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In this Letter, a robust third-order tensor decomposition of multi-lead electrocardiogram (MECG) comprising of 12-leads is proposed to reduce

the dimension of the storage data. An order-3 tensor structure is employed to represent the MECG data by rearranging the MECG information

in three dimensions. The three-dimensions of the formed tensor represent the number of leads, beats and samples of some fixed ECG duration.

Dimension reduction of such an arrangement exploits correlations present among the successive beats (intra-beat and inter-beat) and across the

leads (inter-lead). The higher-order singular value decomposition is used to decompose the tensor data. In addition, multiscale analysis has

been added for effective care of ECG information. It grossly segments the ECG characteristic waves (P-wave, QRS-complex, ST-segment

and T-wave etc.) into different sub-bands. In the meantime, it separates high-frequency noise components into lower-order sub-bands

which helps in removing noise from the original data. For evaluation purposes, we have used the publicly available PTB diagnostic

database. The proposed method outperforms the existing algorithms where compression ratio is under 10 for MECG data. Results show

that the original MECG data volume can be reduced by more than 45 times with acceptable diagnostic distortion level.

1. Introduction: E-health is one of the promising applications in

today’s age that provides a secure information and communication

technology in support of healthcare services. These healthcare

organisations may require access to physiological signals, such as

electrocardiogram (ECG), electroencephalography, SpO2 etc., for

future analysis. Hence, there is a need for a central repository that

can store this abundant data. Recent advances in digital

technologies have influenced the designing of cloud-based systems

that can interact with these organisations. The overgrowing use

and traffic in the cloud may have an adverse effect in accessing

this data. Data volume reduction is a proposed solution to

overcome this problem [1].

AWHO study shows that cardiac disorders are the primary cause

of high mortality rate across the globe [2]. The symptoms of a

cardiac patient are reflected in the ECG. It records the entire

pumping activity of the heart, and is used to diagnose the cardiac

patients. A single lead ECG provides only selective information

of a heart condition in a particular view. It is also difficult to

analyse all types of cardiac problems using a single lead ECG.

Hence cardiologists use the standard 12-lead ECG system for crit-

ical diagnostic decision. The 12-lead ECG system henceforth is

termed as multi-lead ECG (MECG). The size of MECG, containing

millions of heartbeats of multiple patients, is too large to be stored

in their entirety. The Letter proposed here focuses on data reduction

of MECG for storage purpose.

The key idea of the proposed algorithm is to reduce the dimen-

sion by exploiting the correlations present in the MECG data

without losing clinical information. There are three types of corre-

lations, namely, intra-beat, inter-beat and inter-lead correlations [3].

Several methods that exploit inter-beat [4–6] or both intra- and

inter-beat correlations [7] of a single lead ECG signal have been

proposed. Recently, fractal-based single lead ECG compression

has been proposed [1]. It exploits only inter-beat correlation of

single lead ECG. Keeping in view the importance of the MECG

data, efforts on inter-lead correlation among the leads have been

carried out using multiscale principal component analysis (PCA)

[8]. Cetin et al. [9] have exploited both intra-beat and inter-lead cor-

relations. To the best of our knowledge, there is no Letter that

makes use all three types of correlations simultaneously MECG

data. The proposed method exploits all types of correlations using

higher-order singular value decomposition (HOSVD). The advan-

tages of this method are: it saves a large number of computations

of floating point operations and it eases the storage scarcity

problem. A preliminary version of this Letter has been reported

in [10], where multilevel 3D discrete wavelet transform (DWT)

(3D multiscale analysis) has been applied on the MECG tensor. It

was difficult to analyse the morphological waves (P-wave,

QRS-complex, ST-segment and T-wave) of the ECG signal as the

3D multiscale analysis is unable to segment these waves.

Moreover, the compression performance was moderate with a com-

pression ratio (CR) under 18. In this Letter, we have enhanced the

performance by adding 1D multiscale analysis which treats ECG

clinical information efficaciously. Moreover, a comparison for dif-

ferent cardiac disorders is presented. Results shown in this Letter

are compared with the earlier works.

The rest of this Letter is organised as follows: Section 2 discusses

the proposed HOSVD-based MECG data reduction scheme in

wavelet domain. The results and discussion are presented in

Section 3, followed by our conclusions in Section 4.

Notations: Before starting the next section, we would like to point

out the notations used in this Letter. Scalars, vectors and matrices

follow the standard notations. A third-order tensor of size I × J ×

K is written with a calligraphic letter X , and its elements as xijk, i

= 1, …, I, j = 1, …, J and k = 1, …, K. The other two terminolo-

gies associated with a tensor are fibres and slices. The mode-1 fibres

of the tensor are the column vectors x:jk , and are characterised by

fixing the index in all modes except one. Mode-2 and mode-3

fibres are the row and tube vectors, and are represented as xi:k
and xij:, respectively. Similarly, the slices of a tensor are obtained

by fixing any two indexes and its structure is similar to a matrix,

for example, X i::. The above generated slices (i fixed) are called

the ‘horizontal’ matrices. Similarly, another two types of slices,

keeping j and k fixed, are named the ‘vertical’ and ‘frontal’ matri-

ces, respectively. Two common operations associated with a

tensor are flattening and mode-n product. A tensor of order N can

be unfolded or flattened in N different ways. The n-mode flattening

is adopted from [11]. The n-mode fibres are the columns of the
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n-mode flattened matrix. The flattening of a tensor X in its n-mode

is symbolised by the matrix X
(n). The mode-n product of a tensor

X [ R
I1×I2× ..., In with a matrix A [ R

J×In is represented as

Y = X ×n A. In terms of the flattened tensors, the product can be

expressed as Y
(n) = AX

(n). [In this Letter, tensor operations such

as flattening, mode-n product and HOSVD etc. are performed.

For these operations, we have used the MATLAB Tensor toolbox

[12].]

2. Method: The block diagram of the proposed method for

third-order tensor MECG is shown in Fig. 1. The encoder part

comprises of preprocessing, MECG tensor data formation and

multiscale HOSVD. Exploitation of three types of redundancies is

achieved by representing the MECG data in third-order tensor

form. Then multiscale (L-level 1D DWT) HOSVD is applied on

the MECG tensor. This turns out to achieve a high data reduction

volume without loss of any clinical information. Fig. 1b shows

the decoder part of the proposed method. It follows the reverse

process, that is, decoding, HOSVD restoration, IDWT, third-order

tensor representation followed by period recovery and

postprocessing.

2.1. Tensor MECG data formation: Tensors are used to store the

multi-dimensional data. An n-dimensional tensor can be

represented mathematically as X[ R
I1×I2× ... In where n is the

order of the tensor and Id is the size of its dth dimension. The

work presented in this Letter deals with third-order tensor, and

the size of the tensor is discussed later.

The MECG data is a 2D matrix data where the rows represent the

number of leads, and the samples of each lead can be represented as

the number of columns. It can be laid out as a tensor by stacking

vertical slices side-by-side, since the timing information across all

the leads is the same. Each vertical slice represents a beat period

of all leads. This is done by following beat detection, segmentation

and period normalisation. To reduce the computational complexity,

the R-peaks of two leads (V2 and V10) are detected by following

the Pan-Tompkin’s algorithm [13]. The PTB database, considered

in this Letter, has less noise in the precordial leads; hence, V2

and V10 are considered for peak detection. The R-peak detection

of a single lead may be sufficient but two leads are processed to

avoid the detection of missing R-peaks during some pathological

cases. An ECG beat period comprises of a P-wave, followed by a

QRS-complex and finally a T-wave. The duration of the PR interval

(on-set of P-wave to the beginning of the QRS-complex) is 120–

200 ms. Each beat period has a length of consecutive R-peaks,

and is spanned 200 ms (200 samples) left from the current

R-peak to 200 ms left from the next R-peak. After detection of

R-peaks, each lead is segmented and normalised to the number of

beat periods. Each beat period of a lead (V2 or V10) is normalised

to a same length (p) using the cubic spline interpolation technique.

The size of the ECG periods of other leads is normalised to p. Then,

we arranged the MECG data as third-order tensor X [ R
m×n×p,

where the dimensions m, n and p are the number of leads, heart

beats and consecutive samples of the period normalised heartbeat,

respectively. The horizontal slices of X (keeping first index m

fixed, whereas the two other indices, n and p, are free) represent

each ECG data, and each vector of a horizontal matrix represents

the consecutive beats of a lead. Similarly, a vertical slice contains

the beat information of all leads.

2.2. Multiresolution analysis of MECG data: The non-stationary

nature of the ECG signal incited us to use the WT, to know

exactly the occurrence of different ECG morphologic features in

a particular frequency sub-band. In other words, different

morphologic waves of an ECG signal are grossly segmented into

different sub-bands depending on their frequency content [14]. In

this Letter, dyadic DWT with Daubachies 9/7 biorthogonal

wavelet filters as the mother wavelet has been used. It is

implemented using a multiresolution pyramidal decomposition

technique. The filter bank implementation of dyadic DWT that is

decomposed with L-level results in L + 1 sub-band levels. The

number of decomposition levels is chosen by using the formula

L = ⌊log2Fs − 2.96⌋ where Fs is the sampling frequency [15].

The third-order MECG tensor Xm×n×p is wavelet decomposed

using 1D DWT. It is applied on the mode-3 fibres (xmn:) (by

varying m and n with fixed p) to generate p-dimensional wavelet

coefficients, as the 1D DWT can be applied on a vector. The

resulted L + 1 sub-band tensors comprise of one approximation

(AL) and L number of details (DL, . . . , D1) sub-band tensors.

The dimensions of these tensors, AL and Dj, j = L, … 1, are

given as m × n × p/2L and m × n × p/2j, respectively.

2.3. Higher-order SVD on third-order sub-band tensors: For benefit

of readers, we will discuss some of the basics on SVD and

Figure 1 Block diagram of MECG data
a Compression
b Reconstruction
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higher-order SVD (HOSVD). A detailed description on HOSVD

can be found in [16].

2.3.1 Basics on HOSVD: The key idea of the SVD is to project the

MECG data to a new uncorrelated space by removing the redundant

information without discarding any diagnostic information. Let the

MECG data matrix X[ R
m×n be represented as a 2-tensor where

n and m represent the number of leads and number of samples of

each lead, respectively. SVD decomposes it into two orthonormal

matrices and a diagonal matrix as X = USV
T where U [ R

m×m,

V [ R
n×n and Sm×n = [diag{σ1, …, σn}:0], σ1≥ · · · ≥ σn≥ 0

and σ1, …, σn are the singular values. The reduced-SVD

on X is X = ÛŜV
T where Û [ R

m×n, Ŝ [ R
n×n and V [ R

n×n.

Û and V represent the column and row spaces of the MECG

data, respectively [17]. In other words, the generated Û and V rep-

resent the intra-beat and inter-lead variations. Dimension reduction

of X is performed by selecting k(k < n) significant singular values,

and the approximation of X is represented as X̃ ≈
∑k

i=1 siuiv
T
i .

The SVD of a matrix can be generalised to a tensor of any dimen-

sion using the HOSVD [16, 18, 19]. Visualisation and approxima-

tion of HOSVD is presented in Fig. 2. We have limited our

discussion to a third-order tensor Xm×n×p, which can be decom-

posed using HOSVD as

X = S×1U×2V×3W (1)

where U [ R
m×m, V [ R

n×n and W [ R
p×p are orthonormal

matrices. These matrices (U, V and W) are obtained via SVD as

these represent the left singular matrices of X
(n). However, we

can save a large number of floating point operations without calcu-

lating the right singular matrices. After obtaining the orthonormal

matrices, the core tensor S is computed as

S = X×1U
T×2V

T×3W
T. It corresponds to the singular value

matrix of conventional 2D SVD, although it does not have a

simple diagonal structure [17].

The core tensor S has the dimension as that of X . Typical rank of

a tensor (X ) of size m × n × p with mn≤ p is mn [11]. Hence, first

mn frontal slices of the core tensor have significant non-zero

values and rest p′ = p−mn frontal slices have very small numbers

in the order of 10−12 or less which can be set to zero. The effective

dimension of core tensor S is m × n × p′ and satisfies the following

properties:

† All-orthogonal [16], that is, any two slices in a fixed mode are

orthogonal.

† Ordered [16], that is, the norms of the slices along any mode are

ordered in a decreasing manner. For example

first mode: ||S(1, :, :)|| ≥ ||S(2, :, :)|| ≥ · · · ≥ 0 (2)

The above ordered property informs about the energy of the core

tensor. It is concentrated in the s111 element. This is the reason

why HOSVD is used for data compression.

As discussed earlier for SVD case, the mode matrices U , V and

W contain the orthonormal vectors. These vectors span the column

space of three different types of slices that resulted from the flatten-

ing of X along different modes. For example, the left orthogonal

matrix U is calculated by applying SVD on the m × np matrix

which is obtained by mode-1 flattening of X . These mode matrices

are regularised by the core tensor S.

The basic motive of this Letter is the low rank approximation of

the tensor X that makes use of the redundancy present between suc-

cessive beats of each lead, that is, inter-beat correlation in addition

to the other two. To have the core tensor S as a compression of X ,

reduced dimensions can be chosen as M≪m, N≪ n and P≪ p′.

Hence, X can be approximated as

X ≈ Ŝ×1Û×2V̂×3Ŵ (3)

where Ŝ [ R
M×N×P, Û [ R

m×M, V̂ [ R
n×N and Ŵ [

p ′×P,

respectively.

2.3.2 HOSVD application on sub-band tensors: After having a brief

idea of HOSVD, let us discuss the application of HOSVD on L + 1

multiscale tensors (Section 2.2) for dimensionality reduction. These

tensors can be decomposed as

AL = SAL
×1UAL

×2VAL
×3WAL

(4)

Dj = SDj
×1UDj

×2VDj
×3WDj

(5)

The discussion and properties presented in the previous Section

2.3.1 are applicable to each multiscale tensor. The column

vectors of UAL
andUDj

span the lead space in respective sub-bands.

The column vectors of VAL
and VDj

span the beat space and the

column vectors of WAL
and WDj

span each beat sample space in

respective sub-bands [17]. Owing to the multiresolution property

of the DWT, the morphological features of the ECG signal are

grossly segmented into different wavelet sub-bands depending on

their frequency content. Hence, the significant information of

each beat of different leads are encoded in different orthogonal

sub-band matrices.

The dimension of core tensors corresponding to A7, D7 and D6

are kept as these tensors contribute ∼84% (A7: 36.47%, D7:

24.82% and D6: 22.61%) altogether of the total relative energy.

Energy corresponds to the squared Frobenius-norm [Evaluation of

Frobenius-norm and squared n-mode singular values can be

found in [16].] of a tensor. As the D1 sub-band has frequency infor-

mation from 250 to 500 Hz, this sub-band core tensor has been dis-

carded. Other sub-band tensors (D5 · · · D2) have been processed for

further dimensionality reduction. This has been performed by meas-

uring the quality of approximation of these tensors. The decreasing

nature of the n-mode singular values of each sub-band tensor can be

used as a measure for the approximation [16, Property 10].

Frobenius-norm-based dimensionality reduction has been used in

[20]. Similarly, we have used the squared n-mode singular values

of each sub-band as the thresholding parameter. Owing to the order-

ing property of the norms of slices, each multiscale tensor can be

approximated by discarding non-significant singular value of core

tensors SD5
· · · SD2

and corresponding vectors of orthogonal matri-

ces. Hence, the values of M, N and P for each multiscale tensor canFigure 2 HOSVD visualisation and approximation for a third-order tensor
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be chosen using the following thresholding technique

h
(k)
j =

∑Ik

i=1

(s
(k)
i )

2

||SDj
||2F

. 0.95 (6)

where j = 2, 3, 4 and 5 for respective sub-band tensors, Ik =M or N

or P depending on the mode and ||SDj
||2F =

∑m
i (s

(1)
i )

2
=

∑n
i (s

(2)
i )

2
=
∑ p′

i (s
(3)
i )

2
. p′ is the third-order dimension of each

multiscale tensor and it varies as discussed in Section 2.2.

3. Results and discussion: In this Section, the data reduction

performance of the proposed method in terms of CR and three

distortion measures, with a comparative study on few existing

methods, is presented. For evaluation purposes, MECG data is

considered from the PTB diagnostic ECG database [21]. It

contains 549 records of 290 subjects of different diagnostic

classes. There is no clinical summary for 22 subjects. The other

268 subjects are classed as follows: myocardial infarction (148),

cardiomyopathy (18), bundle branch block (15), dysrhythmia

(14), myocardial hypertrophy (7), valvular heart disease (6),

myocarditis (4), healthy control (52) and others (4). Each record

includes 15 continuous recorded signals: the conventional

12-leads and 3 Frank leads. Each signal is digitised at 1000

samples per second, with 16-bit resolution. The data of standard

12-leads is used. This Letter is a frame-wise processing of ECG

beats where each frame contains B number of beats, and frames

of limited records have been considered as shown in Table 1. CR

increases with the number of beats but we have fixed B = 10. The

number of frames considered from different diagnostic classes for

our analysis is shown in Table 1.

The multiscale HOSVD is applied on each sub-band tensor as

described in Section 2. To avoid any loss of low-frequency

characteristics in ECG, information in higher sub-band tensors is

kept intact, that is, the dimension of core tensors (A7, D7 and

D6) are fully retained. It has been observed that the relative

energy of core tensor D1 is 0.06%. This is because it does not

carry any ECG information and contains noise or motion artefacts.

Overall, clinical information of the processed signal has not been

affected much by discarding this sub-band tensor. This also helps

in faster processing as a minimum of 50% of wavelet transformed

coefficients are eliminated which are present in this sub-band

tensor. The dimension of other core tensors are reduced using the

thresholding technique given in (6). It is observed that the

mode-1 and the mode-2 dimensions of core tensors

(SD5
, . . . SD2

) reduced to 7.3 and 6.7 (on an average) from 12

and 10, respectively. Moreover, there is a large dimensional reduc-

tion in mode-3 dimensions of SD3
and SD2

core tensors. It has been

observed during simulation for a dataset that, due to the rank prop-

erty of the tensor as discussed earlier, the mode-3 dimension of SD2

having original size (12 × 10 × 223) is reduced from 223 to 120 and

further to 5 due to the thresholding technique. Similarly, it reduced

to 8 from 116 for SD3
after thresholding.

Fig. 3 shows the original (upper row) and compressed (lower

row) ECG signals of leads I, aVR and V6. Owing to page con-

straints, we have not shown all 12-leads. It is clear that ECG char-

acteristic waves are well preserved. Moreover, in I and aVR we can

mark that noise has been reduced significantly in the compressed

signals. This is due to application of multiscale DWT where the

high-frequency sub-band tensors have been reduced.

3.1. Compressed MECG performance: The compression

performance is evaluated using average CR and distortion

measures such as percentage root mean square difference (PRD)

[15], weighted diagnostic distortion (WDD) [22] and wavelet

energy-based diagnostic distortion (WEDD) [14]. CR is the ratio

of number of bits required to represent the signal before and after

data size reduction. Bits for reduced data size include the number

of bits required to represent non-zero coefficients, dictionary

information, corresponding significance map and header

information [23]. Of the three objective distortion measures used

to evaluate the performance in this Letter, WDD and WEDD are

diagnostic distortion measures, whereas PRD is a non-diagnostic

measure [14, 15, 22].

The significant singular vector coefficients (vectors containing

non-zero elements of U , V , W and S) are uniformly quantised

with 8-bit quantisation level, and corresponding CR values are cal-

culated. The vector containing non-zero indices of core tensor S are

quantised with 14 bits, whereas the vectors containing non-zero

indices of U , V and W are quantised with 8 bits.

To verify how well the clinical morphological features are pre-

served after compression, the distortion measures, namely, PRD,

WDD and WEDD are evaluated. In [22], Zigel et al. considered

18 features (six each from the duration, the shape and the amplitude

parameters) and a penalty matrices with a weighted diagonal matrix

for WDD evaluation. The same procedure has been adopted in this

Letter. First, WDD is evaluated for each beat. Then these values are

averaged for different leads. The average values of the distortion

measures with CR for some datasets are enlisted in Table 1. Data

shown here is of average values from different diagnostic classes.

Table 1 Average CR and distortion measures of different diagnostic classes

Diagnostic classes Number of frames Metric I II III aVR aVL aVF V1 V2 V3 V4 V5 V6 CR

Myocardial infarction 20 PRD 11.85 5.98 3.92 28.75 7.07 24.87 5.18 3.25 3.49 2.39 4.23 3.52 46.3

WDD 3.52 1.94 1.89 4.61 2.18 3.84 1.77 1.63 1.72 0.98 1.85 1.64

WEDD 4.39 2.56 2.29 6.57 2.64 5.48 3.51 2.37 2.91 1.88 2.27 2.92

Cardiomyopathy 17 PRD 9.71 4.53 2.49 27.42 3.72 23.19 3.82 2.54 2.96 2.99 3.77 3.28 42.6

WDD 3.01 1.88 1.47 4.79 1.79 4.47 1.82 1.31 1.56 1.32 1.94 1.57

WEDD 3.81 2.51 2.17 6.79 2.44 5.26 3.07 2.16 2.43 1.99 2.11 2.81

Bundle branch block 17 PRD 10.55 4.13 2.19 27.56 4.72 25.47 4.19 2.64 3.28 2.97 3.61 3.34 45.7

WDD 3.15 1.83 1.33 5.07 1.93 4.76 1.86 1.06 1.34 1.25 1.99 2.02

WEDD 4.07 2.60 2.15 6.03 2.06 5.20 3.14 2.14 2.29 2.10 2.31 2.02

Dysrhythmia 16 PRD 12.81 5.84 3.29 29.53 4.28 26.71 4.17 3.57 3.91 2.94 3.76 3.94 26.3

WDD 3.42 1.60 1.37 5.23 1.94 5.16 2.21 1.88 2.09 1.19 1.95 2.35

WEDD 4.79 4.36 3.85 8.72 4.84 5.41 3.68 3.49 3.82 2.74 2.90 3.05

Healthy control 17 PRD 9.12 3.97 2.89 27.18 4.11 26.69 3.26 3.13 2.41 2.38 4.19 3.17 49.1

WDD 3.02 2.81 1.27 5.08 2.04 4.91 1.97 1.80 0.97 1.02 1.82 1.49

WEDD 3.24 2.16 2.08 5.61 2.33 4.66 2.74 1.91 2.04 1.42 1.83 2.62

The values shown in the table are for 8 bit quantisation level.
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It is observed that chest leads (V2–V6) have less PRD and WEDD,

and fall under an ‘excellent’ (0–4.33) or ‘very good’ (4.33–7.8) cat-

egory [15]. In any diagnostic class, we observed that the PRD

values of bipolar and augmented leads are higher than the chest

leads which may be due to the presence of motion artefacts and

noise. The high PRDs (>24) in leads aVR and aVF do not

signify poor reconstruction quality, rather it is due to removal of

noise in these leads [see Fig. 3]. Discussing the WDD, values

that are smaller than 2.3 suggest the preservation of clinical infor-

mation. These fall under the ‘very good’ category (0− 2.3 [22]).

Some leads (I, aVR and aVF) have high WDD values that fall

under the ‘good’ category. These high values are due to the inaccur-

ate detection of some characteristic features in those noisy leads.

The low WEDD values in these leads indicate the good reconstruc-

tion quality. These values fall in the ‘very good’ (4.51–6.91) cat-

egory. With this acceptable distortion ranges, the CR in different

diagnostic classes is more than 45:1. However, for dysrhythmia

class, the CR reduced to ∼25:1. This may be due to an irregular

nature of the heart beat where our QRS detection algorithm fails

to detect the exact R-peaks. This causes the number of beats to

be very high, considering the same number of ECG samples, that

is, value of n becomes more than 70 instead of 8–20. This

problem can be solved by an efficient QRS detection algorithm

for dysrhythmia or a similar type of diagnostic classes.

3.2. Comparison with existing data reduction methods: Comparison

performance of the proposed method and the existing compression

techniques is carried out and is shown in Table 2. CR depends on

factors such as correlation, number of leads, sampling frequency

and quantisation bits/sample. There are limited works available in

the literature for MECG data. The compression performance has

been carried out with different databases. Hence, direct

comparison of the proposed method with others may not be

appropriate. For fairness in comparison, same number of frames

are processed by simulating the existing algorithms. Values

shown in this table are average of 87 subjects (from different

diagnostic classes). The average PRD and WEDD measures

shown in this table are of a single lead (V4). During simulation,

it is observed that CR value decreases when number of ECG

signals are increased. The KLT- and DCT-based methods have a

CR of 7.25 with a PRD and WEDD of 3.18 and 3.10%,

respectively. The truncated SVD algorithm has a CR of 15.7 with

a PRD and WEDD of 2.83 and 2.73%, respectively. However,

one can mark significant deviations in characteristic waves such

as P-wave, ST-segment and T-wave of original and compressed

signals [6]. This may be due to poor handling of ECG

characteristic waves. Wavelet-based LP model [5] has a good

data reduction capability (CR = 22.7) but has high distortion

errors (PRD = 10.25% and WEDD = 6.81%). The

multiscale-based PCA algorithm has less CR (12.61%) but has a

good reconstruction quality with PRD and WEDD of 2.66 and

2.18%, respectively. From this table, it is clear that our proposed

method outperforms the existing techniques [8, 9]. It achieved a

minimum CR value of 45 (except dysrhythmia class) with PRD

and WEDD of 2.71 and 2.09%, respectively.

4. Conclusion: In this Letter, a robust third-order tensor

representation of MECG data has been proposed for cloud-based

ECG monitoring systems. This type of arrangement helps exploit

intra-beat, inter-lead redundancies with inter-beat which is a huge

source of redundancy. The multiscale HOSVD is applied on the

tensor data. HOSVD reduces the data dimension and multiscale

property treats ECG information effectively. The compression

performance and distortion measures of the proposed method are

evaluated by measuring average CR, PRD and WEDD. The

results are compared with existing compression techniques. The

storage efficiency has been enhanced 45 times more with

acceptable distortion label using the proposed method.

5. Declaration of interests: Conflict of interest: none declared.
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