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ABSTRACT Image inpainting technique recovers the missing regions of an image using information from

known regions and it has shown success in various application fields. As a popular kind of methods, Markov

Random Field (MRF)-based methods are able to produce better results than earlier diffusion-based and

sparse-based methods on inpainting images with big holes. However, for images with complex structures,

the results are still not quite pleasant and some inpainting trails exist. The direction feature is an important

factor for image understanding and human eye visual requirements, and exploiting multi-direction features

is of great potential to further improve inpainting performance. Following the idea, this paper proposes

a Structure Offsets Statistics based image inpainting algorithm by exploiting multiple direction features

under the framework of MRF-based methods. Specifically, when selecting proper labels, multi-direction

features are extracted and applied to construct a structure image and a non-structure image, and the candidate

labels are chosen from the offsets of structure and non-structure images. Meanwhile, the multi-direction

features are applied to construct a new smooth term for the energy equation which is then solved by graph-cut

optimization technology. Experimental results show that on inpainting tasks with various complexities,

the proposed method is superior to several state-of-the-art approaches in terms of the abilities of maintaining

structure coherence and neighborhood consistence and the computational efficiency.

INDEX TERMS Image inpainting, multi-direction feature, Markov random field, structure offsets statistics.

I. INTRODUCTION

Image inpainting, also known as image completion, image

restoration and image disocclusion, aims to recover the

missing or degraded regions of an image in a visually plau-

sibly way by using the known pixels of the image [1].

Nowadays, image inpainting is an active research topic in

computer vision and image processing and has been applied

in areas ranging from image editing, image transmission

to film postproduction and ancient painting protection [2].

Although image inpainting technique is very useful, it is far

from being solved perfectly and more effective approaches

are deserved to be investigated.

A mount of methods with unique features have

been devised by mathematicians or computer scientists,

which can be classified into diffusion-based, sparse-

based, exemplar-based and deep learning-based methods.

The associate editor coordinating the review of this manuscript and

approving it for publication was You Yang .

The diffusion-based methods, focusing on filling narrow or

small holes, diffuse known information into missing regions

based on partial differential equation theory, such as BSCB

model [1], Navier-stokes model [3], total variation model [4],

and curvature-driven diffusions [5]. This kind of methods

perform poorly on inpainting images with structure or texture

missing regions. The sparse-based methods reconstruct an

image based on sparse representation theory, and serval

techniques were applied such as super-wavelet transform

[6], [7], dictionary library construction [8], [9], and low-rank

matrix completion [10]–[12]. Although performing better

than diffusion-based methods, sparse-based methods fail to

recover structure and texture when dealing with large miss-

ing regions. To tackling the deficiency, the exemplar-based

methods were proposed, which propagate information from

source regions into missing regions at patch level. According

to implementation way, the methods can be grouped into

two categories, i.e., greedy-based and Markov Random Field

(MRF)-based methods. The greedy-based methods include
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two procedures, i.e., priority function design for filling order

determination and match criteria design, and serval works

were devoted on the procedures [13]–[18]. The defects of

greedy-based methods are inevitable error propagation phe-

nomenon and high computational overhead. The MRF-based

methods alleviate error accumulation phenomenon by for-

mulating image inpainting as a discrete MRF optimization

problem [19], [20], and have shown an advantage over other

kinds of methods. In addition, with the rise of deep learn-

ing technique, some researchers applied deep learning for

image inpainting task and got competitive inpainting results

[21]–[25]. However, deep learning requires huge computa-

tion power and a large number of sample images, which may

limits its wide applications.

Nowadays, MRF-based methods are the mainstream

algorithms for image inpainting tasks. In the methods,

a known pixel/patch and a missing pixel/patch are respec-

tively regarded as a label and a node, and the inpainting

problem becomes assigning a suitable label to a node under

certain criteria. Usually, the labels can be thought as abso-

lute locations or relative offsets. In [20], all relative offsets

are considered as labels to repair missing regions. However,

the method introduces inappropriate labels and produces

unpleasant inpainted results, and it is computationally inten-

sive. To effectively and efficiently generate labels, He and

Sun [26] proposed to select a few dominant offsets accord-

ing to the statistics of patch offsets. Xue and Zhang [27]

applied HOG features to calculate offsets statistics. Liu and

Caselles [28] adopted neighboring offsets as candidate labels

according to the local self-similarity. Ružić and Pižurica [29]

selected labels from the most contextually similar blocks.

Ge et al. [30] designed a sparse patch subspace learning

method to select candidate labels. In addition to labels selec-

tion, energy equation affects the final results heavily and

some researchers reformulate energy equation in order to

obtain better results. For example, Gupta et al. [31] incorpo-

rated long range pairwise potentials into energy equation in

order to capture the inherent repeating patterns for inpainting

heritage architectural images. Bugeau et al. [32] considered

three factors in energy equation, including self-similarity,

diffusion and coherence of images. Liu and Caselles [28]

adopted gradient information in the energy function to com-

pensate high frequency information loss. Ghorai et al. [33]

applied the dissimilarity between candidate patch and corre-

sponding refined patch to construct energy equation.

Commonly, human eye is sensitive to the loss of high

frequency information, such as edge, corner and structure,

and neighborhood consistence reflects the naturalness of

inpainted images. Therefore, structure coherence and neigh-

borhood consistence should be highly regarded. Regarding

to MRF-based methods, though many works [26]–[29], [33],

[34] addressed the issues to some extent from various per-

spectives, there are still much room for further improving

inpainting performance. Particularly, when degraded images

have only a few known structures, these methods could

not work effectively. Thus, how to achieve sufficient priori

information from limited known information to guide inpaint-

ing process is crucial for obtained pleasant results. Image

features, related to different properties of an image, provide

rich information on image content, and they are fundamental

in many image analysis tasks like recognition and matching.

Therefore, extracting more suitable image features to guide

the inpainting process is a feasibleway to enhance the inpaint-

ing performance especially for images with large missing

regions, and such a routing has been explored in literatures

and yielded some benefits. For example, Xue and Zhang [27]

applied HOG features for matching similar patches. Liu and

Caselles [28] utilized gradient feature to select a label for

a node. Jin and Bai [35] introduced first-order directional

derivative of facet model to find candidate patches. In our

work [16], we designed a weighted color-direction feature

to find the most similar patches for sparse representation.

In our previous work [36], we devised a direction structure

distribution analysis scheme to select candidate labels, and

it works well for images with linear structures. However, for

degraded images with complex structures, the method could

not yield pleasant results.

With the purposes of better maintaining structure coher-

ence and neighborhood consistence for completing degraded

images with large missing regions, this paper proposes

a Structure Offsets Statistics based inpainting algorithm

(Abbreviated as SOS) via in-depthly exploiting image direc-

tion features to guide inpainting process under the framework

of MRF-based methods. The main contributions of this paper

are as follows.

(1) To better maintain structure coherence, the image is

partitioned into structure and non-structure parts according

to multi-direction features obtained by Curvelet transform,

and the offsets are counted independently in these two parts.

Then, a few dominant ones are chosen as candidate labels.

(2) To better maintain neighborhood consistence, instead

of only using color information, multi-direction features

based on Curvelet transform are exploited to construct energy

equation.

(3) Experimental results demonstrate the superiority of our

method over serval state-of-the-art methods on five kinds

of inpainting tasks, and the effectiveness of proposed two

schemes are empirically validated.

The rest of this paper is organized as follows. Section II

presents the framework of MRF-based methods. Section III

details the proposed algorithm, including labels selection,

energy equation construction, and a brief analysis of the

method. Section IV presents the experimental results on a

variety of images as well as an empirically analysis. Finally,

conclusions are made in Section V.

II. FRAMEWORK OF MRF-BASED METHODS

Given a degraded image I with missing region �,

a pixel/patch p located at position x = (x, y) in missing

region is filled with a certain pixel/patch q located at posi-

tion x + o from known region, where o = (u, v) is an

offset. Therefore, the inpainting problem is how to assign
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FIGURE 1. Sketch of energy function.

a suitable offset o to each unknown pixel/patch at x. Given

the offsets, the inpainted image can be obtained by combining

a stack of shifted images corresponding to these offsets.

In MRF-based methods, the known pixels/patches and the

missing pixels/patches are regarded as labels and nodes, and

how to assign labels or offsets is implemented by minimizing

the energy equation

E(L) =
∑

x∈�

Ed (L(x)) +
∑

x,x′∈�

Es(L(x),L(x
′)) (1)

where the neighboring pixels/patches (x, x′) are 4-connected;

the argument L(·) is a labelingmapwhich assigns a label from

a pre-selected offsets set {oi} to the unknown pixel/patch at

position x, e.g., L(x) = i means the missing pixel/patch at

x is filled with the pixel/patch at x + oi. A sketch of energy

equation is illustrated in Figure 1. The data term Ed , which

aims to maintain structure coherence, is 0 if label oi is valid

for x, i.e., x + oi locating at the known region; otherwise Ed
is +∞. The smooth term Es aims to maintain neighborhood

consistence. In the original work [20], the smooth term Es is

defined as

Es(a, b) = ‖I(x+ oa) − I(x+ ob)‖
2

+ ‖I(x′ + oa) − I(x′ + ob)‖
2 (2)

where I(x) is the RGB color value of x; I(· + oi) is an image

shifted by oi. If oa 6= ob, the neighboring pixels/patches x and

x′ will be assigned different labels, resulting a seam between

x and x′. Hence, equation (2) penalizes neighboring labels if

two shifted images I(x + oa) and I(x + ob) are not similar

near this seam. Then energy equation (1) is optimized using

multi-label graph-cuts technique [37]. For more information

of MRF-based methods, refer to [26].

When solving energy equation (1), utilizing all known

offsets as candidate offsets may not produce pleasant results.

On the one hand, some unsuitable offsets may bring in

interference during optimization process, resulting in unsat-

isfactory inpainting performance like structure incoherence.

On the other hand, only the color information is considered

in smooth term, which may lead to neighborhood incon-

sistence. To tackling the two issues, selecting a few but

more reasonable offsets from all known offsets as candi-

dates is a robust way to enhance inpainting performance

and computational efficiency. Meanwhile, integrating more

information in energy equation is able to better satisfy

human eye visual requirements. Based on the considerations,

we proposed a new MRF-based method through in-depthly

exploitingmulti-direction features, which is expounded in the

next section.

III. THE PROPOSED ALGORITHM

To better maintain structure coherence and neighborhood

consistence of the inpainted results, this paper proposes a

structure offsets statistics based image inpainting algorithm

using multi-direction features. The two main procedures as

well as an analysis of the method are detailed in this section.

A. LABELS SELECTION

The procedure of our labels selection is sketched in

Figure 2. We first apply Curvelet forward transform on the

image to obtain coefficient matrixes with different directions

and scales, and the coefficient matrixes are partitioned into

different direction sets. For each set, only the large coeffi-

cients are utilized to perform Curvelet reverse transform to

reconstruct a direction image. Then the structure part of the

degraded image is constructed by stacking the plentiful edge

information of direction images, and the left part is treated

as non-structure part. Afterwards, the offsets are indepen-

dently counted for structure and non-structure parts, and a

few dominant offsets are chosen as candidate labels. In what

follows, we explain the procedure in detail. Let the input

image denoted as IY , which is the Y component of original

color image I in YUV space. Multi-direction and multi-scale

Curvelet decomposition is performed on IY , that is,

Q = T+(IY ) (3)

where T+ implies Curvelet forward transform and Q =

{Qs,d } is the coefficient matrix set with scale s and direc-

tion d . In this paper, the coefficient matrix scale s is set

to 5, and the numbers of direction matrix for five scales are

respectively set to 1, 16, 32, 32, and 64. An illustration of

Curvelet coefficients partition is presented in Figure 3. The

coefficient matrix Q1,1 represents low frequency information

of an image, and the others represent high frequency informa-

tion of different degrees over different directions. In order to

accurately capture high frequency information like structures

and edges, for two to five scales, only the coefficients larger

than a threshold are applied for further processing, formulated

as

Q′
s,d (r, c)=

{

0, if Qs,d (r, c)<α · max{|9(r, c)|}

Qs,d (r, c), otherwise.

(4)

where 9(r, c) is a patch centered at (r, c) with a size of 11×

11, and α is a coefficient regulating the threshold. The value

of α impacts final inpainting performance and how to set a

proper value will be discussed in Section IV-A.

Then Curvelet coefficient matrix set Q′ = {Q′
s,d } from

the second to fifth scale layers (i.e., s = 2, · · · , 5) is parti-

tioned into N sets according to N directions. An illustration

of the partition with 8 directions is given in Figure 3(b).
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FIGURE 2. The frame diagram of label selection.

FIGURE 3. An illustration of curvelet coefficients partition.

The set Z1 does not only include the features exactly at 0
◦ or

horizontal direction of an image, but regions ranging from 0◦

to 22.5◦ and from 180◦ to 202.5◦, and similar for other seven

sets. On this basis, the direction image An(n = 1, · · · ,N )

over the n-th direction can be inferred via

An = T−(Zn ∪ Q1,1) (5)

where the size of An equals to the size of IY and T− denotes

Curvelet inverse transform. To extract plentiful edge infor-

mation, canny operator and morphological operation are per-

formed on each An, resulting edge images denoted as Bn.

Then a whole edge image B is generated by stacking Bn,

i.e., B = ∪N
n=1Bn. Therefore, we can obtain plentiful struc-

ture information,which is beneficial for maintaining structure

coherence. According to B, the image I is partitioned into

structure part Is via Is = I · B and non-structure part Ins via

Ins = I\Is.

Afterwards, we respectively match similar patches in Is
and Ins to obtain the offsets. Specifically, for each patch P(x)

with a size of 8 × 8 in known region of Is, we compute its

offset Os(x) to its most similar patch measured by the sum of

squared distance between two patches, that is,

Os(x) = argmin
o

‖P(x+ o) − P(x)‖, s.t.‖o‖ > τ (6)

where o = (u, v) is a 2-d coordinates of an offset, x =

(x, y) is the center position of patch P(x), τ is a threshold to

preclude nearby patches and usually set to 8. To efficiently

compute offsets, traditional KD-trees method is applied to

find the nearest neighbor field additionally rejecting any

patch that disobeys the constraint during the search proce-

dure. In addition, based on local similarity, the search region

is adaptively decided according to the size of missing region,

that is, the matching procedure is performed in a square

that is 3 times larger than the max of width and height of

bounding box of the hole. Then, for the structure offsets Os,

we calculate their statistics by a 2-d histogram hs(u, v) as

hs(u, v) =
∑

x

δ(O(x) = (u, v)) (7)

where δ(·) is 1 when the argument is true and 0 otherwise.

The top k1 peaks from the histogram are chosen as the k1
dominant desired structure offsets. For non-structure part Ins,

k2 dominant desired non-structure offsets are selected in the

same way as for Is. Therefore, there are k = k1 + k2
candidate offsets are selected. In our final implementation,

N = 8, k1 = 40, k2 = 20 is the default configuration,

and we also investigate their influence on the final inpainting

performance in Section IV-A.

B. ENERGY EQUATION CONSTRUCTION

Instead of only using color information, multi-direction fea-

tures based on Curvelet transform are exploited to construct

energy equation in order to better maintain neighborhood

consistence. The overall procedure of our energy equation

construction is sketched in Figure 4. The data term Ed
remains unchanged, that is, Ed is 0 if the label oi is valid for

x, otherwise Ed is +∞. The smooth term Es aims to penalize

incoherent seams. For example, let oa and ob are two labels

respectively assigned to x and x′. If oa 6= ob, then a seam will

be appeared between x and x′. In order to avoid incoherent

seam as much as possible, the multi-direction features are

introduced into Es. Denoting a = L(x) and b = L(x′), our

smooth term is defined as

Es(a, b) = (‖I(x+ oa) − I(x+ ob)‖
2

+ ‖I(x′ + oa) − I(x′ + ob)‖
2)

+ λ(‖F(x+ oa) − F(x+ ob)‖
2

+ ‖F(x′ + oa) − F(x′ + ob)‖
2) (8)

In the equation, I(x) and F(x) are respectively the RGB

color values and N direction feature intensities of x, and λ is

a coefficient balancing the color and multi-direction feature.
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FIGURE 4. The frame diagram of energy equation construction.

Here, the multi-direction feature term F(x) is referred by

Curvelet transform, that is, after performing Curvelet for-

ward transform and partitioning coefficient matrix set Q, the

multi-direction matrix F = {Fn, n = 1, · · · ,N } is obtained

by

Fn = T−(Zn) (9)

where T− denotes Curvelet inverse transform. Equation (9)

is slightly different from (5) in that only high frequency

coefficients are applied to infer different direction features.

To better maintain neighborhood consistence, all N direction

features are applied to construct smooth term. Then combin-

ing the data term, the energy equation is constructed, which

is later solved by multi-label graph-cuts algorithm [37].

C. ALGORITHM ANALYSIS

By integrating our labels selection and energy equation

construction into the framework of MRF-based algorithms,

the proposed SOS algorithm is developed. The pesu-docode

of SOS is given in Algorithm 1. In the experiment, we imple-

ment two SOS versions with direction number N = 4 and

N = 8. This work inherits our previous work [36]. Although

both work utilize direction features as extra information to

guide inpainting procedure, the degrees of exploitation of

direction features are significantly different. For the labels

selection scheme, on the one hand, the coefficient matrix Q

undertakes a preprocess as (4), which is beneficial to more

accurately extract direction features for further processing.

On the other hand, the variance of local direction gradi-

ent magnitude was calculated to determine which direction

feature image is used for matching similar patches in [36].

While in this work we combine all N direction features

together for matching similar patches to obtain robust guiding

information, which is much of benefit especially when the

information around the damaged area is quite mess. There-

fore, structure coherence can be better maintained. For the

energy equation construction scheme, only color information

was considered in [20], [26], [36], while in this work multi-

direction features are further exploited to construct a smooth

term that is able to better maintain neighborhood consistence

for the inpainted images. In addition, we consider different

numbers of direction in the current work, i.e., N = 4 and

N = 8, while only four directions was considered in the

previous work.

Algorithm 1 Pseudocode of SOS

Require: the degraded image I , the parameters α, k1, k2, λ

Ensure: the inpainted image

1: Transform I into YUV space and obtain the Y component

as IY
2: Obtain coefficient matrix {Qs,d } on IY according to (3)

3: Perform preprocess on {Qs,d } according to (4)

4: Partition {Q′
s,d } into N sets, resulting Z1, · · · ,ZN

5: Generate direction images An according to (5), n =

1, · · · ,N

6: Generate edge images Bn by performing canny operator

and morphological operation on An, n = 1, · · · ,N

7: Stack edge images B1,B2, · · · ,BN into a whole edge

image B

8: Partition I into structure part Is and non-structure part Ins
via Is = I · B and Ins = I\Is

9: Obtain offsets for Is and Ins according to (6)

10: Calculate 2-d histograms hs(u, v) and hns(u, v) according

to (7)

11: Choose top k1 and k2 peaks from hs(u, v) and hns(u, v) as

candidate labels

12: Generate multi-direction matrix F according to (9)

13: Construct smooth term Es according to (8)

14: Construct energy equation E according to (1) using the

above Es
15: Obtain labels by solving E using multi-label graph-cuts

algorithm

16: Fill missing pixels/patchs using the labels

The computational complexity of the proposed SOS

method is reasonable. Compared to most MRF-based algo-

rithms, the main complexity difference is determined by the

number of offsets for solving energy function. The computa-

tional cost is huge when all possible labels are applied, like

the Shift-map approach in [20]. To the contrary, we elab-

oratively select only a few candidate offsets from structure

and non-structure parts, which sharply reduces computation

time. Compared with our previous work [36], only an extra

Curvelet inverse transform operation is added for construct-

ing smooth term, however, it hardly increases computational

overhead because a fewer iterations may required to find the

minimum value. In the next section, we will experimentally

validate the effectiveness and efficiency of our method by

inpainting different types of images.

IV. EXPERIMENTAL RESULTS

In this section, a mount of experiments are conducted to

validate the superiority of our proposed approach. Firstly,

the parameter setting is empirically discussed in order to give

a default configuration. Then, the performance of our method

is evaluated on inpainting various kinds of images and com-

pared with several state-of-the-art methods. Finally, the effec-

tiveness of proposed labels selection and energy function

construction schemes are validated. All the experiments are
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FIGURE 5. Original images.

FIGURE 6. Degraded images.

carried out on the platform of a PC with 4.0 GHz CPU, 16GB

RAM and Matlab.

A. PARAMETER DISCUSSION

There are a few relatively important parameters need to be

set in the proposed method, including threshold α in (4),

weight λ in (8), and the numbers k1 and k2 of candidate

offsets for structure and non-structure parts. To evaluate their

influence and provide a proper setting, we test our algo-

rithm with different settings in six images, as presented in

Figures 5 and 6. To ensure a brief and efficient discussion,

N is set to 8, the total number k = k1 + k2 of candidate

labels is set to 60, and a setting with α = 0.8, λ = 0.5,

k1 = 40 (therefore k2 = 20) is applied as a default setting

according to a pre-experiment. In this experiment, we only

vary one parameter and keep others unchanged. The PSNR

(in dB) is adopted to quantify inpainting performance.

We vary the threshold α in the range of [0, 1] with an

interval 0.1, the weight λ in the range of [0, 2] with an

interval 0.25, and the parameter k1 in the range of [0, 60]

with an interval 5. The PSNR values of each algorithm

setting on inpainting six images in Figure 6 are plotted in

Figures (7)-(9). Figure 7(a) shows that the inpainted images

achieve relatively large PSNR values when α is set to 0.8,

and it is also verified by Figure 7(b). Similarly, Figure 8

shows that a value of 0.5 for λ produces the best results

among all the settings. Figure (9) reflects that the number

of structure candidate labels indeed influent the inpainting

performance. Specifically, the PSNR value increases to a

peak when k1 increases to 40, and then decreases as the

value of k1 keeps increasing. The reason is that structure

candidate labels can provide plentiful structure priori for

guiding inpainting process, however, a too large k1 value will

cover up the non-structure prior which may also required

for inpainting tasks. According to the discussion, the default

setting is applied to conduct further experiments.

B. PERFORMANCE COMPARISONS

In this section, we evaluate our algorithm performance

on five kinds of inpainting tasks, including scratch and

text removal, inpainting texture images, inpainting images

with single direction structures, multi-direction structures

and curve structures. Also, we compare the performance

against four state-of-the-art exemplar-based algorithms,

including a greedy-basedmethod (Wang et al. [17]), and three

MRF-based methods (Le Meur et al. [38], He and Sun [26],

and our recently work Cheng and Li [36]). Wang’s method

[17] is a greedy-based method that modified Criminisi’s [39]

priority function and used fast flourier transform to find

more suitable candidate patch. In Le Meur et al. [38], sev-

eral inpainting procedures with different parameter settings

are first executed on a low-resolution image and then the

results are fused together to produce a unique low-resolution

image. Afterwards, a single image super-resolution algorithm

is applied to obtain final result. He and Sun [26] computed

offsets statistics in known region and chose some dominant

offsets to be labels. Our previous work and Li [36] applied

a direction structure distribution analysis scheme to choose a

few dominant offsets, while keeping the energy equation the

same as He and Sun [26]. In the experiments, all four com-

pared algorithms utilize the settings as in their original papers.

It needs to be pointed out that, because our recent work [36]

has shown its superiority over eight other methods (including

three greedy-based and five MRF-based methods) and this

work is a further investigation, we only apply four algorithms

(including our previous method [36]) as the compared ones in

this experiment.

1) COMPARISON ON SCRATCH AND TEXT REMOVAL

Five images with moderate composite structures but dif-

ferent backgrounds are used for scratch and text removal

performance comparison, given in Figure 10. The inpainted

results ofWang’s, LeMeur’s, He’s, Cheng’s and the proposed

method are given in the third to seventh columns, respectively.

The red rectangular block in some images highlights the part

of an image suffering structure inconsistence or noticeable

artifacts. ForWang’s approach, structure incoherence appears

in all results except Figure 10(d), especially some unwanted

structures exist as illustrated in Figures 10(c) and 10(e).

Le Meur’s method could not achieve pleasant results in all

tests due to the structure incoherence as shown in the fourth

column of Figure 10. Moreover, relatively obvious inpainting

marks and unwanted structures exist in Figures 10(b) and

10(d). The results of He’s method have similar flaws on all

images except the fourth one. Cheng’s results seem to be

better than these three algorithms, but structure incoherence

still exists, as shown in Figures 10(c) and 10(e). The last

column reflects that our proposedmethod obtains more pleas-

ant inpainted results than the others, and the structure coher-

ence and neighborhood consistence are maintained very well,

though there are quit a few invisible mark in Figure 10(e).

Tables 1 and 2 list PSNR and SSIM [40] values of the

inpainted results obtained by five methods. According to the

tables, the proposed method achieves the largest PSNR and

SSIM values among all algorithms on each image, which val-

idates the superior of our method on scratch and text removal.

In addition, according to the computation time in Table 3, our

method is more efficient thanWang’s and LeMeur’s methods

in a large degree, and has almost the same efficient as He’s

and Cheng’s methods.
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FIGURE 7. PSNR curves varied with different α values. Figure 7(a) is the PSNR curves for inpainting each image
in Figure 6, and Figure 7(b) gives the mean PSNR curve.

FIGURE 8. PSNR curves varied with different λ values. Figure 8(a) is the PSNR curves for inpainting each image
in Figure 6, and Figure 8(b) gives the mean PSNR curve.

FIGURE 9. PSNR curves varied with different k1 values. Figure 9(a) is the PSNR curves for inpainting each image
in Figure 6, and Figure 9(b) gives the mean PSNR curve.

2) COMPARISON ON INPAINTING TEXTURE IMAGES

Figure 11 gives the results of five algorithms on inpainting

texture images without obvious structures. We can find that

error accumulation phenomenon appears in Wang’s results,

illustrated in Figures 11(a) and 11(c). The MRF-based meth-

ods can produce better results than Wang’s greedy-based

method, however, some artificial effects exist in Le Meur’s

results, as shown in Figures 11(a) and 11(c). As for He’s,
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FIGURE 10. Performance comparisons on scratch and test removal. For each row, the columns from left to right are the original image,
degraded image, inpainted results of Wang’s, Le Meur’s, He’s, Cheng’s and the proposed methods, respectively.

TABLE 1. PSNR (in dB) comparisons on scratch and text removal.

TABLE 2. SSIM comparisons on scratch and text removal.

Cheng’s and ours results, they all look natural and coherent.

According to the computation time listed in Table 4, we can

say that the computation complexity of our method is far less

TABLE 3. Computation time (in seconds) comparisons on scratch and text
removal.

TABLE 4. Computation time (in seconds) comparisons on inpainting
textural images.

than Wang’s and Le Meur’s methods and almost the same

as He’s and Cheng’s methods. In summary, our proposed

method can achieve pleasant inpainted results with a high

efficient.
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FIGURE 11. Performance comparisons on inpainting texture images. For each row, the columns from left to right are the original image,
degraded image, inpainted results of Wang’s, Le Meur’s, He’s, Cheng’s and the proposed methods, respectively.

FIGURE 12. Performance comparisons on inpainting with single direction structures. For each row, the columns from left to right are the
original image, degraded image, inpainted results of Wang’s, Le Meur’s, He’s, Cheng’s and the proposed methods, respectively.

3) COMPARISON ON INPAINTING IMAGES WITH

SINGLE DIRECTION STRUCTURE

The main purpose of our method is to maintain structure

coherence and neighborhood consistence of inpainted results,

therefore we test our algorithm performance on inpainting

images with various kinds of structures. In this experiment,

four images with single direction structures and different

backgrounds are inpainted, and the results of five algorithms

are illustrated in Figure 12. According to the Figures, we can

see that Wang’s results are not satisfied since not only the
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FIGURE 13. Performance comparisons on inpainting with multi-direction structures. For each row, the columns from left to right are the
original image, degraded image, inpainted results of Wang’s, Le Meur’s, He’s, Cheng’s and the proposed methods, respectively.

structures are incoherent but also seam effects and error accu-

mulation phenomenon exist. The cause is as a greedy-based

method it utilizes a greedy filling procedure and the error

accumulation phenomenon is inevitable. For MRF-based

methods, the structure coherence is not always well main-

tained by Le Meur’s method, as shown in Figures 12(b) and

12(c), and some inpainted trails appear in all results. He’s

approach fails to repair images with relative less structures,

as shown in Figures 12(b) and 12(c). Cheng’s method obtains

relatively better inpainted results. However, it fails to repair

images with complex structures like Figures 12(c) and 12(d).

To the contrary, our method is able to well maintain structure

coherence and neighborhood consistence in all images and

the inpainted images look natural.

4) COMPARISON ON INPAINTING IMAGES WITH

MULTI-DIRECTION STRUCTURE

To verify the performance on images with multi-direction

structures, five images are inpainted and the results are

presented in Figure 13. From the results, we can see that

structure incoherence appears in Wang’s results, particu-

larly error accumulation phenomenon is serious. Viewing Le

Meur’s results, structure incoherence also appears, and some

unwanted context exists as shown in Figure 13(d). Though

He’e method applies offsets statistics to guide filling proce-

dure, it still cannot maintain structure coherence well accord-

ing to Figures 13(a), 13(b) and 13(d). The reason is when the

original structure information is diverse and not sufficient,

the desired structure labels would be swept under other labels

during candidate labels selection procedure. As the desired

direction features are selected, Cheng’s results are better than

He’s, however, it still fails to recover images with relatively

less and complex structures like Figures 13(a) and 13(b).

Because our method extracts plentiful multi-direction edge

information to distinguish structure and non-structure labels

and applies multi-direction features to construct smooth term,

more pleasant results are obtained as shown in Figures 13.

Although the structure coherence is not quite well maintained

in Figure 13(e), the repaired result still looks natural and

coherent, and satisfies human eye visual requirements.
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FIGURE 14. Performance comparisons on inpainting with curve direction structures. For each row, the columns from left to right are the
original image, degraded image, inpainted results of Wang’s, Le Meur’s, He’s, Cheng’s and the proposed methods, respectively.

5) COMPARISON ON INPAINTING IMAGES WITH CURVE

STRUCTURE

To show the superiority of our method on maintaining

structure coherence, six images with more complex struc-

tures, i.e., curve structures, are inpainted, and the results

are given in Figure 14. According to Figures 14(a) and

14(b), we can see that He’s, Cheng’s and our methods can

repair images with repetitive curve structure very well, while

the other two works badly. On inpainting image with com-

plex curve structure and simple background, our method are

much better than other four ones, as shown in Figure 14(c).

For image with curve structure and complex texture

background in Figure 14(d), our method can maintain struc-

ture coherence and neighborhood consistence at the same

time. As for Figure 14(e), there is complex missing curve

structure while no exactly the same curve structure exists

in known region, our method still obtains relatively better

repaired result. For Figure 14(f), since the known region

contains only a few curve structure similar to the missing

content, our method could not obtain a inpainted result satis-

fied with human eye visual requirements very well. However,

Our method extends the structure along the direction of the

structures in known region and the inpainted result is more

naturally than other four results. The reason of such good per-

formance comes from the reasonable labels and the smooth

term in energy equation where multi-direction features are

elaborately exploited with the aim of maintaining structure

coherence and neighborhood consistence.

C. VALIDATION OF THE COMPONENTS

The previous experiments verify the superiorities of our

proposed method over several compared algorithms on
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TABLE 5. PSNR (in dB) comparisons of six SOS variants and Cheng’s
method [36] on inpainting images in Figure 6.

inpainting five kinds of images. In order to further validate

the effectiveness of proposed labels selection and energy

equation schemes by exploiting image multi-direction fea-

tures, we test six variants of our proposed SOS method on

inpainting the images in Figure 6. We denote six variants in

a form of SOSN -X . N is the number of direction partitions

and N ∈ {4, 8} is tested. X ∈ {L,E,LE} denotes the

components used in the variants, where L means the proposed

label selection scheme is applied and the energy equation is

the same as in our previous work [36], E means the proposed

energy equation is applied while label selection scheme is

the same as in [36], and LE denotes two proposed schemes

are applied (Hence, SOS8-LE is the algorithm verified in

the previous experiments). Since the current work is a fur-

ther continuation and deepening of our previous work [36],

it is applied a baseline to verify the superiority of current

work. The PSNR comparisons of six SOS variants as well as

Cheng’smethod are listed in Table 5. According to the results,

three conclusions can be made. First, the proposed labels

selection and energy equation schemes indeed enhance the

inpainting performance. Second, the two schemes can coop-

eratively improve the performance in a large degree. Third,

the number of direction partition truly influent the algorithm

performance. But taking effectiveness and efficiency into

account, we recommend using N = 8 as a default setting.

V. CONCLUSION

In this paper, we introduced a novel MRF-based inpainting

method that exploits image multi-direction features to guide

inpainting procedures with the purpose of maintaining struc-

ture coherence and neighborhood consistence of inpainted

images. To effectively and efficiently select proper labels for

MRF nodes, the image is partitioned into structure and non-

structure images, where the structure part is stacked with sev-

eral edge images on different direction features. The offsets

are matched independently in two parts and a few dominant

ones are selected as labels. When constructing energy equa-

tion, multi-direction features are used to devise a smooth

term. We have demonstrated the superiority of our method

over some state-of-the-art approaches on inpainting various

kinds of degraded images. In addition, the effectiveness of

two new ingredients as well as the experiment settings are

empirically investigated. Our method is based on an in-depth

exploitation of image direction features. We believe it would

be an effect way to solve more difficult inpainting tasks like

the images with complex curved structures via exploiting

some other curve features, and we will further investigate this

in our future work.
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