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Abstract—Model-based testing employs models for testing. Model-based mutation testing (MBMT) additionally involves fault models,

called mutants, by applying mutation operators to the original model. A problem encountered with MBMT is the elimination of equivalent

mutants and multiple mutants modeling the same faults. Another problem is the need to compare a mutant to the original model for test

generation. This paper proposes an event-based approach to MBMT that is not fixed on single events and a single model but rather

operates on sequences of events of length k � 1 and invokes a sequence of models that are derived from the original one by varying its

morphology based on k. The approach employs formal grammars, related mutation operators, and algorithms to generate test cases,

enabling the following: (1) the exclusion of equivalent mutants and multiple mutants; (2) the generation of a test case in linear time

to kill a selected mutant without comparing it to the original model; (3) the analysis of morphologically different models enabling the

systematic generation of mutants, thereby extending the set of fault models studied in related literature. Three case studies validate

the approach and analyze its characteristics in comparison to random testing and another MBMT approach.

Index Terms—Model-based mutation testing, grammar-based testing, (model) morphology, mutant selection, test generation

Ç

1 INTRODUCTION

TESTING is a user-centric quality assurance technique
based on test cases that consist of test inputs and expected

test behaviors (commonly characterized by test outputs). A test
invokes the execution or training of the system under consid-
eration (SUC) using a test case. SUC passes the test if, upon a
test input, the expected behavior is produced; otherwise, the
SUC fails the test, which then entails the tough oracle problem
for deriving the expected behavior. A set of test cases, also
called test set/suite, is generated and executed in the target
environment of SUC or an environment closely resembling
the target environment. Commonly, a coverage criterion [68] is
used as a stopping condition for testing and providing a
measure of the quality of a test set. This paper prefers the
term SUC to “systemunder test (SUT)” because the approach
introduced applies both to a model and an implementation,
whereas SUT applies to an implementation.

Model-based testing (MBT) is based on creating an abstrac-
tion called a model, viewing the SUC as a black-box and
operating on this model for testing from a behavioral aspect
[14]. In positive testing, one tests whether the SUC is doing
what it is supposed to do; whereas, in negative testing, the
SUC is tested to determine whether it is not doing what it is
not supposed to do [15]. The use of models has various
advantages, such as increasing effectiveness and efficiency

in terms of fault detection and costs [40]. Formal models
additionally help to avoid the oracle problem in the sense
that the expected test outputs can automatically be gener-
ated [40], [60].

To adopt an MBT approach, a model with a proper
expressiveness should be selected based on the SUC and
the testing goals. Expressiveness (also, expressive power) of a
model is defined as the breadth of ideas that can be repre-
sented and communicated in that model [33]. In general,
as expressiveness increases, analyzability decreases [35].
Hence, the use of models with insufficient expressiveness
may cause a decrease in the fault detection performance;
whereas, the use of models with excessive expressive power
may cause an unnecessary increase in the costs.

Some models have the same expressiveness; classical
examples are finite state automata (FSA), regular expres-
sions (REs), and regular grammars (RGs) [43], as they relate
to the same class of formal languages, that is, type-3
languages [29]. A substantial amount of work in practice
relies on the use of such models. Also, pushdown automata
(PDA) [43] and event sequence graphs (ESGs) [15] are exam-
ples of models having an expressiveness that is, respec-
tively, either stronger or weaker than FSA.

A selected model commonly puts the primary focus on
different elements. For example, FSA are state-based; events
label the transitions. ESGs and event flow graphs (EFGs)
[64], on the other hand, are event-based [19]; they refrain
from states and distinguish events from each other by using
their contexts. Formal grammars are generally referred to as
rule-based models. However, they can be used for both
state-based and event-based modeling.

The approach introduced in this paper is event-based. In
the context of this paper, the term event is used to mean a
discrete action, message, signal, etc. Thus, events are exter-
nally perceptible, contrary to states, which are internal to
the SUC and thus not necessarily observable [19]. This is the
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reason why this paper chooses formal grammars, the ele-
ments of which refer to events that are perceivable to the
tester and thus enable him or her to unambiguously decide
whether or not the SUC passes the test. Event-based testing
operates on sequences of events of increasing length.

Most of the MBT approaches operate on the given model
in a fixedway; that is, the model is viewed from only one rel-
evant aspect. However, it is possible to view the same model
in different ways to explore morphological differences; for
example, an SUCmight behave differently to the same input
in different contexts. Morphology is a Greek word meaning
“the study of form or structure.” Several disciplines, such as
linguistics, chemistry, and astronomy, study the form, struc-
ture, or shape of the particular objects of interest. Over the
years, the term is also used to refer to structure. (This paper
does not use the term “structure” to avoid a possible confu-
sion with the term “structural testing” [50].) In MBT, the dif-
ferences in morphology may cause the associated fault
models and the generated test sets to be different.

The model morphology this paper exploits is characterized
by the length and the contextual relation of the event
sequences. By varying the sequence length, the scalability of
the approach is also adjusted by algorithmically generating
a corresponding sequence of models from the original one.
These models describe the same SUC but are morphologi-
cally different. This way of model exploitation differs prin-
cipally from the existing ones; for example, the one used by
UML, which creates different kinds of models (diagrams)
for different views [57].

Model-based mutation testing (MBMT) [27], [4], [23] is an
approach that, in addition to the model given, uses fault
models for test generation. Thus, MBMT enables both posi-
tive and negative testing. Fault models are also called mutants
because they are generated using mutation operators that
modify the original model. By using mutants, MBT
approaches aim to generate test cases which distinguish the
mutants from the original model; that is, they kill the
mutants. When such a test case is executed, the SUC can be
tested as to whether or not it contains the fault modeled by
the mutant. Evidence suggests that using such model-based
mutants is effective at detecting both code-based mutants
and real-world faults [6], [10].

MBMT has problems similar to those of (code-based)
mutation testing [30], [37], [1] and MBT, because it can be
considered as an adaptation of mutation testing using
models. For one thing, some mutants can be equivalent to the
original model or different mutants can describe the same
faults. This causes a major problem because such mutants
lead to the wasting of test resources [2]. Gr€un, Schuler,
and Zeller, among other authors, [36] report that 40 per-
cent of the generated mutants can be equivalent. Further-
more, each mutant needs to be analyzed against the original
model to detect equivalence or to generate a test case that
kills the mutant. However, such an analysis is not always
easy (or even possible), because certain models are harder
to analyze. In addition, since a fixed model is utilized, the
set of fault models is limited. This causes certain important
faults to be missed.

Formal grammars have already been proposed forMBMT
[51], [16], [17]. Building upon these works, this paper intro-
duces a new approach that employs regular grammars for

modeling event sequences of length k � 1 (k-sequences), a
transformation algorithm to vary model morphology by
changing k, and related mutation operators to generate cor-
responding fault models to achieve the following.

� The generation of only useful mutants. Existing
approaches generate sets of mutants that can include
equivalent mutants and multiple mutants that model
the same faults. To increase the test efficiency, the
attempt is then made to eliminate these mutants. The
present approach excludes the generation of such
mutants and thus avoids elimination.

� The generation of a test case in linear time to kill a
mutant. Existing approaches compare each mutant to
the original model for test generation. The new
approach generates a unique test case to distinguish
a selected mutant in linear time without comparing
the mutant against the original model.

� The extension of the set of fault models. Existing
approaches employ a fixed model and, accordingly,
generate a set of associated fault models that simply
enables the study of the relation between single
events. The new approach analyzes the relation
between k-sequences and events, enabling the gener-
ation of additional fault models, which, in general,
represent different or more subtle faults as the
sequence length k increases. Existing approaches do
not consider such fault models.

The paper is organized as follows. Section 2 explains
the basic idea behind the approach by way of an example.
Section 3 introduces the concepts related to variation of
model morphology to extend the set of faults models and
to generate test cases. Accordingly, Section 4 discusses
strategies for mutant selection from the obtained morpho-
logically different models and test generation from the
mutants. Section 5 performs three case studies to analyze
the characteristics of the approach in comparison to ran-
dom testing and mutate-and-kill-based (MK-based) MBMT
(which is based on generating discriminating test cases).
Section 6 discusses the related work. Section 7 concludes
the paper and outlines future research.

2 BASIC IDEA DEMONSTRATED BY AN EXAMPLE

This section gives an overview of the approach by a simple
example. The next three sections explain usage of formal
grammars for modeling, mutant generation, and grammar
transformation for varying the model morphology. Novel-
ties are exemplified in Section 2.4 and an overview of the
approach is given in the last section.

Example 2.1 (Running Example). Consider three events

cc : copy; xx : cut; and pp : paste

For simplicity, we ignore the operations select and deselect
of system objects or locations. At the beginning, one can
perform either c or x. Both c and x can be followed by c,
x, or p. If p is performed after c, it can be followed by
either c, x, or p. However, if p is performed after x, it can
only be followed by either c or x; that is, after cutting and
pasting an object, it is not possible to paste it again. One
can stop after a p.
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Example 2.1 is a real-world example which is simpli-
fied for the sake of readability and saving space; it is
used to aid the discussion in the rest of the paper. Also,
since the approach is model-based, information on the
system internals (such as the source code) is assumed to
be not available.

2.1 Event-Based Modeling Using Grammars

Fig. 1a represents an event-based directed graph model
to illustrate Example 2.1. Such models are popular in the
testing community [19] and have the same expressive-
ness as FSA. Since the focus of this paper is on events,
they are placed at the nodes, and the follows relation
between the events is visualized by arcs. Pseudo-events
[and] are used to mark, respectively, the start and finish
events [15].

The model in Fig. 1a has a severe drawback. By “event
p,” one cannot differentiate to which p event is referred. The
present approach suggests distinguishing such events from
each other by indexing that considers the contexts in which
they reside, leading to contexted events, such as fc1; x1;
p1; p2g (Fig. 1b). Their counterparts, basis events, such as {c,
x, p}, represent the events as they are visible to the user.
Note that contexted events are not necessarily caused by
cycles or loops in the model.

Fault models associated with the models like the one in
Fig. 1b are primarily based on modifying the follows relation
between single events. This modification needs to be gener-
alized by analyzing occurrences of single events with
respect to event sequences of length k � 1 (k-sequences) for
systematic extension of event-based fault modeling.

Grammars are suitable for representing event-based
abstractions based on k-sequences. They allow multiple
occurrences of events in productions, which enable to repre-
sent the follows relation between k-sequences and events.
This practice is common in compiler construction and test-
ing [43]; related techniques are exploited here.

In light of the discussion above, the grammar model is
composed of a set of (contexted) events, a set of basis events, a
set of k-sequences (terminals), a set of contexts (nonterminals)
including a start context and a set of productions. A context
relation determines the right unique context of a k-sequence
in productions.

Example 2.2 (Grammar Model). Fig. 1b shows the indexed
version of Fig. 1a where the contextual ambiguity of p is
eliminated. For a unified representation, unambiguous
events are also indexed. Based on Figs. 1b, 1c represents
the grammar that precisely models Example 2.1. The pro-
ductions have the following semantics.

� cðaÞ ! b c(b) means that b follows a and a b is a
2-sequence.

� S ! a c(a)means that a is a start event.
� cðaÞ ! "means that a is a finish event.
Also, c(a) denotes the (right) context of event a.

The productions of Example 2.2 form a regular gram-
mar. The terminals therein are events that can be viewed
as 1-sequences, and the nonterminals are contexts. There-
fore, this model is called “1-Reg.”

2.2 Generating Mutants

The new approach refines the elementary mutation opera-
tors insertion and omission [23] to modify sequences of
events by also considering the start and finish events. The
iterative and combinatorial deployment of these operations
enables further mutation operators such as duplication,
deletion, or replacement [51], [9].

Example 2.3 (Mutants). Fig. 2 contains some mutants of
Example 2.2. The mutant in Fig. 2a is generated using an
event-based mutation [23] by inserting event/terminal
p3. Furthermore, the mutant in Fig. 2b is generated using
a grammar-based mutation [51], [9] by replacing terminal
p1 by x1.

These mutants are different. Fig. 2a is a 1-Reg; it mod-
els a single fault: “p is extra after x p.” In contrast, Fig. 2b
is not a 1-Reg but an RG; it models multiple faults: “p is
missing after c,” and “p is extra after c x p.”

2.3 Grammar Transformation to Vary Morphology

The introduced event-based grammar model enables the
generation of morphologically different models by a trans-
formation to vary k.

Example 2.4 (Transformed Model). The model in Fig. 1c
and its transformation shown in Fig. 3 describe the
same system, but productions in Fig. 3 utilize 2-
sequences; therefore, it is a “2-Reg.” A 2-Reg produc-
tion of the form cða eÞ ! e b cðe bÞ means that b follows
a e and a e b is a 3-sequence.

Fig. 1. Event-based models for Example 2.1.

Fig. 2. Some mutants of the model in Fig. 1c (Mutations are boldfaced or
underlined).
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2.4 Novelties

The set of fault models is extended. To see howmorphologically
different models, generated using grammar transformation,
extend the set of possible fault models, consider a mutant of
Fig. 3 generated by omitting sequence (p1 c1, c1 p1) as
shown in Fig. 4b. This mutant models the fault that

pp1 ismissing after pp1 cc1;

that is, paste fails after performing a paste and a copy. It is not
possible to create such amutant from themodel in Fig. 1c by a
simple omission. For example, one can omit sequence (c1, p1)
(see Fig. 4a). However, in this mutant, paste fails immediately
after performing a copy. Hence, the mutant in Fig. 4b models
a different and more subtle fault than the mutant in Fig. 4a.
Thus, the set of fault models can be extended by generating
mutantsmodeling different ormore subtle faults.

To the knowledge of the authors, no other existing
approach directly considers such a fault.

Only useful mutants are generated. Most of the MBMT
approaches, such as [8], [4], compare each mutant against
the original model to check if they are equivalent. In contrast,
the proposed approach excludes equivalent mutants and
multiple mutantsmodeling the same faults [17].

Each selected mutant has the following properties. (1) It
does not violate the type-3ness of the given grammar; that
is, the mutated grammar is of the same type as the original
one (Also, see the discussion in Section 6.3). (2) It models a
small number of faults. (3) The faults are located at the
mutation point; that is, the faults are directly related to
the mutation parameter.

The mutant in Fig. 2a is selected because it is a 1-Reg (the
type is preserved), it models a single fault where p is extra
after p2 (or after x p), and the fault is located at the mutation
point because the inserted event is itself faulty.

The mutant in Fig. 2b is excluded because it models mul-
tiple faults which can be modeled separately. p is missing
after c, and p is extra after c x p.

A test case is generated in linear time to kill a mutant. Since
the location of the faults modeled by each selected mutant
can be determined from the actual mutation parameter, a
unique test case to kill the mutant can be generated in linear
time, without comparing it against the original model. For
example, breadth-first search can be used to generate x1 p2
p3 to kill the mutant in Fig. 2a.

2.5 An Overview of the Proposed Approach

The proposed approach follows the steps below.

1) Create the initial model of the SUC, a 1-Reg
(Section 3.1).

2) Vary the morphology of the 1-Reg by transforming it
into a k-Reg for some integer k (Section 3.2).

3) Generate a set of positive test cases using the k-Reg
for detection of missing event faults (Section 3.3).

4) Leave out the equivalent mutants and multiple
mutants modeling the same faults using the mutant
selection strategies and select a subset of all possible
mutants of the k-Reg (Section 4.1 and Section 4.2).

5) Use the selected mutants to generate a set of nega-
tive test cases for detection of extra event faults
(Section 4.3).

3 VARYING MORPHOLOGY TO EXTEND THE SET

OF FAULT MODELS

This section discusses the notions and concepts, starting
with basic notions. One of the key concepts, grammar
transformation to vary the morphology, follows before the
generation of positive test cases that concludes the section.
Note that generation of negative test cases is discussed in
Section 4, combined with mutant generation.

Fig. 3. A grammar model for Example 2.1 which makes use of 2-sequences (Transformed from Fig. 1c).

Fig. 4. Two mutants for Example 2.1 (Mutations are shown in boldface
dashed lines).
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3.1 Basic Notions

The grammar model has informally been introduced in
Section 2.1. The formal definition follows.

Definition 3.1 (k-Sequence Right Regular Grammar (k-
Reg)). A k-sequence right RG (integer k � 1) is a quintuple
G ¼¼¼¼ (E, B, K, C, P) where:

� E is a finite set of events (or contexted events).
� B is a finite set of basis events, which is the set of all visible

events under consideration. For e 2 E; dðeÞ 2 B is the
corresponding basis event (the noncontexted version of e),
and d(.) is the decontexting function.

� K � Ek is a finite set of k-sequences (or terminals).
For r 2 K; r ¼ r1 . . . rk and dðrÞ ¼ dðr1Þ . . . dðrkÞ 2 Bk

is the corresponding basis k-sequence.
� C is a finite set of contexts (or nonterminals) where
� S 2 C is the start context (or start symbol).
� P is a finite set of productions of the form

Q ! " or Q ! r cðrÞ

where Q 2 C is a context,r 2 K is a k-sequence,
cðrÞ 2 C n fSg is the unique context of r, and " is the
empty string. If k � 2, then for each cðqÞ ! r cðrÞ 2 P
where q ¼ q1 . . . qk 2 K and r ¼ r1 . . . rk 2 K,

q2 . . . qk ¼ r1 . . . rk�1:

Note that k-sequences are defined as terminals and have
different, therefore, unique, contexts. The semantics of the
productions is as follows. For each cðqÞ ! r cðrÞ 2 P , rk fol-
lows q in the system modeled by grammar G; that is, q rk is a
(kþþ1)-sequence in the system. Also, r is a start k-sequence for
each S ! r cðrÞ 2 P , and q is a finish k-sequence for each
cðqÞ ! " 2 P . These productions allow only right linearity,
ensuring type-3 preservation.

Productions of a k-Reg can be visualized via directed
graphs by labeling nodes using the k-sequences and [and].
Arcs of the form “([, r)”, “(r,])”, and “(q, r)”correspond to
the productions of the form “S ! r cðrÞ”, “cðrÞ ! "“, and
“cðqÞ ! r cðrÞ”, respectively.

Productions of a k-Reg are used to derive strings. A deriva-
tion, denoted by)G

�, is a sequence of derivation steps, each of
which is of the form xQy )G xRy where x,y 2 ðC [KÞ� and
Q ! R 2 P ð)� and) are used when there is no confusion).
The number of derivation steps in a derivation is called the
length of the derivation. Also, the language defined by grammar
G is the set of stringsLðGÞ ¼ fwjS )� wðw 2 K�Þg.

The example that was informally given in Section 2.1 can
be formalized as follows.

Example 3.1 (A 1-Reg). Below, 5-tuple is a 1-Reg, which
describes Example 2.1 using 1-sequences.

� E ¼ fc1; x1; p1; p2g
� B ¼ fc; x; pg where c ¼ dðc1Þ, x ¼ dðx1Þ and p ¼

dðp1Þ ¼ dðp2Þ.
� K ¼ E, since k ¼ 1.
� C ¼ fS; cðc1Þ; cðx1Þ; cðp1Þ; cðp2Þg.
� S designates the initial point.
� P contains 15 productions (see Fig. 1c or Fig. 1b).

Function dð:Þ (in Definition 3.1) can be extended to associ-
ate (contexted) sequences with basis sequences. For an

event sequence s ¼ s1 s2 . . . sn, the corresponding basis event
sequence of s is dðsÞ ¼ dðs1Þ dðs2Þ . . . dðsnÞ, where dð"Þ ¼ ".
Furthermore, the corresponding set of basis event sequences of a
set of event sequences X is dðXÞ ¼ fdðsÞ j s 2 Xg.

Example 3.2 (Decontexted Event Sequences). Consider the
1-Reg in Fig. 1c. For event sequence s ¼ c1 x1 p2 c1 p1 p1,
dðsÞ ¼ c x p c p p. Also, for set of event sequences X ¼
fc1; c1 p1; c1 x1 p2g, dðXÞ ¼ fc; c p; c x pg.

Event sequences that can and cannot be derived using k-
Reg productions are distinguished for testing. For a k-Reg
G ¼ ðE;B;K;C; P Þ, an event sequence s is said to be in
grammar G, if it can be derived using some productions in P.
A nonempty event sequence s in G is a start [or finish]
sequence, if there is a derivation of the form S )� s Q
ðQ 2 CÞ½or Q )� s ðQ 2 CÞ�. An event sequence which is
not in G is also called a faulty event sequence.

Example 3.3 (Event Sequences in a 1-Reg). For the 1-Reg in
Fig. 1c:

� 2-sequences in fc1 x1; x1 p2; p1 p1g are in the
1-Reg, whereas 2-sequences in fp2 p1; p2 p2g
are not.

� fc1; x1; c1 c1; x1 x1 p2; c1 p1 x1g is a set of start
sequences, and fp1; p2; p1 p1; x1 p2g is a set of fin-
ish sequences.

By Definition 3.1, one can obtain a (k�m)-sequence s
using a derivation of length m � 1, so that s 2 K� and s
is in G. These sequences are important for testing and
called m-derived sequences. Each sequence in G appears in
such a sequence.

Example 3.4 (A 3-derived Sequence in a 2-Reg).
p1 x1 x1 p2 p2 c1 is a 3-derived sequence for the 2-Reg
in Fig. 3; it is derived using cðc1 p1Þ ! p1 x1 cðp1 x1Þ,
cðp1 x1Þ ! x1 p2 cðx1 p2Þ and cðx1 p2Þ ! p2 c1 cðp2 c1Þ.

In event-based testing, k-Regs and their mutants are used
to generate positive and negative test cases. The aim is to
reveal missing event faults where an event cannot occur after
or before a (possibly empty) sequence of events and extra
event faultswhere an event can occur after or before a (possi-
bly empty) sequence of events.

Definition 3.2 (Positive and Negative Test Cases). Given a
k-Reg G ¼ ðE;B;K;C; P Þ.

� An event sequence is a positive test case, if it is a start
sequence in G, or it is ". TP ðGÞ denotes the set of all
positive test cases. A complete event sequence (CES) is a
positive test case which is both a start and a finish
sequence in G, or it is " if " 2 LðGÞ. TCESðGÞ ¼ LðGÞ �
TP ðGÞ denotes the set of all CESs.

� An event sequence is a negative test case, if the first event
in it is a nonstart event or it contains at least one 2-
sequence which is not in G. TNðGÞ denotes the set of all
negative test cases. A faulty complete event sequence
(FCES) is a negative test case which either is composed of
only a nonstart event, or contains only one 2-sequence
which is not in G and it ends with this 2-sequence.
TFCESðGÞ � TNðGÞ denotes the set of all FCESs.

� A set of test cases is also called a test set.
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Example 3.5 (Test Cases of a 1-Reg). For the 1-Reg in Fig. 1c

� fc1; x1 x1; c1 p1 p1 x1g is a set of positive test
cases, and fx1 p2; x1 x1 p2; c1 p1 p1 p1g is a set of
CESs.

� fp1; x1 p2 p1 c1; c1 x1 p2 p2g is a set of negative
test cases, and fx1 p2 p2; c1 x1 p2 p2g is a set of
FCESs.

Each event in a given k-Reg is contexted. However,
different occurrences of system behavior are based on
basis events since they correspond to system events visi-
ble to the user. Thus, the equivalence of two k-Regs is
defined as follows.

Definition 3.3 (Equivalence). Two k-Regs G and H are equiva-
lent, if dðTCESðGÞÞ ¼ dðTCESðHÞÞ.

In practice, it is important that all k-sequences in a k-Reg
are utilized, in other words, that they are useful.

Definition 3.4 (Usefulness). Given a k-Reg G ¼ ðE;B; K;C;

P Þ. A string z 2 ðC [ EÞ� is useful in grammar G, if S )�

xzy )� w for some x,y 2 ðC [ EÞ� and w 2 E�. G is useful, if
all k-sequences in K are useful in G.

Example 3.6 (A Useful and a Nonuseful 1-Reg). k-Regs in
Figs. 1c and 3 are all useful. To obtain a non-useful 1-Reg
from Fig. 1c, one can remove cðp1Þ ! " and cðp2Þ ! ".
The resulting grammar does not have any finish events.
Therefore, TCESðGÞ is empty, but the follows relation is
still described correctly.

Deterministic system models help to exclude redundant
event sequences from the model.

Definition 3.5 (Determinism). A k-Reg G ¼ ðE;B;K;C; P Þ is
deterministic, if, for each Q 2 C, there are no two productions
Q ! q cðqÞ 2 P and Q ! r cðrÞ 2 P such that r 6¼ q and
dðrÞ ¼ dðqÞ.

Example 3.7 (Test Cases of a Deterministic 1-Reg). 1-Reg
obtained by including c(p1)! p2 c(p2) in Fig. 1c is nonde-
terministic. Positive test cases s ¼ c1 p2 c1 and t ¼ c1
p1 c1 are redundant because d(s) ¼¼¼¼ d(t).

Unless noted otherwise, all grammars under consider-
ation are useful and deterministic k-Regs.

3.2 Grammar Transformation to Vary Morphology

Based on Definition 3.1, a (kþþ1)-Reg model is morphologi-
cally different from a k-Reg model, and it can be used to
model different or more subtle faults. To do this, a transfor-
mation to vary k and generate models with morphological
differences is constructed.

To give the definition of k-Reg transformation, the fol-
lowing observations are generalized:

� For each cðq1 q2Þ ! r1 r2 cðr1 r2Þ in Fig. 3, q2 ¼ r1.
Thus, each such production can be obtained by using
cðq1Þ ! q2 cðq2Þ and cðq2Þ ! r2 cðr2Þ in Fig. 1c.

� Each S ! r1 r2 cðr1 r2Þ in Fig. 3 can be obtained by
using S ! r1 cðr1Þ and cðr1Þ ! r2 cðr2Þ in Fig. 1c.

� Each cðr1 r2Þ ! " in Fig. 3 can be obtained by using
cðr1Þ ! r2 cðr2Þ and cðr2Þ ! " in Fig. 1c.

Definition 3.6 (k-Reg Transformation). Given a 1-Reg
G1 ¼ ðE;B;K1; C1; P1Þ.

� The corresponding 1-Reg of G1 is itself: G1.
� Let Gk ¼ ðE;B;Kk; Ck; PkÞ be the corresponding k-

Reg of G1. The corresponding (kþþ1)-Reg of G1 (or Gk)
is

� Gkþþ1 ¼¼¼¼ (E, B,Kkþ1, Ckþ1, Pkþ1) where:
	 Kkþ1 ¼ fq1 . . . qk rkjcðqÞ ! rcðrÞ 2 Pkg is the set

of (kþ1)-sequences in G1.
	 Ckþ1 ¼ fcðrÞjr 2 Kkþ1g is the set of contexts.
	 Pkþ1¼ fS ! r e cðr eÞjS ! r cðrÞ 2 Pk and cðrkÞ!

e cðeÞ 2 P1g [ fcðq rkÞ ! "jcðqÞ ! r cðrÞ 2 Pk

and cðrkÞ ! " 2 P1g [ fcðq rkÞ ! r e cðr eÞjcðqÞ !
r cðrÞ 2 Pk and cðrkÞ ! e cðeÞ 2 P1g is the set of
productions.

Based on Definition 3.6, Algorithm 1 performs k-Reg
transformation. It runs in OðkjP1jjPkjÞ ¼ OðkjP1j

kþ1Þ worst

case time because (1) jPkj ¼ OðjP1j
kÞ; (2) All set union opera-

tions can be performed in Oð1Þ time because a different
element is added during each union; (3) A (kþþ1)-sequence
in G1 can be constructed in OðkÞ steps by merging a k-
sequence in G1 extracted from Gk with a 1-sequence in G1

extracted from G1. This time complexity is expected because
the number of k-sequences increases exponentially in k. In

practice, however, jPkj is generally much smaller than jP1j
k,

and k is almost always bounded. Hence, transformation can
be performed quite fast.

Algorithm 1. k-Reg Transformation

Input: Gk ¼ ðE;B;Kk; Ck; PkÞ—the corresponding k-Reg of G1

G1 ¼ ðE;B;K1; C1; P1Þ—the 1-Reg
Output: Gkþ1 ¼ ðE;B;Kkþ1; Ckþ1; Pkþ1Þ—the corresponding

(kþþ1)-Reg
Kkþ1 ¼ �; Ckþ1 ¼ fSg; Pkþ1 ¼ �

for each Q ! r cðrÞ 2 Pk where r ¼ r1 . . . rk do
if Q ¼ cðqÞwhere q ¼ q1 . . . qk then
Kkþ1 ¼ Kkþ1 [ fq rkg, Ckþ1 ¼ Ckþ1 [ fcðq rkÞg

end if
for each cðrkÞ ! R 2 P1 do
if R ¼ e cðeÞ then
if Q ¼ S then
Pkþ1 ¼ Pkþ1 [ fS ! r e cðr eÞg

else if Q ¼ cðqÞ then
Pkþ1 ¼ Pkþ1 [ fcðq rkÞ ! r e cðr eÞg

end if
else if R ¼ " then

Pkþ1 ¼ Pkþ1 [ fcðq rkÞ ! "g
end if

end for
end for

Example 3.8 (A Corresponding 2-Reg). Grammar in Fig. 3 is
the corresponding 2-Reg of the 1-Reg in Fig. 1c.

As demonstrated in Section 2.4 (Also, Fig. 4), generated
k-Reg models can be used to extend the set of fault models
due to their morphological differences.

A sequence in the corresponding k-Reg of a given 1-Reg
need not be a sequence in this 1-Reg. However, this
sequence can be used to obtain a sequence in the 1-Reg by
using the following definition and theorem.
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Definition 3.7 (Sequence Transformation). Given a (k�m)-
sequence s ¼ u1 . . .um where k � 1;m � 1 and ui ¼ ui1 . . .u

i
k

for i ¼ 1; . . . ;m. Inverse sequence transformation of s based
on integer k is defined as a (kþm�1)-sequence

T�1
S ðs; kÞ ¼ u1u2

ku
3
k . . .u

m
k

where u1 ¼ s1 . . . sk and each u
i
k ¼ si for i ¼ 2; . . . ;m.

Theorem 3.1 (From m-derived Sequences in a Correspond-
ing k-Reg to (kþm�1)-derived Sequences in 1-Reg).
Given a 1-Reg G1, and its corresponding k-Reg Gk where
k � 2 and Kk 6¼ �. If s is an m-derived sequence in Gk; t ¼

T�1
S ðs; kÞ is a ðkþm�1Þ-derived sequence in G1.

(Proof is included in Appendix.)

Example 3.9 (Sequence Transformation). TS
�1ðs; 2Þ ¼ c1 c1

x1 x1 p2 is a 5-derived sequence in the 1-Reg in Fig. 1c
for four-derived sequence s ¼ c1 c1 c1 x1 x1 x1 x1 p2 in
the 2-Reg in Fig. 3.

3.3 Positive Test Case Generation

A corresponding k-Reg can be used to generate a test set
that covers all (kþþ1)-sequences. In this way, one can reveal
missing event faults where an event does not follow a cer-
tain k-sequence.

By Definition 3.1 and Definition 3.6, a corresponding k-
Reg contains all (kþþ1)-sequences in its productions. Hence,
one can cover the productions to generate a set of sequences
and use Theorem 3.1 to obtain a test set covering all (kþþ1)-
sequences (see Algorithm 2).

Algorithm 2. Achieving (kþþ1)-sequence Coverage

Input: Gk ¼ ðE;B;K;C; P Þ—the k-Reg (k � 1)
Output: X – a set of sequences covering all (kþþ1)-sequences
X ¼ �

Y ¼¼¼¼ generate a set covering all productions of Gk

for each s 2 Y do
X ¼ X [ TS

�1ðs; kÞ//see Theorem 3.1
end for

The time complexity of Algorithm 2 is given by
OðCP ðjEj; jP jÞ þ CT ðjEj; jP jÞÞ ¼ OðCP ðjEj; jP jÞÞ where (1)
CP ðjEj; jP jÞ is the time complexity of generating a set of
sequences achieving production coverage for Gk; and (2)
CT ðjEj; jP jÞ is the time complexity of inverse transform-
ing these sequences to obtain test cases. Although there
is no detailed time complexity analysis for fast grammar-
based test generation algorithms [56], [46], [66], the per-
formance is generally polynomial in jP j, that is, OðjP jcÞ
for some c � 1. For example, even if each production is
covered a minimum number of times, the complexity

becomes OðjKj3Þ ¼ OðjP j3Þ [22]. Using such algorithms
helps to generate reduced test sets.

Example 3.10 (A Test Set Generated Using Algorithm 2).
To achieve 2-sequence coverage for the 1-Reg in Fig. 1c,
this 1-Reg can be used as input to Algorithm 2. The fol-
lowing is an example test set:

fc1 c1 x1 c1 p1 c1 p1x1x1 p2 c1 p1 p1; x1 p2x1 p2; c1 p1g:

4 MUTANT SELECTION TO INCREASE EFFICIENCY

The approach selects mutants that are of the same type as
the original model. They model a small number of faults,
which are located at the mutation points so that one mod-
eled fault does not interfere with another. This section
shows that there is no need to compare each mutant to the
original model for equivalence or test generation, and
the generation of equivalent mutants and multiple mutants
modeling the same faults can be avoided. Also, a test case to
kill the mutant can be generated in linear time.

Although various different mutation operators ([23], [51],
[9]) can be defined for k-Regs to model missing and extra
event faults, only some of these operators are needed due
to the following assumptions, considering the fact that
mutants are used in test generation.

A1. Events in a test case are executed in the given order
until a failure is observed.

A2. A test case can end with any event, which needs not
be a finish event.

Thus, for a given k-Reg, the following can be stated.

P1. Missing and extra event faults are limited by consid-
ering the k-sequences that precede the missing or
extra events while ignoring the succeeding k-sequen-
ces. Thus, by exercising all (kþþ1)-sequences in the k-
Reg, one can test whether an event is missing after
some k-sequence, and, by exercising all relevant
faulty k-sequences, one can test whether an event is
extra after some k-sequence. (By A1)

P2. Mark nonstart, mark nonfinish, omit sequence, and
omit terminal mutants are discarded because they
do not contain any (kþþ1)-sequences that are not con-
tained in the original model. (Due to P1)

P3. Mark finish and mark nonfinish mutants do not
really correspond to fault models because every
event can be considered as a finish or nonfinish event
during the testing process. (By A2)

P4. Faults modeled using insert sequence mutants
can be modeled using insert terminal mutants.
(By definition [23])

P5. Nonterminal and terminal duplication, deletion and
replacement mutants are discarded because they
contain multiple missing event or extra event faults.
Also, nonterminal replacement is not type-preserv-
ing (see Section 6.3). (By definition [51], [9])

P6. All negative test cases are FCES. (By A1)

Consequently, one can use the original k-Reg to cover
(kþþ1)-sequences for missing event faults (as outlined in
Section 3.3) and mark start and insert terminal mutants to
cover faulty 1-sequences and faulty (kþþ1)-sequences for
extra event faults. Thus, only mark start and insert termi-
nal operators are studied by proposing mutant selection
strategies and developing test generation methods.

G ¼¼¼¼ (E, B, K, C, P) is considered as the original k-Reg
model in the discussion, unless noted otherwise.

4.1 Mark Start Mutant Selection

Mark startmutation operator is used to mark k-sequences as
start k-sequences. Therefore, mark start mutants are used to
model extra start event faults.
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Definition 4.1 (Mark Start). Given a k-sequence e 2 K such
that S ! e cðeÞ =2 P , mark start (Ms) operator is defined as
MsðG; eÞ ¼ ðE;B;K;C; P ’Þ where P ’ ¼ P [ fS ! e cðeÞg.

In the following, G’ ¼ MsðG; eÞ ¼ ðE;B;K;C; P ’Þ, unless
noted otherwise.

Example 4.1 (A Mark Start Mutant). Let G be the 1-Reg in
Fig. 1c. Fig. 5a showsMs(G, p1).

The set of all CESs is extended due to the mutation.

Lemma 4.1 (Set of CESs of a Mark Start Mutant). The set of
all CESs of G’ is given by

TCESðG
0Þ ¼ TCESðGÞ [ fe x j cðeÞ )�

G xðx 2 E�Þg:

(Proof is included in Appendix.)

Example 4.2 (Set of CESs of a Mark Start Mutant).Marking
p1 as a start event in 1-Reg Fig. 1c (see Fig. 5a) extends the
set of CESs of the 1-Reg. Event sequences that start with
p1, such as p1, p1 p1, p1 c1 p1 and p1 x1 x1 p2, are
included in the new set.
Using Lemma 4.1, Lemma 4.2 discusses the equivalence

of a mark start mutant to the original k-Reg.

Lemma 4.2 (Equivalence of a Mark Start Mutant). G’ is not
equivalent to G if and only if dðXÞndðY Þ 6¼ � where

� X ¼ fe x j cðeÞ)G
�x ðx 2 E�Þg and

� Y ¼ fe’ y jS)G
�e’y ðe’ 2 K; y 2 E�Þ where e’ 6¼ e

and dðe’Þ ¼ dðeÞg � TCESðGÞ.
(Proof is included in Appendix.)

Example 4.3 (Equivalence of a Mark Start Mutant). Let G
be the 1-Reg in Fig. 1c and G’ ¼ MsðG; p1Þ be the 1-Reg
in Fig. 5a. G’ extends TCESðGÞ by X that contains new
sequences starting with p1. Since there is no CES starting
with a p event in G, Y ¼ �. Thus, dðXÞndðY Þ ¼ dðXÞ 6¼ �,
which means that there are additional decontexted event
sequences in dðTCESðG’ÞÞ. Thus, dðTCESðG’ÞÞ 6¼ dðTCES

ðGÞÞ and G’ is not equivalent to G.

Sufficient conditions for usefulness, determinism, and
nonequivalence of a mark start mutant are outlined in the
following.

Theorem 4.1 (Usefulness and Determinism of a Mark Start
Mutant). G’ is useful, if G is useful, and G’ is deterministic, if
G is deterministic and there is no S ! e’ cðe’Þ 2 P such that
e’ 6¼ e and dðe’Þ ¼ dðeÞ.
(Proof is included in Appendix.)

Example 4.4 (Usefulness and Determinism of a Mark Start
Mutant). Let G be the 1-Reg in Fig. 1c. Since G is useful,
G0 ¼ MsðG; p1Þ in Fig. 5a is also useful. Furthermore,

since G is deterministic and no p event is a start event in
G, G’ is also deterministic.

Theorem 4.2 (Nonequivalence of a Mark Start Mutant). G0

is not equivalent to G, if G is useful and there is no
S ! e0 cðe0Þ 2 P such that e0 6¼ e and dðe0Þ ¼ dðeÞ.
(Proof is included in Appendix.)

Example 4.5 (Nonequivalence of a Mark Start Mutant). G,
the 1-Reg in Fig. 1c is useful and it has no p event as a
start event. Therefore, its mutant G0 ¼ MsðG; p1Þ, the
1-Reg in Fig. 5a, is not equivalent to G.

The mutant selection strategy is now devised for mark
start mutants.

Mark Start Mutant Selection. Given a k-Reg G ¼ ðE;B;
K;C; P Þ. For each Ms(G, e), k-sequence e is selected as a mutation
parameter if the following hold:

1. There is no start k-sequence x such that dðx1Þ ¼ dðe1Þ.
2. There is no previously selected mutation parameter y such

that dðy1Þ ¼ dðe1Þ.

Let G be a useful and deterministic k-Reg. By Theorem 4.1
and Theorem 4.2, mutants generated from G using the
above strategy are useful, deterministic, and nonequivalent
to G. Furthermore, each of these mutants models a different
fault located at the mutation point; that is, e1 (also dðe1Þ) is
an extra start event for eachMsðG; eÞ.

The left-out mark start mutants are useful. However,
they are either nondeterministic or model previously mod-
eled faults. Some nondeterministic mutants do not model
any extra event faults. If they do, these faults are not extra
start event faults; therefore, they can be modeled using
insert terminal mutants.

Algorithm 3 selects mark start mutants using the above
strategy. Its runtime complexity is given byOðjBjjP jÞ: (1) The
number of mutants generated is bounded by jB j because
each mutant represents a different extra start event fault; and
(2) Each mutant Ms(G, e) can be generated in OðjP jþjBjÞ ¼
OðjP jÞ time by checking if there are no start k-sequence x so
that d(x1)¼¼¼¼ d(e1) and previously selected mutation parameter
y so that dðy1Þ ¼ dðe1Þ, and copyingG tomodify it.

Algorithm 3.Mark Start Mutant Selection

Input: G ¼ ðE;B;K;C; P Þ—the k-Reg
Output:M—the set of selected mark start mutants

M ¼ �; N ¼ �

for each b 2 B do
if there is no S ! x cðxÞ 2 P such that dðx1Þ ¼ b and
there is no y 2 N such that dðy1Þ ¼ b then
Select a k-sequence e 2 K such that dðe1Þ ¼ b
G’ ¼ G;M ¼ M [ fMsðG’; eÞg; N ¼ N [ feg

end if
end for

Also, from each selected mutant, a unique test case that
kills it can be generated in Oð1Þ time by simply taking e1.

Example 4.6 (Mark Start Mutant Selection). Let G be the
1-Reg in Fig. 1c. The only selected mark start mutant is
MsðG; p1Þ.MsðG; c1Þ andMsðG; x1Þ are excluded because
c1 and x1 are already start events. Furthermore,MsðG; p2Þ
is excluded because it models the same fault asMsðG; p1Þ.

Fig. 5. Mark start and insert terminal mutants of the 1-Reg in Fig. 1c
(Mutations are drawn using boldface).
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4.2 Insert Terminal Mutant Selection

Insert terminal mutation operators are used to add new ter-
minals (k-sequences) by (possibly) connecting them to the
existing k-sequences. Therefore, insert terminal mutants are
used to model extra event faults where an event follows
some k-sequence.

Definition 4.2 (Insert Terminal). Given a k-sequence e =2 K

such that dðeÞ 2 Bk, U ¼ fða; eÞ j a 2 fa1; . . . ; amg � Kg
and V ¼ fðe; bÞ j b 2 fb1; . . . ; bng � K [ fegg, insert termi-
nal (It) operator is defined as It ðG; e; U; V Þ ¼
ðE;B;K0; C0; P 0Þ where K0 ¼ K [ feg, C0 ¼ C [ fcðeÞg, and
P 0 ¼ P [ fcðeÞ ! a cðaÞ j ða; eÞ 2 Ug [ fcðbÞ ! e cðeÞ
j ðe; bÞ 2 V g.

To generate mutants that contain a small number of
changes, jUj ¼ 1, that is, U ¼ fða; eÞg. Furthermore, since all
negative test cases are FCESs, V ¼ � and cðeÞ ! e is inserted
for the usefulness of k-sequence e. Therefore, in the follow-
ing, G0 ¼ ItðG; e; fða; eÞg;�Þ ¼ ðE;B;K0; C0; P 0Þ, unless noted
otherwise.

Example 4.7 (An Insert Terminal Mutant). Let G be the
1-Reg in Fig. 1c. Fig. 5b shows ItðG; p3; fðp2; p3Þg;�Þ
where p3 is a new contexted paste event. Note that, since
V ¼ �; cðd1Þ ! " is additionally inserted to preserve use-
fulness of p3.

Lemma 4.3 (Set of CESs of an Insert Terminal Mutant). The
set of all CESs of G0 is given by

TCESðG
0
Þ ¼ TCESðGÞ [ fx e ) G�x cðaÞðx 2 E�Þg:

(Proof is included in Appendix.)

Example 4.8 (Set of CESs of an Insert Terminal Mutant).
Let G be the 1-Reg in Fig. 1c and G0 ¼ ItðG; p3;
fðp2; p3Þg;�Þ be the 1-Reg in Fig. 5b. The set of CESs is
extended by event sequences that end with p3, such as x1
p2 p3, c1 x1 p2 p3 and c1 p1 x1 p2 p3.

Lemma 4.3 is used to discuss the equivalence of an insert
terminal mutant to the original k-Reg in Lemma 4.4.

Lemma 4.4 (Equivalence of an Insert Terminal Mutant). G0

is not equivalent to G if and only if dðXÞndðY Þ 6¼ � where

� X ¼ fx e jS)G
�x cðaÞðx 2 E�Þg and

� Y ¼ fw jw 2 TCESðGÞ and w contains e0 where e0 2 K,
e0 6¼ e and dðe0Þ ¼ dðeÞg � TCESðGÞ.

(Proof is included in Appendix.)

Example 4.9 (Equivalence of an Insert Terminal Mutant).
Let G be the 1-Reg in Fig. 1c. G0 ¼ ItðG; p3, fðp2; p3Þg;�Þ
in Fig. 5b extends TCESðGÞ by X that contains new
sequences ending with p3; all these sequences actually
end with x1 p2 p3. Although there are CESs in G which
contain a p event, none of these sequences ends with an x
p p sequence. Thus, dðXÞndðY Þ 6¼ �, which means that
there are additional decontexted event sequences in
dðTCESðG

0ÞÞ. Thus, dðTCESðG
0ÞÞ 6¼ dðTCESðGÞÞ and G’ is

not equivalent to G.

The following give sufficient conditions for usefulness,
determinism, and nonequivalence of an insert terminal
mutant.

Theorem 4.3 (Usefulness and Determinism of an Insert
Terminal Mutant). G0 is useful, if G is useful, and G0 is
deterministic, if G is deterministic and there is no cðaÞ !
e’ cðe’Þ 2 P such that e0 6¼ e and dðe0Þ ¼ dðeÞ.

(Proof is included in Appendix.)

Example 4.10 (Usefulness and Determinism of an Insert
Terminal Mutant). Since G, the 1-Reg in Fig. 1c, is useful,
its mutant G0 ¼ ItðG;p3; fðp2; p3Þg;�Þ, the 1-Reg in
Fig. 5b, is also useful. Furthermore, sinceG is deterministic
and no p event follows p2 inG,G0 is also deterministic.

Theorem 4.4 (Nonequivalence of an Insert Terminal
Mutant). G0 is not equivalent to G, if G is useful and deter-
ministic, and there is no cðaÞ ! e0 cðe0Þ 2 P such that e0 6¼ e
and dðe0Þ ¼ dðeÞ.

(Proof is included in Appendix.)

Example 4.11 (Nonequivalence of an Insert Terminal
Mutant). G, the 1-Reg in Fig. 1c, is useful, deterministic
and no p event follows p2 in G. Therefore, its mutant
G’ ¼ ItðG; p3; fðp2; p3Þg;�Þ, the 1-Reg in Fig. 5b, is not
equivalent to G.

The strategy to select insert terminal mutants is
now given.

Insert Terminal Mutant Selection. Given a k-Reg
G ¼ ðE;B;K;C; P Þ. For each ItðG; e; fða; eÞg;�Þ, 3-tuple
ðe; fða; eÞg;�Þ is selected as a mutation parameter if the fol-
lowing hold:

1. There is no cðaÞ ! x cðxÞ 2 P such that dðxkÞ¼dðekÞ.
2. There is no previously selected mutation parameter

ðy; fða; yÞg;�Þ such that dðykÞ ¼ dðekÞ.

LetG be a useful and deterministic k-Reg. By Theorem 4.3
and Theorem 4.4, mutants generated from G using the above
strategy are useful, deterministic, and not equivalent to G.
Furthermore, each of these mutants models a different fault
located at themutation point; that is, ek (also dðekÞ) is an extra
event that follows k-sequence a for each ItðG; e; fða; eÞg;�Þ.

The excluded insert terminal mutants are useful. How-
ever, they are either nondeterministic or model previously
modeled faults. Some nondeterministic mutants do not
model any extra event faults. If they do, these faults are not
located at the mutation points; therefore, they are modeled
using some other insert terminal mutants.

Algorithm 4. Insert Terminal Mutant Selection

Input: G ¼¼¼¼ (E, B, K, C, P)—the k-Reg
Output:M—the set of selected insert terminal mutants
M ¼ �

for each a 2 K do
N ¼ �

for each b 2 B do
if there is no cðaÞ ! x cðxÞ 2 P such that dðxkÞ ¼ b and
there is no ðy; ða; yÞ;�Þ 2 N such that dðykÞ ¼ b then
b0 ¼¼¼¼ a new contexted version of b; e ¼ a2 . . . ak b0

G0 ¼ G;M ¼ M [ fItðG0; e; fða; eÞg;�Þg, N ¼ N [ feg
end if

end for
end for

Algorithm 4 generates all insert terminal mutants using
the above strategy. Its runtime complexity is given by
O(jK jjB jjP j ): (1) The number of mutants generated is
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bounded by jK jjB j because each mutant represents a differ-
ent extra event fault following a k-sequence; and (2) each
mutant ItðG; e; fða; eÞg;�Þ can be generated in OðjP j þ jB j þ
kÞ ¼ OðjP jÞ time by checking whether there are no cðaÞ !
x cðxÞ 2 P so that dðxkÞ ¼ dðekÞ and previously selectedmuta-
tion parameter ðy; fða; yÞg;�Þ so that dðykÞ ¼ dðekÞ, preparing
e by copying a2 . . . ak to append b0, and copyingG tomodify it.

Also, from each selected mutant, a unique test case that
kills the mutant can be generated in OðjP jÞ time by using
breadth-first search to reach a e.

Example 4.12 (Insert Terminal Mutant Selection). Let G be
the 1-Reg in Fig. 1c. One can only use basis terminal p,
because c and x can follow all terminals. The only
selected insert terminal mutant is ItðG; p3; fðp2; p3Þg;�Þ,
because only p2 is not followed by a p event.

4.3 Negative Test Case Generation from Mutants

Each mark start mutant selected using the strategy in
Section 4.1 contains a different faulty 1-sequence, aiming to
reveal a different extra start event fault, and each insert ter-
minal mutant selected using the strategy in Section 4.2 con-
tains a different faulty (kþþ1)-sequence, aiming to reveal a
different extra event fault. Since positive test cases cannot
cover such sequences, they cannot reveal extra event faults.
Thus, the inserted productions in these mutants can be cov-
ered to generate FCESs covering the mentioned faulty
sequences and a unique test case can be generated for each
faulty sequence to obtain a reduced test set (Algorithm 5).

Algorithm 5. Achieving Faulty (kþþ1)-sequence Coverage

Input: Gk ¼ ðE;B;K;C; P Þ—the k-Reg (k � 1)
Output:X—a set of sequences covering faulty (kþþ1)-sequences
X ¼ �; Y ¼ �

for each G0 ¼ MsðGk; eÞ selected as in Section 4.1 do
X ¼ X [ fe1g

end for
for each G’ ¼ ItðGk; e; fða; eÞg;�Þ selected as in Section 4.2 do
s ¼¼¼¼ generate a sequence by covering cðaÞ ! e cðeÞ from G’
X ¼ X [ T�1

S ðs; kÞ //see Theorem 3.1
end for

The time complexity of Algorithm 5 is given by
O( jBkP jþþjKkBkP j 2) where (1) O( jBkPj) is the time com-
plexity of iterating through all mark start mutants using the
strategy in Section 4.1; a distinguishing test case is gener-
ated in O(1) time from each mark start mutant; and (2)
O(jKkBkPj) is the time complexity of iterating through all
insert terminal mutants using the strategy in Section 4.2; a
distinguishing test case is generated in O(jPj) time from
each insert terminal mutant.

Example 4.13 (A Test Set Generated Using Algorithm 5).
To achieve faulty 3-sequence coverage for the 1-Reg
in Fig. 1c, the 2-Reg in Fig. 3 can be used as input to Algo-
rithm 5. The following is an example test set:

fp1; x1 p2 p3g:

5 CASE STUDIES

Three case studies are performed over nontrivial com-
mercial systems to validate the approach, to analyze its

characteristics, and to compare the k-Reg-based testing
method to random testing [31] and mutate-and-kill-based
MBMT approach (which is based on the idea of generat-
ing discriminating test cases by comparing mutants
against the original model) [8], [24], [25], [4].

While performing the case studies, the following are
carefully considered. (1) The SUCs are not toy systems so
that the results will be nontrivial. (2) The SUCs are not
immensely large so that the time spent for the case study
will be convenient and the process tractable. (3) The devel-
oped models display different characteristics in the sense
that the number of test targets increases in various fashions
as the sequence length k increases. This allows considering
diametrically different systems. (4) Assumptions made in
Section 4 remain valid.

The case studies seek to answer the following questions.

Q1. Which approach is more effective at revealing faults?
Q2. Which approach is more cost-effective?
Q3. Which approach is more efficient at fault detection?
Q4. Which approach is more effective at revealing faults

that are not targeted by the approach?
Q5. How is the test execution trend associated with each

approach?

5.1 Experimental Design and Parameters

To make appropriate comparisons, test targets [13] are
defined as (kþþ1)-sequences and faulty (kþþ1)-sequences
(k ¼¼¼¼ 1, 2, 3). The test process, the test sets generated, and the
data collected using these test sets are defined as follows.

5.1.1 k-Reg

Test sequences are generated by employing the k-Reg
approach for positive testing (Algorithm 2) and negative
testing (Algorithm 5). Note that by choosing k values appro-
priately, the testing cost can be adjusted to make the
approach scalable for larger applications.

5.1.2 Mixed k-Reg (M-k-Reg)

The mixed k-Reg approach is used to show how k-Reg can be
carried a ‘half-step’ forward if the budget is sufficient. CESs
are generated from the given (kþþ1)-Reg for achieving
(kþþ2)-sequence coverage, and FCESs are generated from
mutants of the given k-Reg for achieving faulty (kþþ1)-
sequence coverage.

5.1.3 Random(kþþ1)

The Random(kþþ1) approach represents the random counter-
part of the k-Reg and the M-k-Reg approaches where (kþþ1)-
sequences and faulty (kþþ1)-sequences are covered using
the given 1-Reg model. To collect the data for Random(kþþ1)
in an appropriate manner, multiple random test sets need
to be generated. Thus, Random(kþþ1,maxlen) is defined as the
random testing approach where maximum length of a test
sequence is bounded by maxlen.

In Random(k þþ 1,maxlen), start sequences achieving (kþþ1)-
sequence coverage and FCESs achieving faulty (kþþ1)-
sequence coverage are generated from the given 1-Reg,
adapting the approach defined in [13]. In this work, four
different maxlen values are selected, depending on the SUC,
to guarantee the coverage of the intended test targets and to
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avoid relatively high test generation and test execution times.
Furthermore,N ¼ 30 random test sets are generated for each
(kþþ1, maxlen) pair [11].

Consequently, the data collected using 30 random test
sets are averaged to obtain the data for Random(kþþ1, max-
len), and the data collected for Random(kþþ1, maxlen) using
four different maxlen values are averaged to obtain the data
for Random(kþþ1).

Researches suggest that random testing performs better
than a large class of testing strategies [11], [12]. Also, unlike
most other random testing adaptations which do not use
any information about the program or the specification [28],
the adaptation in this work uses information on the test tar-
gets [13] derived from k-Reg models. Thus, this adaptation
can be considered to be quite competitive.

5.1.4 Mutate and Kill (MK)

The MK represents the mutate-and-kill-based MBMT
approach which is based on generating discriminating test
cases [8], [24], [25], [4] by comparing each mutant against the
original model. If the mutant is not equivalent, a set of dis-
criminating test cases is generated using the differences
between the mutant and the original model. The approach
does not perform any morphology variation. Furthermore,
although equivalentmutants are excluded,multiplemutants
modeling the same faults are used in test generation.

Due to large numbers of possible mutants (see Table 2),
test generation takes too long and test set size becomes very
large. Therefore, the approach ismodified to limit the execut-
able size of the generated test set, that is, the total number of
events in the test set that can be executed on the system. For
each MK, a corresponding size is selected as the executable
size of the test set generated using either k-Reg or M-k-Reg,
and test cases are generated from 1-Reg mutants as long as
the executable test set size is smaller than the selected size.

MK(k) is the MK-based counterpart of k-Reg, and MK
(M-k) is that of M-k-Reg. Thus, MK-based MBMT
approach is separately balanced with k-Reg and M-k-Reg
in terms of the test execution effort.

5.2 Systems under Consideration

For the case studies, three nontrivial SUCs are selected
from two commercial systems: (1) SFH (Self-propelled
Forage Harvester) of CLAAS1 and (2) ISELTA (Isik’s

System for Enterprise-Level web Centric Tourist Applica-
tions) of Isik Touristik.2

SFH is a farm implement that harvests forage plants. It is
one of the most powerful machines used for farming, having
engines generating up to 820 kW and producing an output
exceeding 400 tons of silage per hour. The electronic control
unit for the adjustment process of SFH shear bar (ShearBar)
is selected (Fig. 6a) as the first case study. The ShearBar is
controlled by signals coming from various external sources;
its function is very critical for safety and financial reasons.

ISELTA is a commercial web portal for marketing
tourist services. It enables travel and tourism enterprises
to create their own individual search and service masks.
Potential customers can then use these masks to select
and book rooms and benefit from various other services.
Two nontrivial facilities offered by ISELTA are selected
as the second and the third case studies: Specials

(Fig. 6b) and Additionals (Fig. 6c).

5.3 Models of the SUCs

A 1-Reg model is created for each SUC from the system
specification, and k-Reg models for k � 2 are obtained using
Algorithm 1. The properties of k-Reg models for each SUC
are included in Table 1 to give some idea about the size and
complexity of the models and to assure that they are not
trivial. Table 1 also demonstrates that the relation between k
and the number test targets is different for each SUC.

Table 2 gives the total numbers of mutants that are
selected using the k-Reg-based approach and that can be
generated using the other event-based MBMT approaches
[23], [16], [42], which employ no mutant selection strategies.
Since other approaches do not vary model morphology,
mutants are counted using the initial system models.

Table 2 also demonstrates the reason behind using a size
parameter for the MK-based approach given in Section 5.1.4
and the effectiveness of the mutant selection strategies pro-
posed in Section 4.1 and Section 4.2. The numbers of possible
mutants are quite large and the total numbers of mutants
selected using different k-Reg models are 
0.40, 
2.97 and

3.62 percent of the numbers of possible mutants.

Due to large numbers of mutants, computing the exact
numbers of equivalent and multiple mutants is also not
feasible, because mutants need to be compared to the
original model and to the other mutants. The proposed
approach avoids generation of these mutants without

Fig. 6. SUCs.

1. http://www.claas.com 2. http://www.isik.de
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distinguishing them from each other as described in
Section 4.1 and Section 4.2.

5.4 Fault Seeding

Due to large number of possible mutants for each SUC, a
fixed number of event-based faults are randomly gener-
ated and seeded [52], [39], [64] to compare the testing
processes in a realistic manner while gaining insight into
test execution.

From an event-based MBT view, a user makes observa-
tions based on (sequences of) events. Therefore, faults can
be characterized as missing event and extra event faults,
because a fault in the system is observed in the form of an
event that is either missing or extra at some point. m-Regs
for m ¼¼¼¼ 1,2,3,4 are used to model the faults and vary the
fault domain, assuming that the faults modeled using an m-
Reg generally become more subtle as m increases since a
stronger coverage is required to systematically uncover
them. k-Reg, M-k-Reg, Random(kþþ1), MK(k), and MK(M-k)
aim to uncover the faults modeled using k-Reg mutants.
However, it is also possible that they reveal faults modeled
using m-Reg mutants for some m 6¼ k, though such faults
are not targeted by them. For each case study, 50 faults are
randomly seeded for each m where half of these faults are
missing event faults and the other half are extra event faults.
In total, 200 random faults are seeded for each SUC.

Note that using model-based faults for evaluations is
actually relevant for real-world faults. There is evidence
supporting the fact that a test set that detects more model-
based mutants also detects more code-based mutants [6]
and that a test set that detects more code-based mutants
also detects more real-world faults [10]. Thus, the evidence
suggests that a test set that detects more model-based
mutants also detects more real-world faults.

5.5 Results of the Test Generation and Execution

Lower bounds for maxlen are selected to guarantee that the
intended test targets can be covered and in reasonable time,
and the upper bounds are selected to avoid excessive test

generation and execution times. Thus, maxlen is limited to
60,63,67,70 for ShearBar and 20,30,40,50 for Specials

and Additionals. Also, to collect precise data on test exe-
cution process, each test sequence is executed until a failure
is observed or until its completion. Upon observing a fail-
ure, the corresponding fault is corrected and the sequence
revealing this fault is re-executed. If a sequence reveals no
faults and runs until completion, it is not executed again.
This process continues until all test sequences are executed
to completion.

Table 3 presents summarized data on test set generation
and test execution processes. Table 4 outlines the data on
the number of revealed faults (see Section 5.4 for m), and
Fig. 7 demonstrates how the revealed number of faults
changes with respect to the number of events executed.

5.6 Interpretation of the Results

Questions Q1—Q5, which are posed at the beginning of
Section 5, can be now answered in order.

5.6.1 Q1: Fault Detection Effectiveness

The revealed fault numbers are rounded to the nearest inte-
gers for comparison, and Table 5 is constructed by rewriting
the data for k-Reg and M-k-Reg from Table 3 with respect to
Random(kþþ1) andMK.

Table 5 demonstrates that, in general, k-Reg reveals fewer
faults than Randomðkþ 1Þ, up to 
25.07 percent. However,
M-k-Reg almost always performs better than Random(kþþ1)
by revealing up to 
8.69 percent more faults. Furthermore,
it shows that both k-Reg and M-k-Reg always reveal more
faults than their corresponding MK counterparts, respec-
tively, up to 
134.62 and 
124.39 percent.

When the change in the number of faults revealed is con-
sidered with respect to k (Table 3), k-Reg shows the overall
fastest increasing trend for each case study, being up
to 
106.06 percent faster than Random(kþþ1). It is followed by
M-k-Reg. Furthermore, MK may sometimes even show non-
decreasing trends.When the increasing trends are considered,

TABLE 1
k-Reg Models

ShearBar Specials Additionals

k k-sequences/
faulty k-sequences

k-Reg
Productions

k-sequences/
faulty k-sequences

k-Reg
Productions

k-sequences/
faulty k-sequences

k-Reg
Productions

1 314/103 422 90/12 429 93/13 513
2 395/32,261 558 427/743 2,191 511/791 2,984
3 506/40,574 698 2,184/3,367 11,205 2,977/4,177 17,271
4 626/51,998 856 11,171/17,221 58,019 17,236/24,442 100,869

TABLE 2
Mutant Numbers

ShearBar Specials Additionals

k k-Reg
Mutants

Event-Based
Mutants

k-Reg
Mutants

Event-Based
Mutants

k-Reg
Mutants

Event-Based
Mutants

1 32,364 31,058,682 755 737,370 804 813,285
2 40,653 – 3,378 – 4,189 –
3 52,077 – 17,732 – 24,454 –
Total 125,094 31,058,682 21,865 737,370 29,447 813,285
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k-Reg andM-k-Reg are up to 
3.2 times and 
1.2 times faster
thanMK(k) andMK(M-k), respectively.

5.6.2 Q2: Cost Effectiveness

Test execution time can be measured by assuming that
the execution of each event takes approximately the same
amount of time on the average and taking one time unit
to be the average time to execute a single event [18]. Note
that using the number of executed events in this way as
an indicator of the test execution effort is more realistic
than using other common indicators such as the number
of test cases and the total number events in the test set
[61]. Thus, Table 6 is constructed using the data in Table 3
by rounding test generation times appropriately and
calculating how much fewer events are executed with

respect to random testing. Also, the numbers of events
executed by k-Reg-based approaches are not discussed
with respect to the MK-based approaches because the
approaches are balanced in terms of the test execution
effort as discussed in Section 5.1.4.

Table 6 shows the effects of linear-time test generation
from the mutants in the k-Reg-based testing approach. In
general, test generation times are much smaller for k-Reg and
M-k-Reg when compared to others, up to 
99.99 percent.
However, in some cases, test generation times for M-k-Reg
are greater when compared to MK(M-k), up to 
4.5 times,
because M-k-Reg uses the corresponding (kþþ1)-Reg (instead
of the k-Reg) for positive test generation. Also, k-Reg and
M-k-Reg require, respectively, up to 
70.65 and 
33.62
percent less test execution efforts than Random(kþþ1).

TABLE 3
Test Generation and Test Execution Data

Test Set Sequence
Number

Total
Length

Average
Length

Generation
Time (s)

Events
Executed

Faults
Revealed

Fault Detection
Rate

ShearBar 1-Reg 32,439 1,125,004 34.68 6 1,131,355 165 0.000145843
M-1-Reg 32,465 1,126,621 34.70 6 1,133,560 174 0.000153499

Random(2) 32,759 1,306,973 39.90 49,756 1,313,915 174.75 0.000133051
MK(1) 30,780 1,924,440 62.52 42,927 1,129,508 103 0.000091190

MK(M-1) 30,934 1,932,476 62.47 43,174 1,132,958 103 0.000090912
2-Reg 40,754 1,465,701 35.96 12 1,473,026 182 0.000123555

M-2-Reg 40,764 1,466,319 37.22 12 1,473,765 184 0.000124850
Random(3) 41,183 1,697,887 41.23 54,756 1,705,243.25 183 0.000107362

MK(2) 40,035 2,514,171 62.8 56,819 1,472,884 103 0.000069931
MK(M-2) 40,035 2,514,171 62.8 56,706 1,472,884 103 0.000069931
3-Reg 52,188 1,942,081 37.21 19 1,949,959 194 0.000099489

M-3-Reg 52,232 1,944,064 35.97 20 1,951,997 195 0.000099898
Random(4) 52,727 2,231,070 42.31 95,606 2,238,921 194 0.000086684

MK(3) 52,377 3,323,226 63.45 74,683 1,947,314 108 0.000055461
MK(M-3) 52,512 3,330,828 63.43 74,856 1,951,490 108 0.000055342

Specials 1-Reg 832 7,387 8.88 1 8,613 72 0.008359457
M-1-Reg 1,349 16,358 12.13 3 18,407 96 0.005215407

Random(2) 1,182 25,852 21.87 746 27,729.5 95.25 0.003631357
MK(1) 513 13,094 25.52 12 12,116 40 0.003301420

MK(M-1) 995 25,327 25.45 18 20,127 43 0.002136434
2-Reg 3,972 41,548 10.46 4 43,851 122 0.002782149

M-2-Reg 7,584 100,593 13.26 49 103,638 147 0.001418399
Random(3) 5,563 127,968 23.00 12,211 130,738 135.25 0.001093049

MK(2) 2,684 65,775 24.51 44 46,237 52 0.001124640
MK(M-2) 6,268 153,337 24.46 99 106,033 69 0.000650741
3-Reg 21,438 250,383 11.68 58 253,668 166 0.000654399

M-3-Reg 39,878 576,675 14.46 3,928 580,495 178 0.000306635
Random(4) 28,404 677,718 23.86 166,003 681,379.75 172.5 0.000268535

MK(3) 16,324 395,166 24.21 272 256,265 83 0.000323883
MK(M-3) 38,829 928,670 23.92 722 581,852 98 0.000168428

Additionals 1-Reg 910 8,154 8.96 1 9,154 65 0.007100721
M-1-Reg 1,684 21,217 12.60 5 22,909 92 0.004015889

Random(2) 1,315 29,462 22.40 3,967 31,191.75 86.75 0.002950497
MK(1) 737 15,776 21.41 9 11,008 38 0.003452035

MK(M-1) 1,519 33,982 22.37 23 22,796 41 0.001798561
2-Reg 5,069 53,172 10.49 6 55,086 114 0.002069491

M-2-Reg 11,019 148,652 13.49 150 151,403 139 0.000918080
Random(3) 7,167 167,999 23.44 71,991 170,767.5 129.25 0.000801930

MK(2) 3,803 83,448 21.94 55 57,384 57 0.000993308
MK(M-2) 9,587 219,853 22.93 131 151,339 67 0.000442715
3-Reg 31,284 364,059 11.64 170 367,094 161 0.000438580

M-3-Reg 65,644 959,294 14.61 12,930 962,656 177 0.000183866
Random(4) 41,691 1,010,872 24.25 1,034,561 1,014,664.5 172.25 0.000180284

MK(3) 23,654 542,688 22.94 351 369,004 81 0.000219510
MK(M-3) 62,794 1,434,617 22.85 1,087 965,881 100 0.000103532
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In addition, Table 3 suggests that as k increases, test gen-
eration time increases,respectively, up to 
99.99 to 
99.98
percent less for k-Reg and M-k-Reg when compared to Ran-
dom(kþþ1). Furthermore, although it generally increases,
respectively, up to 
99.96 percent less for k-Reg and M-k-
Reg when compared to MK(k) and MK(M-k), the increase
is sometimes greater for M-k-Reg when compared to MK
(M-k), up to 12.4 times. As for the change in test execution
effort with increasing k, k-Reg and M-k-Reg show, respec-
tively, up to
67.09 and 
17.26 percent less increase when
compared to Random(kþþ1).

5.6.3 Q3: Fault Detection Efficiency

The fault detection rate (FDR) (the ratio of the number of
revealed faults to the number of executed events) can be
used to compare fault detection efficiency. Since test execu-
tion time is measured by the number of executed events in

Section 5.6.2, FDR is also formulated as the inverse of cost
per detected fault (CPF), that is, FDR ¼¼¼¼ 1 / CPF.

Using Tables 3, 7 shows the differences in FDRs with
respect to Random(kþþ1) and MK. According to Table 7,
FDRs of k-Reg and M-k-Reg are always higher than Ran-
dom(kþþ1), up to 
158.06 and 
43.62 percent, respec-
tively. Furthermore, they are also always higher than
MK(k) and MK(M-k), respectively, up to 
153.21 and

144.12 percent.

As for the change in FDR as k increases (Table 3),
all approaches show decreasing trends. k-Reg shows, respec-
tively, up to 
162.35 and 
165.74 percent faster decreasing
trend than Random(kþþ1) and MK(k), and M-k-Reg shows,
respectively, up to 
49.59 and 
155.57 percent faster
decreasing trend than Random(kþþ1) and MK(M-k). Never-
theless, as mentioned above, FDRs of k-Reg and M-k-Reg
always remain greater than Random(kþþ1) andMK.

TABLE 4
Faults Revealed

ShearBar Specials Additionals

Test Set m ¼¼¼¼ 1 m ¼¼¼¼ 2 m ¼¼¼¼ 3 m ¼¼¼¼ 4 m ¼¼¼¼ 1 m ¼¼¼¼ 2 m ¼¼¼¼ 3 m ¼¼¼¼ 4 m ¼¼¼¼ 1 m ¼¼¼¼ 2 m ¼¼¼¼ 3 m ¼¼¼¼ 4

1-Reg 50 47 35 33 50 16 6 0 50 13 2 0
M-1-Reg 50 47 39 38 50 32 12 2 50 32 8 2
Random(2) 50.00 47.25 39.70 37.50 50.00 29.62 11.29 4.20 50.00 24.43 8.79 3.52
MK(1) 28 25 26 24 25 10 2 3 25 11 2 0
MK(M-1) 28 25 26 24 26 11 2 4 26 12 3 0

2-Reg 50 50 44 38 50 50 18 4 49 50 12 3
M-2-Reg 50 50 45 39 50 50 33 14 49 50 30 10
Random(3) 50.00 50.00 43.42 39.42 50.00 50.00 23.46 11.82 49.00 50.00 18.89 10.96
MK(2) 28 25 26 24 29 15 4 4 31 20 3 3
MK(M-2) 28 25 26 24 34 22 8 5 33 25 4 5

3-Reg 50 50 50 44 49 49 50 18 48 50 50 13
M-3-Reg 50 50 50 45 49 49 50 30 48 50 50 29
Random(4) 50.00 50.00 50.00 44.08 49.00 49.00 50.00 24.45 48.00 50.00 50.00 24.09
MK(3) 28 27 28 25 36 28 12 7 35 31 8 7
MK(M-3) 28 27 28 25 40 34 16 8 38 36 15 11

Fig. 7. Test execution curves.

126 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 2, FEBRUARY 2015



5.6.4 Q4: Effectiveness of Detecting

Non-Targeted Faults

Table 4 suggests that, as k is increased, k-Reg-based test-
ing reveals significantly more of the faults generated
from an m-Reg with higher m. This is achieved by using
morphologically different models to extend the set of
fault models. Random testing also shows a similar trend
because the test targets are derived from the k-Reg mod-
els with different k. However, such a trend is not
observed for MK-based MBMT approach since it uses a
single fixed model.

Using Tables 4, 8 is constructed to compare the effec-
tiveness of the approaches at detecting faults that are not
targeted by them. The percentage of more (or fewer)
faults revealed by k-Reg and M-k-Reg are given with
respect to Randomðkþ1Þ and MK for m ¼ 1; 2; 3; 4 (see
Section 5.4 for m).

Table 8 shows that k-Reg is overall up to 
59.17 per-
cent less effective at detecting non-targeted faults than
Random(kþþ1). On the other hand, M-k-Reg is always
more effective than Random(kþþ1) at detecting non-
targeted faults, overall up to 
14.32 percent. In addition,
k-Reg and M-k-Reg are overall up to 
94.59 and 
180.00
percent more effective than MK(k) and MK(M-k),
respectively.

5.6.5 Q5: Test Execution Trends

ShearBar. The overall execution trends of k-Reg and M-k-
Reg for ShearBar (Fig. 7a) are very similar to each other,
especially as k increases. All the approaches reveal faults
very quickly at the beginning of the test execution. Half of
all the revealed faults are discovered by performing 
0.5
percent of the test execution for k-Reg and M-k-Reg and 
1
percent for Randomðkþ1Þ and 
0.5 percent forMK.

For Random(kþþ1) and MK, the rate of change in FDR
almost always decreases steadily until the end. For k-Reg
and M-k-Reg, there are two points during test execution
where the rate of change in the FDR shows a sudden
increase. The first point resides between 
5 and 
7 percent
of the test execution and the second point resides around

95 percent.

In general, k-Reg andM-k-Reg show better FDRs than Ran-
dom(kþþ1) until the end stages of their respective test execu-
tion processes where the number of faults revealed by them
may, for a short while, remain up to
4.52 percent lower than
that of Random(kþþ1). This starts at some point after 
68 to

78 percent of the test execution is completed. After a while,
the rates of change in FDRs of k-Reg and M-k-Reg increase
significantly by detecting, respectively, up to 
9.70 and

8.05 percent of the revealed faults for the last 
5 percent of
the execution. In addition, k-Reg andM-k-Reg achieves better

TABLE 5
More Faults Revealed w.r.t. Random(kþþ1) and MK

w.r.t. Random(kþþ1) w.r.t. MK

k ¼¼¼¼ 1 k ¼¼¼¼ 2 k ¼¼¼¼ 3 k ¼¼¼¼ 1 k ¼¼¼¼ 2 k ¼¼¼¼ 3

ShearBar k-Reg 
�5.58% (�10) 
�0.55% (�1) same 
60.19% (62) 
76.70% (79) 
79.63% (86)
M-k-Reg 
�0.43% (�1) 
0.55% (1) 
0.52% (1) 
68.93% (71) 
78.64% (81) 
80.56% (87)

Specials k-Reg 
�24.41% (�23) 
-9.80% (�13) 
-3.79% (�7) 
80.00% (32) 
134.62% (70) 
100.00% (83)
M-k-Reg 
0.79% (1) 
8.69% (12) 
3.19% (5) 
123.26% (53) 
113.04% (78) 
81.63% (80)

Additionals k-Reg 
�25.07% (�22) 
�11.80% (�15) 
�6.53% (�11) 
71.05% (27) 
100.00% (57) 
98.77% (80)
M-k-Reg 
6.05% (5) 
7.54% (10) 
2.76% (5) 
124.39% (51) 
107.46% (72) 
77.00% (77)

TABLE 6
Test Generation and Test Execution Costs

Test Generation Time
(s ¼¼¼¼ seconds, m ¼¼¼¼minutes,

h ¼¼¼¼ hours, d ¼¼¼¼ days)

Fewer Events Executed
w.r.t. Random(kþþ1)

k ¼¼¼¼ 1 k ¼¼¼¼ 2 k ¼¼¼¼ 3 k ¼¼¼¼ 1 k ¼¼¼¼ 2 k ¼¼¼¼ 3

ShearBar k-Reg 6 s 12 s 19 s 13.89% 13.62% 12.91%
M-k-Reg 6 s 12 s 20 s 13.73% 13.57% 12.82%

Random(kþþ1) 13.8 h 15.2 h 26.6 h – – –
MK(k) 11.9 h 15.8 h 20.7 h – – –

MK(M-k) 12.0 h 15.8 h 20.8 h – – –

Specials k-Reg 1 s 4 s 58 s 68.94% 66.46% 62.77%
M-k-Reg 3 s 49 s 1.09 h 33.62% 20.73% 14.81%

Random(kþþ1) 12.5 m 3.4 h 46.1 h – – –
MK(k) 12 s 44 s 272 s – – –

MK(M-k) 18 s 99 s 12.0 m – – –

Additionals k-Reg 1 s 6 s 170 s 70.65% 67.74% 63.82%
M-k-Reg 5 s 150 s 3.6 h 26.55% 11.34% 5.13%

Random(kþþ1) 1.1 h 20.0 h 12 d – – –
MK(k) 9 s 55 s 5.9 m – – –

MK(M-k) 23 s 131 s 18.1 m – – –
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FDRs than MK, except for the first 
1 to 
7 percent of the
test execution depending on the value of k, where they all
show similar trends and achieve similar FDRs.

When the pointswhere k-Reg andM-k-Reg run out of events
to execute are considered as the stopping points for random
testing, both k-Reg and M-k-Regmanage to detect up to 
2.48
and 
8.07 percent more faults, respectively, than Random
(kþþ1). Random(kþþ1) increases the number of revealed faults
by detecting up to
7.87 percent of the revealed faults and exe-
cuting up to
13.89 percent of all the executed events after the
test execution ends for k-Reg and M-k-Reg. In addition, k-Reg
andM-k-Regdetect, respectively, up to
79.63 and
80.56 per-
centmore faults than theirMK counterparts.

Specials. The shapes of k-Reg, M-k-Reg, Random (kþþ1)
and MK test execution curves for Specials (Fig. 7b) are quite
different from each other, except for the fact that MK(M-k)
is an extension ofMK(k).

For Random(kþþ1), the rate of change in FDR decreases as
the test execution proceeds. After 
40 percent of the test
execution is completed, a sudden increase in the rate of
change in FDR occurs. Such increases are more frequent for
k-Reg and M-k-Reg, but the most significant ones happen,
respectively, around 
60 to 
70 percent and 
80 to 
85
percent of the test execution. MK(k) and MK(M-k) also show
frequent increases, but they are not restricted to specific

intervals. These increases become more apparent as k gets
larger for k-Reg, M-k-Reg and Random(kþþ1) and less appar-
ent but more frequent forMK(k) andMK(M-k).

If the point where k-Reg test execution ends is considered
as the stopping point for all approaches, k-Reg and M-k-Reg
are, respectively, up to 
85.99 and 
8.96 percent more
effective than Randomðkþ1Þ at fault detection at the end.
Furthermore, k-Reg andM-k-Reg are more effective thanMK
(k) and MK(M-k), respectively, up to 
134.62 and 
46.15
percent. In this period, k-Reg is always more effective than
Randomðkþ1Þ at any point, M-k-Reg is more effective than
Random(kþþ1) except until the end stages where they some-
times reach similar values. In addition,MK is almost always
less effective than other approaches except for some short
intervals (from 
45.54 to 
58.54 percent for k ¼ 1, from

8.18 to 
15.19 percent for k ¼ 2, and from 0 to 
3.05 per-
cent and from 
21.82 to 
27.13 percent for k ¼ 3) where it
becomes slightly more effective than Randomðkþ1Þ for all k
andM-k-Reg for k ¼ 2.

Setting the end of M-k-Reg test execution as the stopping
point,M-k-Reg is, respectively, up to
30.17 and
123.26 per-
cent more effective than Randomðkþ1Þ and MK(M-k) at fault
detection at the end. The FDR of M-k-Reg becomes similar to
Random(kþþ1) from 
42 to 
53 percent of test execution for
k ¼ 1. Also, M-k-Reg becomes up to 
29.66 percent less

TABLE 7
Higher Fault Detection Rate w.r.t. Random (kþþ1) and MK

w.r.t. Random(kþþ1) w.r.t. MK

k ¼¼¼¼ 1 k ¼¼¼¼ 2 k ¼¼¼¼ 3 k ¼¼¼¼ 1 k ¼¼¼¼ 2 k ¼¼¼¼ 3

ShearBar k-Reg 9.61% 15.08% 14.77% 59.92% 76.76% 79.26%
M-k-Reg 15.37% 16.29% 15.24% 68.87% 78.61% 80.65%

Specials k-Reg 130.20% 154.53% 143.69% 153.21% 147.39% 102.04%
M-k-Reg 43.62% 29.77% 14.19% 144.12% 117.98% 82.09%

Additionals k-Reg 140.66% 158.06% 143.27% 105.70% 108.35% 99.81%
M-k-Reg 36.11% 14.48% 1.99% 123.28% 107.38% 77.65%

TABLE 8
Percentage of More Faults Revealed w.r.t. Random (kþþ1) and MK for m ¼¼¼¼ 1, 2, 3, 4 and Overall

w.r.t. Random(kþþ1) w.r.t. MK

k ¼¼¼¼ 1 k ¼¼¼¼ 2 k ¼¼¼¼ 3 k ¼¼¼¼ 1 k ¼¼¼¼ 2 k ¼¼¼¼ 3

ShearBar k-Reg 0.00, �0.53, 0.00, 0.00, 0.00, 0.00, 78.57, 88.00, 78.57, 100.00, 78.57, 85.19,
�11.84, �12.00 1.34, �3.60 0.00, �100.00 34.62, 37.50 69.23, 58.33 78.57, 76.00
(Overall: �7.59) (Overall: �0.63) (Overall: �0.06) (Overall: 53.33) (Overall: 69.23) (Overall: 80.00)

M-k-Reg 0.00, �0.53, 0.00, 0.00, 0.00, 0.00, 78.57, 100.00, 78.57, 100.00, 78.57, 85.19,
�1.76, 1.33 3.64, �1.07 0.00,2.09 69.23, 58.33 73.08, 62.50 78.57, 80.00

(Overall: �0.36) (Overall: 0.87) (Overall: 0.64) (Overall: 65.33) (Overall: 71.79) (Overall: 81.25)

Specials k-Reg 0.00, �45.98, 0.00, 0.00, 0.00, 0.00, 100.00, 60.00, 72.41, 233.33, 36.11, 75.00,
�46.86, �100.00 �23.27, �66.16 0.00, �26.38 200.00, �100.00 350.00, 0.00 316.67, 157.14
(Overall: �51.23) (Overall: �15.57) (Overall: �6.27) (Overall: 46.67) (Overall: 94.59) (Overall: 63.38)

M-k-Reg 0.00, 8.04, 0.00, 0.00, 0.00, 0.00, 92.31, 190.91, 47.06, 127.27, 22.50, 44.12,
6.29, �52.38 40.67, 18.44 0.00, 22.70 500.00, �50.00 312.50, 180.00 212.50, 275.00
(Overall: 1.97) (Overall: 13.74) (Overall: 4.53) (Overall: 170.59) (Overall: 106.38) (Overall: 56.10)

Additionals k-Reg 0.00, �46.79, 0.00, 0.00, 0.00, 0.00, 100.00, 18.18, 58.06, 150.00, 37.14, 61.29,
�77.25, �100.00 �36.47, �72.63 0.00, �46.04 0.00, 0.00 300.00, 0.00 525.00, 85.71
(Overall: �59.17) (Overall: �18.83) (Overall: �9.08) (Overall: 15.38) (Overall: 72.97) (Overall: 52.05)

M-k-Reg 0.00, 30.98, 0.00, 0.00, 0.00, 0.00, 92.31, 166.67, 48.48, 100.00, 26.32, 38.39,
�8.99, �43.18 58.81, �8.76 0.00, 20.38 166.67, n/a 650.00, 100.33 233.33, 163.64
(Overall: 14.32) (Overall: 12.87) (Overall: 4.02) (Overall: 180.00) (Overall: 111.90) (Overall: 49.41)
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effective for k¼¼¼¼ 2,3 at some interval during the test execution.
The length of this interval increases for larger k (from 
54 to

86 percent for k ¼ 2, and from 
43 to 
88 percent for
k ¼ 3). In addition, the FDR ofM-k-Reg is always greater than
MK(M-k) except for the very beginnings (up to the first 
5.53
percent) of the test executionwhere it is similar toMK(M-k).

Additionals. The shapes of test execution curves for
k-Reg, M-k-Reg, and Random(kþþ1) for Additionals

(Fig. 7c) are relatively similar to those of Specials, and, as
in Specials,MK(M-k) is an extension ofMK(k).

In general, Random(kþþ1) shows a decreasing rate of
change in FDR as the test execution proceeds. However, as
in Specials, just after 
40 percent of the test execution,
the rate of change in FDR shows an increase. For M(k) and
MK(M-k), even if such increases happen, they are not very
significant; whereas, for M-k-Reg and k-Reg, such sudden
increases are more frequent, and they becomes more appar-
ent as k gets larger. For M-k-Reg, the most significant
increase happens around 
82 to 
87 percent of the test exe-
cution, and for k-Reg around 
55 to 
68 percent.

k-Reg and M-k-Reg are respectively up to 
90.80 and

13.81 percent more effective than Random(kþþ1) at fault
detection at the end, when the point where k-Reg test execu-
tion ends is set as the stopping point for all approaches. At
this point, they are also more effective than MK(k) and MK
(M-k), respectively, up to
100.00 and
19.30 percent. In this
period, k-Reg is always more effective than Randomðkþ1Þ at
any point, and a similar argument holds for M-k-Reg except
for the end stages of test execution for k ¼ 3 where M-k-Reg
and Random(kþþ1) reach similar FDRs. Also, MK is more or
equally effective as all the other approaches for the first

34.58 percent (for k ¼ 1), 
12.69 percent (for k ¼ 2) and

3.03 percent (for k ¼ 3) of the test execution.

If the end of M-k-Reg test execution is considered as the
stopping point, M-k-Reg is always and, respectively, up to

24.32 and 
124.39 percent more effective than
Randomðkþ1Þ and MK(M-k) at the end. In certain intervals,
M-k-Reg becomes less or equally effective as Random(kþþ1).
The lengths of these intervals increase with k. For k ¼ 1, M-
k-Reg becomes similar to Randomðkþ1Þ from 
55 to 
90
percent of the test execution; for k ¼ 2, M-k-Reg becomes up
to 
21.74 percent less effective from 
48 to 
86 percent of
the test execution; and, for k ¼¼¼¼ 3, it becomes up to 
34.78
percent less effective from 
37 to 
96 percent of the test
execution. In addition, the FDR of M-k-Reg is less than MK
(M-k) for the first 
28.27 percent (for k ¼ 1), 
6.80 percent
(for k ¼ 2) and 
2.80 percent (for k ¼ 3) of the test execu-
tion, and it is greater in the rest.

5.7 A Brief Summary of the Results

The new k-Reg approach detects on the average,

� for ShearBar, 
13 percent more faults per executed
event;

� for Specials, 
143 percent more faults per exe-
cuted event; and

� for Additionals, 
147 percent more faults per
executed event,

when compared to the random testing approach, and,

� for ShearBar, 
72 percent more faults per executed
event;

� for Specials, 
134 percent more faults per exe-
cuted event; and

� for Additionals, 
105 percent more faults per
executed event,

when compared to the MK-based MBMT approach by bal-
ancing the test execution efforts.

Also, the newM-k-Reg approach detects on the average,

� for ShearBar, 
16 percent more faults per executed
event;

� for Specials, 
29 percent more faults per executed
event; and

� for Additionals, 
18 percent more faults per exe-
cuted event,

when compared to the random testing approach, and,
� for ShearBar, 
76 percent more faults per executed

event;
� for Specials, 
115 percent more faults per exe-

cuted event; and
� for Additionals, 
103 percent more faults per

executed event,
when compared to the MK-based MBMT approach by bal-
ancing the test execution efforts.

The above data suggest that k-Reg-based testing is
always superior to the random testing and to the MK-
based MBMT by balancing the test execution efforts, in
terms of fault detection efficiency that is quantified by
fault detection rate.

In addition, although morphologically different models
are used, k-Reg-based testing approach decreases the
mutant numbers significantly. The numbers of mutants
selected using different k-Reg models (k ¼ 1; 2; 3) are 
0.40
percent (for ShearBar), 
2.97 percent (for Specials) and

3.62 percent (for Additionals) of the numbers of
mutants required by other event-based MBMT approaches
with no mutant selection strategies.

As mentioned in Section 5.2, the SUCs used in the case
studies have different characteristics. The number of test
targets in ShearBar increases linear in k; whereas, the
numbers of test targets in Specials and Additionals

increase exponential in k,with Additionals displaying an
increase which is 
1.32e0.1497k as fast as Specials (see
Table 1 for trends). The results suggest that the difference
between k-Reg/M-k-Reg, Random(kþþ1) and MK is relatively
less apparent for ShearBar when compared to Specials

and Additionals.
To sum up, the relation between the number of test tar-

gets and k seems to greatly affect the difference between the
results observed using different approaches.

5.8 Threats to Validity

Case studies can be applied as a comparative research strat-
egy as used in this work. However, a case study is more of
an observational method that is conducted to investigate a
single entity or phenomenon. Therefore, case studies sam-
ple from the variables representing the typical situation.
This makes them easier to plan but the results become diffi-
cult to generalize. Such properties make case studies prone
to several threats to validity [62].

Threats to external validity. Due to the nature of case stud-
ies, different results may be obtained using different SUCs
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and setups. To minimize this threat, we select and use three
diametrically different SUCs representing different typical
situations. More precisely, since an event-based approach is
used, k-sequences and faulty k-sequences of events are con-
sidered as test targets, and the approaches are compared in
terms of their effectiveness and efficiency of covering these
test targets and detecting faults that are intended to be
revealed by these targets. Hence, the characteristics of a sys-
tem are defined by the relation between k and the number
of test targets. Different SUCs are selected and used where
this relation is either (1) linear, or (2) exponential, or (3)
again exponential; however, with a faster increasing trend.

Furthermore, to minimize the threat that the random test-
ing approach is not properly adapted, the existing algo-
rithm [13] is used and 30 test sets [11] are generated for each
Random(kþþ1, maxlen) and four different maxlen values are
selected; in total, 120 test sets are used to collect data for
each Random(kþþ1). The adaptation used in this work can be
considered as an over-adaption, because it uses information
on the test targets derived from k-Reg models; whereas,
most random testing approaches do not use any informa-
tion about the program or the specification [28].

In addition, the MK-based MBMT approach is balanced
against the k-Reg-based testing approach in terms of the
test execution effort as described in Section 5.1.4. This is
likely to reduce the fault detection effectiveness of the
method for the sake of completing the case studies in a feasi-
ble time as discussed in Sections 5.1.4 and 5.3.

Threats to internal validity. There is no prior work on
which type of event-based faults are more common than the
others in practice. To mitigate this threat, faults are gener-
ated and seeded randomly, avoiding any bias. To avoid a
very large number of faults, a fixed number is selected, with
half of the faults missing event faults and the other half
with extra event faults. Also, different m-Reg models for m
¼¼¼¼ 1,2,3,4 (see Section 5.4) are used to generate faults that are
not really targeted by a specific approach and that generally
become more subtle as m increases.

During generation of random test sets for each Random
(kþþ1, maxlen), maxlen values are bounded from below to
guarantee that the related test targets can be covered and in
reasonable time. Furthermore, an upper bound is used to
avoid relatively high test generation and execution times.
One can argue that the upper bound can be increased fur-
ther. However, the trend observed shows that this increase
would be mostly in favor of k-Reg-based testing approaches
because the increase in the number of revealed faults does
not seem to compensate for the increase in the test effort for
greater maxlen values.

Threats to construct validity. For the sake of being more
realistic while discussing the effectiveness at fault detection
(see Section 5.6.1), the discussion was formulated as if the
total numbers of faults in the SUCs were not known. There-
fore, although the conclusions still apply, the calculated val-
ues would be different if the discussion were held with
respect to the number of seeded faults; for example, by
using the ratio of the number of revealed faults to the num-
ber of seeded faults.

Also, only the fault detection rate was used in the com-
parison of fault detection efficiency (see Section 5.6.3), and
the effect of the test generation time was ignored. This is not

a major threat because, unless the system model does not
change, test sets are generated only once using a specific
method. Also, even if test generation times were included,
the results would be more in favor of k-Reg-based testing
approaches, as suggested by the trends in Table 3.

6 RELATED WORK

Related work can now be discussed easier in relevant cate-
gories since the approach has been introduced.

6.1 “Transformation” and “Mutation”

The grammar transformation is used in this paper for vary-
ing the morphology of a given model. This should not be
confused with similar notions used in other approaches,
such as model transformation [48], input/output transfor-
mation in metamorphic testing [67], and model composition
[45] in aspect oriented modeling.

In model transformation, the goal is to produce a certain
set of models possessing different syntax (or even seman-
tics) and to ensure that they describe the same phenomena
in a consistent way by defining relationships between these
models. The grammar transformation also defines the rela-
tionship between certain types of event-based models
(EBMs), that is, between a particular RG model describing a
given system using k-sequences and another one describing
the same system using (kþþ1)-sequences. However, its main
purpose is to generate models of the same type with differ-
ent morphological properties.

In metamorphic testing, a relation is used to reflect the
changes in the input to the changes in the output so that the
program can be tested, starting with a set of initial test cases,
by checking the relations among several executions rather
than individual outputs. In this way, no further involve-
ment of a test oracle is needed. Hence, the way this paper
varies morphology is different. Also, the proposed event-
based model optionally enables to embed the test oracle
into the sequence; one can decide whether a system fails or
passes a test case by simply executing it [15].

In aspect-oriented modeling [45], the base model and its
aspects are constructed separately. Later, these aspects are
woven onto the based model; that is, the base model is
transformed by applying the aspects and using certain mor-
phisms defined between aspect elements and the base
model. The goal is to simplify the design process by modu-
larizing the crosscutting concerns; it does not aim to vary
the model morphology as in this paper.

The concept ofmutation is also oftenused indifferent areas
of testing. For example, in metamorphic testing, it is some-
times said that a test case input is mutated to obtain another
test case input. Genetic algorithms use mutation as a genetic
operator (along with crossover) to produce a new generation
of test cases from the existing one [49]. In this paper, mutation
is used to generate faultmodels froman originalmodel. Later,
test generation was performed to obtain test cases that seek to
reveal certain faults determined by the morphology of the
model and the test generationmethod.

6.2 Model-Based Mutation Testing

Mutation testing is originally proposed as a code-based
approach to test a given system by using systematically
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generated mutants, which represent faulty versions of the
system, based on certain assumptions about the developer
and the faults [30], [37], [1]. Basically, it can be regarded both
as an evaluation technique (to assess the fault detection ade-
quacy of a test set by its ability to detect the mutants) [3] and
as a testing technique (to improve the testing process by
using the mutants) [65], [38]. A major problem is the genera-
tion of equivalent mutants, that is, mutants which are equiv-
alent to the original system. Although it is generally not
possible, certain equivalent mutants can be detected [53] and
specific techniques such as program slicing can reduce the
effort involved in equivalent mutant detection [41]. How-
ever, as opposed to the approach proposed in this paper, the
problem of generating multiple mutants that are equivalent
to each other is not considered. Furthermore, only a fixed
program and its mutants are utilized, limiting the set of
faults especially while using it as a testing technique.

In classical sense, mutation testing is performed, respec-
tively, on an implementation or a model to test the imple-
mentation or the model itself. In a non-classical sense,
mutation testing is used to test an implementation based on
its model [27], [4], [23], which is referred to as model-based
mutation testing.

In MBMT, mutants of a model have morphological dif-
ferences; however, the primary purpose is to model faults
drawn from practice [27], [4], [23]. This paper systematically
generates mutants over morphologically different models.
This enables the extending of the set of fault models by pro-
ducing mutants not necessarily considered by other
approaches that are relatively closer to the line of research
considered in this paper.

Amman et al. [8], and Black et al. [24], [25] make use of
model-checking to check for (bounded) state equivalence
between two deterministic models. In case of non-equiva-
lence, a counterexample is obtained and used as a test case.
Nondeterministic models are also used for similar purposes
[54], [26], [34].

Aichernig [4] develops a theory based on the notion of
refinement, which is applied using different types of abstrac-
tions in practice [63], [5], some of which may contain nonde-
terminism. The idea is similar to the above. However,
instead of an equivalence check, a refinement check is used
for conformance. In this way, mutants that are not equivalent
but conform to the original model are also discarded.
Improvements to the refinement checking are performed [7].

Belli et al. [23] also use event-based models to adapt
MBMT. Basic mutation operators are defined and coverage-
based test generation is performed. The proposed concepts
are also refined or extended in different ways [16], [20], [21],
[59], [42]. In these works, equivalent mutants are not really
excluded and used in coverage-based test generation to
populate the test set. Also, although some works [23], [16],
[42] adopt the transformation defined by Belli and Budnik
[22], it is used as an intermediate step for test generation.
The emerging abstraction is not exploited for the purpose of
extending the set of possible fault models. Furthermore, the
use of regular grammars and the mutant selection strategies
for testing are considered in our previous works [16], [17].
However, exploiting model morphology, linear-time test
generation from mutants, and a full-fledged approach and
its detailed evaluation are not discussed.

The approach proposed in this paper does not operate
using a fixed model and, thus, is not limited to a fixed set of
fault models. A transformation to vary model morphology
is outlined for the purpose of extending the set of fault mod-
els and generating test sets achieving different coverage to
reveal additional faults. In comparison to [51], [9], the pro-
posed mutation operators are more suitable for event-based
testing and for generating mutants that contain a small
number of faults. Furthermore, with the help of the mutant
generation strategies devised by exploiting the simple
semantics of the model, it can be guaranteed that, when a
mutant is selected, the fault is located at the mutation point.
Thus, in contrast to works related to [8], [4], there is no need
to compare the original model to the mutant to check for
(bounded) equivalence or conformance or to generate a test
case that kills the mutant; one can simply use the mutation
operation to do so. Furthermore, generation of equivalent
mutants and multiple mutants modeling the same faults
can be avoided. This helps to reduce the number of mutants
significantly and eliminate masked negative test cases when
compared to [23], [16], [42].

6.3 Grammars in Testing

Software testing practice contains a substantial amount of
work based on grammars for generating well-formed inputs
[56], [47], testing interpreters [58], and, in general, testing
software termed as grammarware, such as compilers, debug-
gers, code generators, and documentation generators [44]
using different grammar-based formalisms, for instance,
attribute grammars [55] and graphs grammars [32]. Their
use in modeling behavioral aspects of software systems has
been rare because models such as FSA are preferred due to
their state-based nature. Therefore, grammar-based testing
generally refers to the use of grammar-based formalisms for
testing grammarware.

In this respect, the approach in this paper contains simi-
larities with an existing approach [51], [9] that also uses
grammar-based models and mutation operators. However,
the present paper avoids the use of nonterminal and terminal
duplication, deletion, and replacement operators introduced by
Offutt, Ammann, and Liu. First, all of the operators, except
nonterminal duplication, can be realized by using the com-
binations of the event-based operators. Second, and more
critically, nonterminal duplication is not type-preserving.
Consequently, if this operator is applied to an RG, the
mutant becomes a CFG; that is, the type of the original
model is injured. This has severe impacts on decidability
features relative to the undecidability of the equivalence of
generated CFG-type mutants. This drawback is exemplified
using the regular grammar in Fig. 8a that is drawn from an
example used by Ammann and Offutt [9], and slightly, nev-
ertheless equivalently, reformatted for saving space. The
nonterminal duplication mutant in Fig. 8b is a CFG.

7 CONCLUSION AND FUTURE WORK

This paper proposes an event- and model-based mutation
testing approach that systematically varies a given gram-
mar-based model to generate morphologically different
models. This enables the generation of test cases covering
longer event sequences. Themajor novelties are as follows.
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� Equivalent mutants and multiple mutants modeling
the same faults are excluded.

� Any mutant can be killed by a unique, dedicated test
case that is generated in linear time; a comparison
against the original model is not necessary.

� The associated set of fault models can systematically
be extended to consider different, subtle faults.

These benefits enable to comply with quality and budget-
ary requirements and are accomplished by a series of non-
trivial steps. First, a grammar model called k-sequence right
regular grammar (k�Reg) (k � 1) is introduced to represent
the relation between events sequences of length k (k-sequen-
ces) and single events. Second, a grammar transformation is
defined to vary k for generating morphologically different
models and generating corresponding test cases covering
(kþþ1)-sequences. Third, appropriate event-based mutation
operators are defined to extend the set of fault models and
develop efficient mutant and test selection strategies to
increase the efficiency of the test process. To the authors’
knowledge, no other approach combines these advantages.

The characteristics of the approach are analyzed and a
comparison against random testing is performed over three
case studies based on industrial and commercial applica-
tions with different domains. An alternative of the approach
is derived to perform further improvements: mixed k-Reg.
The results are summarized as follows.

� k-Reg detected 13 to 147 percent more faults per exe-
cuted event than the random testing, and 72 to 134
percent more faults per executed event than the MK-
based MBMT approach.

� M-k-Reg detected 16 to 29 percent more faults per
executed event than the random testing, and 76 to
115 percent more faults per executed event than the
MK-based MBMT approach.

� The numbers of required mutants were also greatly
reduced while extending the set of fault models. The
number of mutants selected using different k-Reg
models (k ¼¼¼¼ 1,2,3) were 0.40 to 3.62 percent of the
numbers of mutants required by the other event-
based MBMT approaches which uses no mutant
selection strategies.

The authors hope that they have been able to demon-
strate the scalability of the approach not only through the
case studies but also through the adjustability of the project
budgetary costs by varying k.

Future work is planned to refine the approach for testing
systems in which the assumptions are restrictive (Section 4).

Accordingly, different traits for modeling, such as hierarchy
and communication, or utilizing the semantics of specific
types of systems are to be considered. The idea of varying
model morphology will be applied to models having richer
semantics by generalization of grammar transformation.
Also, the properties of the mutation operators should be
analyzed to consider usefulness preservation for cons-
tructing additional techniques for mutant selection and
test generation.

APPENDIX

Appendix is available as supplemental material, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/.
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