
Journal of Artificial Intelligence Research 43 (2012) 211-255 Submitted 8/11; published 02/12

Exploiting Model Equivalences for Solving Interactive Dynamic

Influence Diagrams

Yifeng Zeng YFZENG@CS.AAU.DK

Dept. of Computer Science

Aalborg University

DK-9220 Aalborg, Denmark

Prashant Doshi PDOSHI@CS.UGA.EDU

Dept. of Computer Science

University of Georgia

Athens, GA 30602, U.S.A.

Abstract

We focus on the problem of sequential decision making in partially observable environments

shared with other agents of uncertain types having similar or conflicting objectives. This problem

has been previously formalized by multiple frameworks one of which is the interactive dynamic

influence diagram (I-DID), which generalizes the well-known influence diagram to the multiagent

setting. I-DIDs are graphical models and may be used to compute the policy of an agent given its

belief over the physical state and others’ models, which changes as the agent acts and observes in

the multiagent setting.

As we may expect, solving I-DIDs is computationally hard. This is predominantly due to the

large space of candidate models ascribed to the other agents and its exponential growth over time.

We present two methods for reducing the size of the model space and stemming its exponential

growth. Both these methods involve aggregating individual models into equivalence classes. Our

first method groups together behaviorally equivalent models and selects only those models for up-

dating which will result in predictive behaviors that are distinct from others in the updated model

space. The second method further compacts the model space by focusing on portions of the be-

havioral predictions. Specifically, we cluster actionally equivalent models that prescribe identical

actions at a single time step. Exactly identifying the equivalences would require us to solve all

models in the initial set. We avoid this by selectively solving some of the models, thereby intro-

ducing an approximation. We discuss the error introduced by the approximation, and empirically

demonstrate the improved efficiency in solving I-DIDs due to the equivalences.

1. Introduction

Sequential decision making (planning) is a key tenet of agent autonomy. Decision making becomes

complicated due to actions that are nondeterministic and a physical environment that is often only

partially observable. The complexity increases exponentially in the presence of other agents who

are themselves acting and observing, and whose actions impact the subject agent. Multiple related

frameworks formalize the general problem of decision making in uncertain settings shared with

other sophisticated agents who may have similar or conflicting objectives. One of these frame-

works is the interactive partially observable Markov decision process (I-POMDP) (Gmytrasiewicz

& Doshi, 2005), which generalizes POMDPs (Smallwood & Sondik, 1973; Kaelbling, Littman,

& Cassandra, 1998) to multiagent settings; another framework is the interactive dynamic influ-

c©2012 AI Access Foundation. All rights reserved.

211

ZENG & DOSHI

�
�

��
�

��
�

��

�
��	

��
��	

��
��	

��

���	
�

��
�

���	
��	

��
��	

Figure 1: A two time-slice I-DID for agent i modeling another agent j. I-DIDs allow representing

models in a model node (hexagon) and their update over time using the dotted model

update link. Predictions about the other agent’s behavior from the models are represented

using a dashed policy link.

ence diagram (I-DID) (Doshi, Zeng, & Chen, 2009). In cooperative settings, the decentralized

POMDP (Bernstein, Givan, Immerman, & Zilberstein, 2002) framework models multiagent deci-

sion making.

I-DIDs are graphical models for sequential decision making in uncertain multiagent settings.

They concisely represent the problem of how an agent should act in an uncertain environment shared

with others who may act simultaneously in sophisticated ways. I-DIDs may be viewed as graphical

counterparts of I-POMDPs which adopt an enumerative representation of the decision-making prob-

lem. I-DIDs generalize dynamic influence diagrams (DID) (Tatman & Shachter, 1990) to multiagent

settings analogously to the way that I-POMDPs generalize POMDPs. Importantly, I-DIDs have the

advantage of a representation that explicates the embedded domain structure by decomposing the

state space into variables and relationships between the variables. Not only is this representation

more intuitive to use, it translates into computational benefits when compared to the enumerative

representation as used in I-POMDPs (Doshi et al., 2009).

Following the paradigm of graphical models, I-DIDs compactly represent the decision problem

by mapping various variables into chance, decision and utility nodes, and denoting the dependencies

between variables using directed arcs between the corresponding nodes. They extend DIDs by

introducing a special model node whose values are the possible models of the other agent. These

models may themselves be represented using I-DIDs leading to nested modeling. Both other agents’

models and the original agent’s beliefs over these models are updated over time using a special

model update link that connects the model nodes between time steps. Solution to the I-DID is a

policy that prescribes what the agent should do over time, given its beliefs over the physical state

and others’ models. Consequently, I-DIDs may be used to compute the policy of an agent online –

given an initial belief of the agent – as the agent acts and observes in a setting that is populated by

other interacting agents. We show a generic I-DID in Fig. 1 and provide more details in Section 3.

As we may expect, solving I-DIDs is computationally very hard. In particular, they acutely

suffer from the curses of dimensionality and history (Pineau, Gordon, & Thrun, 2006). This is

because the state space in I-DIDs includes the models of other agents in addition to the traditional

212

EXPLOITING MODEL EQUIVALENCES FOR SOLVING INTERACTIVE DYNAMIC INFLUENCE DIAGRAMS

physical states. As the agents act, observe and update beliefs, I-DIDs must track the evolution of the

models over time. Theoretically, the number of candidate models grows exponentially over time.

Thus, I-DIDs not only suffer from the curse of history that afflicts the modeling agent, but also from

that exhibited by the modeled agents. This is further complicated by the nested nature of the state

space.

Consequently, exact solutions of I-DIDs are infeasible for all but the simple problems and ways

of mitigating the computational intractability are critically needed. Because the complexity is pre-

dominantly due to the candidate models, we focus on principled reductions of the model space

while avoiding significant losses in the optimality of the decision maker. Our first approach builds

upon the idea of grouping together behaviorally equivalent (BE) models (Rathnasabapathy, Doshi,

& Gmytrasiewicz, 2006; Pynadath & Marsella, 2007). These are models whose behavioral pre-

dictions for the modeled agent(s) are identical. Because the solution of the subject agent’s I-DID

is affected only by the predicted behavior of the other agent regardless of the description of the

ascribed model, we may consider a single representative from each BE class without affecting the

optimality of the solution. Identifying BE models requires solving the individual models. We re-

duce the exponential growth in the model space by discriminatively updating models. Specifically,

at each time step, we select only those models for updating which will result in predictive behaviors

that are distinct from others in the updated model space. In other words, models that on update

would result in predictions which are identical to those of existing models are not selected for up-

dating. For these models, we simply transfer their revised probability masses to the existing BE

models. Thus, we avoid generating all possible updated models and subsequently reducing them.

Rather, we generate a minimal set of models at each time step.

Restricting the updated models to the exact minimal set would require solving all the models

that are considered initially. Exploiting the notion that models whose beliefs are spatially close tend

to be BE, we solve those models only whose beliefs are not ǫ-close to a representative. We theoret-

ically analyze the error introduced by this approach in the optimality of the solution. Importantly,

we experimentally evaluate our approach on I-DIDs formulated for multiple problem domains hav-

ing two agents, and show approximately an order of magnitude improvement in performance in

comparison to the previous clustering approach (Zeng, Doshi, & Chen, 2007), with a comparable

loss in optimality. One of these problem domains is the Georgia testbed for autonomous control of

vehicles (GaTAC) (Doshi & Sonu, 2010), which facilitates scalable and realistic problem domains

pertaining to autonomous control of unmanned agents such as uninhabited aerial vehicles (UAV).

GaTAC provides a low-cost, open-source and flexible environment for realistically simulating the

problem domains and evaluating solutions produced by multiagent decision-making algorithms.

We further compact the space of models in the model node by observing that behaviorally

distinct models may prescribe identical actions at a single time step. We may then group together

these models into a single equivalence class. In comparison to BE, the definition of our equivalence

class is different: it includes those models whose prescribed action for the particular time step is

the same, and we call it action equivalence (AE). Since there are typically additional models than

the BE ones that prescribe identical actions at a time step, an AE class often includes many more

models. Consequently, the model space is partitioned into lesser number of classes than previously

and is bounded by the number of actions of the other agent.

Unlike the update of BE classes, given the action and an observation AE classes do not update

deterministically. We show how we may compute the probability with which an equivalence class is

updated to another class in the next time step. Although, in general, grouping AE models introduces

213

ZENG & DOSHI

an approximation, we derive conditions under which AE model grouping preserves optimality of the

solution. We demonstrate the performance of our approach on multiple two-agent problem domains

including in GaTAC and show significant time savings in comparison to previous approaches.

To summarize, the main contributions of this article are new approaches that group equivalent

models more efficiently leading to improved scalability in solving I-DIDs. Our first method reduces

the exponential growth of the model space by discriminatively updating models thereby generating

a behaviorally minimal set in the next time step that is characterized by the absence of BE models.

The second method adopts a relaxed grouping of models that prescribe identical actions for that

particular time step. Grouping AE models leads to equivalence classes that often include many

models in addition to those that are BE. We augment both these methods with an approximation that

avoids solving all of the initial models, and demonstrate much improved scalability in experiments.

The remainder of this article is structured as follows. In Section 2, we discuss previous work

related to this article. In Section 3, we briefly review the graphical model of I-DID as well as its

solution based on BE. In Section 4, we show how we may discriminatively update models in order

to facilitate behaviorally-distinct models at subsequent time steps. We introduce an approximation,

and discuss the associated computational savings and error. We introduce the approach of further

grouping models based on actions, in Section 5. All approaches for solving I-DIDs are empirically

evaluated along different dimensions in Section 6. We conclude this article with a discussion of the

framework and the solution approaches including extensions to N > 2 agent interactions, and some

limitations, in Section 7. The Appendices contain proofs of propositions mentioned elsewhere, and

detailed descriptions and I-DID representations of the problem domains used in the evaluation.

2. Related Work

Suryadi and Gmytrasiewicz (1999) in an early piece of related work, proposed modeling other

agents using IDs. The approach proposed ways to modify the IDs to better reflect the observed

behavior. However, unlike I-DIDs, other agents did not model the original agent and the distribution

over the models was not updated based on the actions and observations.

As detailed by Doshi et al. (2009), I-DIDs contribute to an emerging and promising line of

research on graphical models for multiagent decision making. This includes multiagent influence

diagrams (MAID) (Koller & Milch, 2001), network of influence diagrams (NID) (Gal & Pfeffer,

2008), and more recently, limited memory influence diagram based players (Madsen & Jensen,

2008). While MAIDs adopt an external perspective of the interaction, exploiting the conditional

independence between effects of actions to compute the Nash equilibrium strategy for all agents

involved in the interaction, I-DIDs offer a subjective perspective to the interaction, computing the

best-response policy as opposed to a policy in equilibrium. The latter may not account for other

agent’s behaviors outside the equilibrium and multiple equilibria may exist. Furthermore, both

MAID and NID formalisms focus on a static, single-shot interaction. In contrast, I-DIDs offer

solutions over extended time interactions, where agents act and update their beliefs over others’

models which are themselves dynamic.

While I-DIDs closely relate to the previously mentioned ID-based graphical models, another

significant class of graphical models compactly represents the joint behavior as a graphical game

(Kearns, Littman, & Singh, 2001). It models the agents as graph vertices and an interaction in payoff

between two agents using an edge, with the objective of finding a joint distribution over agents’

actions possibly in equilibrium. More recently, graphical multiagent models (Duong, Wellman,

214

EXPLOITING MODEL EQUIVALENCES FOR SOLVING INTERACTIVE DYNAMIC INFLUENCE DIAGRAMS

& Singh, 2008) enhance graphical games by allowing beliefs over agent behaviors formed from

different knowledge sources, and conditioning agent behaviors on abstracted history if the game is

dynamic (Duong, Wellman, Singh, & Vorobeychik, 2010).

As we mentioned previously, a dominating cause of the complexity of I-DIDs is the exponential

growth in the candidate models over time. Using the insight that models (with identical capabilities

and preferences) whose beliefs are spatially close are likely to be BE, Zeng and Doshi (2007) uti-

lized a k-means approach to cluster models together and select K models closest to the means of the

clusters in the model node at each time step. This approach facilitates the consideration of a fixed

number of models at each time. However, the approach first generates all possible models before

reducing the model space at each time step, thereby not reducing the memory required. Further, it

utilizes an iterative and often time-consuming k-means clustering method.

The concept of BE of models was proposed and initially used for solving I-POMDPs (Rath-

nasabapathy et al., 2006), and discussed generally by Pynadath and Marsella (2007). We contextu-

alize BE within the framework of I-DIDs and seek further extensions. A somewhat related notion

is that of state equivalence introduced by Givan et al. (2003) where the equivalence concept is ex-

ploited to factorize MDPs and gain computational benefit. Along this direction, another type of

equivalence in probabilistic frameworks such as MDPs and POMDPs, sometimes also called BE, is

bisimulation (Milner, 1980; Givan et al., 2003; Castro, Panangaden, & Precup, 2009). Two states

are bisimilar if any action from these states leads to identical immediate reward and the states transi-

tion with the same probability to equivalence classes of states. While bisimulation is a test within a

model given just its definition, BE in multiagent systems is defined and used differently: as a way of

comparing between models using their solutions. Interestingly, both these concepts are ultimately

useful for model minimization.

Other frameworks for modeling the multiagent decision-making problem exist. Most notable

among them is the decentralized POMDP (Bernstein et al., 2002). This framework is suitable for

cooperative settings only and focuses on computing the joint solution for all agents in the team.

Seuken and Zilberstein (2008) provide a comprehensive survey of approaches related to decentral-

ized POMDPs; we emphasize a few that exploit clustering. Emery-Montemerlo et al. (2005) propose

iteratively merging action-observation histories of agents that lead to a small worst-case expected

loss. While this clustering could be lossy, Oliehoek et al. (2009) losslessly cluster histories that

exhibit probabilistic equivalence. Such histories generate an identical distribution over the histories

of the other agents and lead to the same joint belief state. While we utilize BE to losslessly cluster

the models of the other agent, we note that BE models when combined with the subject agent’s pol-

icy induce identical distributions over the subject agent’s action-observation history. More recently,

Witwicki and Durfee (2010) use influence-based abstraction in order to limit an agent’s belief to the

other agent’s relevant information by focusing on mutually-modeled features only.

Our agent models are analogous to types in game theory (Harsanyi, 1967), which are defined

as attribute vectors that encompass all of an agent’s private information. In this context, Dekel et

al. (2006) define a strategic topology on universal type spaces (Mertens & Zamir, 1985; Branden-

burger & Dekel, 1993) under which two types are close if their strategic behavior is similar in all

strategic situations. While Dekel et al. focus on a theoretical analysis of the topology and use

rationalizability as the solution concept, we focus on operationalizing BE within a computational

framework. Furthermore, our solution concept is that of best response to one’s beliefs.

215

ZENG & DOSHI

3. Background

We briefly review interactive influence diagrams (I-ID) for two-agent interactions followed by their

extension to dynamic settings, I-DIDs (Doshi et al., 2009). Both these formalisms allow modeling

the other agent and to use that information in the decision making of the subject agent.

We illustrate the formalisms and our approaches in the context of the multiagent tiger prob-

lem (Gmytrasiewicz & Doshi, 2005) – a two-agent generalization of the well-known single agent

tiger problem (Kaelbling et al., 1998). In this problem, two agents, i and j, face two closed doors

one of which hides a tiger while the other hides a pot of gold. An agent gets rewarded for opening

the door that hides the gold but gets penalized for opening the door leading to the tiger. Each agent

may open the left door (action denoted by OL), open the right door (OR), or listen (L). On listening,

an agent may hear the tiger growling either from the left (observation denoted by GL) or from the

right (GR). Additionally, the agent hears creaks emanating from the direction of the door that was

possibly opened by the other agent – creak from the left (CL) or creak from right (CR) – or silence

(S) if no door was opened. All observations are assumed to be noisy. If any door is opened by

an agent, the tiger appears behind any of the two doors randomly in the next time step. While the

actions of the other agent do not directly affect the reward for an agent, they may potentially change

the location of the tiger. This formulation of the problem differs from that of Nair et al. (2003) in

the presence of door creaks and that it is not cooperative.

3.1 Interactive Dynamic Influence Diagrams

Influence diagrams (Tatman & Shachter, 1990) typically contain chance nodes which represent the

random variables modeling the physical state, S, and the agent’s observations, Oi, among other

aspects of the problem; decision nodes that model the agent’s actions, Ai; and utility nodes that

model the agent’s reward function, Ri. In addition to these nodes, I-IDs for an agent i include a

new type of node called the model node. This is the hexagonal node, Mj,l−1, in Fig. 2, where j

denotes the other agent and l − 1 is the strategy level, which allows for a nested modeling of i

by the other agent j. Agent j’s level is one less than that of i, which is consistent with previous

hierarchical modeling in game theory (Aumann, 1999a; Brandenburger & Dekel, 1993) and decision

theory (Gmytrasiewicz & Doshi, 2005). Additionally, a level 0 model is an ID or a flat probability

distribution. We note that the probability distribution over the chance node, S, and the model node

together represents agent i’s belief over its interactive state space. In addition to the model node,

I-IDs differ from IDs by having a chance node, Aj , that represents the distribution over the other

agent’s actions, and a dashed link, called a policy link.

The model node contains as its values the alternative computational models ascribed by i to the

other agent. The policy link denotes that the distribution over Aj is contingent on the models in

the model node. We denote the set of these models by Mj,l−1, and an individual model of j as,

mj,l−1 = 〈bj,l−1, θ̂j〉, where bj,l−1 is the level l−1 belief, and θ̂j is the agent’s frame encompassing

the decision, observation and utility nodes. A model in the model node may itself be an I-ID or ID,

and the recursion terminates when a model is an ID or a flat probability distribution over the actions.

We observe that the model node and the dashed policy link that connects it to the chance node,

Aj , could be represented as shown in Fig. 3(a) leading to a flat ID shown in Fig. 3(b). The decision

node of each level l − 1 I-ID is transformed into a chance node. Specifically, if OPT(m1
j,l−1) is

the set of optimal actions obtained by solving the I-ID (or ID) denoted by m1
j,l−1, then Pr(aj ∈

216

EXPLOITING MODEL EQUIVALENCES FOR SOLVING INTERACTIVE DYNAMIC INFLUENCE DIAGRAMS

�

��

��

��

��	
��

��

Figure 2: A generic level l > 0 I-ID for agent i situated with one other agent j. The shaded hexagon

is the model node (Mj,l−1) and the dashed arrow is the policy link.

�

��

��

��

��

��
�

�������

��

��

��
�

�������

���

���
��
�

���

���
��

���
��

���

Figure 3: (a) Representing the model node and policy link using chance nodes and dependencies

between them. The decision nodes of the lower-level I-IDs or IDs (m1
j,l−1, m2

j,l−1; super-

script numbers serve to distinguish the models) are mapped to the corresponding chance

nodes (A1
j , A2

j) respectively, which is indicated by the dotted arrows. Depending on the

value of node, Mod[Mj], distribution of each of the chance nodes is assigned to node Aj

with some probability. (b) The transformed flat ID with the model node and policy link

replaced as in (a).

A1
j) = 1

|OPT(m1
j,l−1

)|
if aj ∈ OPT(m1

j,l−1), 0 otherwise. The different chance nodes (A1
j , A

2
j) –

one for each model – and additionally, the chance node labeled Mod[Mj] form the parents of the

chance node, Aj . There are as many action nodes as the number of models in the support of agent

i’s beliefs. The conditional probability table (CPT) of the chance node, Aj , is a multiplexer that

assumes the distribution of each of the action nodes (A1
j , A

2
j) depending on the value of Mod[Mj].

In other words, when Mod[Mj] has the value m1
j,l−1, the chance node Aj assumes the distribution

of the node A1
j , and Aj assumes the distribution of A2

j when Mod[Mj] has the value m2
j,l−1. The

distribution over Mod[Mj] is i’s belief over j’s models given the state.

For more than two agents, we add a model node and a chance node representing the distribution

over an agent’s action linked together using a policy link, for each other agent. Interactions among

others such as coordination or team work could be considered by utilizing models, which predict the

217

ZENG & DOSHI

joint behavior of others, in a distinct model node and possibly updating such models. For example,

the joint behavioral models could be graphical analogs of decentralized POMDPs. Other settings

involving agents acting independently or some of them being cooperative while others adversarial

may be represented as well, and is a topic of research under study. As an aside, Doshi et al. (2009)

show how I-IDs relate to NIDs (Gal & Pfeffer, 2008).

�����

���������

����
�

 ���!�
�

��
�

��

��
��

��
���

������
�
�

��
�

���"
���"

�

�����

�����������
����
�

�

��
���

��

�����

����������
����
�

�

��
��

��

Figure 4: Level 1 I-ID of i for the multiagent tiger problem. Solutions of two level 0 models (IDs) of

j map to the chance nodes, A
t,1
j and A

t,2
j , respectively (illustrated using dotted arrows),

transforming the I-ID into a flat ID. The two models differ in the distribution over the

chance node, TigerLocationt.

We setup the I-ID for the multiagent tiger problem described previously, in Fig. 4. We discuss

the CPTs of the various nodes in Appendix B.1. While the I-ID contains two models of j, there

would be as many action nodes of j if there were more models.

�
�

��
�

��
�

��

�
�#�

��
�#�

��
�#�

��

���
��
�

��
�

���
��
�#�

��
�#�

Figure 5: A generic two time-slice level l I-DID for agent i. Notice the dotted model update link

that denotes the update of the models of j and of the distribution over the models, over

time.

218

EXPLOITING MODEL EQUIVALENCES FOR SOLVING INTERACTIVE DYNAMIC INFLUENCE DIAGRAMS

I-DIDs extend I-IDs to allow sequential decision making over multiple time steps. We depict a

general, two time-slice I-DID in Fig. 5. In addition to the model nodes and the dashed policy link,

what differentiates an I-DID from a DID is the model update link shown as a dotted arrow in Fig. 5.

We briefly explain the semantics of the model update next.

��
�

��
�

���	��

�

��

�

�����

�����

�

���	��

��
�

��

��

�����

��

��

��

��
�

��
�

�

��

��

��
������

���

��
������

���

��
������

���

��
������

���

�����

�

Figure 6: The semantics of the model update link. Notice the growth in the number of models in the

model node at t+1 shown in bold (superscript numbers distinguish the different models).

Models at t + 1 reflect the updated beliefs of j and their solutions provide the probability

distributions for the action nodes.

Agents in a multiagent setting may act and make observations, which changes their beliefs.

Therefore, the update of the model node over time involves two steps: First, given the models at

time t, we identify the updated set of models that reside in the model node at time t+1. Because the

agents act and receive observations, their models are updated to reflect their changed beliefs. Since

the set of optimal actions for a model could include all the actions, and the agent may receive any

one of |Ωj | possible observations where Ωj is the set of j’s observations, the updated set at time step

t+1 will have up to |Mt
j,l−1||Aj ||Ωj | models. Here, |Mt

j,l−1| is the number of models at time step t,

|Aj | and |Ωj | are the largest spaces of actions and observations respectively, among all the models.

The CPT of chance node Mod[M t+1
j,l−1] encodes the indicator function, τ(bt

j,l−1, a
t
j , o

t+1
j , bt+1

j,l−1),

which is 1 if the belief bt
j,l−1 in a model mt

j,l−1 using the action at
j and observation ot+1

j updates

to bt+1
j,l−1 in a model mt+1

j,l−1; otherwise it is 0. Second, we compute the new distribution over the

updated models given the original distribution and the probability of the agent performing the action

and receiving the observation that led to the updated model. The dotted model update link in the

I-DID may be implemented using standard dependency links and chance nodes, as shown in Fig. 6

transforming the I-DID into a flat DID.

In Fig. 7, we show the two time-slice flat DID with the model nodes and the model update link

replaced by the chance nodes and the relationships between them. Chance nodes and dependency

links not in bold are standard, usually found in single agent DIDs.

Continuing with our illustration, we show the two time-slice I-DID for the multiagent tiger

problem in Fig. 8. The model update link not only updates the number of j’s candidate models due

to its action and observations of growl, it also updates the probability distribution over these models.

The model update link in the I-DID is implemented using standard dependency links as shown in

Fig. 9. For the sake of clarity, we illustrate the update of a single model of j contained in the model

node at time t.

219

ZENG & DOSHI

�
�

��
�

��
�

��

�
��	

��
��	

��
��	

��

�

� �

��	

�

�

�

	

����

�
�

�

��	

�

	

�

�

�

�

�

	

����

��	
�

�

�

�

�

Figure 7: A flat DID obtained by replacing the model nodes and model update link in the I-DID

of Fig. 5 with the chance nodes and the relationships (in bold) as shown in Fig. 6. The

lower-level models are solved to obtain the distributions for the chance action nodes.

�����

���������

����
�

 ���!�

��
�

��

�����

���������#�

����
�

 ���!�#�

��
�#�

��

���
��
�

��
�

���
��
�#�

��
�#�

Figure 8: Two time-slice level l I-DID of i for the multiagent tiger problem. Shaded model nodes

contain the different models of j.

3.2 Behavioral Equivalence and Model Solution

Although the space of possible models is very large, not all models need to be considered by agent i

in the model node. As we mentioned previously, models that are BE (Rathnasabapathy et al., 2006;

Pynadath & Marsella, 2007) could be pruned and a single representative model considered. This is

because the solution of the subject agent’s I-DID is affected by the predicted behavior of the other

agent; thus we need not distinguish between behaviorally equivalent models. We define BE more

formally below:

Definition 1 (Behavioral equivalence). Two models, mj,l−1 and m′
j,l−1, of the other agent, j, are

behaviorally equivalent if, OPT(mj,l−1) = OPT(m′
j,l−1), where OPT(·) denotes the solution of

the model that forms the argument.

Thus, BE models are those whose behavioral predictions for the agent are identical.

220

EXPLOITING MODEL EQUIVALENCES FOR SOLVING INTERACTIVE DYNAMIC INFLUENCE DIAGRAMS

��
�

������
�
�

��
�

�����$

��������
� ���
��

�

������
�#�
�

��
�#�

���
��
�#�

����
�
�#�

����
�
�

�����

��������
�#�

��
�

��
�

��

��
%

��
&

���
��
���

���
��
�#���

���
��
�#��

���
��
�#��%

���
��
�#��&

��
'

��
(���
��

�#��(

���
��
�#��'

Figure 9: Because agent j in the tiger problem may receive any one of six possible observations

given the action prescribed by its model, a single model in the model node at time t could

lead to six distinct models at time t + 1.

The solution of an I-DID (and I-ID) is implemented recursively down the levels as shown in

Fig. 10. In order to solve a level 1 I-DID of horizon T , we start by solving the level 0 models, which

may be traditional DIDs of horizon T . Their solutions provide probability distributions over the

other agents’ actions, which are entered in the corresponding action nodes found in the model node

of the level 1 I-DID at the corresponding time step (lines 3-5). Subsequently, the set of j’s models

is minimized by excluding the BE models (line 6).

The solution method uses the standard look-ahead technique, projecting the agent’s action and

observation sequences forward from the current belief state, and finding the possible beliefs that

i could have in the next time step (Russell & Norvig, 2010). Because agent i has a belief over

j’s models as well, the look-ahead includes finding out the possible models that j could have in

the future. Consequently, each of j’s level 0 models represented using a standard DID must be

solved in the first time step up to horizon T to obtain its optimal set of actions. These actions are

combined with the set of possible observations that j could make in that model, resulting in an

updated set of candidate models (that include the updated beliefs) that could describe the behavior

of j. SE(bt
j , aj , oj) is an abbreviation for the belief update (lines 8-13). Beliefs over these updated

set of candidate models are calculated using the standard inference methods through the dependency

links between the model nodes shown in Fig. 6 (lines 15-18). Agent i’s I-DID is expanded across all

time steps in this manner. We point out that the algorithm in Fig. 10 may be realized with the help

of standard implementations of DIDs such as HUGIN EXPERT (Andersen & Jensen, 1989). The

solution is a policy tree that prescribes the optimal action(s) to perform for agent i initially given its

belief, and the actions thereafter conditional on its observations.

4. Discriminative Model Updates

Solving I-DIDs is computationally intractable due to not only the large space and complexity of

models ascribed to j, but also due to the exponential growth in candidate models of j over time.

This growth leads to a disproportionate increase in the interactive state space over time. We begin by

introducing a set of models that is minimal in a sense and describe a method for generating this set.

The minimal set is analogous to one of the notions of a minimal mental model space as described by

221

ZENG & DOSHI

I-DID EXACT (level l ≥ 1 I-DID or level 0 DID, horizon T)

Expansion Phase

1. For t from 0 to T − 1 do
2. If l ≥ 1 then

Minimize M t
j,l−1

3. For eachmt
j inM

t
j,l−1

do

4. Recursively call algorithm with the l − 1 I-DID (or DID)

that represents mt
j and the horizon, T − t

5. Map the decision node of the solved I-DID (or DID), OPT(mt
j), to the

corresponding chance node Aj

6. Mt
j,l−1

← PruneBEModels(Mt
j,l−1

)

7. If t < T − 1 then
Populate M t+1

j,l−1

8. For eachmt
j inM

t
j,l−1

do

9. For each aj in OPT(mt
j) do

10. For each oj in Oj (part of mt
j) do

11. Update j’s belief, bt+1

j ← SE(bt
j , aj , oj)

12. mt+1

j ← New I-DID (or DID) with bt+1

j as the initial belief

13. Mt+1

j,l−1

∪

← {mt+1

j }

14. Add the model node, M t+1

j,l−1
, and the model update link between

M t
j,l−1

and M t+1

j,l−1

15. Add the chance, decision, and utility nodes for t + 1 time slice and the

dependency links between them

16. Establish the CPTs for each chance node and utility node

Solution Phase

17. If l ≥ 1 then
18. Represent the model nodes, policy links and the model update links

as in Fig. 6 to obtain the DID

19. Apply the standard look-ahead and backup method to solve the expanded DID

(other solution approaches may also be used)

Figure 10: Algorithm for exactly solving a level l ≥ 1 I-DID or level 0 DID expanded over T time

steps.

Pynadath and Marsella (2007). We assume that models of the other agent differ only in their beliefs

and that the other agent’s frame is known. We later discuss in Section 7 the impact of the frame

being unknown as well. For clarity, we continue to focus on two-agent interactions, and discuss

extensions of the techniques presented here in Section 7 as well.

4.1 Behaviorally Minimal Model Set

Given the set of models, Mj,l−1, of the other agent, j, in a model node we define a corresponding

behaviorally minimal set of models:

222

EXPLOITING MODEL EQUIVALENCES FOR SOLVING INTERACTIVE DYNAMIC INFLUENCE DIAGRAMS

Definition 2 (Behaviorally minimal set). Define a minimal set of models, M̂j,l−1, as the largest

subset ofMj,l−1, such that for each model,mj,l−1 ∈ M̂j,l−1, there exists no other model in M̂j,l−1

that is BE to mj,l−1.

Here, BE is as defined in Def. 1. We say that M̂j,l−1 (behaviorally) minimizesMj,l−1. As we

illustrate in Fig. 11 using the tiger problem (Kaelbling et al., 1998), the set M̂j,l−1 that minimizes

Mj,l−1 comprises of all the behaviorally distinct representatives of the models in Mj,l−1 and only

these models. Because any model from a group of BE models may be selected as the representative

in M̂j,l−1, a minimal set corresponding to Mj,l−1 is not unique, although its cardinality remains

fixed.

����� ��� ����� ���� ��� ���� ���� ���� ���� ����

��� ��� ���

	
����

	
����

	
������
�
���

	
������
�
���

Figure 11: Illustration of a minimal set using the tiger problem. Black vertical lines denote the

beliefs contained in different models of agent j included in model node, Mj,0. Decimals

on top indicate i’s probability distribution over j’s models, Pri(M
t
j,0|s). In order to

form a behaviorally minimal set, M̂t
j,0, we select a representative model from each BE

group of models (models in differently shaded regions). Agent i’s distribution over the

models in M̂t
j,0 is obtained by summing the probability mass assigned to the individual

models in each region. Note that M̂t
j,0 is not unique because any one model within a

shaded region could be selected for inclusion in it.

Agent i’s probability distribution over the minimal set, M̂j,l−1, conditioned on the physical

state is obtained by summing the probability mass over BE models in Mj,l−1 and assigning the

accumulated probability to the representative model in M̂j,l−1. Formally, let m̂j,l−1 ∈ M̂j,l−1,

then:

b̂i(m̂j,l−1|s) =
∑

mj,l−1∈Mj,l−1

bi(mj,l−1|s) (1)

where Mj,l−1 ⊆ Mj,l−1 is the set of BE models to which the representative m̂j,l−1 belongs. Thus,

if M̂j,l−1 minimizes Mj,l−1, then Eq. 1 shows how we may obtain the probability distribution over

M̂j,l−1 at some time step, given i’s belief distribution over models in the model node at that step

(see Fig. 11).

The behaviorally minimal set together with the probability distribution over it has an important

property: Solution of an I-DID remains unchanged when the models in a model node and the

distribution over the models are replaced by the corresponding minimal set and the distribution

over it, respectively. In other words, transforming the set of models in the model node into its

minimal set preserves the solution. Proposition 1 states this formally:

223

ZENG & DOSHI

Proposition 1. Let X : ∆(Mj,l−1) → ∆(M̂j,l−1) be a mapping defined by Eq. 1, where Mj,l−1

is the space of models in a model node and M̂j,l−1 minimizes it. Then, applying X preserves the

solution of the I-DID.

Proof of Proposition 1 is given in Appendix A. Proposition 1 allows us to show that M̂j,l−1 is

indeed minimal given Mj,l−1 with respect to the solution of the I-DID.

Corollary 1. M̂j,l−1 in conjunction with X is a sufficient solution-preserving subset of models

found inMj,l−1.

Proof of this corollary follows directly from Proposition 1. Notice that the subset continues to

be solution preserving when we additionally augment M̂j,l−1 with models from Mj,l−1.

As the number of models in the minimal set is, of course, no more than in the original set and

typically much less, solution of the I-DID is often computationally much less intensive when the

model set is replaced with its behaviorally minimal counterpart.

4.2 Discrimination Using Policy Graphs

A straightforward way of obtaining M̂j,l−1 exactly at any time step is to first ascertain the BE

groups of models. This requires us to solve the I-DIDs or DIDs representing the models, then select

a representative model from each BE group to include in M̂j,l−1, and prune all others which have

the same solution as the representative.

4.2.1 APPROACH

Given the set of j’s models, Mj,l−1, at time t(=0), we present a technique for generating the minimal

sets at subsequent time steps in the I-DID. We first observe that behaviorally distinct models at time

t may result in updated models at t + 1 that are BE. Hence, our approach is to select at time step

t only those models for updating which will result in predictive behaviors that are distinct from

others in the updated model space at t + 1. Models that will result in predictions on update which

are identical to those of other existing models at t + 1 are not selected for updating. Consequently,

the resulting model set at t + 1 is minimal.

We do this by solving the individual I-DIDs or DIDs in Mt
j,l−1. Solutions to DIDs or I-DIDs

are policy trees, which may be merged bottom up to obtain a policy graph, as we demonstrate in

Fig. 12. Seuken and Zilberstein (2007) reuse subtrees of smaller horizon by linking to them using

pointers while forming policy trees for the next horizon in the solution of decentralized POMDPs.

The net effect is the formation of a policy graph similar to ours thereby providing an alternative

to our approach of solving the individual models to first obtain the complete policy trees and then

merge post hoc. We adopt the latter approach because the individual models, which are DIDs, when

solved using available implementations produce complete policy trees. The following proposition

gives the complexity of merging the policy trees to obtain the policy graph.

Proposition 2 (Complexity of tree merge). The worst-case complexity of the procedure for merging

policy trees to form a policy graph is O((|Ωj |
T−1)2|Mj |

2), where T is the horizon.

Proof. The complexity of the policy tree merge procedure is proportional to the number of compar-

isons that are made between parts of policy trees to ascertain their similarity. Because the procedure

follows a bottom-up approach and the leaf level has the largest number of nodes, the maximum

224

EXPLOITING MODEL EQUIVALENCES FOR SOLVING INTERACTIVE DYNAMIC INFLUENCE DIAGRAMS

L

OL L

L OL

GR GL

GL GR*

L

L

GR

GL

L

OL L

L

GR GL

GLGR *

L

GL

OL OR

GR GR GL

(a)

(b)

time t=0

OR

L

*

*

Merge

L

L

GR

L

GL

L

GL

OL OR

GR GR GL

[0 – 0.135) [0.135 – 0.865) [0.955 – 1]

Actions (node labels):

L = Listen
OL = Open left door

OR = Open right door

Observations (edge labels):

GL = Growl from left door
GR = Growl from right door

Merge

OR

L

L

*

*

L

OR

GL

OR

L

GR

L

* GLGR

L

OR

GL

L

GR

* GLGR

L

GR

L

OL L

L

GR GL

GLGR*

L

GL

OL OR

GR GL

(c)

OR

L

*

*

L

OR

GLGR

*

[0.865 – 0.955)

Figure 12: (a) Example policy trees obtained by solving four models of j for the tiger problem.

Beginning bottom up, we may merge the four L nodes, two OR nodes and two OL

nodes respectively to obtain the graph in (b). Because the two policy trees of two steps

rooted at L (bold circle) are identical, and so are the two policy trees rooted at L (right-

most), we may merge them, respectively, to obtain the policy graph in (c). Nodes at

t = 0 are annotated with ranges of Prj(TL).

number of comparisons are made between leaf nodes. The worst case occurs when none of the leaf

nodes of the different policy trees can be merged. Note that this precludes the merger of upper parts

of the policy trees as well. Each policy tree may contain up to |Ωj |
T−1 leaf nodes, where T is the

horizon. Hence, at most O((|Ωj |
T−1)2|Mj |

2) comparisons are made, where O(|Mj |
2) is the num-

ber of pairs in the model set. 1 The case when none of the leaf nodes merge must occur when the

models are behaviorally distinct, and they form a minimal set, M̂j . In other words, Mj = M̂j .

1. If we assume an ordering of the observations (edge labels) thereby ordering the tree, two policy trees may be suffi-

ciently compared in O(|Ωj |
T−1) time.

225

ZENG & DOSHI

Each node in the policy graph represents an action to be performed by the agent and edges

represent the agent’s observations. As is common with policy graphs in POMDPs, we associate

with each node at time t = 0, a range of beliefs for which the corresponding action is optimal (see

Fig. 12(c)). This range may be obtained by computing the value of executing the policy tree rooted

at each node at t = 0 in the graph and starting from each physical state. This results in a vector of

values for each policy tree, typically called the α-vector. Intersecting the α-vectors and projecting

the intersections on the belief simplex provides us with the boundaries of the needed belief ranges.

We utilize the policy graph to discriminate between model updates. For clarity, we formally

define a policy graph next.

Definition 3 (Policy graph). Define a policy graph as:

PG = 〈V, A, E , Ω,Lv,Le〉

where V is the set of vertices (nodes); A is the set of actions which form the node labels; E is the set
of ordered pairs of vertices (edges); Ω is the set of observations which form the edge labels; Lv :
V → A assigns to each vertex an action from the set of actions, A (node label); and Le : E → Ω
assigns to each edge an observation from the set of observations, Ω (edge label). Le follows the

property that no two edges whose first elements are identical (begin at the same vertex) are assigned

the same observation.

Notice that a policy graph augments a regular graph with meaningful node and edge labels. For

a policy graph, PG, we also define the transition function, Tp : V × Ω → V , for convenience.

Tp(v, o) returns the vertex, v′, such that {v, v′} ∈ E and Le({v, v′}) = o.

Our insight is that Tp(v, o) is the root node of a policy tree that represents the predictive behav-
ior for the model updated using the action Lv(v) and observation o. As we iterate over j’s models

in the model node at time t in the expansion phase while solving the I-DID, we utilize Tp in deciding

whether to update a model.

We first combine the policy trees obtained by solving the models in node M t
j,l−1 to obtain the

policy graph, PG, as shown in Fig. 12. Let v be the vertex in PG whose action label, Lv(v), rep-

resents the rational action for mj,l−1 ∈ Mt
j,l−1. We can ascertain this by simply checking whether

the belief in mj,l−1 falls within the belief range associated with a node. For every observation

o ∈ Le({v, ·}), we update the model, mj,l−1, using action Lv(v) and observation o, if v′ = Tp(v, o)
has not been encountered previously for this or any other model. We illustrate this below:

Example 1 (Model update). Consider the level 0 models of j in the model node at time t,Mt
j,0 =

{〈0.01, θ̂j〉, 〈0.5, θ̂j〉, 〈0.05, θ̂j〉}, for the multiagent tiger problem. Recall that in a model of j, such

as 〈0.01, θ̂j〉, 0.01 is j’s belief (over TL) and θ̂j is its frame. From the PG in Fig. 12(c), the leftmost
node prescribing the action L is optimal for the first and third models, while the second node also

prescribing L is optimal for the second model. Beginning with model, 〈0.01, θ̂j〉, Tp(v, GL) = v1

(where Lv(v1) = L) and Tp(v, GR) = v2 (Lv(v2) = OL). Since this is the first model we consider,

it will be updated using L and both observations resulting in two models inMt+1
j,0 . For the model,

〈0.5, θ̂j〉, if v′ is the optimal node (Lv(v
′) = L), Tp(v

′, GR) = v1, which has been encountered

previously. Hence, the model will not be updated using L and GR, although it will be updated

using L and GL.

226

EXPLOITING MODEL EQUIVALENCES FOR SOLVING INTERACTIVE DYNAMIC INFLUENCE DIAGRAMS

Intuitively, for a model, mj,l−1, if node v1 = Tp(v, o) has been obtained previously for this or

some other model and action-observation combination, then the update of mj,l−1 will be BE to the

previously updated model (both will have the same policy tree rooted at v1). Hence, mj,l−1 need not

be updated using the observation o. Because we do not permit updates that will lead to BE models,

the set of models obtained at t + 1 is minimal. Applying this process analogously to models in the

following time steps will lead to minimal sets at all subsequent steps and nesting levels.

4.2.2 APPROXIMATION

We may gain further efficiency by avoiding the solution of all models in the model node at the first

time step. One way of doing this is to randomly select K models of j, such that K ≪ |M0
j,l−1|.

Solution of the models will result in K policy trees, which could be combined as shown in Fig. 12

to form a policy graph. This policy graph is utilized to discriminate between the model updates.

Notice that the approach becomes exact if the optimal solution of each model in M0
j,l−1 is identical

to that of one of the K models. Because the K models are selected randomly, this assumption is

implausible and the approach is likely to result in a substantial loss of optimality that is mediated

by K.

We propose a simple but effective refinement that mitigates the loss. Recall that models whose

beliefs are spatially close are likely to be BE (Rathnasabapathy et al., 2006). Each of the remaining

|M0
j,l−1| − K models whose belief is not within ǫ ≥ 0 of the belief of any of the K models will

also be solved. This additional step makes it more likely that all the behaviorally distinct solutions

will be generated and included in forming the policy graph. If ǫ = 0, all models in the model node

will be solved leading to the exact solution, while increasing ǫ reduces the number of solved models

beyond K. One measure of distance between belief points is the L1 based metric, though other

metrics such as the Euclidean distance may also be used.

4.3 Transfer of Probability Mass

Notice that a consequence of not updating models using some action-observation combination is

that the probability mass that would have been assigned to the updated model in the model node at

t+1 is lost. Disregarding this probability mass may introduce error in the optimality of the solution.

We did not perform the update because a model that is BE to the potentially updated model

already exists in the model node at time t+1. We could avoid the error by transfering the probability

mass that would have been assigned to the updated model on to the BE model.

As we mentioned previously, the node Mod[M t+1
j,l−1] in the model node M t+1

j,l−1, has as its values

the different models ascribed to agent j at time t + 1. The CPT of Mod[M t+1
j,l−1] implements the

function τ(bt
j,l−1, a

t
j , o

t+1
j , bt+1

j,l−1), which is 1 if bt
j,l−1 in the model mt

j,l−1 updates to bt+1
j,l−1 in model

mt+1
j,l−1 using the action-observation combination, otherwise it is 0. Let mt+1′

j,l−1 = 〈bt+1′

j,l−1, θ̂j〉 be the

model that is BE to mt+1
j,l−1. In order to transfer the probability mass to this model if the update is

pruned, we modify the CPT of Mod[M t+1
j,l−1] to indicate that mt+1′

j,l−1 is the model that results from

updating bt
j,l−1 with action, at

j and observation ot+1
j . This has the desired effect of transfering the

probability that would have been assigned to the updated model (Fig. 6) on to mt+1′

j,l−1 in the model

node at time t + 1.

227

ZENG & DOSHI

4.4 Algorithm

We present the discriminative update based algorithm for solving a level l ≥ 1 I-DID (as well as a

level 0 DID) in Fig. 13. The algorithm differs from the exact approach (Fig. 10) in the expansion

phase. In addition to a two time-slice level l I-DID and horizon T , the algorithm takes as input

the number of random models to be solved initially, K, and the distance, ǫ. Following Section 4.2,

we begin by randomly selecting K models to solve (lines 2-5). For each of the remaining models,

we identify one of the K solved model whose belief is spatially the closest (ties broken randomly).

If the proximity is within ǫ, the model is not solved – instead, the previously computed solution

is assigned to the corresponding action node of the model in the model node, M0
j,l−1 (lines 6-12).

Subsequently, all models in the model node are associated with their respective solutions (policy

trees), which are merged to obtain the policy graph (line 13), as illustrated in Fig. 12.

In order to populate the model node of the next time step, we identify the node v in PG that

represents the optimal action for a model at time t. The model is updated using the optimal action

aj (= Lv(v)) and each observation oj only if the node, v′ = Tp(v, oj) has not been encountered

in previous updates (lines 16-23). Given a policy graph, evaluating Tp(v, oj) is a constant time

operation. Otherwise, as mentioned in Section 4.3, we modify the CPT of node, Mod[M t+1
j,l−1],

to transfer the probability mass to a BE model (line 25). Consequently, model nodes at subsequent

time steps in the expanded I-DID are likely populated with minimal sets. Given the expanded I-DID,

its solution may proceed in a straightforward manner as shown in Fig. 10.

4.5 Computational Savings and Prediction Error Bound

The primary complexity of solving I-DIDs is due to the large number of models that must be solved

over T time steps. At some time step t, there could be |M0
j,l−1|(|Aj ||Ωj |)

t many models of the

other agent j, where |M0
j,l−1| is the number of models considered initially. The nested modeling

further contributes to the complexity since solutions of each model at level l − 1 requires solving

the lower level l − 2 models, and so on recursively up to level 0. In an N+1 agent setting, if the

number of models considered at each level for an agent is bound by |M|, then solving an I-DID at

level l requires the solutions of O((N |M|)l) many models. Discriminating between model updates

reduces the number of agent models at each level to at most the size of the behaviorally minimal

set, |M̂t|, while incurring the worst-case complexity of O((|Ω|T−1)2|M|2) in forming the policy

graph (Proposition 2). Consequently, we need to solve at most O((N |M̂∗|)l) number of models

at each non-initial time step, where M̂∗ is the largest of the minimal sets across levels. 2 This is

in comparison to O((N |M|)l), where M grows exponentially over time. In general, M̂ ≪ M,

resulting in a substantial reduction in the computation. Additionally, a reduction in the number of

models in the model node also reduces the size of the interactive state space, which makes solving

the I-DID more efficient.

If we choose to solve all models in the initial model node, M0
j,l−1, in order to form the policy

graph, all sets of models at subsequent time steps will indeed be minimal. Consequently, there is no

loss in the optimality of the solution of agent i’s level l I-DID.

For the case where we select K < |M0
j,l−1| models to solve, if ǫ is infinitesimally small, we

will eventually solve all models resulting in no error. With increasing values of ǫ, larger numbers

2. As we discuss in Section 7, we may group BE models across agents as well due to which the number of models to be

solved further reduces.

228

EXPLOITING MODEL EQUIVALENCES FOR SOLVING INTERACTIVE DYNAMIC INFLUENCE DIAGRAMS

I-DID APPROX BE (level l ≥ 1 I-DID or level 0 DID, T , K, ǫ)

1. If l ≥ 1 then
Selectively solveM0

j,l−1

2. Randomly select K models from M0
j,l−1

3. For eachmk
j in the K models do

4. Recursively call algorithm with the l − 1 I-DID (or DID) that represents mk
j ,

the horizon T , K, and ǫ

5. Map the decision node of the solved I-DID (or DID), OPT(mk
j), to the chance node Ak

j

6. For eachmk̄
j in the |M0

j,l−1
| − K models do

7. Find model among K whose belief, bk
j , is closest to bk̄

j in mk̄
j

8. If ||bk
j − bk̄

j ||1 ≤ ǫ then

9. Map the decision node of OPT(mk
j) to the chance node, Ak̄

j

10. else

11. Recursively call algorithm with the l − 1 I-DID (or DID) that represents mk̄
j ,

the horizon, T , K, and ǫ

12. Map the decision node of the solved I-DID (or DID), OPT(mk̄
j), to the chance node Ak̄

j

13. Combine the solutions (policy trees) of all models bottom up to obtain the policy graph, PG

Expansion Phase

14. For t from 0 to T − 2 do
15. If l ≥ 1 then

Populate M t+1

j,l−1
minimally

16. For eachmt
j inM

t
j,l−1

do

17. For each aj in OPT(mt
j) do

18. For each oj in Ωj (part of mt
j) do

19. v ← vertex in PG to which mt
j maps

20. If Tp(v, oj) not been encountered previously then

21. Update j’s belief, bt+1

j ← SE(bt
j , aj , oj)

22. mt+1

j ← New I-DID (or DID) with bt+1

j as belief

23. Mt+1

j,l−1

∪

← {mt+1

j }

24. else

25. Update CPT of Mod[M t+1

j,l−1
] s. t. row mt

j , aj , oj has a 1 in column

of BE model

26. Add the model node, M t+1

j,l−1
, and the model update link between M t

j,l−1
and M t+1

j,l−1

27. Add the chance, decision, and utility nodes for t + 1 time slice and the dependency

links between them

28. Establish the CPTs for each chance node and utility node

The solution phase proceeds analogously as in Fig. 10

Figure 13: Algorithm for approximately solving a level l ≥ 1 I-DID or level 0 DID expanded over

T time steps using discriminative model updates.

of models remain unsolved and could be erroneously associated with existing solutions. In the

worst case, some of these models may be behaviorally distinct from all of the K solved models.

Therefore, the policy graph is a subgraph of the one in the exact case, and leads to sets of models

229

ZENG & DOSHI

that are subsets of the minimal sets. Additionally, lower-level models are solved approximately as

well. While we seek to possibly bound the prediction error, it’s impact on the optimality of agent i’s

level l I-DID is difficult to pinpoint. We formally define the error and discuss bounding it including

some limitations on the bound, in Appendix A.

5. Grouping Models Using Action Equivalence

Grouping BE models may significantly reduce the given space of other agents’ models in the model

node without loss in optimality. We may further compact the space of models in the model node

by observing that behaviorally distinct models may prescribe identical actions at a single time step.

We may then group together these models into a single equivalence class. In comparison to BE, the

equivalence class includes those models whose prescribed action for the particular time step is the

same, and we call it action equivalence. We define it formally next.

5.1 Action Equivalence

Notice from Fig. 12(c) that the policy graph contains multiple nodes labeled with the same action

at time steps t = 0 and t = 1. The associated models while prescribing actions that are identical at

a particular time step, differ in the entire behavior. We call these models actionally equivalent. For

a general case, we define action equivalence (AE) below:

Definition 4 (Action equivalence). Two models,mj,l−1 andm′
j,l−1, of the other agent are actionally

equivalent at time step t if Pr(At
j) = Pr(At′

j) where Pr(at
j) = 1

|OPT(mj,l−1)| if a
t
j ∈ OPT(mj,l−1),

0 otherwise; and Pr(at′

j) = 1
|OPT(m′

j,l−1
)|
if at′

j ∈ OPT(m′
j,l−1), 0 otherwise, as defined previously.

Since AE may include behaviorally distinct models, it partitions the model space into fewer

classes.

We show an example aggregation of AE models in Fig. 14. From the figure, the partition of the

model set, Mt
j,l−1, induced by AE at time step 0 is {Mt=0,1

j,l−1 ,Mt=0,2
j,l−1 }, where Mt=0,1

j,l−1 is the class

of models in the model space whose prescribed action at t = 0 is L, and Mt=0,2
j,l−1 is the class of

models whose prescribed action at t = 0 is OR. Note that these classes include the BE models as

well. Thus, all models in an AE class prescribe an identical action at that time step. Furthermore at

t = 1, the partition consists of 3 AE classes and, at t = 2, the partition also consists of 3 singleton

classes.

If Mt,p
j,l−1 is an AE class comprising of models mt

j,l−1 ∈ Mt,p
j,l−1, agent i’s conditional belief

over it is obtained by summing over i’s conditional belief over its member models:

b̂i(M
t,p
j,l−1|s) =

∑

mt
j,l−1

∈Mt,p

j,l−1

bi(m
t
j,l−1|s) (2)

5.2 Revised CPT of Mod Node and its Markov Blanket

Equation 2 changes the CPT of the node, Mod[M t
j,l−1], due to the aggregation. Chang and Fung

(1991) note that a coarsening operation of this type will not affect the distributions that do not

230

EXPLOITING MODEL EQUIVALENCES FOR SOLVING INTERACTIVE DYNAMIC INFLUENCE DIAGRAMS

�

��

�

�� �

�

�� ��

�����

�

��

�� ��

�� ��

��

�

�

�

�

��

����

�

��	
����

���

��

�� �

�

�����

�

�� ��

�� ��

��

�

�

�

��

�

���

���� ���� ���� ����

���

������� �������
�������

�����	

������� �����	
 �����

��

�� �

�

�

�� ��

��

�

�

��

�������

������� ������� �����	
������� �����	
 �����

����������
������� �������������� �������

��	
�����

��	
�����

������
����

������
����

Figure 14: (a) Annotations are example probabilities for the models associated with the nodes. (b, c) We

may group models that prescribe identical actions into classes as indicated by the dashed boxes.

Probabilities on the edges represent the probability of transition from a class to a model given

action and observation (ie., CPT of the next Mod node).

�
�

��
�

������
�
�

��
���

������
���
�

Figure 15: Markov blanket of the chance node, Mod[M t
j,l−1], shown in bold.

directly involve the model space if the joint probability distribution over theMarkov blanket of node,

Mod[M t
j,l−1], remains unchanged. In Fig. 15, we show the Markov blanket of Mod[M t

j,l−1].
3

The joint distribution over the Markov blanket is:

Pr(st, at
j , o

t+1
j , mt+1

j,l−1) =
∑

p Pr(st,Mt,p
j,l−1, a

t
j , o

t+1
j , mt+1

j,l−1)

=
∑

p Pr(st)Pr(Mt,p
j,l−1|s

t)Pr(at
j |M

t,p
j,l−1)Pr(mt+1

j,l−1|M
t,p
j,l−1, a

t
j , o

t+1
j)Pr(ot+1

j |at
j)

= Pr(st)Pr(ot+1
j |at

j)
∑

p Pr(Mt,p
j,l−1|s

t)Pr(at
j |M

t,p
j,l−1)Pr(mt+1

j,l−1|M
t,p
j,l−1, a

t
j , o

t+1
j)

= Pr(st)Pr(ot+1
j |at

j)
∑

p

∑
mt

j,l−1
∈Mt,p

j,l−1

Pr(mt
j,l−1|s

t)Pr(at
j |M

t,p
j,l−1)

Pr(mt+1
j,l−1|M

t,p
j,l−1, a

t
j , o

t+1
j) (from Eq. 2)

(3)

3. Because we assume that agents’ frames do not change, we may remove the arc from Mod[M t
j,l−1] to O

t+1

j thus

simplifying the blanket.

231

ZENG & DOSHI

The joint distribution prior to aggregation of Mod[M t
j,l−1] is:

Pr(st, at
j , o

t+1
j , mt+1

j,l−1) = Pr(st)Pr(ot+1
j |at

j)
∑

mt
j,l−1

∈Mt
j,l−1

Pr(mt
j,l−1|s

t)Pr(at
j |m

t
j,l−1)

Pr(mt+1
j,l−1|m

t
j,l−1, a

t
j , o

t+1
j)

(4)

We equate the right hand sides of Eqs. 3 and 4 to obtain the constraint that must be satisfied by

the CPTs of some of the chance nodes in the Markov blanket in order for the joint distribution to

remain unchanged:

∑
p Pr(at

j |M
t,p
j,l−1)Pr(mt+1

j,l−1|M
t,p
j,l−1, a

t
j , o

t+1
j)

∑
mt

j,l−1
∈Mt,p

j,l−1

Pr(mt
j,l−1|s

t) =
∑

mt
j,l−1

∈Mt
j,l−1

Pr(mt
j,l−1|s

t)Pr(at
j |m

t
j,l−1)Pr(mt+1

j,l−1|m
t
j,l−1, a

t
j , o

t+1
j)

(5)

Notice that Eq. 5 imposes a constraint on the CPTs of the successor nodes, At
j and Mod[M t+1

j,l−1].

If the constraint is satisfied – a setting for the CPTs of the nodes, At
j and Mod[M t+1

j,l−1], is found

– grouping of AE models in the initial model node is exact and the optimality of the I-DID is

preserved. An obvious way to satisfy Eq. 5 would be to meet the following intuitive constraint for

each AE class p:

Pr(at
j |M

t,p
j,l−1)Pr(mt+1

j,l−1|M
t,p
j,l−1, a

t
j , o

t+1
j) =

∑
mt

j,l−1
∈M

t,p
j,l−1

Pr(mt
j,l−1

|st)Pr(at
j |m

t
j,l−1

)Pr(mt+1

j,l−1
|mt

j,l−1
,at

j ,ot+1

j)

∑
mt

j,l−1
∈M

t,p
j,l−1

Pr(mt
j,l−1

|st)

(6)

Pr(at
j |m

t
j,l−1) is fixed for each model, mt

j,l−1, in AE class M
t,p
j,l−1 and equals Pr(at

j |M
t,p
j,l−1).

Therefore, Eq. 6 reduces to:

Pr(mt+1
j,l−1|M

t,p
j,l−1, a

t
j , o

t+1
j) =

∑
mt

j,l−1
∈M

t,p
j,l−1

Pr(mt
j,l−1

|st)Pr(mt+1

j,l−1
|mt

j,l−1
,at

j ,ot+1

j)

∑
mt

j,l−1
∈M

t,p
j,l−1

Pr(mt
j,l−1

|st)
(7)

Observe that Eq. 7 must hold for all values of the physical state, st. If the right hand side of

the above equation remains unchanged for any value of st, we may set the CPT of Mod[M t+1
j,l−1]

using it. Typically, it is not trivial – often not possible – to find a single CPT for the chance node

Mod[M t+1
j,l−1] that will satisfy the constraint for all st. Chang and Fung (1991) demonstrate that a

close approximation would be to take the average of the right hand side of Eq. 7 over all possible

values of st if these values are close.

Of course, we may wish to aggregate models in node, Mod[M t+1
j,l−1], as well (and so on). While

the overall procedure is analogous, the difference is in the Markov blanket of the node that is to be

aggregated. It includes the predecessor chance nodes, Mod[M t
j,l−1], At

j , and Ot+1
j in addition to its

successors and parents of successors corresponding to those in Fig. 15.

We illustrate the application of Eq. 7 to the example policy graph in Fig. 14(a) below:

Example 2 (Model update). For simplicity, let the left AE class,Mt=0,1
j,l−1 , comprise of three models,

m
t=0,1
j,l−1 , m

t=0,2
j,l−1 and m

t=0,3
j,l−1 , all of which prescribe action L. Let i’s belief over these three models

232

EXPLOITING MODEL EQUIVALENCES FOR SOLVING INTERACTIVE DYNAMIC INFLUENCE DIAGRAMS

be 0.16, 0.23 and 0.32 given physical state TL or TR, respectively (see Fig. 14(a)). We set the
probability of updating say,Mt=0,1

j,l−1 , using different action-observation combinations to individual

models at time t=1, using Eq. 7. We show these probabilities in Fig. 14(b); these form the CPT of

node Mod[M t=1
j,l−1]. Because Pr(mt=0,1

j,l−1 |s) remains same given any s, constraint of Eq. 7 is met

and the AE based partitioning at t=0 is exact.

Next, we group AE models at t=1 forming 3 AE classes as shown in Fig. 14(c). Again, we may
set the probabilities of updating an AE class given action-observation combinations to individual

models at t=2 using the right hand side of Eq. 7. However, doing so does not meet the constraint

represented by Eq. 7 because for example, Pr(mt=1,1
j,l−1 |M

t=0,p
j,l−1 , at=0

j , ot=1
j) varies given different

values of the conditionals. As an aside, it is not possible to meet this constraint in this example.

Consequently, we adjust the CPT of the chance node,Mod[M t=2
j,l−1], according to the average of the

right hand side of Eq. 7 for different values of the conditional variables (see Fig. 14(c)). As a result,
the AE based partitioning at t=1 is not exact.

A manifestation of the approximation is that agent i may now think that j could initially open

the right door, followed by listening and then open the left or right door again. Such a sequence of

actions by j was not possible in the original policy graph shown in Fig. 14(a).

5.3 Algorithm

We provide an algorithm for exploiting AE in order to solve a level l ≥ 1 I-DID (as well as a level

0 DID) in Fig. 16. The algorithm starts by selectively solving lower-level I-DID or DID models at

t = 0, which results in a set of policy trees (line 2). We then build the policy graph by merging

the policy trees as mentioned in lines 1-13 of Fig 13. The algorithm differs from Fig. 13 in the

expansion phase. In particular, we begin by grouping together AE models in the initial model

node. This changes the value of the initial Mod node to the AE classes (lines 3-9). Subsequently,

updated models that are AE are aggregated at all time steps, and the CPTs of the Mod nodes are

revised to reflect the constraint involving AE classes (lines 13-24). As mentioned in Section 5.2,

AE partitioning becomes inexact if we cannot find a CPT for the successor Mod node that satisfies

Eq. 7. Given the expanded I-DID, we use the standard look-ahead and backup method to get the

solution.

5.4 Computational Savings

As we mentioned, the complexity of exactly solving a level l I-DID is, in part, due to solving the

lower-level models of the other agent, and given the solutions, due to the exponentially growing

space of models. In particular, at some time step t, there could be at most |M0
j,l−1|(|Aj ||Ωj |)

t

many models, where M0
j,l−1 is the set of initial models of the other agent. While K ≪ |M0

j,l−1|
models are solved, considering AE bounds the model space to at most |Aj | distinct classes. Thus,

the cardinality of the interactive state space in the I-DID is bounded by |S||Aj | elements at any

time step. This is a significant reduction in the size of the state space. In doing so, we additionally

incur the computational cost of merging the policy trees, which is O((|Ωj |
T−1)2|M0

j,l−1|
2) (from

Proposition 2). We point out that this approach is applied recursively to solve I-DIDs at all levels

down to 1, as shown in the algorithm.

233

ZENG & DOSHI

I-DID APPROX AE (level l ≥ 1 I-DID or level 0 DID, T , K, ǫ)

1. If l ≥ 1 then
2. Selectively solve models inM0

j,l−1
as in Fig. 13 to obtain the policy graph, PG

Expansion Phase

3. If l ≥ 1 then
4. For eachm0

j inM
0
j,l−1

do

5. v ← vertex in PG to which m0
j maps

6. If aj ← Lv(v) has not been encountered previously

7. Initialize AE class M
0,aj

j,l−1

8. M
0,aj

j,l−1

∪

← {m0
j}

9. M0
j,l−1

← Set of all AE classes

10. For t from 0 to T − 2 do
11. If l ≥ 1 then

Populate M t+1

j,l−1
using AE classes

12. For eachM
t,aj

j,l−1
inMt

j,l−1
do

13. For eachmt
j inM

t,aj

j,l−1
do

14. For each aj in OPT (mt
j) do

15. For each oj in Ωj do

16. v ← vertex in PG to which mt
j maps

17. If aj ← Lv(Tp(v, oj)) not been encountered previously then

18. Initialize AE class M
t+1,aj

j,l−1

19. Update j’s belief, bt+1

j ← SE(bt
j , aj , oj)

20. mt+1

j ← New I-DID (or DID) with bt+1

j as belief

21. M
t+1,aj

j,l−1

∪

← {mt+1

j }

22. Mt+1

j,l−1
← Set of all AE classes

23. Update CPT of node Mod[Mt+1

j,l−1
] to meet the constraint specified by Eq. 7

if possible, otherwise take average

24. Add the model node, M t+1

j,l−1
, and the model update link between M t

j,l−1
and M t+1

j,l−1

25. Add the chance, decision, and utility nodes for t + 1 time slice and the dependency

links between them

26. Establish the CPTs for each chance node and utility node

The solution phase proceeds analogously as the one in Fig. 10.

Figure 16: Algorithm for possibly inexactly solving a level l ≥ 1 I-DID using action equivalence.

6. Empirical Results

We implemented the algorithms in Figs. 10, 13 and 16 and refer to the resulting techniques as

Exact-BE, DMU and AE, respectively. In addition to these, we utilize the previous approximation

technique of k-means clustering (Zeng et al., 2007), referred to as MC, and the exact approach

without exploiting BE, referred to as Exact, as baselines. In MC, models are clustered based on the

spatial closeness of their beliefs, and the clusters are refined iteratively until they stabilize. Because

I-DIDs eventually transform to flat DIDs, we implemented them as a layer above the popular ID

234

EXPLOITING MODEL EQUIVALENCES FOR SOLVING INTERACTIVE DYNAMIC INFLUENCE DIAGRAMS

tool, HUGIN EXPERT V7.0. The transformed flat DIDs and level 0 DIDs were all solved using

HUGIN to obtain the policy trees.

As benchmark problem domains, we evaluate the techniques on two well-known toy problems

and a new scalable multiagent testbed with practical implications. One of the benchmarks is the

two-agent generalization of the single agent tiger problem introduced previously in Section 3. As

we mentioned, our formulation of this problem (|S|=2, |Ai|=|Aj |=3, |Ωi|=6, |Ωj |=2) follows the

one introduced by Gmytrasiewicz and Doshi (2005), which differs from the formulation of Nair

et al. (2003), in not being cooperative and having door creaks as additional observations. These

observations are informative, though not perfectly, of j’s actions. The other toy domain is a gener-

alization of Smallwood and Sondik’s machine maintenance problem (Smallwood & Sondik, 1973)

to the two-agent domain. This problem (|S|=3, |Ai|=|Aj |=4, |Ωi|=|Ωj |=2) is fully described in

Appendix B.2. I-DIDs for both these problem domains are shown in Section 3 and Appendix B.2,

respectively. Decentralized POMDP solution techniques are not appropriate as baselines in coop-

erative problems such as machine maintenance because of the absence of a common initial belief

among agents, and I-DIDs take the perspective of an agent in the interaction instead of computing

the joint behavior.

While the physical dimensions of these problems are small, the interactive state space that in-

cludes models of the other agent is an order of magnitude larger. Furthermore, they provide the ad-

vantage of facilitating detailed analysis of the solutions and uncovering interesting behaviors as pre-

viously demonstrated (Doshi et al., 2009). However, beyond increasing horizons, they do not allow

an evaluation of the scalability of the techniques. In this context, we also evaluate the approaches

within the Georgia testbed for autonomous control of vehicles (GaTAC) (Doshi & Sonu, 2010),

which is a computer simulation framework for evaluating autonomous control of aerial robotic vehi-

cles such as UAVs. Unmanned agents such as UAVs are used in fighting forest fires (Casbeer, Beard,

McLain, Sai-Ming, & Mehra, 2005), law enforcement (Murphy & Cycon, 1998), and wartime re-

connaissance. They operate in environments characterized by multiple parameters that affect their

decisions, including other agents with common or antagonistic preferences. The task is further

complicated as the vehicles may possess noisy sensors and unreliable actuators. GaTAC provides a

low-cost and open-source alternative to highly complex and expensive simulation infrastructures.

We setup and execute experiments to evaluate the following: (a) We hypothesize that in sets

of models attributed to the other agent, several are BE. This will lead to the exact approach that

groups BE models (Exact-BE) being significantly more efficient than the plain approach (Exact).

(b) Both approximation techniques (DMU and AE) will improve on the previous approximation

technique of k-means clustering (MC). This is because MC generates all models at each time step

before clustering and furthermore MC may retain BE models. (c) Finally, between DMU and AE,

we hypothesize AE to be significantly more efficient because it forms as many classes as there are

actions only. However, the solution quality resulting from DMU and AE will be explored.

6.1 Improved Efficiency Due to BE

We report on the performance of the exact methods (Exact-BE and Exact) when used for solving

both level 1 and 2 I-DIDs formulated for the small problem domains. As there are infinitely many

computable models, we obtain the policy by exactly solving the I-DID given a finite set of models

of the other agent initially, M0. In Fig. 17, we show the average rewards gathered by executing the

235

ZENG & DOSHI

policy trees obtained from exactly solving both level 1 and 2 I-DIDs for the two problem domains,

as a function of time allocated toward their solutions.

Each data point is the average of 200 runs of executing the policies, where the true model of the

other agent, j, is randomly selected according to i’s belief distribution over j’s models. The time

consumed is a function of the initial number of models and the horizon of the I-DID, both of which

are varied beginning with M0 = 50 at each level.

Multiagent tiger problem
Level = 1 Level = 2

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 0 5 10 15 20 25 30

A
v
e

ra
g

e
 R

e
w

a
rd

Time(s)

Exact-BE
Exact

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 40 60 80 100 120 140 160 180 200 220 240

A
v
e

ra
g

e
 R

e
w

a
rd

Time(s)

Exact-BE
Exact

(a) (b)

Multiagent machine maintenance problem

Level = 1 Level = 2

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10 20 30 40 50 60 70 80 90

A
v
e

ra
g

e
 R

e
w

a
rd

Time(s)

Exact-BE
Exact

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 100 150 200 250 300 350 400

A
v
e

ra
g

e
 R

e
w

a
rd

Time(s)

Exact-BE
Exact

(c) (d)

Figure 17: Performance profiles of the exact solutions on the multiagent tiger (a, b) and machine

maintenance problems (c, d). Higher average reward for given time is better. Exact-BE

significantly improves on the plain Exact approach at levels 1 and 2. For longer times

the Exact program runs out of memory. Vertical bars represent the standard deviation

from the mean.

From Fig. 17, we observe that Exact-BE performs significantly better than the Exact approach.

Specifically, Exact-BE obtains the same amount of reward as Exact but in less time, and subse-

quently, for a given allocated time, it is able to obtain larger reward than Exact. This is because it

is able to solve for a better quality solution in less time as it groups together BE models and retains

a single representative from each class, thereby reducing the number of models held in each model

node. We see significant improvement in performances in solving I-DIDs at both levels.

We uncover the main reason behind the improved performance of Exact-BE in Fig. 18. As we

may expect, after grouping of BE models Exact-BE maintains much fewer classes of models (pre-

dicting a particular behavior for the other agent) than the number of individual models maintained

by Exact. This occurs for all horizons and for both the problem domains. The number of models

236

EXPLOITING MODEL EQUIVALENCES FOR SOLVING INTERACTIVE DYNAMIC INFLUENCE DIAGRAMS

Multiagent tiger Multiagent machine maintenance

 0

 10

 20

 30

 40

 50

9 8 7 6 5 4 3 2 1

M
o
d
e
l
C

la
s
s
e
s

Horizon

Exact
Exact-BE

 0

 10

 20

 30

 40

 50

9 8 7 6 5 4 3 2 1

M
o
d
e
l
C

la
s
s
e
s

Horizon

Exact
Exact-BE

Figure 18: Exact-BE maintains far fewer classes at larger horizons in comparison to the Exact ap-

proach. Notice that the number of BE classes reduces as horizon decreases because

solutions tend to involve fewer distinct behaviors. We do not show the increase in mod-

els with time for Exact for clarity.

increase as horizon reduces (but time steps increase) due to model updates; however, BE classes

reduce with smaller horizon because of less distinct behaviors in the solutions.

As we increase the number of levels beyond two and model j more strategically, we expect

Exact-BE (and Exact) to result in solutions whose average reward possibly improves but doesn’t

deteriorate. However, as the number of models increases exponentially with l, we expect sub-

stantially more computational resources to be consumed making it challenging to solve for deeper

levels.

6.2 Comparative Performance of Approximation Methods

While discriminating between model updates as described in Section 4 by itself does not lead to a

loss in optimality, we combined it with the approach of solving K (which we will now call KDMU)

models out of the M0 models, and then solving those models which are not ǫ-close to any of the

KDMU models, to form the policy graph. Thus, we initially examine the behavior of the two

parameters, KDMU and ǫ, in how they regulate the performance of the DMU-based approximation

technique for solving level 1 I-DIDs.

We show the performance of DMU for both the multiagent tiger and machine maintenance

problems in Fig. 19. We also compare its performance with an implementation of MC; KMC

represents the total number of models retained after clustering and pruning in the approach. The

performance of MC is shown as flat lines because ǫ does not play any role in the approach. Each

data point for DMU is the average of 50 runs of executing the policies where the true model of the

other agent, j, is randomly picked according to i’s belief distribution over j’s models, and solved

exactly if possible. Otherwise, if l > 1, we solve it approximately using DMU with a large KDMU

and small ǫ. The plot is for M0 = 100, and a horizon of 10. As we increase the number of models

randomly selected, KDMU , and reduce distance, ǫ, the policies improve and converge toward the

exact. Notice that DMU improves on the performance of MC as we reduce ǫ, for KDMU = KMC .

This behavior remains true for the multiagent machine maintenance problem as well.

We evaluate the impact of AE on solving level 1 I-DIDs for both problem domains and compare

it to MC. The experiments were run analogously as before with different values for KAE and ǫ.

Both these parameters play roles that are similar to their use in DMU. We observe from Fig. 20 that

237

ZENG & DOSHI

Multiagent tiger Multiagent machine maintenance

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

0.070.090.100.300.500.700.90

A
v
e

ra
g

e
 R

e
w

a
rd

ε

KDMU=25
KDMU=50

KMC=25
KMC=50

Exact-BE M0=100
 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

0.070.090.100.300.500.700.90

A
v
e

ra
g

e
 R

e
w

a
rd

ε

KDMU=25
KDMU=50

KMC=25
KMC=50

Exact-BE M0=100

(a) (b)

Figure 19: Performance profiles for DMU on horizon T=10, level 1 I-DID with M0=100. For

given M0, the performance approaches that of the exact method as KDMU increases

and ǫ reduces. The comparison with MC indicates that better performance is achieved

by DMU-based solutions.

Multiagent tiger Multiagent machine maintenance

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

0.070.090.100.300.500.700.90

A
v
e

ra
g

e
 R

e
w

a
rd

ε

KAE=25
KAE=50
KMC=25
KMC=50

Exact-BE M0=100
 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

0.070.090.100.300.500.700.90

A
v
e

ra
g

e
 R

e
w

a
rd

ε

KAE=25
KAE=50
KMC=25
KMC=50

Exact-BE M0=100

(a) (b)

Figure 20: Performance profiles for AE on horizon T=10, level 1 I-DID with M0=100. For given

M0, the performance approaches that of the exact method as KAE increases and ǫ re-

duces. Comparative performance in relation to MC indicates that AE is capable of

achieving better quality solutions (although for relatively small values of ǫ).

as ǫ reduces and more models beyond KAE are solved, the solution generated by AE improves on

MC for the case where KAE = KMC . Of course, as we solve more models initially, AE produces

better quality solutions because the generated policy graph includes more parts of the exact graph.

Additionally, as we may expect, the solution quality approaches that of the exact and becomes

significantly close to the exact (within one standard deviation for the tiger problem) for ǫ < 0.1.

While our previous experiments demonstrated that both DMU and AE are capable of improv-

ing on MC, it is not clear how many more initial models beyond KMC were solved to obtain the

improvements. Furthermore, performance of DMU and AE were not compared. In Fig. 21, we

directly compare the performance of DMU, AE and MC. In particular, we measure the average

rewards obtained by corresponding solutions of level 2 I-DIDs as a function of time consumed by

238

EXPLOITING MODEL EQUIVALENCES FOR SOLVING INTERACTIVE DYNAMIC INFLUENCE DIAGRAMS

Multiagent tiger Multiagent machine maintenance

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 40 60 80 100 120 140 160 180 200 220 240

A
v
e

ra
g

e
 R

e
w

a
rd

Time(s)

AE
DMU

MC
 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 60 80 100 120 140 160 180 200 220 240

A
v
e

ra
g

e
 R

e
w

a
rd

Time(s)

AE
DMU

MC

Figure 21: Performance comparison of approximation techniques for solving level 2 I-DIDs. AE

achieves significantly improved efficiency for identical quality solutions over the two

domains.

the approaches. For DMU and AE, the time taken is dependent on the parameters (K and ǫ), tree

merging and the horizon of the I-DID solved. For MC, the time is due to the iterative clustering

until convergence and the K models that are picked. For the problem domains considered, larger

horizon with increasing K and reducing ǫ typically leads to better average rewards. We observe

that both DMU and AE significantly improve on MC – they produce identical quality solutions in

less time than that by MC. Furthermore, between DMU and AE, the latter’s performance is more

favorable. This is because, while grouping AE models may result in an additional approximation,

further efficiency is made possible by the fewer AE classes and whose number does not exceed a

constant across horizons.

We empirically explore the reason behind the comparative performance of the approximation

techniques. Because the time (and space) consumed by the approaches is predominantly due to the

solution of the models in the model node, we focus on the models retained by the approaches at

different horizons. Fig. 22 shows the models at different horizons for varying ǫ and for both the

problem domains. Note that when ǫ = 0, all initial models are solved and in the case of DMU,

results in the behaviorally minimal set at every horizon. Furthermore, as we mentioned previously,

for non-zero ǫ, the merged policy graph is a subgraph of the exact (ǫ = 0) case. As we show, the

resulting sets of models are subsets of the minimal set.

At any horizon, AE maintains no more model classes than the number of j’s actions, |Aj |.
As we see, this is substantially less than the number maintained by DMU. MC maintains a fixed

number, KMC , of models at each horizon of the I-DID.

6.3 Runtime Comparison

We show the run times of the exact and approximation techniques for solving level 1 and 2 I-DIDs

while scaling in horizons, in Table 1. Notice that a plain exact approach that does not exploit

model equivalences scales poorly beyond small horizons. In contrast, simply grouping BE models

and reducing the exponential growth in models leads to significantly faster executions and better

scaleup. The run times are reported for both these approaches solving the same I-DID exactly.

In obtaining the run times for the approximations, we adjusted the corresponding parameters so

that the quality of the solution by each approach was similar to each other. DMU and AE reported

239

ZENG & DOSHI

Multiagent tiger

 0

 1

 2

 3

 4

 5

 6

 7

 8

9 8 7 6 5 4 3 2 1

M
o
d
e
l
C

la
s
s
e
s

Horizon

Exact-BE
DMU ε=0.09

DMU ε=0.5
DMU ε=0.9

 0

 1

 2

 3

 4

 5

 6

 7

 8

9 8 7 6 5 4 3 2 1

M
o
d
e
l
c
la

s
s
e
s

Horizon

Exact-BE
AE ε=0.09

AE ε=0.5
AE ε=0.9

(a) (b)

Multiagent machine maintenance

 0

 1

 2

 3

 4

 5

 6

9 8 7 6 5 4 3 2 1

M
o
d
e
l
c
la

s
s
e
s

Horizon

Exact-BE
DMU ε=0.09

DMU ε=0.5
DMU ε=0.9

 0

 1

 2

 3

 4

 5

 6

9 8 7 6 5 4 3 2 1

M
o
d
e
l
c
la

s
s
e
s

Horizon

Exact-BE
AE ε=0.09

AE ε=0.5
AE ε=0.9

(c) (d)

Figure 22: Number of models maintained in the model node for different horizon in a level 1 I-DID

for the multiagent tiger (a, b) and machine maintenance (c, d) problems. For DMU, as

ǫ reduces, the model space approaches the minimal set. Aggregation using AE further

reduces the model space.

substantially less execution times and better scaleup in comparison to MC for both the domains.

However, the run times of DMU and AE are relatively similar for level 1 I-DIDs. Although, as we

saw previously, there is a difference in the number of models maintained by the two techniques,

solving j’s level 0 DIDs is quick and the difference does not lead to a significant impact. The

differences in run times are more significant for level 2 I-DIDs because solving j’s level 1 I-DIDs is

computationally intensive. As we may expect, AE consumes substantially less time in comparison

to DMU – sometimes less than half. Both approaches scale up similarly in terms of the horizon. In

particular, we are able to solve both level 1 and 2 I-DIDs for more than a horizon of 10. Further

scaleup is limited predominantly due to our use of software such as HUGIN for solving the flat

DIDs, which seeks to keep the entire transformed DID in main memory.

6.4 Scalable Testbed: GaTAC

As we mentioned, the objective behind developing GaTAC is to provide a realistic and scalable

testbed for algorithms on multiagent decision making. GaTAC facilitates this by providing an intu-

itive and easy to deploy architecture that makes use of powerful, open-source software components.

Successful demonstrations of algorithms in GaTAC would not only represent tangible gains but have

the potential for practical applications toward designing autonomous vehicles such as UAVs. 4

4. GaTAC is available for download at http://thinc.cs.uga.edu/thinclabwiki/index.php/

GaTAC_:_Georgia_Testbed_for_Autonomous_Control_of_Vehicles

240

EXPLOITING MODEL EQUIVALENCES FOR SOLVING INTERACTIVE DYNAMIC INFLUENCE DIAGRAMS

Level Domain T Exact Exact-BE DMU AE MC

Level 1

Tiger

4 5.8s 0.47s 0.13s 0.42s 2.12s

8 * 10.5s 1.27s 1.64s 28.45s

14 * 2h 4m 15m 6s 15m 15s *

MM

4 6.66s 0.45s 0.19s 0.22s 3.23s

6 * 1.73s 0.53s 0.58s 9.88s

12 * 9m 40s 2m 9s 2m 12s *

Level 2

Tiger

3 3m 24s 10.97s 4.63s 3.11s 1m 46s

6 * 22m 6s 6m 54s 3m 3s *

10 * 2h 48m 27m 36s 16m 54s *

MM

4 5m12s 1.11s 0.33s 0.58s 2m 21s

6 * 13.59s 4.3s 1.48s *

10 * 20m 36s 3m 36s 2m 15s *

Table 1: Exploiting model equivalences has a significant impact on the execution times. Both DMU

and AE demonstrate improved efficiency. Algorithm involving AE scales significantly

better to larger horizons for deeper strategy levels. All experiments are run on a WinXP

platform with a dual processor Xeon 2.0GHz and 2GB memory. ‘*’ indicates that the data

point is unavailable because the program ran out of memory.

��������	
���

�����

�����

��������	
���

�����

�����

�������	�
������

�����������

�������	�
������

�����������

�����������
��

����
����	����

����
����	����

����
�����	
��

������

 �
�������

���
��������

!�����������
��

!���������
	
�

!���������
	
�

�"����#�
$�%��
�&

�"����#�
$�%��
�&

�"����#�
$�%��
�&

!��
�'

!��
�(

!��
�)

�	��	����
��

(a) (b)

Figure 23: (a) Design of GaTAC showing two networked instances of a flight simulator (FlightGear

with 3D scenery from TerraGear), one autonomously and other manually controlled.

GaTAC is extensible and more instances may be added. (b) Snapshot of a UAV flying

within FlightGear. Different viewpoints including an external view as shown and a

cockpit view are available.

A simplified design of the GaTAC architecture is shown in Fig. 23, where a manually controlled

UAV is interacting with an autonomous one. Briefly, GaTAC employs multiple instances of an open-

source flight simulator, called FlightGear (Perry, 2004), possibly on different networked platforms

that communicate with each other via external servers, and an autonomous control module that

interacts with the simulator instances. GaTAC can be deployed on most platforms including Linux

241

ZENG & DOSHI

and Windows with moderate hardware requirements, and the entire source code is available under

GNU Affero public license version 3.

Figure 24: Example 5 × 5 theater

of UAV I , which per-

forms low-altitude recon-

naissance of a potentially

hostile theater populated

by a fugitive, J .

We utilize a relatively straightforward setting consisting

of another hostile fugitive, who is the target of ground re-

connaissance (Fig. 24). UAV I must track down the fugitive

before he flees to the safe house. The problem is made com-

plex by assuming that the fugitive is unaware of its own pre-

cise location though it knows the location of the safe house,

and I may not be aware of the fugitive’s location. The prob-

lem is further complicated if we realistically assume non-

deterministic actions and observations. Our simulations in

GaTAC include grids of sizes 3 × 3 and 5 × 5 with the same

actors in each. GaTAC may be programmed to support more

complex scenarios comprising of a team of UAVs, multiple

hostile UAVs and reconnaissance targets attempting to blend

in with civilians.

We summarize our formulation of the UAV’s problem

domain. We utilize the possible relative positions of the

fugitive as states. Hence, possible states would be same,

north, south, east, west, north-west, and so on. Our repre-

sentation for a 3 × 3 theater consists of 25 physical states

for the UAV I . We assume that the fugitive is unaware of its own location resulting in 9 physical

states for it. Extending the theater to a 5 × 5 grid leads to 81 physical states for the UAV and 25

for the fugitive. We factor the physical state into two variables in the I-DID that model the row and

column positions, respectively. Both UAV I and the fugitive may move in one of the four cardinal

directions, and they may additionally hover at their current positions and listen to get informative

observations. Thus the actions for both I and the fugitive are {move north, move south, move west,
move east, listen}. We may synchronize the actions for the two agents in GaTAC by allocating

equal time duration to the performance of each action. Typically, UAVs have infrared and camera

sensors whose range is limited. Accordingly, we assume that both the UAV I and the fugitive can

sense whether their respective target is north of them (sense north), south of them (sense south),

west or east of them in the same row (sense level) or in the same location as them (sense found).

For I the target is the fugitive, while the fugitive’s target is the safe house. If we assume that the

fugitive is unaware of I’s presence, its transition function is straightforward and simply reflects the

possible nondeterministic change in grid location of the fugitive as it moves or listens. However,

transitions in physical state of I are contingent on the joint actions of both agents. Furthermore, the

probability distribution over the next states is not only due to the nondeterminism of the actions, but

is also influenced by the current relative physical state. To provide an opportunity for the UAV I

to catch the fugitive, we assume that the fugitive can sense the safe house only when it is within a

distance of 1 sector (horizontally or vertically) from it. On the other hand, UAV I’s observations of

the fugitive are not limited by this constraint. Thus, if the fugitive is in any location that is north of I

(including north-west or north-east), I receives an observation of sense north. To simulate noise in

the sensors, we assume that the likelihood of the correct observation is 0.8 while all others are equi-

probable. The reward function is straightforward with the fugitive receiving a reward if its location

is identical to that of the safe house, and small costs for performing actions to discourage excessive

242

EXPLOITING MODEL EQUIVALENCES FOR SOLVING INTERACTIVE DYNAMIC INFLUENCE DIAGRAMS

action taking. Analogously, UAV I recieves a reward on performing an action and receiving an

observation of sense found, and incurs small costs for actions that lead to other observations.

�����

���	

��	��

��	��
�����

���	

�����

��	

�

�����

���	

�����

���	

�����

�����

��	��

����

��	��

��	��
�����

���	

�����

��	

�����

���	

�����

���	

�����

�����

��	��

����

�����

��	

�

��	��
�����

���	

�����

��	

�����

���	

�����

���	

�����

�����

��	��

����
�����

���	

�

��	��

�

(a)

Listen

Move_

South

Move_

North

Move_

West

Sense_

South

Sense_

North

Sense_

Level

Listen

Found

Move_

North

*

Move_

North
Listen

Sense_

North

Sense_

Level

Listen

Found

Move_

East

*

Listen

*

(b)

Figure 25: (a) Example policies of the fugitive modeled by the UAV. (b) UAV I’s optimal policy of

pursuing the fugitive obtained by solving the level 1 I-DID exactly using BE. The policy

is straightforward, using observations to guide the actions. All policies are for a 3 × 3

grid.

We modeled the problem formulation described above using a level 1 I-DID for the UAV I and

level 0 models for the fugitive. We show two example policies of the fugitive obtained by solving

its level 0 models, in Fig. 25(a). While we considered several models for the fugitive with differing

initial beliefs, the fugitive’s initial belief of likely being just below the safe house results in the left

policy, while its initial belief of likely being south and east of the safe house leads to the policy on

the right. We show the UAV’s policy of reconnaissance in Fig. 25(b), obtained by solving its level 1

I-DID exactly while utilizing BE classes. Thirty models of the fugitive grouped into 16 BE classes

were considered in the I-DID. Here, the UAV initially believes that the fugitive is likely to be in the

same row or south of it.

We simulate the reconnaissance theaters of Fig. 24 in GaTAC. The UAV and the fugitive’s

behaviors are controlled by their respective policies provided as input to the autonomous control

module. For each simulation run, we generated the UAV’s policy by solving its level 1 I-DID using

either Exact-BE, DMU or AE, and sampled one of the fugitive’s 30 models based on the UAV’s

initial belief. The run terminates when either the fugitive reaches the safe house, or the UAV spots

the fugitive by entering the same sector as the fugitive. In the case of DMU and AE, we used

parameters, K = 13 and ǫ = 0.3 for the 3 × 3 problem size, and K = 17, ǫ = 0.15 for the 5 × 5

problem. We show the average reward gathered by the UAV across 20 simulation runs for each of

the three approaches in Fig. 26(a) and the associated clock time for solving the I-DIDs in Fig. 26(b).
While we considered several different beliefs for the UAV, positioning itself approximately between

the fugitive and the safe house yielded a fugitive capture rate of 65% among the simulation runs and

an escape rate of 25%. The remaining runs did not result in a capture or an escape.

While exactly solving the I-DID using Exact-BE continues to provide the largest reward among

all approaches, as shown in Fig. 26(a), it fails to scale to a longer horizon or problem size. Both

DMU and AE scale, although AE performs worse than DMU in the context of reward in this domain.

Note that longer horizons result in overall better quality policies in this problem domain, as we may

expect. This is because the UAV is able to plan its initial action better. Finally, the improved reward

obtained by AE relative to DMU’s as the horizon increases from 6 to 8 for the 3 × 3 grid, and

243

ZENG & DOSHI

3 x 3 5 x 5

 0

 10

 20

 30

 40

 50

3 6 8 6

A
v
er

ag
e

R
ew

ar
d

Horizon(T)

Exact−BE
DMU
AE

Problem size T Exact-BE DMU AE

3×3 grid

3 1m 21s 8.7s 7.13s

6 4m 32s 28s 19.24s

8 * 3h 13m 23m 54s

5×5 grid
6 * 10m 18s 2m 12s

8 * 11h 14m 41m 30s

(a) (b)

Figure 26: (a) Simulation performance of the UAV in GaTAC when its level 1 I-DID is solved using

the different approaches and over longer horizons. We scaled the grid size from 3 × 3

to 5 × 5. Notice that Exact-BE fails to scale as the horizon and problem size increase

and we do not show its reward. (b) Execution times for solving the level 1 I-DID using

the different approaches. Although AE results in solutions of lower quality compared to

DMU, it does so in much less time. For the longer horizon of 8, this time difference is

about an order of magnitude.

the slight climb in AE’s relative reward as a percentage of DMU’s from about 57% to 62% for the

horizon of 6 as the grid size is scaled from 3 × 3 to 5 × 5 makes us believe that AE’s performance

will not necessarily deteriorate compared to DMU for larger problems. Overall, we demonstrate

the scalability of DMU and AE by increasing the horizon to 8 for this larger problem domain, and

further scaling its size. Larger grid sizes or longer horizons resulted in DIDs that could not be solved

by HUGIN given the fixed memory.

��

��

�

��

��

�

��

��

(a) (b) (c)

Figure 27: UAV I’s flight trajectory is in dashed blue while the fugitive’s is in dashed red. Trajecto-

ries (a, b) eventually lead to the fugitive being spotted while in (c), the fugitive reaches

the safe house. The latter is due to an incorrect move by the UAV because of ambiguity

in its observations. A circle represents hovering during which the UAV or the fugtive is

listening and senses the labeled observation.

244

EXPLOITING MODEL EQUIVALENCES FOR SOLVING INTERACTIVE DYNAMIC INFLUENCE DIAGRAMS

Finally, we handpick three simulations from the numerous that we carried out and show the

corresponding trajectories of the UAV and the fugitive in Fig. 27. We show two trajectories where

the UAV spots the fugitive and a trajectory where the fugitive successfully escapes to the safehouse.

Figure 27 shows that the trajectories of the UAV can get quite complicated while those of the fugitive

are more straightforward due to its low strategic awareness.

7. Discussion

Graphical models are an appealing formalism for modeling decision making due to the convenience

of representation and the increased efficiency of the solution. DIDs are a key contribution in this

regard. I-DIDs are founded on the normative paradigm of decision theory as formalized by DIDs

and augmented with aspects of Bayesian games (Harsanyi, 1967) and interactive epistemology (Au-

mann, 1999a, 1999b) to make them applicable to interactions. I-DIDs generalize DIDs to multiagent

settings thereby extending the advantages of DIDs to decision making in multiagent settings. I-DIDs

adopt a subjective approach to understanding strategic behavior, rooted in a decision-theoretic for-

malism that takes a decision-makers perspective in an interaction which may be cooperative or

non-cooperative. The broader impact is that understanding the agent’s decision-making process fa-

cilitates planning and problem-solving at its own level and in the absence of centralized controllers

or assumptions about agent behaviors. In a game-theoretic sense, the setting modeled by I-DIDs is

a partially observable stochastic game, and solving it by computing Nash equilibria or otherwise,

has received minimal attention in game theory.

We presented a collection of exact and approximation algorithms for scalably solving I-DIDs.

These algorithms improve on early techniques by providing more effective approaches in order to

reduce the exponential growth of other agents’ models at each time step. Our main idea is to cluster

models attributed to other agents that are BE. These models attribute identical behaviors across all

time steps to the other agent. We then select representative models from each cluster without loss

of optimality in the solution. Instead of generating the updated models and clustering them, we

showed how we may selectively update those models that will not be BE to existing models in the

next time step. Nevertheless, ascertaining BE requires solving the initial set of models. In order to

approximate this, we proposed solving K randomly picked models followed by all those which are

not ǫ-close to any of the K models. We partially bounded the error due to this approximation for

some cases. Despite the lack of a proper bound, our empirical results reveal that the error becomes

unwieldy for large ǫ values only. This is because many problems admit large BE regions for models,

albeit which tend to reduce as horizon increases.

In order to further reduce the number of equivalence classes, we investigated grouping together

models whose prescribed actions at a particular time step are identical. This approach is appealing

because the number of AE classes is upper bounded by the number of distinct actions at any time.

While AE models may be grouped without loss in optimality, we identified the conditions under

which AE leads to an approximation. Our experiments indicate that considerations of BE are of

significance while grouping AE models leads to most reduction in the model space among all the

different approaches. However, they also show that the gap in the quality of the solutions due to

grouping BE and grouping AE models can become large. This difference depends on the domain

characteristics and does not necessarily worsen as the problem is scaled in horizon or size.

Due to the expressiveness of the modeling and its ensuing complexity, our experimentation

focused on settings involving two agents. However, as the number of other agents increases, po-

245

ZENG & DOSHI

tential computational savings due to exploiting BE and AE assumes greater significance. This is

because the space of interactive states increases exponentially with the number of agents. There-

fore, grouping agent models in less numbers of classes would substantially reduce the state space

and consequently the size of the I-DID. We may group models separately for each agent in which

case the computations for ascertaining BE classes grow linearly with the number of agents. On the

other hand, consider the tiger problem where agent i’s action is affected by somebody opening the

door, without the need for knowing which particular agent opened it. In this case, we may group

together models that are BE but belonging to different agents, leading to increased savings. Our

preliminary experimentation in the context of the multiagent tiger problem in a setting involving

two other agents (total of three agents) one of which is thought to be cooperative while the other

adversarial, indicates that grouping BE models for each other agent leads to a speed up of about 7

for both a 3-horizon and 5-horizon I-DID. Specifically, the computation time reduces from 4.8s for

Exact to 0.6s for Exact-BE when the horizon is 3, and from 72.6s to 10.5s for Exact-BE when the

horizon is 5.

Because identifying exact BE is computationally intensive, we think that improved scalability

may be brought by further investigating approximate BE of models. This would allow us to form

larger clusters and have fewer representative models. While we are investigating multiple ways of

doing this, a significant challenge is storing policy trees that grow exponentially as the horizon is

further scaled. One promising approach in this regard is to compare partial policy trees of bounded

depth and the distance between the belief vectors at the leaves of the trees. This allows us to define

an approximate measure of BE based on the distance between the updated belief vectors given that

the bounded-depth policy trees are identical. However, our preliminary investigations reveal that

deriving the depth of the tree becomes challenging for certain types of problems.

A general limitation of utilizing the spatial closeness of beliefs for approximately identifying

BE models is that the error may be larger if the frames in the models differ. This is because model

beliefs that are close are still less likely to result in the same behavior if say, the reward functions

are different. In the absence of this approximation, our approaches for discriminatively updating

models and grouping AE models continue to apply if frames are also uncertain because they operate

on model solutions – policy trees and actions – and not on model specifications. Another impact of

considering frame uncertainty is that the Markov blanket shown in Fig. 15 changes. A general hurdle

is that further scalability of ID-based graphical models is also limited by the absence of state-of-

the-art techniques for solving DIDs within commercial implementations such as HUGIN EXPERT

that predominantly rely on solving the entire DID in main memory. Although newer versions of

HUGIN allow the use of limited memory IDs (Nilsson & Lauritzen, 2000), recent advances such as

a branch-and-bound approach for solving multistage IDs (Yuan, Wu, & Hansen, 2010) would help

drive further scalability of I-DID solutions.

Acknowledgments

Yifeng Zeng acknowledges support from the Obel Family Foundation (Denmark) and NSFC (#

60974089 and # 60975052). Prashant Doshi acknowledges support from an NSF CAREER grant (#

IIS-0845036) and a grant from U.S. Air Force (# FA9550-08-1-0429). The authors also thank Ekhlas

Sonu and Yingke Chen for help in performing the GaTAC-based simulations, and acknowledge all

the anonymous reviewers for their helpful comments.

246

EXPLOITING MODEL EQUIVALENCES FOR SOLVING INTERACTIVE DYNAMIC INFLUENCE DIAGRAMS

Appendix A. Proofs

Proof of Proposition 1. We prove by induction on the horizon. Let {M1
j,l−1, . . . , M

q
j,l−1} be the

collection of behaviorally equivalent sets of models in Mj,l−1. We aim to show that the value of

each of i’s actions in the decision nodes at each time step remains unchanged on application of the

transformation, X . This implies that the solution of the I-DID is preserved. Let Qn(bi,l, ai) give

the action value at horizon n. Its computation in the I-DID could be modeled using the standard dy-

namic programming approach. Let ERi(s, mj,l−1, ai) be the expected immediate reward for agent

i averaged over j’s predicted actions. Then, ∀m
q

j,l−1
∈M

q

j,l−1
ERi(s, m

q
j,l−1, ai) =

∑
aj

Ri(s, ai, aj)

Pr(aj |m
q
j,l−1) = Ri(s, ai, a

q
j), because a

q
j is optimal for all m

q
j,l−1 ∈ M

q
j,l−1.

Basis step: Q1(bi,l, ai) =
∑

s,mj,l−1
bi,l(s, mj,l−1)ERi(s, mj,l−1, ai)

=
∑

s,q bi,l(s)
∑

m
q

j,l−1
∈M

q

j,l−1

bi,l(m
q
j,l−1|s)Ri(s, ai, a

q
j) (aq

j is optimal for all behaviorally equivalent

models in M
q
j,l−1

)

=
∑

s,q bi,l(s)Ri(s, ai, a
q
j)

∑
m

q

j,l−1
∈M

q

j,l−1

bi,l(m
q
j,l−1|s)

=
∑

s,q bi,l(s)Ri(s, ai, a
q
j)b̂i,l(m̂

q
j,l−1|s) (from Eq. 1)

=
∑

s,q b̂i,l(s, m̂
q
j,l−1)ERi(s, m̂

q
j,l−1, ai) (aq

j is optimal for representative m̂
q
j,l−1

)

= Q̂1(b̂i,l, ai)

Inductive hypothesis: Let, ∀ai,bi,l
Qn(bi,l, ai) = Q̂n(b̂i,l, ai), where b̂i,l relates to bi,l using Eq. 1.

Therefore, Un(bi,l) = Ûn(b̂i,l) where Un(bi,l) is the expected utility of bi,l for horizon n.

Inductive proof: Qn+1(bi,l, ai) = Q̂1(b̂i,l, ai) +
∑

oi,s,mj,l−1,aj
Pr(oi|s, ai, aj)

Pr(aj |mj,l−1)bi,l(s, mj,l−1)U
n(b′i,l) (basis step)

= Q̂1(b̂i,l, ai) +
∑

oi,s,q
Pr(oi|s, ai, a

q
j) bi,l(s)

∑
m

q

j,l−1
∈M

q

j,l−1

bi,l(m
q
j,l−1|s) Un(b′i,l) (aq

j is opti-

mal for models in M
q
j,l−1

)

= Q̂1(b̂i,l, ai) +
∑

oi,s,q
Pr(oi|s, ai, a

q
j) bi,l(s)

∑
m

q

j,l−1
∈M

q

j,l−1

bi,l(m
q
j,l−1|s) Ûn(b̂′i,l) (using the

inductive hypothesis)

= Q̂1(b̂i,l, ai) +
∑

oi,s,q
Pr(oi|s, ai, a

q
j) bi,l(s) b̂i,l(m̂

q
j,l−1|s) Ûn(b̂′i,l) (from Eq. 1)

= Q̂1(b̂i,l, ai) +
∑

oi,s,q
Pr(oi|s, ai, a

q
j) b̂i,l(s, m̂

q
j,l−1) Ûn(b̂′i,l)

= Q̂n+1(b̂i,l, ai)

Calculating prediction error in Section 4.5. Let mj,l−1 be the model associated with a solved
model, m′

j,l−1, resulting in the worst error. Let α be the exact policy tree obtained by solving

mj,l−1 optimally and α′ be the policy tree for m′
j,l−1. As m′

j,l−1 is itself solved inexactly due

to approximate solutions of lower level models, let α′′ be the exact policy tree that is optimal for
m′

j,l−1. If bj,l−1 is the belief in mj,l−1 and b′j,l−1 in m′
j,l−1, then the error is:

E = |α · bj,l−1 − α′ · bj,l−1|
= |α · bj,l−1 − α′ · bj,l−1 + (α′′ · bj,l−1 − α′′ · bj,l−1)| (add zero)
= |(α · bj,l−1 − α′′ · bj,l−1) + (α′′ · bj,l−1 − α′ · bj,l−1)|
≤ |(α · bj,l−1 − α′′ · bj,l−1)| + |(α′′ · bj,l−1 − α′ · bj,l−1)| (triangle inequality)

(8)

For the first term, |α · bj,l−1 − α′′ · bj,l−1|, which we denote by ρ, the error is due to associating

mj,l−1 with m′
j,l−1, both solved exactly. We analyze this error below:

247

ZENG & DOSHI

ρ = |α · bj,l−1 − α′′ · bj,l−1|
= |α · bj,l−1 − α′′ · b′j,l−1

+ α′′ · b′j,l−1
− α′′ · bj,l−1| (add zero)

≤ |α · bj,l−1 − α · b′j,l−1
+ α′′ · b′j,l−1

− α′′ · bj,l−1| (α′′ · b′j,l−1
≥ α · b′j,l−1

)

= |α · (bj,l−1 − b′j,l−1
) − α′′ · (bj,l−1 − b′j,l−1

)|

= |(α − α′′) · (bj,l−1 − b′j,l−1
)|

≤ ||α − α′′||∞ × ||bj,l−1 − b′j,l−1
||1 (Hölder’s inequality)

≤ (Rmax
j − Rmin

j)T × ǫ

(9)

In the above inequality, the largest difference between bj,l−1 and b′j,l−1 is ǫ, otherwise model,

mj,l−1 with belief bj,l−1, would be solved. Notice that the error is regulated by ǫ, and as ǫ increases,

we solve less models beyond K and the approximation error worsens.

In subsequent time steps, because the sets of models could be subsets of the minimal sets, the

updated probabilities could be transferred to incorrect models. In the worst case, the error incurred

is bounded analogously to Eq. 9. Hence, the cumulative error in j’s predicted behavior over T steps

is at most T × ρ, which is similar to that of the previous k-means model clustering approach (Zeng

et al., 2007):

ρT ≤ (Rmax
j − Rmin

j)T 2ǫ

The second term, |(α′′ · bj,l−1 −α′ · bj,l−1)|, in Eq. 8 represents the error due to the approximate

solutions of models further down in level (for example, i’s level l − 2 models). Since j’s behavior

depends, in part, on the actions of i (and not on the value of i’s solution), even a slight deviation

by j from the exact prediction for i could lead to j’s behavior with the worst error. Hence, it seems

difficult to derive bounds for the second term that are tighter than the usual, (Rmax
j − Rmin

j)T .

Consequently, the total error in predicting j’s behavior is bounded if lower-level models are

solved exactly. Otherwise, as we show in Section 6.2, the error is large only for very large ǫ. This is

because many problems admit large BE regions for the models thereby not overconstraining ǫ, and

the prediction continues to remain exact. However, we noticed that these regions do reduce in size

as the horizon increases. In summary, although the error due to associating different models whose

beliefs are ǫ-close is bounded, we are unable to usefully bound the overall error in prediction due to

approximate solutions of lower-level models.

Appendix B. Problem Domains

We provide detailed descriptions of all the problem domains utilized in our evaluations, including

their I-DID models, below.

B.1 Multiagent Tiger Problem

As we mentioned previously, our multiagent tiger problem is a non-cooperative generalization of the

well-known single agent tiger problem (Kaelbling et al., 1998) to the multiagent setting. It differs

from other multiagent versions of the same problem (Nair et al., 2003) by assuming that the agents

hear creaks as well as the growls and the reward function does not promote cooperation. Creaks

are indicative of which door was opened by the other agent(s). While we described the problem

in Section 3, we quantify the different uncertainties here. We assume that the accuracy of creaks

is 90%, while the accuracy of growls is 85% as in the single agent problem. The tiger location is

chosen randomly in the next time step if any of the agents opened any doors in the current step.

248

EXPLOITING MODEL EQUIVALENCES FOR SOLVING INTERACTIVE DYNAMIC INFLUENCE DIAGRAMS

Fig. 8 shows an I-DID unrolled over two time-slices for the multiagent tiger problem. We give the

CPTs for the different nodes below:

〈at
i, a

t
j〉 TigerLocationt TL TR

〈OL, ∗〉 * 0.5 0.5

〈OR, ∗〉 * 0.5 0.5

〈∗, OL〉 * 0.5 0.5

〈∗, OR〉 * 0.5 0.5

〈L, L〉 TL 1.0 0

〈L, L〉 TR 0 1.0

Table 2: CPT of the chance node TigerLocationt+1 in the I-DID of Fig. 8.

We assign the marginal distribution over the tiger’s location from agent i’s initial belief to the

chance node, TigerLocationt. The CPT of TigerLocationt+1 in the next time step conditioned

on TigerLocationt, At
i, and At

j is the transition function, shown in Table 2. The CPT of the

observation node, Growl&Creakt+1, is shown in Table 3. CPTs of the observation nodes in level

0 DIDs are identical to the observation function in the single agent tiger problem.

〈at
i, a

t
j〉 TgrLoct+1 〈GL, CL〉 〈GL, CR〉 〈GL, S〉 〈GR, CL〉 〈GR, CR〉 〈GR, S〉

〈L, L〉 TL 0.85*0.05 0.85*0.05 0.85*0.9 0.15*0.05 0.15*0.05 0.15*0.9

〈L, L〉 TR 0.15*0.05 0.15*0.05 0.15*0.9 0.85*0.05 0.85*0.05 0.85*0.9

〈L, OL〉 TL 0.85*0.9 0.85*0.05 0.85*0.05 0.15*0.9 0.15*0.05 0.15*0.05

〈L, OL〉 TR 0.15*0.9 0.15*0.05 0.15*0.05 0.85*0.9 0.85*0.05 0.85*0.05

〈L, OR〉 TL 0.85*0.05 0.85*0.9 0.85*0.05 0.15*0.05 0.15*0.9 0.15*0.05

〈L, OR〉 TR 0.15*0.05 0.15*0.9 0.15*0.05 0.85*0.05 0.85*0.9 0.85*0.05

〈OL, ∗〉 ∗ 1/6 1/6 1/6 1/6 1/6 1/6

〈OR, ∗〉 ∗ 1/6 1/6 1/6 1/6 1/6 1/6

Table 3: CPT of the chance node, Growl&Creakt+1, in agent i’s I-DID.

Decision nodes, At
i and At+1

i , contain possible actions of agent i such as L, OL, and OR. Model

node, M t
j,l−1, contains the different models of agent j which are DIDs if the I-DID is at level 0,

otherwise they are I-DIDs themselves. The distribution over the associated Mod[M t
j] node (see

Fig. 9) is the conditional distribution over j’s models given physical state from agent i’s initial

belief. The CPT of the chance node, Mod[M t+1
j], in the model node, M t+1

j,l−1, reflects which prior

model, action and observation of j results in a model contained in the model node.

Finally, the utility node, Ri, in the I-DID relies on both agents’ actions, At
i and At

j , and the

physical states, TigerLocationt. The utility table is shown in Table 4. These payoffs are analogous

to the single agent version, which assigns a reward of 10 if the correct door is opened, a penalty of

100 if the opened door is the one behind which is a tiger, and a penalty of 1 for listening. A result of

this assumption is that the other agent’s actions do not impact the original agent’s payoffs directly,

but rather indirectly by resulting in states that matter to the original agent. The utility tables for level

0 models are exactly identical to the reward function in the single agent tiger problem.

249

ZENG & DOSHI

〈ai, aj〉 TL TR

〈OR, OR〉 10 -100

〈OL, OL〉 -100 10

〈OR, OL〉 10 -100

〈OL, OR〉 -100 10

〈L, L〉 -1 -1

〈L, OR〉 -1 -1

〈OR, L〉 10 -100

〈L, OL〉 -1 -1

〈OL, L〉 -100 10

Table 4: Utility table for node, Ri, in the I-DID. Utility table in the I-DID for agent j is the same

with column label, 〈ai, aj〉, swapped.

B.2 Multiagent Machine Maintenance Problem

We extend the traditional single agent based machine maintenance (MM) problem (Smallwood &

Sondik, 1973) to a two-agent cooperative version. Smallwood and Sondik (1973) described an MM

problem involving a machine containing two internal components. Either one or both components

of the machine may fail spontaneously after each production cycle (0-fail: no component fails; 1-

fail: 1 component fails; 2-fail: both components fail). If an internal component has failed, then there

is some chance that when operating upon the product, it will cause the product to be defective. An

agent may choose to manufacture the product (M) without examining it, examine the product (E),

inspect the machine (I), or repair it (R) before the next production cycle. On an examination of the

product, the subject may find it to be defective. Of course, if more components have failed, then the

probability that the product is defective is greater.

������

�������

����������
�

��
�

��

������

��������	

����������
��	

��
��	

��

���	
�

��
�

���	
��	

��
��	

Figure 28: Level l I-DID of agent i for the multiagent MM problem.

A level l I-DID for the multiagent MM problem is shown in Fig. 28. We consider M models of

agent j at the lower level which differ in the probability that j assigns to the chance node Machine

Failure. Agent i’s initial belief over the physical state and j’s models provides the marginal distri-

bution over MachineFailuret. In the I-DID, the chance node, MachineFailuret+1, has incident

250

EXPLOITING MODEL EQUIVALENCES FOR SOLVING INTERACTIVE DYNAMIC INFLUENCE DIAGRAMS

arcs from the nodes MachineFailuret, At
i, and At

j . In Table 5, we show the CPT of the chance

node.

〈at
i, a

t
j〉 Machine Failuret+1 0-fail 1-fail 2-fail

〈M/E,M/E〉 0-fail 0.81 0.18 0.01

〈M/E,M/E〉 1-fail 0.0 0.9 0.1

〈M/E,M/E〉 2-fail 0.0 0.0 1.0

〈M,I/R〉 0-fail 1.0 0.0 0.0

〈M,I/R〉 1-fail 0.95 0.05 0.0

〈M,I/R〉 2-fail 0.95 0.0 0.05

〈E,I/R〉 0-fail 1.0 0.0 0.0

〈E,I/R〉 1-fail 0.95 0.05 0.0

〈E,I/R〉 2-fail 0.95 0.0 0.05

〈I/R,*〉 0-fail 1.0 0.0 0.0

〈I/R,*〉 1-fail 0.95 0.05 0.0

〈I/R,*〉 2-fail 0.95 0.0 0.05

Table 5: CPT of the chance node, MachineFailuret+1, in the level l I-DID of agent i. At level 0

the CPT is analogous to the one in the original MM problem.

With the observation chance node, Defectivet+1
i , we associate the CPT shown in Table 6.

Note that arcs from MachineFailuret+1 and the nodes, At
i and At

j , in the previous time step are

incident to this node. The observation nodes in the level 0 DIDs have CPTs that are identical to the

observation function in the original MM problem.

〈at
i, a

t
j〉 Machine Failuret+1 not-defective defective

〈M,M/E〉 * 0.5 0.5

〈M,I/R〉 * 0.95 0.05

〈E,M/E〉 0-fail 0.75 0.25

〈E,M/E〉 1-fail 0.5 0.5

〈E,M/E〉 2-fail 0.25 0.75

〈E,I/R〉 * 0.95 0.05

〈I/R,*〉 * 0.95 0.05

Table 6: CPT of the observation node, Defectivet+1
i . Corresponding CPT in agent j’s l− 1 I-DID

is identical but with 〈at
i, a

t
j〉 swapped.

The decision node, Ai, has one information arc from the observation node Defectivet
i indicat-

ing that i knows the examination results before making the choice. The utility node Ri is associated

with the utility table in Table 7. The utility table for a level 0 agent is identical to the one in the

original MM problem.

The CPT of the chance node, Mod[M t+1
j], in the model node, M t+1

j,l−1, reflects which prior

model, action and observation of j results in a model contained in the model node, analogously to

the tiger problem.

251

ZENG & DOSHI

〈at
i, a

t
j〉 0-fail 1-fail 2-fail

〈M,M〉 1.805 0.95 0.5

〈M,E〉 1.555 0.7 0.25

〈M,I〉 0.4025 -1.025 -2.25

〈M,R〉 -1.0975 -1.525 -1.75

〈E,M〉 1.5555 0.7 0.25

〈E,E〉 1.305 0.45 0.0

〈E,I〉 0.1525 -1.275 -2.5

〈E,R〉 -1.3475 -1.775 -2.0

〈I,M〉 0.4025 -1.025 -2.25

〈I,E〉 0.1525 -1.275 -2.5

〈I,I〉 -1.0 -3.00 -5.00

〈I,R〉 -2.5 -3.5 -4.5

〈R,M〉 -1.0975 -1.525 -1.75

〈R,E〉 -1.3475 -1.775 -2.0

〈R,I〉 -2.5 -3.5 -4.5

〈R,R〉 -4 -4 -4

Table 7: Utility table for agent i. Agent j’s utility table in its l − 1 I-DID is identical but with

column label, 〈at
i, a

t
j〉, swapped.

B.3 UAV Reconnaissance Problem

We show a level l I-DID for the multiagent UAV problem in Fig 29. Models of the fugitive (agent

j) at the lower level differ in the probability that the fugitive assigns to its position in the grid. The

UAV’s (agent i) initial beliefs are probability distributions assigned to the relative position of the

fugitive decomposed into the chance nodes, FugRelPosXt and FugRelPosY t, which represent

the relative location of the fugitive along the row and column, respectively. Its CPTs assume that

each action (except listen) moves the UAV in the intended direction with a probability of 0.67, while

the remaining probability is equally divided among the other neighboring positions. Action listen

keeps the UAV in the same position.

The observation node, SenFug, represents the UAV’s sensing of the relative position of the

fugitive in the grid. Its CPT assumes that the UAV has good sensing capability (likelihood of 0.8

for the correct relative location of the fugitive) if the action is listen, otherwise the UAV receives

random observations during other actions.

The decision node, Ai, contains five actions of the UAV, which includes moving in the four

cardinal directions and listening. The edge incident into the node indicates that the UAV ascertains

the observation on the relative position of the fugitive before it takes an action.

The utility node, Ri, is the reward assigned to the UAV for its actions given the fugitive’s relative

position and its actions. The UAV gets rewarded 50 if it captures the fugitive; otherwise, it costs -5

for performing any other action.

Because the actual CPT tables are very large, we do not show them here. All problem domain

files are available upon request.

252

EXPLOITING MODEL EQUIVALENCES FOR SOLVING INTERACTIVE DYNAMIC INFLUENCE DIAGRAMS

����
�

 �!"�
�

�
#����
�

��
�

��

����
�

 �!"�
���

�
#����
���

��
���

��

������
�

��
�

������
���

��
���

����
�

 �!$�
�

����
�

 �!$�
���

Figure 29: Level l I-DID of agent i for our UAV reconnaissance problem.

References

Andersen, S., & Jensen, F. (1989). Hugin: A shell for building belief universes for expert systems.

In International Joint Conference on Artificial Intelligence (IJCAI), pp. 332–337.

Aumann, R. J. (1999a). Interactive epistemology i: Knowledge. International Journal of Game

Theory, 28(3), 263–300.

Aumann, R. J. (1999b). Interactive epistemology ii: Probability. International Journal of Game

Theory, 28, 301–314.

Bernstein, D. S., Givan, R., Immerman, N., & Zilberstein, S. (2002). The complexity of decen-

tralized control of markov decision processes. Mathematics of Operations Research, 27(4),

819–840.

Brandenburger, A., & Dekel, E. (1993). Hierarchies of beliefs and common knowledge. Journal of

Economic Theory, 59, 189–198.

Casbeer, D., Beard, R., McLain, T., Sai-Ming, L., & Mehra, R. (2005). Forest fire monitoring with

multiple small uavs. In American Control Conference, pp. 3530–3535.

Castro, P., Panangaden, P., & Precup, D. (2009). Equivalence relations in fully and partially observ-

able markov decision processes. In International Joint Conference on Artificial Intelligence

(IJCAI), pp. 1653–1658.

Chang, K.-C., & Fung, R. (1991). Refinement and coarsening of bayesian networks. In Uncertainty

in Artificial Intelligence, pp. 435–445.

Dekel, E., Fudenberg, D., & Morris, S. (2006). Topologies on types. Theoretical Economics, 1,

275–309.

Doshi, P., & Sonu, E. (2010). Gatac: A scalable and realistic testbed for multiagent decision mak-

ing). In Fifth Workshop on Multiagent Sequential Decision Making in Uncertain Domains

(MSDM), AAMAS, pp. 62–66.

253

ZENG & DOSHI

Doshi, P., Zeng, Y., & Chen, Q. (2009). Graphical models for interactive pomdps: Representations

and solutions. Journal of Autonomous Agents and Multi-Agent Systems (JAAMAS), 18(3),

376–416.

Duong, Q., Wellman, M., & Singh, S. (2008). Knowledge combination in graphical multiagent

models. In Uncertainty in Artificial Intelligence (UAI), pp. 153–160.

Duong, Q., Wellman, M., Singh, S., & Vorobeychik, Y. (2010). History-dependent graphical mul-

tiagent models. In International Conference on Autonomous Agents and Multiagent Systems

(AAMAS), pp. 1215–1222.

Emery-Montemerlo, R., Gordon, G., Schneider, J., & Thrun, S. (2005). Game theoretic control for

robot teams. In International Conference on Robotics and Automation (ICRA), pp. 1163–

1169.

Gal, Y., & Pfeffer, A. (2008). Networks of influence diagrams: A formalism for representing agents’

beliefs and decision-making processes. Journal of Artificial Intelligence Research, 33, 109–

147.

Givan, R., Dean, T., & Greig, M. (2003). Equivalence notions and model minimization in markov

decision processes. Artificial Intelligence, 147(1-2), 163–223.

Gmytrasiewicz, P., & Doshi, P. (2005). A framework for sequential planning in multiagent settings.

Journal of Artificial Intelligence Research (JAIR), 24, 49–79.

Harsanyi, J. C. (1967). Games with incomplete information played by bayesian players. Manage-

ment Science, 14(3), 159–182.

Kaelbling, L., Littman, M., & Cassandra, A. (1998). Planning and acting in partially observable

stochastic domains. Artificial Intelligence Journal, 101, 99–134.

Kearns, M., Littman, M., & Singh, S. (2001). Graphical models for game theory. In Uncertainty in

Artificial Intelligence (UAI), pp. 253–260.

Koller, D., & Milch, B. (2001). Multi-agent influence diagrams for representing and solving games.

In International Joint Conference on Artificial Intelligence (IJCAI), pp. 1027–1034.

Madsen, N. S., & Jensen, F. V. (2008). An influence diagram framework for acting under influence

by agents with unknown goals. In Fourth European Workshop on Probabilistic Graphical

Models (PGM), pp. 289–296.

Mertens, J., & Zamir, S. (1985). Formulation of bayesian analysis for games with incomplete

information. International Journal of Game Theory, 14, 1–29.

Milner, R. (1980). A Calculus of Communicating Systems. Springer-Verlag.

Murphy, D., & Cycon, J. (1998). Applications for mini vtol uav for law enforcement. In SPIE

3577:Sensors, C3I, Information, and Training Technologies for Law Enforcement.

Nair, R., Tambe, M., Yokoo, M., Pynadath, D., & Marsella, S. (2003). Taming decentralized pomdps

: Towards efficient policy computation for multiagent settings. In International Joint Confer-

ence on Artificial Intelligence (IJCAI), pp. 705–711.

Nilsson, D., & Lauritzen, S. (2000). Evaluating influence diagrams using limids. In Uncertainty in

Artificial Intelligence (UAI), pp. 436–445.

254

EXPLOITING MODEL EQUIVALENCES FOR SOLVING INTERACTIVE DYNAMIC INFLUENCE DIAGRAMS

Oliehoek, F. A., Whiteson, S., & Spaan, M. T. J. (2009). Lossless clustering of histories in decentral-

ized pomdps. In International Conference on Autonomous Agents and Multi-Agent Systems

(AAMAS), pp. 577–584.

Perry, A. R. (2004). The flightgear flight simulator. In UseLinux.

Pineau, J., Gordon, G., & Thrun, S. (2006). Anytime point-based approximations for large pomdps.

Journal of Artificial Intelligence Research (JAIR), 27, 335–380.

Pynadath, D., & Marsella, S. (2007). Minimal mental models. In Twenty-Second Conference on

Artificial Intelligence (AAAI), pp. 1038–1044, Vancouver, Canada.

Rathnasabapathy, B., Doshi, P., & Gmytrasiewicz, P. J. (2006). Exact solutions to interactive pomdps

using behavioral equivalence. In Autonomous Agents and Multi-Agents Systems Conference

(AAMAS), pp. 1025–1032.

Russell, S., & Norvig, P. (2010). Artificial Intelligence: A Modern Approach (Third Edition). Pren-

tice Hall.

Seuken, S., & Zilberstein, S. (2007). Memory-bounded dynamic programming for dec-pomdps. In

International Joint Conference on Artificial Intelligence (IJCAI), pp. 2009–2015.

Seuken, S., & Zilberstein, S. (2008). Formal models and algorithms for decentralized decision

making under uncertainty. Autonomous Agents and Multi-Agent Systems, 17(2), 190–250.

Smallwood, R., & Sondik, E. (1973). The optimal control of partially observable markov decision

processes over a finite horizon. Operations Research (OR), 21, 1071–1088.

Suryadi, D., & Gmytrasiewicz, P. (1999). Learning models of other agents using influence diagrams.

In International Conference on User Modeling, pp. 223–232.

Tatman, J. A., & Shachter, R. D. (1990). Dynamic programming and influence diagrams. IEEE

Transactions on Systems, Man, and Cybernetics, 20(2), 365–379.

Witwicki, S. J., & Durfee, E. H. (2010). Influence-based policy abstraction for weakly-coupled

dec-pomdps. In International Conference on Automated Planning and Scheduling (ICAPS),

pp. 185–192.

Yuan, C., Wu, X., & Hansen, E. (2010). Solving multistage influence diagrams using branch-and-

bound search. In Uncertainty in Artificial Intelligence (UAI), pp. 691–700.

Zeng, Y., Doshi, P., & Chen, Q. (2007). Approximate solutions of interactive dynamic influence

diagrams using model clustering. In Twenty Second Conference on Artificial Intelligence

(AAAI), pp. 782–787.

255

