintenance Once multiple models and as-
sociated code have been generated there is
often a maintenance problem that is cited
by companies as a reason for not adopting
MDD. Multiple versions of UML serializa-
tion formats and a general lack of viable in-
teroperability between MDD tools is cited
as a business risk.

11. Complexity MDD is often seen by industry
as too heavyweight and complex. Problems
arising from early adoption can often be per-

ceived to exist long after technologies have
matured. This can be seen in the failure of
Ada where the first compilers were unus-
ably slow, a perception that lasted long after
compiler technology reached acceptable lev-
els of maturity.

12. Generated Code Experience suggests that
industrial uses of MDD involving code gen-
eration, equates the quality of the technol-
ogy with the readability of the generated
code. Perhaps this arises from a lack of con-
fidence with MDD where developers are par-
ticularly risk-averse. Opinions differ regard-
ing the effectiveness of code generation [12]

13. Run-Time Models Problems with code gen-
eration can be avoided by using run-time
models. However, this generally involves
some form of run-time model framework,
possibly running on a server. Experience
suggests that companies find it unappeal-
ing to install and manage general run-time
model frameworks.

5 Conclusion

Traditional development approaches place re-
strictions on the developer by providing pre-
defined features that must be used as part of the
system description. For example: runtime be-
haviour may be handled by the operating system
(priorities, scheduling, etc.), persistence may
be driven by the database capabilities (locking
granularity, transactions, etc.), types (whether
static or dynamic), concrete syntax (and syn-
tactic sugar) is predefined by the programming
language, and cannot be altered.

Traditional environments enforce implied de-
sign decisions, letting developers focus on ap-
plication functionalities. While this is good for
some aspects of system development, it is also
restrictive, in the sense that developers do not
have complete flexibility about the way they
package and factorize features.

Traditional programming languages have a
wide general purpose spectrum, and tools (such
as model checkers) are unaware of business logic;
and therefore remain restricted to checking lan-
guage constructs.

Reusable components are typically supported
by language libraries (frameworks) and exten-
sions remain horizontal (they are restricted to
the M1 level); programmers import libraries,
but cannot factor out features directly to

the programming languages (adapting the M2
level).

Xactium and ObjeXion shared a vision of
explicit modeling. Explicit modeling (or ex-
plicit meta-modeling) means that all decisions
are explicitly described by a modeling arti-
fact. Xactium and ObjeXion postulated that
programming with third-generation languages
along with frameworks could and should be
replaced by model-driven technology for real-
world application development.

ObjeXion was to some extent more conser-
vative than Xactium. ObjeXion addressed M2
technology, using a 3 GL (Java) for implementa-
tion. Xactium pushed the approach to the limit,
and managed to bootstrap their own technology.

ObjeXion and Xactium made comparable
mistakes. They were developing elegant tools for
researchers, not pragmatic tools for engineers.
Both companies were initiated by researchers
who misunderstood that elegance does not nec-
essarily lead to business. The people driving
these two companies were confused by their
own faith in novelty, backed up by their un-
common skills in modeling and language engi-
neering, that unfortunately made them unaware
of the overall complexity of the approach they
were developing. They did not realize the gap
between the current state of practice (program-
ming with 3rd GLs and frameworks), and the
state of the art modeling approach they were
proposing. Neither did they realize that their
approach would not scale in terms of manpower:
there were not enough experts around in indus-
try prepared to deploy sufficient copies of their
products to make Xactium and ObjeXion prof-
itable.

Taking aside their model-driven flavour, Net-
silon and XMF-Mosaic were tools in competi-
tion with many other tools and development ap-
proaches. Netsilon and XMF Mosaic were do-
ing nothing that could not be done by conven-
tional techniques. These model-driven tools did
not provide a real break-through, so that prac-
titioners would abandon their current program-
ming tools.

Model-driven development is an alternative to
conventional development. Programming with
3rd GLs and frameworks has reached a form
of consensus among practitioners, probably be-
cause it provides a good balance between expres-
siveness and precision, between good practice
enforcement and design freedom; it can there-
fore be considered as an optimum. Model-driven

techniques from Xactium and ObjeXion chal-
lenged this optimum, raising the question of
whether this optimum was local or global.

About ten years later, a conclusion could be
to say that the model-driven kind of thinking,
the idea of separating concerns such as with
aspect oriented programming, the use of neu-
tral common representations (such as XML and
XML schemas), generative programming, and
language annotation, altogether have brought
the essence of meta-modeling in a pragmatic
fashion in the world of 3rd GL. From this
prospective, the spirit of model-driven technol-
ogy is very alive, although absorbed by main-
stream programming environments; this might
be the price for success!

ObjeXion and Xactium have been victims of
their over-optimistic pure point of view. Like
many pioneers, they died with an arrow in their
back. The next generation of companies making
use of model-driven technologies might be more
successful if they manage to hide model-driven
technology, embedding it as a competitive ad-
vantage.

ObjeXion and Xactium were built as tool
companies: companies whose business was to be
built on top of some technological assets (in
the current case, MDD technologies). Such a
business model requires significant investment
in marketing, sales, and support, which are way
ahead of the initial cost for developing technol-
ogy. There was not enough revenue potential in
those single-tool based companies to be able to
attract the required level of investment.

It is therefore questionable whether this kind
of business model was even realistic at the time
the companies were created (it was a sustainable
model in the 80s, before the advent of Internet
and global access to free software).

A business model based on selling tools is a
difficult one, because:

– Buying software licences requires invest-
ment up-front from the buyer. The return on
investment remains unclear for all but the
most essential software engineering tools.
Nobody really wants to pay for software li-
cences any-more. The current trend is SaaS
(Software as a Service) where software is
seen as a commodity.

– Tools (such as XMF-Mosaic and Netsilon)
do not produce end-user value that can eas-
ily be measured. The learning-curve must be
balanced with productivity gains.

– Sales cycles are long, because several stake-
holders must be convinced. Tools are usu-
ally not bought by experts, such as people in
software houses (who only want to sell man-
power), but by end-users, who do not expect
to enter in technical discussions about po-
tential benefits of using a development tool.
Budget holders are rarely technical experts
who can appreciate the benefits offered by
technical excellence.

In the current global settings, with everything
connected to everything else via the Internet,
with high quality development environments
available as free and open-source tools, with no-
body wanting to pay for tools any-more, with
cheap outsourced development capabilities, the
way for a tool company, and more specifically
a model-driven tool company, seems to be very
narrow. The approach to business: if you build
a better mousetrap the world will beat a path to
your door seems inappropriate in the context of
software development tools that are essentially
free. It is therefore probably better to focus on
end-user added value delivery, eventually real-
ized with model-driven technologies, or with 3rd
GL environments.

Building and selling software engineering
tools has always been a hard business; it is
technically complex, economically risky, and re-
quires significant funding long before sales can
generate substantial revenues. It is very difficult
to measure the return on investment in software
engineering, because quite often the return has
to be considered beyond the scope of a single
project. Therefore, investing in software engi-
neering becomes a corporate decision, and this
raises all kinds of new concerns, such as long
term visibility, and also balance between busi-
ness and technology (which is likely to be in
favour of business, because the return will be
quicker). As a conclusion, software engineering
makes more sense for large companies devel-
oping product lines, over long period of times.
Alas, large companies are not used to working
with small new players, such as software engi-
neering startups where it may take years be-
fore the small business becomes stable and prof-
itable.

Obviously, MDD tools belong to this category,
and have had to face this market reality. During
the last decade, MDD has not become a main-
stream technology. Some MDD tools managed
to survive by supporting specific niche markets,

such as model-based testing (generating tests
from models, instead of generating systems),
or software modernization (easing translation of
legacy applications into new technology).

The grand challenge of replacing program-
ming by modeling has not been achieved. How-
ever, it looks like some advanced modeling tech-
niques (such as model composition, or meta-
modeling) have permeated the programming
language sphere (think about aspects and anno-
tations in Java). So a conclusion could be that
modeling failed as a standalone approach but
succeeded at extending the dominant 3rd gener-
ation language paradigm.

New trends in software engineering such as
cloud computing and software as a service
(SaaS) may find cases for MDD (probably in the
area of automated configuration management,
which comes back to product lines), if they man-
age to increase their perceived value by provid-
ing vertical solutions, which clearly solve a given
problem. Traditional tools are by nature hori-
zontal; they do not address specific needs (they
are multi-purpose, very similar to Swiss-army
knives) and this is why their perceived value is
low.

Although commercial MDD tool development
and adoption seems to have failed, the use of
model-driven technology as part of commercial
development seems to be thriving. In addition
to niche application areas and recent language
extensions such as Java annotations mentioned
above, many applications can be populated us-
ing data (often in the form of XML), business
process engines abound, database and content
management systems are defined using models,
and SaaS platforms provide users with interfaces
that essentially build and subsequently process
application models.

Therefore, model-driven approaches are far
from obsolete and, despite all the troubles that
we encountered building these two startup com-
panies, it was an exciting, challenging and en-
lightening experience: the best of times.

References

1. D. Amyot, H. Farah, and J.F. Roy. Evaluation
of development tools for domain-specific model-
ing languages. System Analysis and Modeling:
Language Profiles, pages 183–197, 2006.

2. D.G. Bobrow, L.G. DeMichiel, R.P. Gabriel,
S.E. Keene, G. Kiczales, and D.A. Moon. Com-

mon lisp object system specification. ACM Sig-
plan Notices, 23(SI):1–142, 1988.

3. T. Clark, A. Evans, and S. Kent. The metamod-
elling language calculus: foundation semantics
for UML. Fundamental Approaches to Software
Engineering, pages 17–31, 2001.

4. T. Clark, A. Evans, and S. Kent. Engineering
modelling languages: A precise meta-modelling
approach. Fundamental Approaches to Software
Engineering, pages 242–260, 2002.

5. T. Clark, A. Evans, and S. Kent. A metamodel
for package extension with renaming. «UML»
2002, The Unified Modeling Language, pages
305–320, 2002.

6. T. Clark, A. Evans, and S. Kent.
A programmers guide to MMT:
http://eprints.mdx.ac.uk/6280/1/ Program-
mersGuideToMMT.pdf, 2002.

7. T. Clark, A. Evans, and S. Kent. Aspect-
oriented metamodelling. The Computer Jour-
nal, 46(5):566, 2003.

8. T. Clark, A. Evans, S. Kent, S. Brodsky, and
S. Cook. A feasibility study in rearchitecting
UML as a family of languages using a precise
OO meta-modeling approach. Report, Precise
UML Group, 2000.

9. T. Clark, P. Sammut, and J. Willans. Ap-
plied metamodelling: A foundation for language
driven development. 2nd ed. 2008.

10. T. Clark and J. Willans. Software language
engineering with XMF and XModeler. In
M. Mernik, editor, Formal and Practical Aspects
of Domain Specific Languages: Recent Develop-
ments. IGI Global, 2012.

11. P. Cointe. Metaclasses are first class: The ob-
jvlisp model. In ACM SIGPLAN Notices, vol-
ume 22, pages 156–162. ACM, 1987.

12. M. Fowler. What is the point of the UML?
In Perdita Stevens, Jon Whittle, and Grady
Booch, editors, UML 2003 - The Unified Mod-
eling Language. Model Languages and Applica-
tions. 6th International Conference, San Fran-
cisco, CA, USA, October 2003, Proceedings, vol-
ume 2863 of LNCS, page 325. Springer, 2003.

13. N. Georgalas, M. Azmoodeh, and S. Ou. Model
driven integration of standard based oss compo-
nents. EURESCOM Summit 2005-Ubiquitous
Services and Applications, 2005.

14. A. Goldberg and D. Robson. Smalltalk-80:
the language and its implementation. Addison-
Wesley Longman Publishing Co., Inc., 1983.

15. S. Helsen, A. G. Ryman, and D. Spinellis.
Where’s my jetpack? IEEE Software, 25(5):18–
21, 2008.

16. John Hutchinson, Jon Whittle, Mark Rounce-
field, and Steinar Kristoffersen. Empirical as-
sessment of MDE in industry. In Proceedings
of the 33rd International Conference on Soft-
ware Engineering, ICSE ’11, pages 471–480,
New York, NY, USA, 2011. ACM.

17. J.M. Jézéquel, O. Barais, and F. Fleurey. Model
driven language engineering with kermeta. Gen-
erative and Transformational Techniques in
Software Engineering III, pages 201–221, 2011.

18. A.G. Kleppe, J. Warmer, and W. Bast. MDA
explained: the model driven architecture: prac-
tice and promise. Addison-Wesley Longman
Publishing Co., Inc., 2003.

19. I. Kurtev. State of the art of qvt: A model
transformation language standard. Applications
of Graph Transformations with Industrial Rele-
vance, pages 377–393, 2008.

20. B. Langlois, C.E. Jitia, and E. Jouenne. DSL
classification. In OOPSLA 7th Workshop on
Domain Specific Modeling. Citeseer, 2007.

21. R.J. Mann and T.W. Sager. Patents, venture
capital, and software start-ups. Research Policy,
36(2):193–208, 2007.

22. E. Marcos, B. Vela, and J.M. Cavero. A
methodological approach for object-relational
database design using UML. Software and Sys-
tems Modeling, 2(1):59–72, 2003.

23. S.J. Mellor. MDA distilled: principles of model-
driven architecture. Addison-Wesley Profes-
sional, 2004.

24. C. Midler and P. Silberzahn. Managing ro-
bust development process for high-tech startups
through multi-project learning: The case of two
european start-ups. International Journal of
Project Management, 26(5):479–486, 2008.

25. P.A. Muller, F. Fleurey, and J.M. Jeze-
quel. Weaving executability into object-oriented
meta-languages. In in: International Confer-
ence on Model Driven Engineering Languages
and Systems (MoDELS), LNCS 3713 (2005,
pages 264–278. Springer, 2005.

26. P.A. Muller, F. Fleurey, D. Vojtisek, Z. Drey,
D. Pollet, F. Fondement, P. Studer, and J.M.
Jézéquel. On executable meta-languages ap-
plied to model transformations. In Model
Transformations In Practice Workshop. Cite-
seer, 2005.

27. P.A. Muller, P. Studer, F. Fondement, and
J. Bézivin. Platform independent Web applica-
tion modeling and development with Netsilon.
Software and Systems Modeling, 4(4):424–442,
2005.

28. Pierre-Alain Muller, Philippe Studer, and Jean
Bézivin. Platform independent web application
modeling. In UML, pages 220–233. Springer
Verlag, 2003.

29. G.C. O’connor and M.P. Rice. Opportunity
recognition and breakthrough innovation in
large established firms. California Management
Review, 43(2):95–116, 2001.

30. R. M. Soley. Model driven architecture: The
evolution of object-oriented systems? In OOIS,
page 2, 2003.

31. D. Steinberg, F. Budinsky, M. Paternostro, and
E. Merks. EMF: Eclipse Modeling Frame-
work. Addison-Wesley Professional, Boston,
Massachusetts, 2008.

32. A. Vohora, M. Wright, and A. Lockett. Criti-
cal junctures in the development of university
high-tech spinout companies. Research Policy,
33(1):147–175, 2004.

