
Front.Comput.Sci.

DOI

RESEARCH ARTICLE

Exploiting Multi-Channels Deep Convolutional Neural Networks
for Multivariate Time Series Classification

Yi ZHENG1,3, Qi LIU1, Enhong CHEN1(B), Yong GE2, J. Leon ZHAO3

1 School of Computer Science and Technology, University of Science and Technology of China, Hefei, 230027, China

2 Department of Computer Science, University of North Carolina at Charlotte

3 Department of Information Systems, City University of Hong Kong, Hong Kong

c© Higher Education Press and Springer-Verlag Berlin Heidelberg 2014

Abstract Time series classification is related to many

different domains, such as health informatics, finance, and

bioinformatics. Due to its broad applications, researchers

have developed many algorithms for this kind of tasks,

e.g., multivariate time series classification. Among

the classification algorithms, Nearest Neighbor (k-NN)

classification (particularly 1-NN) combined with Dynamic

Time Warping (DTW) achieves the state of the art

performance. The deficiency is that when the data set grows

large, the time consumption of 1-NN with DTW will be very

expensive. In contrast to 1-NN with DTW, it is more efficient

but less effective for feature-based classification methods

since their performance usually depends on the quality of

hand-crafted features. In this paper, we aim to improve

the performance of traditional feature-based approaches

through the feature learning techniques. Specifically, we

propose a novel deep learning framework, Multi-Channels

Deep Convolutional Neural Networks (MC-DCNN), for

multivariate time series classification. This model first

learns features from individual univariate time series in each

channel, and combines information from all channels as

feature representation at the final layer. Then, the learnt

features are applied into a Multilayer Perceptron (MLP) for

classification. Finally, the extensive experiments on real-

world data sets show that our model is not only more efficient

than the state of the art but also competitive in accuracy. This

study implies that feature learning is worth to be investigated

for the problem of time series classification.

Received October 27, 2014; accepted month dd, yyyy

E-mail: cheneh@ustc.edu.cn

Keywords Convolutional Neural Networks,Time Series

Classification,Feature Learning,Deep Learning

1 Introduction

As the development of information technology, sensors be-

come cheaper and more prevalent in recent years. Hence, a

large amount of time series data (e.g., Electrocardiograph)

can be collected from different domains such as bioinformat-

ics and finance. Indeed, the topic of time series data mining,

e.g., univariate time series classification and multivariate time

series classification, has drawn a lot of attention [1–4].

Particularly, compared to univariate time series, multivari-

ate time series can provide more patterns and views of the

same underlying phenomena, and help improve the classifi-

cation performance. Therefore, multivariate time series clas-

sification is becoming more and more important in a broad

range of applications, such as activity recognition and health-

care [5–7]. In this paper, we focus on the classification of

multivariate time series. Along this line, there has been a

number of classification algorithms developed. As many

previous studies claimed [2, 8], among these methods, the

distance-based method k-Nearest Neighbor (k-NN) classifi-

cation is very difficult to beat. On the other hand, more

evidences have also shown that the Dynamic Time Warp-

ing (DTW) is the best sequence distance measurement for

time series in many domains [2, 8–10]. Hence, it could

reach the best performance of classification through combin-

ing the k-NN and DTW in most scenarios [9]. As contrasted

to the sequence distance based methods, traditional feature-

2
Yi ZHENG et al. Exploiting Multi-Channels Deep Convolutional Neural Networks for Multivariate Time Series Classification

based classification methods could also be applied for time

series [1], and the performance of these methods depends

on the quality of hand-crafted features heavily. However,

different from other applications, for time series data, it is

difficult to manually design good features to capture the in-

trinsic properties. As a consequence, the classification accu-

racy of feature-based approaches is usually worse than that

of sequence distance based approaches, particularly 1-NN

with DTW method. Recall that both of 1-NN and DTW are

effective but cause too much computation in many applica-

tions [10]. Hence, we have the following motivation.

Motivation. Is it possible to improve the accuracy of

feature-based methods for multivariate time series? So that

the feature-based methods are not only superior to 1-NN with

DTW in efficiency but also competitive to it in accuracy.

Inspired by the deep feature learning for image

classification [11–13], in our preliminary work [14], we

introduced a deep learning framework for multivariate time

series classification. Deep learning does not need any

hand-crafted features, as it can learn a hierarchical feature

representation from raw data automatically. Specifically, we

proposed an effective Multi-Channels Deep Convolutional

Neural Networks (MC-DCNN) model 1), each channel of

which takes a single dimension of multivariate time series

as input and learns features individually. After that, the MC-

DCNN model combines the learnt features of each channel

and feeds them into a Multilayer Perceptron (MLP) to

perform further classification. We adopted the gradient-based

method to estimate the parameters of the model. Finally,

we evaluated the performance of our MC-DCNN model on

several real-world data sets. The experimental results on

these data sets reveal that our MC-DCNN model outperforms

the baseline methods with significant margins and has a good

generalization, especially for weakly labeled data. In this

extended version, we integrate novel activation function and

pooling strategy, and meanwhile, we compare its rate of

convergence with the traditional combinations of activation

functions and pooling strategies. To further improve the

performance, we also apply an unsupervised initialization

to pretrain the convolutional neural networks and propose

the pretrained version of MC-DCNN model. Moreover, in

order to understand the learnt features intuitively, we provide

visualizations of them at two filter layers. Through the new

investigation, we summarize several discussions of current

study and they guide the directions for our future work.

The rest of the paper is organized as follows. In Section 2,

1) A preliminary version of this work has been published in the

proceedings of WAIM 2014 (full paper).

we provide some preliminaries. In Section 3, we present

the architecture of MC-DCNN, and describe how to train

the neural networks. In Section 4, we conduct experiments

on several real-world data sets and discuss the performance

of each model. We make a short review of related work in

Section 5. Finally, we conclude the paper in Section 6.

2 Preliminaries

In this section, we first introduce some definitions and

notations. Then, we define two distance measures used in

the paper.

2.1 Definitions and Notations

Definition 1. Univariate time series is a sequence of data

points, measured typically at successive points in time spaced

at uniform time intervals. A univariate time series can be

denoted as T = {t1, t2, ..., tn}.

Definition 2. Multivariate time series is a set of time series

with the same timestamps. A multivariate time series M is

a n × l matrice where the jth row and ith column of M are

m j· and m·i. While n and l show the length and the number

of single univariate time series in M. Correspondingly, m j·

and m·i represent the jth univariate time series as shown in

Definitions 1 and the points of these univariate time series at

time i.

We follow previous work [15] and extract subsequences

from long time series to perform classification instead of

directly classifying with the entire sequence.

Definition 3. Subsequence is a sequence of consecutive

points which are extracted from time series T and can be

denoted as S = {ti, ti+1, ..., ti+k−1}, where k is the length of

subsequence. Similarly, multivariate subsequence can be

denoted as Y = {m·i,m·i+1, ...,m·i+k−1}, where m·i is defined

in Definition 2.

Since we perform classification on multivariate subse-

quences in our work, in remainder of the paper, we use sub-

sequence standing for both univariate and multivariate subse-

quence for short according to the context. For a long-term

time series, domain experts may manually label and align

subsequences based on experience. We define this type of

data as well aligned and labeled data.

Definition 4. Well aligned and labeled data: Subsequences

are labeled by domain experts, and different subsequences

with the same pattern are well aligned.

Front. Comput. Sci.
3

Algorithm 1 Sliding window algorithm

1: procedure [s]=SlidingWindow(T, L, P)

2: i := 0,m := 0; ⊲ m is the number of subsequences.

3: s := empty; ⊲ The set of extracted subsequences.

4: while i + L 6 length(T) do

5: ⊲ L is the length of sliding window.

6: s[m] := T [i..(i + L − 1)];

7: i := i + P,m := m + 1; ⊲ P is the step.

8: end while

9: end procedure

Fig.1 shows a snippet of time series extracted from

BIDMC Congestive Heart Failure data set [16]. Each

subsequence is extracted and labeled according to the dotted

line by medical staffs. However, to acquire the well aligned

and labeled data, it always needs great manual cost.

N N N N N N V N N N N N N

0 1000 2000 3000

Fig. 1 A snippet of time series which contains two types of heartbeat:

normal (N) and ventricular fibrillation (V).

a)

b)

c)

d)

0 500 1000 1500

Fig. 2 Four 1D samples of 3D weakly labeled physical activities: a)

‘standing’, b) ‘walking’, c) ‘ascending stairs’, d) ‘descending stairs’.

In contrast to well aligned and labeled data, in practice,

weakly labeled data can be obtained more easily [7, 15],

which is defined as follows.

Definition 5. Weakly labeled data: A long-term time series

is associated with a single global label as shown in Fig.2.

Due to the alignment-free property of weakly labeled data,

it requires to extract subsequences by specific algorithm. The

most widely used algorithm is sliding window [17], by which

a large number of redundant subsequences may be extracted

and all kinds of potential subsequences in alignment-free

pattern space are covered. We illustrate the pseudo-code of

sliding window algorithm in Algorithm 1. The parameters T ,

L and P denote the long-term time series, the window length

and the sliding step. Supposing the length of T is n, it is easy

to find that the number of extracted subsequences is ⌈ n−L+1
P
⌉.

In summary, in this paper, we will primarily concentrate

on the time series of the same length and conduct experiments

on both labeled data that is well aligned and weakly labeled.

2.2 Time Series Distance Measure

For time series data, Euclidean distance is the most widely

used measure. Suppose we have two univariate time series Q

and C, of same length n, where Q = {q1, q2, ..., qi, ..., qn} and

C = {c1, c2, ..., ci, ..., cn}. The Euclidean distance between Q

and C is:

ED(C,Q) =

√

∑n

i=1
(ci − qi)2

Furthermore, for two multivariate time series X and Y , the

Euclidean distance between them could be defined as follows:

ED(X,Y) =
∑l

i=1
ED(xi, yi)

where l denotes the number of components, and xi and yi

represent the ith univariate time series of them, respectively.

As a simple measure, Euclidean distance suffers from several

problems [2]. In the literature, DTW is considered as an

alternative that is more robust than Euclidean distance and

can align two sequences effectively [2, 9, 10]. To align two

sequences (e.g., Q and C) using DTW, we need to construct

a distance matrix first, which is shown as follows.

d(q1, c1) d(q1, c2) · · · d(q1, cn)

d(q2, c1) d(q2, c2) · · · d(q2, cn)
...

...
. . .

...

d(qn, c1) d(qn, c2) · · · d(qn, cn)

Each element d(qi, c j) of the matrix corresponds to the

distance between the i-th point of Q and the j-th point of

C, i.e., d(qi, c j) = (qi − c j)
2. In this paper we primarily

concentrate on the time series of the same length, thus we use

two equal length time series to explain DTW for convenience.

Notice that DTW can also be applied to time series with

different length.

A warping path W is a sequence of contiguous matrix

elements which defines a mapping between Q and C: W =

{w1,w2, ...wk, ...,w2n−1}. Each element of W corresponds to a

certain element of the distance matrix (i.e., wk = d(qi, c j)).

There are three constraints that the warping path should

satisfy, which are shown as follows.

• Boundary : w1 = d(q1, c1) and w2n−1 = d(qn, cn).

• Continuity: Given wk = d(qi, c j) and wk−1 = d(qi′ , c j′),

then i − i′ 6 1 and j − j′ 6 1.

• Monotonicity: Given wk = d(qi, c j) and wk−1 =

d(qi′ , c j′), then i − i′ > 0 and j − j′ > 0.

Since there may exist exponentially many warping paths, the

aim of DTW is to find out the one which has the minimal

warping cost:

DTW(Q,C) = minimize
W={w1,w2,...,w2n−1}

∑2n−1

k=1
wk

4
Yi ZHENG et al. Exploiting Multi-Channels Deep Convolutional Neural Networks for Multivariate Time Series Classification

where W should satisfy these three constraints above. One

step further, for two multivariate time series X and Y , similar

to Euclidean distance, DTW between X and Y can be defined

as follows:

DTW(X,Y) =
∑l

i=1
DTW(xi, yi)

where l denotes the number of components in multivariate

time series, and both of xi and yi represent the ith univariate

time series of them, respectively.

It is common to apply dynamic programming to compute

DTW(Q,C) (or DTW(X,Y)), which is very efficient and

has a time complexity O(n2) in this context. However,

when the size of data set grows large and the length of

time series becomes long, it is very time consuming to

compute DTW combined with k-NN method. Hence, to

reduce the time consumption, window constraint DTW has

been adopted widely instead of full DTW in many previous

work [10, 18–20]. On the other hand, from the intuition, the

warping path is unlikely to go very far from the diagonal of

the distance matrix [10]. In other words, for any element

wk = d(qi, c j) in the warping path, the difference between i

and j should not be too large. By limiting the warping path

to a warping window, some previous work [10, 19] showed

that relatively tight warping windows actually improve the

classification accuracy.

According to above discussions, we consider both

Euclidean distance and window constraint DTW as the

default distance measures in the following.

3 Multi-Channels Deep Convolutional Neural

Networks

In this section, we will introduce a deep learning

framework for multivariate time series classification: Multi-

Channels Deep Convolutional Neural Networks (MC-

DCNN). Traditional Convolutional Neural Networks (CNN)

usually include two parts. One is a feature extractor,

which learns features from raw data automatically. The

other is a trainable fully-connected MLP, which performs

classification based on the learned features from the previous

part. Generally, the feature extractor is composed of multiple

similar stages, and each stage is made up of three cascading

layers: filter layer, activation layer and pooling layer. The

input and output of each layer are called feature maps [13].

In the previous work of CNN [13], the feature extractor

usually contains one, two or three such 3-layers stages. For

remainder of this section, we first introduce the components

of CNN briefly and more details of CNN can be referred

to [13, 21]. Then, we show the gradient-based learning of

our model. After that, the related unsupervised pretraining is

given at the end of this section.

3.1 Architecture

In contrast to image classification, the inputs of multivariate

time series classification are multiple 1D subsequences but

not 2D image pixels. We modify the traditional CNN and

apply it to multivariate time series classification task in this

way: We separate multivariate time series into univariate

ones and perform feature learning on each univariate series

individually, and then a traditional MLP is concatenated at

the end of feature learning that is used to do the classification.

To be understood easily, we illustrate the architecture of MC-

DCNN in Fig. 3. Specifically, this is an example of 2-stages

MC-DCNN with pretraining for activity classification. Once

the pretraining is completed, the initial weights of network

are obtained. Then, the inputs of 3-channels are fed into a

2-stages feature extractor, which learns hierarchical features

through filter, activation and pooling layers. At the end

of feature extractor, the feature maps of each channel are

flatten and combined as the input of subsequent MLP for

classification. Note that in Fig. 3, the activation layer is

embedded into filter layer in the form of non-linear operation

on each feature map. We describe how each layer works in

the following subsections.

3.1.1 Filter Layer

The input of each filter is a univariate time series, which is

denoted xl
i
∈ ℜnl

2 , 1 6 i 6 nl
1
, where l denotes the layer which

the time series comes from, nl
1

and nl
2

are number and length

of input time series. To capture local temporal information, it

requires to restrict each trainable filter ki j with a small size,

which is denoted ml
2
, and the number of filter at layer l is

denoted ml
1
. Recalling the example described in Fig. 3, in

first stage of channel 1, we have nl
1
= 1, nl

2
= 256, ml

2
= 5

and ml
1
= 8. We compute the output of each filter according

to this:
∑

i xl−1
i
∗ kl

i j
+ bl

j
, where the ∗ is convolution operator

and bl
j

is the bias term. To determine the size of each filter

ki j, we follow the earlier studies [22] and set it to 5 (m2 = 5)

as they suggested.

3.1.2 Activation Layer

The activation function introduces the non-linearity into

neural networks and allows it to learn more complex model.

Front. Comput. Sci.
5

input
256

input
256

input
256

Channel 1

Channel 2

Channel 3

subsampling

2

subsampling

2

subsampling

2

feature maps

252

feature maps

252

feature maps

252

Multivariate subsequences

Filter layer & Activation layer Pooling layer

Pretraining

convolution

5

convolution

5

convolution

5

feature maps

126

feature maps

126

feature maps

126

convolution

5

convolution

5

convolution

5

subsampling

2

subsampling

2

subsampling

2

feature maps

122

feature maps

122

feature maps

122

feature maps

61

feature maps

61

feature maps

61

Pooling layer Filter layer & Activation layer

Multivariate subsequences

Pretraining

Flattening

Flattening

Flattening

hidden layer

output

fully-connected MLP

Feature extraction Classification (MLP)

Fig. 3 A 2-stages MC-DCNN architecture for activity classification. This architecture consists of 3 channels input, 2 filter layers, 2 pooling layers and 2

fully-connected layers. Pretraining is performed for two stages gradually and then supervised learning is applied. This architecture is denoted as 8(5)-2-4(5)-

2-732-4 based on the template C1(Size)-S1-C2(Size)-S2-H-O, where C1 and C2 are numbers of filters in first and second stage, Size denotes the kernel size,

S1 and S2 are subsampling factors, H and O denote the numbers of units in hidden and output layers of MLP.

Two activation functions sigmoid(x) = 1
1+e−x and tanh(x) =

ex−e−x

ex+e−x are most widely used in artificial neural networks for

a long time. In recent years, a novel activation function

named as “rectified linear units” (ReLU) has been attempted

by many studies [23, 24]. ReLU is defined as: f (x) =

max(0, x). When comparing with traditional activation

functions (i.e., sigmoid(·) and tanh(·)), the merit of ReLU is

that it can improve the generalization and make the training

of networks become faster and simpler [23,24]. Besides, this

activation function could avoid vanishing gradient issue and

be computed efficiently. For easy understanding, we illustrate

ReLU and these two common activation functions in Fig. 4.

In this extended version, we consider integrating ReLU into

our MC-DCNN models to improve the performance of time

series classification.

3.1.3 Pooling Layer

Pooling is also called as subsampling because it usually

subsamples the input feature maps by a specific factor. The

purpose of pooling layer is to reduce the resolution of input

time series, and make it robust to small variations for previous

learned features. The simplest yet most popular method is

to compute average value in each neighborhood at different

positions with or without overlapping. The neighborhood is

usually constructed by splitting input feature maps into equal

−1

0

1

2

−2 −1 0 1 2

ReLU

sigmoid

tanh

Fig. 4 Illustration of non-linearity, sigmoid(·), tanh(·) and ReLU functions.

length (larger than 1) subsequences. Another widely used

method is max pooling which computes the maximum in

the neighborhood in contrast to average pooling. Previous

studies [25, 26] claimed that max pooling is superior to

average pooling for image classification and it also leads

to faster convergence rate by selecting superior invariant

features that improve generalization performance. Hence, to

further improve the performance, in this extended version,

we apply the max pooling strategy in our deep convolutional

6
Yi ZHENG et al. Exploiting Multi-Channels Deep Convolutional Neural Networks for Multivariate Time Series Classification

neural networks.

3.2 Gradient-based Learning of MC-DCNN

The same as traditional MLP, for multi-class classification

task, the loss function of our MC-DCNN model is defined

as: E = −
∑

t

∑

k y∗
k
(t) log (yk(t)), where y∗

k
(t) and yk(t) are

the target and predicted values of t-th training example at k-

th class, respectively. To estimate parameters of models, we

utilize gradient-based optimization method to minimize the

loss function. Specifically, we use simple backpropagation

algorithm to train our MC-DCNN model, since it is efficient

and most widely used in neural networks [27]. We adopt

stochastic gradient descent (SGD) instead of full-batch

version to update the parameters. Because SGD could

converge faster than full-batch for large scale data sets [27].

A full cycle of parameter updating procedure includes

three cascaded phases [28]: feedforward pass, backpropaga-

tion pass and the gradient applied.

3.2.1 Feedforward Pass

The objective of feedforward pass is to determine

the predicted output of MC-DCNN on input vectors.

Specifically, it computes feature maps from layer to layer and

stage to stage until obtaining the output. As shown in the

previous content, each stage contains three cascaded layers,

and activation layer is embedded into filter layer in form

of non-linear operation on each feature map. We compute

output feature map of each layer as follows:

zl
j =
∑

i

xl−1
i ∗ kl

i j + bl
j, xl

j = φ(z
l
j), xl+1

j = down(xl
j)

where down(·) represents the subsampling function for either

average or max pooling, φ(·) represents the activation

function (either sigmoid(·) or ReLU here), xl−1
i

and zl
j
denote

the input and output of filter layer, zl
j

and xl
j

denote the input

and output of activation layer, xl
j

and xl+1
j

denote the input

and output of pooling layer.

Eventually, a 2-layer fully-connected MLP is concatenated

to feature extractor. Due to feedforward pass of MLP is

standard and the space is limited, more details of MLP can

be referred to [27, 28].

3.2.2 Backpropagation Pass

Once acquiring predicted output y, the predicted error E

can be calculated according to the loss function. By taking

advantage of chain-rule of derivative, the predicted error

propagates back on each parameter of each layer one by one,

which can be used to work out the derivatives of them. We

don’t present backpropagation pass of final MLP for the same

reason of feedforward pass.

For pooling layer in the second stage of feature extractor,

the derivative of xl−1
j

is computed by the upsampling

function up(·), which is an inverse operation opposite to the

subsampling function down(·) for the backward propagation

of errors in this layer.

∂E

∂xl−1
j

= up(
∂E

∂xl
j

)

For filter layer in second stage of feature extractor, derivative

of zl
j
is computed similar to that of MLP’s hidden layer:

δ
l
j =
∂E

∂zl
j

=
∂E

∂xl
j

∂xl
j

∂zl
j

= φ
′

(zl
j) ◦ up(

∂E

∂xl+1
j

)

where ◦ denotes element-wise product. Since the bias is a

scalar, to compute its derivative, we should summate over all

entries in δl
j
as follows:

∂E

∂bl
j

=
∑

u

(δl
j)u

The difference between kernel weight kl
i j

and MLP’s

weight wl
i j

is the weight sharing constraint, which means the

weights between (kl
i j

)u and each entry of xl
j
must be the same.

Due to this constraint, the number of parameters is reduced

by comparing with the fully-connected MLP, Therefore, to

compute the derivative of kernel weight kl
i j

, it needs to

summate over all quantities related to this kernel. We perform

this with convolution operation:

∂E

∂kl
i j

=
∂E

∂zl
j

∂zl
j

∂kl
i j

= δl
j ∗ reverse(xl−1

i)

where reverse(·) is the function to reverse the sequence

with respect to each feature map. Finally, we compute the

derivative of xl−1
i

as follows:

∂E

∂xl−1
i

=
∑

j

∂E

∂zl
j

∂zl
j

∂xl−1
i

=
∑

j

pad(δl
j) ∗ reverse(kl

i j)

where pad(·) is a function which pads zeros into δl
j
from two

ends, e.g., if the size of kl
i j

is nl
2
, then this function will pad

each end of δl
j
with nl

2
− 1 zeros.

3.2.3 Gradients Applied

Once we obtain the derivatives of parameters, it’s time to

apply them to update parameters. To converge fast, we utilize

Front. Comput. Sci.
7

decay and momentum strategies [27]. The weight wl
i j

in MLP

is updated in this way:

wl
i j = wl

i j + ∆wl
i j

∆wl
i j = momentum · ∆wl

i j − decay · ǫ · wl
i j − ǫ ·

∂E

∂wl
i j

where wl
i j

represents the weight between xl−1
i

and xl
j
, ∆wl

i j

denotes the gradient of wl
i j

, and ǫ denotes the learning rate.

The kernel weight kl
i j

, the bias term bl
j
in filter layer and bl in

MLP are updated similar to the way of wl
i j

. The same as [29],

we set momentum = 0.9, decay = 0.0005 and ǫ = 0.01

for our experiments. It is noted that Ref. [30] claimed that

both the initialization and the momentum are crucial for deep

neural networks, hence, we consider the way of selecting

these values as a part of our future work.

3.3 Pretraining

One challenge of neural networks especially for deep

architectures is how to avoid bad local minima during the

learning process. Many previous studies claimed that a

greedy layer-wise unsupervised initialization could alleviate

the local minima issue and achieve better performance [31,

32]. In this subsection, we consider such a kind of

unsupervised pretraining for our deep neural networks.

Specifically, we first recall conventional pretraining methods

(Auto-Encoder and Denoising Auto-Encoder) and then

explain how to pretrain the CNN with stacked Convolutional

Auto-Encoder (CAE) [33].

3.3.1 Auto-Encoder

Basically, an Auto-Encoder is a three layers artificial neural

network, which is very similar to traditional MLP. The

aim of Auto-Encoder is to learn a transformation from

original space to a lower-dimensional space. Through

the learnt transformation, the compressed low-dimensional

representations could be used as features for many other

tasks. Meanwhile, another usage of Auto-Encoder is to

initialize the neural networks for better performance. By

stacking a series of Auto-Encoders, the constructed deep

architecture could be further fine-tuned in the form of

supervised learning. Suppose the input is x ∈ Rd and the

hidden representation is denoted as h ∈ Rd′ . In an Auto-

Encoder, h = φ(Wx + b) and y = φ(W′h + b′), where

y represents the reconstruction of input x and φ denotes

the activation function. The only constraint here is W′ =

WT . Analogous to traditional neural networks, we could

learn the parameters θ = {W, b, b′} through minimizing the

reconstructed error: E(θ) = ‖x − y‖2.

3.3.2 Denoising Auto-Encoder

The deficiency of conventional Auto-Encoder is that it

may learn the identity transformation if we do not apply

any constraints on it. The common solution for this is

either adding a regularized sparsity to the cost function

or adding random noisy to the inputs. The latter one

named as Denoising Auto-Encoder is more popular due to

its simplicity. Since the only modification is to add a variable

v to each element of inputs. The variable v could follow either

a binomial distribution for binary input or common Gaussian

distribution for continuous value. The learning process of

Denoising Auto-Encoder is identical to that of conventional

Auto-Encoder.

3.3.3 Convolutional Auto-Encoder

The elements in both Auto-Encoder and Denoising Auto-

Encoder are fully connected. Different from these two

models, Convolutional Auto-Encoder (CAE) has a constrain

on the connections, i.e., the weights between two layers

are shared in form of convolution. As is shown, such

a convolution operation could preserve the spatial and

temporal locality. Thus CNN has the advantage of time-shift

invariance. Due to the convolutional and pooling operations,

the pretraining of CNN with stacked CAEs is different from

the other two models. At the same time, the reconstruction

of CAE is also different from formal forward and backward

passes of CNN. For the convolutional encoder, the hidden

feature maps of CAE can be calculated as follows.

h j = φ(z j) = φ(
∑

i

pad(xi) ∗ ki j + b j)

where xi represents the i-th element of input and h j denotes

the j-th filter map after convolution and activation. The

function pad(·) will pad xi with zeros from two ends, e.g., if

the size of kih is n2 then this function will pad each end of xi

with n2−1 zeros. Other symbols have already been explained

in previous sections. After that, h j will be processed

through a pooling layer. Analogous to conventional Auto-

Encoder, the reconstruction of xi should be built based on

h j in a reversed procedure of convolutional encoder. The

convolutional decoder works in form of the equation below.

yi = φ(
∑

j

h j ∗ reverse(ki j) + ci)

8
Yi ZHENG et al. Exploiting Multi-Channels Deep Convolutional Neural Networks for Multivariate Time Series Classification

where the reverse(·) has been mentioned before and ci is the

bias term for the reconstruction yi. For the sake of learning

the parameters, we need to minimize the cost function of

CAE: E(θ) =
∑

i ‖xi − yi‖
2. Similar to CNN, by applying the

backpropagation algorithm, the gradient of each parameter

could be obtained and then the parameters will be updated

until final convergence of CAE.

Our MC-DCNN model could include multiple stages.

Hence, to pretrain the deep architecture we require stacking

several CAEs. Recall Fig. 3, the first stage of this model

is pretrained based on CAE at the beginning and then its

hidden representations will be fed into the subsequent CAE

for the second stage as its input. For MC-DCNN with more

stages, the unsupervised pretraining would be performed for

these CAEs one by one following the greedy, layer-wise

fashion. Once the unsupervised pretraining of all CAEs has

been done, then the learnt parameters will be used to initialize

our MC-DCNN model. After that, the supervised learning of

CNN will be performed as shown in Section 3.1 and 3.2.

4 Experiments

We conduct experiments on real-world data sets from two

application domains, and we will demonstrate: (1) The

performance of our MC-DCNN via comparing with baselines

on weakly labeled data (Section 4.1) and well aligned data

(Section 4.2 and 4.3), respectively; (2) The evaluation of

activation functions and pooling strategies (Section 4.4); (3)

The visualization of learnt features (Section 4.5); (4) A brief

discussion (Section 4.6).

To the best of our knowledge, there are many public time

series data sets available, e.g., the UCR Suite [34]. However,

we decide not using the UCR Suite for the following reasons.

First, we focus on the classification of multivariate time

series, whereas most data sets in UCR Suite only contain

univariate time series. Second, data sets in UCR Suite are

usually small and CNN may not work well on such small data

sets [35]. One exception is the Non-Invasive Fetal ECG data

set. In the UCR Suite, there are two data sets related to Non-

Invasive Fetal ECG, both of which were created by recording

the heartbeat information. One corresponds to the heartbeat

data from left thorax and the other corresponds to that from

right. Then, we could combine these two single data sets and

obtain a 2D time series data set. Besides, we also choose two

data sets that are collected from real-world applications. And

we will describe each of these data sets in next subsections.

We consider three approaches as baseline methods for

evaluation: 1-NN (ED), 1-NN (DTW-5%) and MLP. Here, 1-

NN (ED) and 1-NN (DTW-5%) are the methods that combine

Euclidean distance and window constraint DTW 2) [10]

with 1-NN, respectively. Besides these two state-of-the-

art methods, MLP is chosen to demonstrate that the feature

learning process can improve the classification accuracy

effectively. For the purpose of comparison, we record the

performance of each method by tuning their parameters.

Notice that some other classifiers are not considered here,

since it is difficult to construct hand-crafted features for time

series and much previous work have claimed that feature-

based methods cannot achieve the accuracy as high as 1-NN

methods. Moreover, we do not choose the full DTW due to

its expensive time consumption.

4.1 Activity Classification (Weakly Labeled Data)

4.1.1 Data Set

We use the weakly labeled PAMAP2 data set for activity

classification3) [7]. It records 19 physical activities

performed by 9 subjects. On a machine with Intel I5-2410

(2.3GHz) CPU and 8G Memory (our experimental platform),

according to the estimation, it will cost more than a month

for 1-NN (DTW-5%) on this data set if we use all the

19 physical activities4). Hence, without loss of generality,

currently, we only consider 4 activities in our work, which

are ‘standing’, ‘walking’, ‘ascending stairs’ and ‘descending

stairs’. And each physical activity corresponds to a 3D

time series. Moreover, 7 out of these 9 subjects are chosen.

Because the other two either have different physical activities

or have different dominant hand/foot.

4.1.2 Experiment Setup

We normalize each dimension of 3D time series as
x−µ

σ
,

where µ and σ are mean and standard deviation of time

series. Then we apply the sliding window algorithm as

shown in Algorithm 1 to extract subsequences from 3D

time series with different sliding steps. Table 1 shows

the number of subsequences of each activity for each

subject when sliding step is set to 8. To evaluate the

performance of different models, we adopt the leave-one-

out cross validation (LOOCV) technique. Specifically,

each time we use one subject’s physical activities as test

2) Following the discoveries in [10], we set the optimal window constraint

r as 5%.
3) http://www.pamap.org/demo.html
4) There are 240,000 and 60,000 samples in training and test sets,

respectively. Each sample includes three components with the length of 256.

Front. Comput. Sci.
9

Table 1 The number of subsequences of each activity.

Subject standing walking
ascending descending

stairs stairs

1 2,683 2,750 1,922 1,798

2 3,166 4,035 2,104 1,838

3 2,535 3,598 1,235 1,814

4 3,057 3,960 2,023 1,722

5 2,735 3,972 1,722 1,527

6 3,013 3,183 1,598 1,345

7 3,187 4,183 2,141 1,389

Total 20,376 25,681 12,745 11,433

data, and the physical activities of remaining subjects

as training data. Then we repeat this for every

subject. To glance the impact of depths, we evaluate two

kinds of models: MC-DCNN(1)/MC-DCNN(1)-Pre, MC-

DCNN(2)/MC-DCNN(2)-Pre, with respect to 1-stage and 2-

stages non-pretrained/pretrained models.

4.1.3 Experimental Results

To evaluate efficiency and scalability of each model, we get

five data splits with different volumes by setting sliding step

as 128, 64, 32, 16, 8, respectively. In addition, to ensure each

subsequence to cover at least one pattern of time series, we

set the sliding window length L as 256.

Feature-based models have an advantage over lazy

classification models (e.g., k-NN) in efficiency. As shown in

Fig. 5, the prediction time of 1-NN model increases linearly

as the size of training data set grows. In contrast, the

prediction time of our MC-DCNN model is almost constant

no matter how large the training data is.

0.001

0.01

0.1

1

10

3500 7000 15000 30000 60000

Size of Training Set

P
re

d
ic

ti
o

n
 T

im
e

 (
s
e

c
)

Model

1−NN (DTW−5%)

1−NN (ED)

MC−DCNN(1)

MC−DCNN(2)

MLP

Fig. 5 Prediction time of each model on training sets with different size.

We also evaluate accuracy of each model on these five

data splits. Fig. 6 shows the detailed accuracy comparisons

of each subject at different step settings (data splits). From

this figure we can see that for each subject our MC-

DCNN model, particularly the pretrained 2-stages one, is

either the most accuracy one or very close to the most

accuracy one. Especially, for subject 3, the 2-stages MC-

DCNNs lead to much better classification accuracy than other

approaches. We suppose that 2-stages MC-DCNNs may

learn higher level and more robust feature representations

so that it has a good generalization. The average and

standard deviation of accuracy is shown in Table 2. From

the table we can see that our MC-DCNN leads to the

highest average accuracy and the lowest standard deviation.

Especially, the pretrained MC-DCNN is superior to others

including the non-pretrained models, which demonstrates

that such a unsupervised initialization could indeed improve

the performance to some extent. By comparing to 1-stage

MC-DCNN, the 2-stages models perform better at each

sliding step. This is consistent to the statement of previous

studies [36, 37] that deep neural networks trained by simple

back-propagation work better than more shallow ones. On the

other hand, by comparing MC-DCNN with traditional MLP,

the superiority of MC-DCNN demonstrates that the feature

learning process could indeed improve the performance of

classification and the MC-DCNN model can learn good

internal representations.

4.2 Congestive Heart Failure Detection (Well Aligned

Data)

4.2.1 Data Set

The well aligned BIDMC data set was downloaded from

Congestive Heart Failure database5) [16]. Long-term

electrocardiograph (ECG) data was recorded from 15

subjects, each of them suffers severe Congestive Heart

Failure. Different from PAMAP2 data, in BIDMC data

set, each type of heart failure corresponds to a 2D time

series, which was recorded by medical instruments. Table

3 shows the number of subsequences of each type. In this

experiment, we consider four types of heartbeats to evaluate

all the models: ‘N’, ‘V’, ‘S’, ‘r’.

Table 3 The number of subsequences of each heartbeat type.

Type N V S r + Q E

Number 31,563 28,166 5,314 10,353 258 293 5

4.2.2 Experiment Setup

We still normalize each univariate of 2D time series as
x−µ

σ
,

where µ and σ are mean and standard deviation of time

series. Different from weakly data, we extract subsequences

5) http://www.physionet.org/physiobank/database/chfdb/

10
Yi ZHENG et al. Exploiting Multi-Channels Deep Convolutional Neural Networks for Multivariate Time Series Classification

Sub
 1

Sub
 2

Sub
 3

Sub
 4

Sub
 5

Sub
 6

Sub
 7

Sub
 1

Sub
 2

Sub
 3

Sub
 4

Sub
 5

Sub
 6

Sub
 7

Sub
 1

Sub
 2

Sub
 3

Sub
 4

Sub
 5

Sub
 6

Sub
 7

Sub
 1

Sub
 2

Sub
 3

Sub
 4

Sub
 5

Sub
 6

Sub
 7

Sub
 1

Sub
 2

Sub
 3

Sub
 4

Sub
 5

Sub
 6

Sub
 7

Step = 128 Step = 64 Step = 32

Step = 16 Step = 8

0.7

0.8

0.9

0.7

0.8

0.9

A
c
c
u

ra
c
y

Models

MLP

1−NN (ED)

1−NN (DTW−5%)

MC−DCNN(1)

MC−DCNN(2)

MC−DCNN(1)−Pre

MC−DCNN(2)−Pre

Fig. 6 Classification accuracy on each subject with different sliding steps.

Table 2 Average and standard deviation of accuracy at different sliding step. Bold numbers represent the best results.

Method Step=128 Step=64 Step=32 Step=16 Step=8

1-NN (ED) 79.05 (0.076) 80.25 (0.089) 80.74 (0.094) 81.74 (0.096) 82.28 (0.103)

1-NN (DTW-5%) 83.46 (0.063) 84.51 (0.070) 84.44 (0.080) 84.16 (0.094) 83.61 (0.104)

MLP 77.89 (0.076) 80.09 (0.098) 82.49 (0.096) 84.34 (0.104) 84.83 (0.115)

MC-DCNN(1) 88.73 (0.057) 90.38 (0.050) 90.28 (0.063) 90.75 (0.062) 90.53 (0.065)

MC-DCNN(1)-Pre 89.37 (0.044) 91.47 (0.027) 90.38 (0.049) 91.11 (0.048) 90.55 (0.071)

MC-DCNN(2) 90.34 (0.031) 91.00 (0.033) 91.14 (0.031) 93.15 (0.019) 93.36 (0.015)

MC-DCNN(2)-Pre 90.94 (0.025) 91.63 (0.032) 92.27 (0.028) 93.22 (0.011) 93.43 (0.013)

centered at aligned marks (red dotted line in Fig. 1). And

each subsequence still has a length of 256. Similar to the

classification of individuals’ heartbeats [15], we mix all data

of 15 subjects and randomly split it into 10 folds to perform

10-folds cross validation. Because as Ref. [15] noted, it can

be able to obtain huge amounts of labeled data in this way

and a unhealthy individual may have many different types

of heartbeats. Similar to the previous experiment, we also

evaluate these models to glance the impact of depths and

pretraining on this data set. Moreover, to determine the

epochs, we separate one third of training data as validation

set. As shown in Fig. 8, we set epoch to 40 and 80 for 1-stage

and 2-stages MC-DCNN models respectively. Since the test

error is stable when epochs are greater than them.

4.2.3 Experimental Results

We show the classification accuracy of each model on

BIDMC data set in Fig. 7. The accuracies of 1-stage and

2-stages non-pretrained MC-DCNN models are 94.67% and

94.65%. After we pretrained the MC-DCNN models, the

MC-DCNN(1)-Pre and MC-DCNN(2)-Pre models improve

the classification accuracies to 95.04% and 95.35%. All

these MC-DCNN models have better performance than other

baseline models, i.e., 1-NN(ED) (93.64%), 1-NN(DTW-5%)

(92.90%) and MLP (94.22%). It is also noted that all of

these learning-based methods including MLP perform better

than distance-based methods. We consider that it may be

due to the precise alignment of each heartbeat signal. For

the well aligned data, these learning-based methods could

Front. Comput. Sci.
11

0.92

0.93

0.94

0.95

1−
N
N
 (D

TW
−5

%
)

1−
N
N
 (E

D
)

M
C
−D

C
N
N
(1

)

M
C
−D

C
N
N
(1

)−
Pre

M
C
−D

C
N
N
(2

)

M
C
−D

C
N
N
(2

)−
Pre

M
LP

Model

A
c
c
u

ra
c
y

Fig. 7 The box-and-whisker plot of classification accuracy on BIDMC.

capture the potential important information and obtain good

feature representations. Still, MC-DCNN is superior to MLP,

which also demonstrates that the feature learning is beneficial

for improving the classification accuracy. The experimental

result proves that the pretraining process improve the

performance indeed. We do not report the prediction time of

each model on BIDMC data set. Since, the result is similar

to Fig. 5 and it also supports that feature-based models have

an advantage over lazy classification methods such as k-NN

in efficiency.

4.3 Classification of Non-Invasive Fetal ECG (Well

Aligned Data)

4.3.1 Data Set

Another well aligned data set is Non-Invasive Fetal ECG.

For simplicity, we name this data set as NIFE (Non-Invasive

Fetal ECG). Specifically, we combined two univariate time

series data sets and each of them corresponds to the record

of the ECG from left and right thorax. Hence, in this data

set, each type of non-invasive fetal ECG corresponds to a

2D time series. There are 42 types of non-invasive fetal

ECG in the data set and the length of each univariate time

series is 750. The size of the training set is 1,800 and there

are 1,965 samples that can be used to test. Different from

previous two experiments, we do not need normalization

for this data set. Since the creators of this data set had

processed for that and they also separated the training and

test data in the randomized manner. That’s the reason why

we do not consider resampling the data for further cross

validation. Another reason is many researchers in time series

classification directly evaluated their models with the training

and test data but not used the cross validation strategy. Hence,

we follow them and do not apply cross validation here.

4.3.2 Experimental Results

We show the classification accuracy of each model on NIFE

data set in Table. 4.

Table 4 Classification accuracy of each model on NIFE.

Method Precision

1-NN (DTW-5%) 88.19

MLP 95.32

1-NN (ED) 89.62

MC-DCNN(1) 95.93

MC-DCNN(1)-Pre 96.03

MC-DCNN(2) 96.13

MC-DCNN(2)-Pre 96.23

This result is analogous to that of the previous BIDMC

data set. All of the learning-based methods achieve higher

accuracy than that of distance-based methods. As we said,

the reason of such result may be because the ECG data is

aligned precisely. For such well aligned data, these three

learning-based methods may capture the potential important

information and acquire good feature representations. Hence,

the learning-based methods perform better than distance-

based ones. The MC-DCNN models including the pretrained

ones are superior to MLP, which proves that feature learning

can improves the classification accuracy. Moreover, the

pretrained 2-stages MC-DCNN outperforms other models

and achieves the highest accuracy, which not only proves

that 2-stages MC-DCNN is superior to 1-stage model to

some extent but also demonstrates the pretraining can

improve the classification accuracy indeed. Nonetheless, the

improvement of MC-DCNN models is not that remarkable,

especially for MLP, which proves our assumption, i.e.,

with precise alignment time series data (that means without

the time-shift involved), even the traditional MLP could

obtain good feature representations of data and achieve good

classification accuracy.

4.4 Evaluation of Activation functions and Pooling

strategies

We treat the traditional sigmoid(·) function and average

pooling as a default choice for previous experiments. To

further evaluate the effect of activation functions and pooling

strategies, in the following, we conduct several experiments

on PAMAP2 data set. Specifically, we focus on testing the

rate of convergence of the MC-DCNN models integrated with

different activation functions and pooling strategies.

For a better illustration of convergence, we select one

subject from PAMAP2 and show the rate of convergence

12
Yi ZHENG et al. Exploiting Multi-Channels Deep Convolutional Neural Networks for Multivariate Time Series Classification

0.02

0.04

0.06

0.08

0.10

0.12

0 10 20 30 40 50 60

Epoch

E
rr

o
r

Train

Validate

0.02

0.04

0.06

0.08

0.10

0.12

0 10 20 30 40 50 60 70 80 90 100 110 120

Epoch

E
rr

o
r

Train

Validate

Fig. 8 Test error on validation set: Left) 1-stage MC-DCNN model; Right) 2-stages MC-DCNN model. The vertical dashed line is the determined epoch.

0.0

0.2

0.4

0.6

0 25 50 75 100

Epoch

E
rr

o
r

ReLU−Ave

ReLU−Max

sigm−Ave

sigm−Max

0.0

0.2

0.4

0.6

0 25 50 75 100

Epoch

E
rr

o
r

ReLU−Ave

ReLU−Max

sigm−Ave

sigm−Max

Fig. 9 Training error of 1-stage (left) and 2-stages (right) MC-DCNNs with sigmoid(·), ReLU activation functions and average, max pooling strategies.

of each model in Fig. 9. We consider two activation

functions (i.e., ReLU and sigmoid(·)) and two sorts of

pooling strategies (max and average poolings) here. As the

epoch grows from 1 to 100, for each setting of activation

function and pooling strategy, the training error decreases

with different speed. From this figure, we can see that ReLU

is superior to sigmoid(·) function since the training error

of ReLU converges faster than that of sigmoid(·) for both

1-stage and 2-stages MC-DCNN models. For the pooling

strategy, average pooling converges a little faster than max

pooling but the difference is subtle. By the consideration

of generalization ability that mentioned in previous studies,

we believe that max pooling is a good choice for our study.

Hence, we combine ReLU and max pooling in our MC-

DCNN models.

4.5 Visualization

To visualize the learnt features of MC-DCNN model, we

trained a two-stages MC-DCNN model on the PAMAP2 data

set. Both of the first and the second filter layers contain 20

Front. Comput. Sci.
13

kernels in this model. We illustrate the learnt features of

corresponding stage in Fig. 10 and Fig. 11, respectively.

(a)

(b)

(c)

Fig. 10 Visualization of the first filter layer in the model trained on

PAMAP2 data set. a) Channel one 20 filter weights with the length of 5,

b) and c) represent the filter weights in the other two channels, respectively.

For the first filter layer, as shown in Fig. 10, each channel

of MC-DCNN model contains twenty filters with the length

of 5. Moreover, the features of each channel are learnt

independently. From the figure, we can see that different local

patterns (shapes) of time series are captured automatically by

our model. In Fig. 11, we show the learnt features of the

second filter layer in 20 groups of filter planes, each of which

connects to all 20 second filter layer feature maps. Thus,

each channel contains 20× 20 filter weights in total, and over

completed features have been learnt independently. Through

the final MLP layers, the MC-DCNN model could combine

the extracted features from each channel and determine

the importance of each feature for different classes by the

supervised learning. According to the experimental results,

our MC-DCNN, a kind of feature learning method, can

improve the accuracy of classification.

4.6 Discussion

We first discuss the advantages of our method intuitively.

In MC-DCNN, the multi-channels can learn feature

representation for each univariate time series automatically

and individually. Then, the traditional MLP is used to

combine these features and obtain a better representation

for each class. According to the experimental results,

such feature learning and feature combining approaches

improve the classification performance for multivariate time

series. We believe that our model can obtain better feature

representations from each channel for each univariate time

series and also the final feature combining can further

learn the weights for each class, which makes our model

can distinguish different patterns of the different underlying

phenomena effectively and improves the performance finally.

In the following, we discuss the limitations of this study,

and we believe that the discussions will lead to many future

work. First, although we conducted these experiments

with different parameter settings, there are still many other

parameters in our MC-DCNN model. According to the

suggestions of previous studies, some parameters were set

to constants, while this may not be the optimal choice for

our problem; Second, it is time consuming to train the neural

networks since we did not utilize the parallel techniques (e.g.,

speedup by GPU) but implemented all the models in Matlab.

This is also one of the reasons why we only constructed at

most 2-stages MC-DCNN in the experiments. Hence, in the

future work, we plan to study and extend other deep learning

models for multivariate time series classification on more

data sets and parameter settings.

5 Related Work

We first briefly review previous studies of time series

classification methods. Then, we summarize the existing

research interest on feature learning by deep neural networks

and introduce the related pretraining methods at the end

of this section. Many time series classification methods

have been proposed based on different sequence distance

measurements. Among the previous work, some researchers

claimed that 1-NN combined DTW is the current state of

the art [9, 10]. However, the biggest weakness of 1-NN

with DTW model is its expensive computation [10]. To

overcome this drawback, some of the researchers explored to

speed up the computation of distance measure (e.g., DTW) in

certain methods (e.g., with boundary conditions) [10]. While

some of other researchers tried to reduce the computation

of 1-NN by constructing data dictionary [10, 15, 17, 38].

When the data set grows large, all these approaches improve

the performance significantly in contrast to simple 1-NN

with DTW. Though many feature-based models have been

explored for time series classification [6, 39], most of

previous work extracted the hand-crafted statistical features

based on domain knowledge, and achieved the performance

not as well as sequence distance based models.

Feature learning (or representation learning) is becoming

an important field in machine learning community for

recent years [11]. The most successful feature learning

framework is deep neural networks, which build hierarchical

14
Yi ZHENG et al. Exploiting Multi-Channels Deep Convolutional Neural Networks for Multivariate Time Series Classification

representations from raw data [12, 13, 40]. Particularly, as a

supervised feature learning model, deep convolutional neural

networks achieve remarkable successes in many tasks such

as digit and object recognition [29], which motivates us to

investigate the deep learning in time series field. In current

literature, there are few studies on time series classification

using feature learning and deep neural networks. Ref.

[41] explored an unsupervised feature learning method with

convolutional deep belief networks for audio classification,

but in frequency domain rather than in time domain. Ref.

[42] proposed a time-delay neural networks (TDNN) for

phoneme recognition. The TDNN can be considered as a

simplified model of CNN, since it only contains one or two

tied connection hidden layers but does not perform pooling

like traditional CNN, which makes it does not have a good

shift invariant ability as well as CNN. Ref. [5] adopted

a special TDNN model for electroencephalography (EEG)

classification. However, their TDNN model only included

a single hidden layer, which is not deep enough to learn good

hierarchical features.

One challenge of neural networks especially for deep

architectures is how to avoid bad local minima during the

learning process. To alleviate this issue, a better initialization

of weights in neural networks is needed, which can further

improve classification performance [31, 32]. For CNN, a

greedy layer-wise unsupervised initialization named stacked

Convolutional Auto-Encoder (CAE) can be used to pretrain

the networks, which has been shown the effectiveness to

improve the classification performance [33]. To the best

of our knowledge, none of existing studies on time series

classification has considered the supervised feature learning

from raw data and also pretraining of networks. Hence, in this

paper, we explore a MC-DCNN model for multivariate time

series classification and intend to investigate this problem

from feature learning view.

6 Conclusion

In this paper, we developed a novel deep learning framework

(MC-DCNN) to classify multivariate time series. Through

learning features from individual univariate time series in

each channel automatically, this model then combines the

outputs of all channels as feature representation at final

layer. After that, a traditional MLP concatenated to the final

layer of feature representation performs the classification.

Meanwhile, we applied an unsupervised initialization to

pretrain CNN and proposed the pretrained version of MC-

DCNN model. Finally, extensive experimental results

on several real-world data sets revealed that the MC-

DCNN model indeed outperformed the competing baseline

methods, and the improvement of accuracy on weakly

labeled data set is significant. We found that the pretrained

models outperform the non-pretrained ones, which shows

the effectiveness of pretraining to improve the classification

performance. We also observed that 2-stages MC-DCNN is

superior to 1-stage model to some extent, which provides

the evidence that deeper architecture could learn more robust

high-level features for improving the classification. We hope

that this study could lead to more future work.

Acknowledgements This research was partially supported by grants from

the National Science Foundation for Distinguished Young Scholars of

China (Grant No. 61325010), the National High Technology Research

and Development Program of China (Grant No. 2014AA015203), the

Natural Science Foundation of China (Grant No. 61403358) and the

Fundamental Research Funds for the Central Universities of China (Grants

No. WK2350000001 and WK0110000042).

References

1. Xing Z, Pei J, Keogh E. A brief survey on sequence classification.

ACM SIGKDD Explorations Newsletter, 2010, 12(1): 40–48

2. Ding H, Trajcevski G, Scheuermann P, Wang X, Keogh E. Querying

and mining of time series data: experimental comparison of

representations and distance measures. Proceedings of the VLDB

Endowment, 2008, 1(2): 1542–1552

3. Orsenigo C, Vercellis C. Combining discrete svm and fixed cardinality

warping distances for multivariate time series classification. Pattern

Recognition, 2010, 43(11): 3787–3794

4. Batal I, Sacchi L, Bellazzi R, Hauskrecht M. Multivariate time series

classification with temporal abstractions. In: FLAIRS Conference.

2009

5. Haselsteiner E, Pfurtscheller G. Using time-dependent neural networks

for EEG classification. Rehabilitation Engineering, IEEE Transactions

on, 2000, 8(4): 457–463

6. Kampouraki A, Manis G, Nikou C. Heartbeat time series

classification with support vector machines. Information Technology

in Biomedicine, IEEE Transactions on, 2009, 13(4): 512–518

7. Reiss A, Stricker D. Introducing a modular activity monitoring system.

In: Engineering in Medicine and Biology Society,EMBC, 2011 Annual

International Conference of the IEEE. 2011, 5621–5624

8. Batista G E A P A, Wang X, Keogh E J. A complexity-invariant

distance measure for time series. In: SIAM Conf. Data Mining. 2011

9. Rakthanmanon T, Campana B, Mueen A, Batista G, Westover B, Zhu

Q, Zakaria J, Keogh E. Searching and mining trillions of time series

subsequences under dynamic time warping. Proceedings of the 18th

ACM SIGKDD international conference on Knowledge discovery and

data mining - KDD ’12, 2012, 262

10. Xi X, Keogh E J, Shelton C R, Wei L, Ratanamahatana C A. Fast

time series classification using numerosity reduction. In: International

Front. Comput. Sci.
15

(a)

Fig. 11 Visualization of the second filter layer in the model trained on PAMAP2 data set. a) Channel one 20 x 20 filter weights with the length of 5, b) and

c) represent the filter weights in the other two channels, respectively.

16
Yi ZHENG et al. Exploiting Multi-Channels Deep Convolutional Neural Networks for Multivariate Time Series Classification

(b)

Fig. 11 Visualization of the second filter layer in the model trained on PAMAP2 data set. a) Channel one 20 x 20 filter weights with the length of 5, b) and

c) represent the filter weights in the other two channels, respectively.

Front. Comput. Sci.
17

(c)

Fig. 11 Visualization of the second filter layer in the model trained on PAMAP2 data set. a) Channel one 20 x 20 filter weights with the length of 5, b) and

c) represent the filter weights in the other two channels, respectively.

18
Yi ZHENG et al. Exploiting Multi-Channels Deep Convolutional Neural Networks for Multivariate Time Series Classification

Conference on Machine Learning. 2006, 1033–1040

11. Bengio Y, Courville A, Vincent P. Representation learning: A review

and new perspectives. arXiv preprint arXiv:1206.5538, 2012

12. LeCun Y, Bengio Y. Convolutional networks for images, speech, and

time series. The handbook of brain theory and neural networks, 1995,

3361

13. LeCun Y, Kavukcuoglu K, Farabet C. Convolutional networks and

applications in vision. In: Circuits and Systems (ISCAS), Proceedings

of 2010 IEEE International Symposium on. 2010, 253–256

14. Zheng Y, Liu Q, Chen E, Ge Y, Zhao J. Time series classification using

multi-channels deep convolutional neural networks. In: Li F, Li G,

Hwang S w, Yao B, Zhang Z, eds, Web-Age Information Management,

volume 8485 of Lecture Notes in Computer Science, 298–310. Springer

International Publishing, 2014

15. Hu B, Chen Y, Keogh E. Time Series Classification under More

Realistic Assumptions. SIAM International Conference on Data

Mining, 2013, 578

16. Goldberger A L, Amaral L A N, Glass L, Hausdorff J M, Ivanov

P C, Mark R G, Mietus J E, Moody G B, Peng C K, Stanley H E.

PhysioBank, PhysioToolkit, and PhysioNet: Components of a new

research resource for complex physiologic signals. Circulation, 2000,

101(23): e215—-e220

17. Ye L, Keogh E. Time series shapelets: a new primitive for data mining.

In: Proceedings of the 15th ACM SIGKDD international conference on

Knowledge discovery and data mining. 2009, 947–956

18. Ratanamahatana C A, Keogh E. Making time-series classification more

accurate using learned constraints. 2004

19. Ratanamahatana C A, Keogh E. Three myths about dynamic time

warping data mining. In: Proceedings of SIAM International

Conference on Data Mining (SDMâĂŹ05). 2005, 506–510

20. Yu D, Yu X, Hu Q, Liu J, Wu A. Dynamic time warping constraint

learning for large margin nearest neighbor classification. Information

Sciences, 2011, 181(13): 2787–2796

21. LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 1998,

86(11): 2278–2324

22. Simard P Y, Steinkraus D, Platt J C. Best practices for convolutional

neural networks applied to visual document analysis. In: Proceedings

of the seventh international conference on document analysis and

recognition. 2003, 958–962

23. Nair V, Hinton G E. Rectified linear units improve restricted boltzmann

machines. In: Proc. 27th International Conference on Machine

Learning, number 3. 2010, 807–814

24. Zeiler M D, Ranzato M, Monga R, Mao M, Yang K, Le Q, Nguyen

P, Senior A, Vanhoucke V, Dean J, others . On rectified linear units

for speech processing. In: Acoustics, Speech and Signal Processing

(ICASSP), 2013 IEEE International Conference on. 2013, 3517–3521

25. Scherer D, Müller A, Behnke S. Evaluation of pooling operations in

convolutional architectures for object recognition. In: Artificial Neural

Networks–ICANN 2010, 92–101. Springer, 2010

26. Nagi J, Ducatelle F, Di Caro G A, Ciresan D, Meier U, Giusti A,

Nagi F, Schmidhuber J, Gambardella L M. Max-pooling convolutional

neural networks for vision-based hand gesture recognition. In: Signal

and Image Processing Applications (ICSIPA), 2011 IEEE International

Conference on. 2011, 342–347

27. LeCun Y, Bottou L, Orr G B, Müller K R. Efficient backprop. In:

Neural networks: Tricks of the trade, 9–50. Springer, 1998

28. Bouvrie J. Notes on convolutional neural networks. 2006

29. Krizhevsky A, Sutskever I, Hinton G. Imagenet classification

with deep convolutional neural networks. In: Advances in Neural

Information Processing Systems 25. 2012, 1106–1114

30. Sutskever I, Martens J, Dahl G, Hinton G. On the importance of

initialization and momentum in deep learning. Proceedings of the 30th

International Conference on Machine Learning, ICML 2013, Atlanta,

GA, USA, 16-21 June 2013, 2013, 28

31. Erhan D, Bengio Y, Courville A, Manzagol P A, Vincent P, Bengio S.

Why does unsupervised pre-training help deep learning? The Journal

of Machine Learning Research, 2010, 11: 625–660

32. Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data

with neural networks. Science, 2006, 313(5786): 504–507

33. Masci J, Meier U, Cireşan D, Schmidhuber J. Stacked convolutional

auto-encoders for hierarchical feature extraction. In: Artificial Neural

Networks and Machine Learning–ICANN 2011, 52–59. Springer, 2011

34. Keogh E, Zhu Q, Hu B, Hao Y, Xi x , Wei L, Ratanamahatana

C A. The UCR Time Series Classification/Clustering Homepage:

www.cs.ucr.edu/˜eamonn/time_series_data/. 2011

35. Pinto N, Cox D D, DiCarlo J J. Why is real-world visual object

recognition hard? PLoS computational biology, 2008, 4(1): e27

36. Cireşan D C, Meier U, Masci J, Gambardella L M, Schmidhuber J.

Flexible, high performance convolutional neural networks for image

classification. In: Proceedings of the Twenty-Second international

joint conference on Artificial Intelligence-Volume Volume Two. 2011,

1237–1242

37. Cireşan D, Meier U, Masci J, Schmidhuber J. Multi-column deep

neural network for traffic sign classification. Neural Networks, 2012,

32: 333–338

38. Lines J, Davis L M, Hills J, Bagnall A. A shapelet transform for

time series classification. Proceedings of the 18th ACM SIGKDD

international conference on Knowledge discovery and data mining,

2012, 289–297

39. Nanopoulos A, Alcock R O B, Manolopoulos Y. Feature-based

classification of time-series data. Information processing and

technology, 2001, 0056: 49–61

40. Lee H, Grosse R, Ranganath R, Ng A Y. Convolutional deep

belief networks for scalable unsupervised learning of hierarchical

representations. In: Proceedings of the 26th Annual International

Conference on Machine Learning. 2009, 609–616

41. Lee H, Largman Y, Pham P, Ng A Y. Unsupervised Feature Learning

for Audio Classification using Convolutional Deep Belief Networks.

In: Advances in Neural Information Processing Systems 22, 1096–

1104. 2009

42. Waibel A, Hanazawa T, Hinton G, Shikano K, Lang K J. Phoneme

recognition using time-delay neural networks. Acoustics, Speech and

Signal Processing, IEEE Transactions on, 1989, 37(3): 328–339

Front. Comput. Sci.
19

Yi Zheng received the B.E. degree

in Computer Science and Technology

in 2009 from Harbin Institute of

Technology, Heilongjiang, P.R. China.

He is currently a Ph.D. student in

the School of Computer Science and

Technology at University of Science

and Technology of China (USTC), P.R.

China. His major research interests include time series data

mining and deep learning. He has published several papers in

refereed conference proceedings and journals, such as WAIM’14,

PAKDD’15 and Nature Communications.

Qi Liu is an Associate Researcher

in University of Science and Technol-

ogy of China (USTC). He received

his Ph.D. in Computer Science from

USTC. His general area of research is

data mining and knowledge discovery.

He has published prolifically in refer-

eed journals and conference proceed-

ings, e.g., TKDE, TOIS, TKDD, TIST, SIGKDD, IJCAI, ICDM,

and CIKM. He has served regularly in the program committees of a

number of conferences, and is a reviewer for the leading academic

journals in his fields. He is a member of ACM and IEEE. Dr. Liu is

the recipient of the ICDM’11 Best Research Paper Award, the Spe-

cial Prize of President Scholarship for Postgraduate Students, Chi-

nese Academy of Sciences (CAS) and the Distinguished Doctoral

Dissertation Award of CAS.

Enhong Chen received the PhD

degree in computer science from

USTC, the master’s degree from the

Hefei University of Technology and

the BS degree from Anhui University.

He is currently a professor and the

vice dean of the School of Computer

Science, the vice director of the

National Engineering Laboratory for Speech and Language

Information Processing of USTC, winner of the National Science

Fund for Distinguished Young Scholars of China. His research

interests include data mining and machine learning, social network

analysis and recommender systems. He has published lots of papers

on refereed journals and conferences, including IEEE TKDE, TMC,

KDD, ICDM, NIPS, CIKM and Nature Communications. He was

on program committees of numerous conferences including KDD,

ICDM, SDM. He received the Best Application Paper Award on

KDD’08 and Best Research Paper Award on ICDM’11. He is a

senior member of the IEEE.

Dr. Yong Ge received his Ph.D. in

Information Technology from Rutgers,

The State University of New Jersey

in 2013, the M.S. degree in Signal

and Information Processing from the

University of Science and Technology

of China (USTC) in 2008, and the

B.E. degree in Information Engineering

from Xi’an Jiao Tong University in 2005. He is currently an

Assistant Professor at the University of North Carolina at Charlotte.

His research interests include data mining and business analytics.

He has published prolifically in refereed journals and conference

proceedings, such as IEEE TKDE, ACM TOIS, ACM TKDD,

ACM TIST, ACM SIGKDD, SIAM SDM, IEEE ICDM, and ACM

RecSys.

J. Leon Zhao is Head and Chair Pro-

fessor in the Department of Informa-

tion Systems, City University of Hong

Kong. He was Interim Head and Eller

Professor in Management Information

Systems, University of Arizona. He

holds Ph.D. from Haas School of Busi-

ness, University of California at Berke-

ley. His research is on information technology and management,

with a particular focus on collaboration and workflow technologies

and business information services. He is director of Lab on Enter-

prise Process Innovation and Computing funded by NSF, RGC, SAP,

and IBM among other sponsors. He received IBM Faculty Award in

2005 and was awarded Chang Jiang Scholar Chair Professorship at

Tsinghua University in 2009.

