Exploiting network proximity in peer-to-peer overlay
networks

Miguel Castro? Peter Druschel?

Y. Charlie Hu? Antony Rowstron!

"Microsoft Research, 7 J J Thomson Close, Cambridge, CB3 OFB, UK.
2Rice University, 6100 Main Street, MS-132, Houston, TX 77005, USA.
3Purdue University, 1285 EE Building, West Lafayette, IN 47907, USA.

Abstract

Generic peer-to-peer (p2p) overlay networks like CAN,
Chord, Pastry and Tapestry offer a novel platform for a va-
riety of scalable and decentralized distributed applications.
These systems provide efficient and fault-tolerant routing,
object location and load balancing within a self-organizing
overlay network. One important aspect of these systems is
how they exploit network proximity in the underlying Inter-
net. In this paper, we present a comprehensive study of the
network locality properties of a p2p overlay network. Results
obtained via analysis and via simulation of two large-scale
topology models indicate that it is possible to efficiently ex-
ploit network proximity in self-organizing p2p substrates. A
simple heuristic measures a scalar proximity metric among a
small number of nodes, incurring only a modest additional
overhead for organizing and maintaining the overlay net-
work. The resulting locality properties improve application
performance and reduce network usage in the Internet sub-
stantially. Finally, we study the impact of proximity-based
routing on the load balancing in the p2p overlay.

1 Introduction

Several recent systems (CAN [6], Chord [10], Pastry [7] and
Tapestry [14]) provide a self-organizing substrate for large-
scale peer-to-peer applications. These systems can be viewed
as providing a scalable, fault-tolerant distributed hash table,
in which any item can be located within a bounded number
of routing hops, using a small per-node routing table. While
there are algorithmic similarities among each of these sys-
tems, one important distinction lies in the approach they take
to considering and exploiting proximity in the underlying In-
ternet. Chord, for instance, does not currently consider net-
work proximity at all. As aresult, its protocol for maintaining
the overlay network is very light-weight, but messages may
travel arbitrarily long distances in the Internet in each routing
hop.

In CAN, each node measures its network delay to a set of

landmark nodes, in an effort to determine its relative position
in the Internet and to construct an Internet topology aware
overlay. Tapestry and Pastry exploit locality by measuring
a proximity metric among pairs of nodes, and by choosing
nearby nodes for inclusion in their routing tables. Early re-
sults for the resulting locality properties are promising. In
Tapestry and Pastry, for instance, the average total “distance”
traveled by a message is only a small and constant factor
larger than the “distance” between source and destination
in the underlying network. However, these results come at
the expense of more expensive overlay maintenance protocol,
relative to Chord. Also, proximity based routing may com-
promise the load balance in the p2p overlay network. More-
over, it remains unclear to what extent the locality properties
hold in the actual Internet, with its complex, dynamic, and
non-uniform topology. As a result, the cost and effectiveness
of proximity based routing in these p2p overlays remain un-
clear.

To address these questions, this paper presents results of a
comprehensive study of Pastry’s locality properties via anal-
ysis and via simulations based on two large-scale Internet
topology models. Moreover, we propose an improved node
join and failure protocol that substantially decreases the over-
lay maintenance cost relative to the original implementa-
tion [7], at the expense of a negligible reduction in the quality
of the Pastry’s routing properties. The results indicate that the
locality properties are robust on a variety of network topol-
ogy models. Moreover, the load imbalance caused by the
proximity based routing is modest, and hot spots can be eas-
ily dispersed without affecting overall route quality. While
our analysis and simulations are based on Pastry, many of
our results apply to Tapestry and Chord as well. We conclude
that it is possible to exploit network proximity in p2p overlay
networks with low overhead and without compromising their
self-organizing and load balancing properties.

The rest of this paper is organized as follows. Related work
is discussed in Section 2. In Section 3, we provide a brief
overview of the Pastry protocol. Pastry’s locality properties,
and the new protocols for node joining and failure recovery
are presented in Section 4. An analysis of Pastry’s locality

properties follows in the Section 5. Section 6 presents exper-
imental results, and we conclude in Section 7.

2 Related work

CAN [6], Chord [10] and Tapestry [14] are closely related to
Pastry. Each of these protocols form a self-organizing over-
lay network and provide a load-balanced, fault-tolerant dis-
tributed hash table, in which items can be inserted and looked
up in a bounded number of forwarding hops. CAN, Tapestry
and Pastry each use heuristics to exploit proximity in the In-
ternet, and the resulting properties have been studied in prior
work. To the best of our knowledge, this paper is the first
study that looks at both costs and benefits of proximity based
routing in a p2p overlay, and considers the impact of node
failures on those costs and benefits.

Pastry and Tapestry are related to the work by Plaxton et
al. [5] and to routing in the landmark hierarchy [12]. The
approach of routing based on address prefixes, which can be
viewed as a generalization of hypercube routing, is common
to all these schemes. However, neither Plaxton nor the land-
mark approach are fully self-organizing. Pastry and Tapestry
differ in their approach to locating the numerically closest
node in the sparsely populated nodeld space, and for man-
aging replication. Pastry uses overlapping sets of neighbor-
ing nodes in the nodeld space (leaf sets), both to locate the
destination in the final routing hop, and to store replicas of
data items for fault tolerance. Tapestry uses a different con-
cept called surrogate routing to locate the destination, and it
inserts replicas of data items using different keys. The ap-
proach to achieving network locality is very similar in both
systems.

The Chord protocol is closely related to Pastry and
Tapestry, but instead of routing based on address prefixes,
Chord forwards messages based on numerical difference with
the destination address. Unlike Pastry and Tapestry, Chord
currently makes no explicit effort to exploit network proxim-
ity. However, locality heuristics similar to the ones used in
Pastry could presumably be added to Chord.

CAN routes messages in a d-dimensional space, where
each node maintains a routing table with O(d) entries and
any node can be reached in O(dN'/4) routing hops. Un-
like Pastry, Tapestry and Chord, the CAN routing table does
not grow with the network size, but the number of routing
hops grows faster than logN. The work on CAN [6] ex-
plored two techniques to improve routing performance by us-
ing information about the network topology. In the first tech-
nique, each node measures the RTT to each of its neighbors
and messages are forwarded to the neighbor with the max-
imum ratio of progress to RTT. This technique differs from
the one used in Pastry because the set of neighbors of a node
is chosen without regard to their proximity; this has the dis-
advantage that all neighbors may be quite far from the node.

The second technique measures the distances between each
node and a set of landmark servers to compute the coordi-
nates of the node in the CAN space such that neighbors in
the CAN space are topologically close. This technique can
achieve good performance but it has the disadvantage that it
is not fully self-organizing; it requires a set of well-known
landmark servers. In addition, it may cause significant im-
balances in the distribution of nodes in the CAN space that
lead to hotspots.

Existing applications built on top of Pastry include
PAST [8] and SCRIBE [9]. Other peer-to-peer applications
that were built on top of generic routing and location sub-
strates are OceanStore [3] (Tapestry) and CFS [2] (Chord).

3 Pastry

Pastry is described in detail in [7], and a brief summary is
provided here. Pastry is a generic, efficient, scalable, fault re-
silient, and self-organizing peer-to-peer substrate. Each Pas-
try node has a unique, uniform randomly assigned nodeld in
a circular 128-bit identifier space. Given a 128-bit key, Pas-
try routes an associated message towards the live node whose
nodeld is numerically closest to the key. Moreover, each Pas-
try node keeps track of its neighboring nodes in the names-
pace and notifies application of changes in the set. These
capabilities can be used to build a distributed, fault-tolerant
hashtable, which in turn can be used to support a variety of
decentralized, distributed applications.

Assuming a network consisting of IV nodes, the expected
number of forwarding hops to deliver a messages with a
random key is < [logss N'| (b is a configuration parameter
with typical value 4). The tables required in each node have
only O(log,s N) entries, where each entry maps an existing
nodeld to the associated node’s IP address. Upon a node fail-
ure or the arrival of a new node, the invariants in all affected
tables can be restored by exchanging O(logy» N) messages.
In the following paragraphs, we briefly sketch the Pastry rout-
ing scheme.

Node state: For the purposes of routing, nodelds and keys
are thought of as a sequence of digits in base 2°. A node’s
routing table is organized into 128/2° rows and 2° — 1
columns. The 2% — 1 entries in row n of the routing table
refer to nodes whose nodelds share the first n digits with the
present node’s nodeld; the n + 1th nodeld digit of a node in
column m of row n equals m. The column in row n corre-
sponding to the value of the n + 1’s digits of the local node’s
nodeld remains empty. Figure 1 depicts an example routing
table.

A routing table entry is also left empty if no node with
the appropriate nodeld prefix is known. The uniform ran-
dom distribution of nodelds ensures an even population of
the nodeld space; thus, on average only [logys N levels are

0123|415 789a|b|c |d|e|f
X |x [x |x |[x |x X |x |x [x |x [x [x |x [x
6 |6 (6|6 |6 6|6 6|6(6 |6 (6|6 |6 |6
0|1(213 |4 67 |8|9|a|b|c |d e |f
X |x [x |x [x X |x [x|x[x |x |[x |[x |x |x
L —+—T| s s e
6|6 |6 |6 (6|6 |6|6|6|6 6 |6 |6 |6 |6
5/5/5/5|5|5(5(5|5(5 5(5|5|5|5
0l1|2(3|4|5|6/7 |8(9 b|c |d|e |f
X |x [x |x [x |x |x|x [x|x X [x |[x |x [x
| ——TT1 | T
6 6|6 |6|6|6|6 6|6(6|6 (6|6 |6 |6
5 5/5|5/5|5/5/5/5/5/5|5|5|5]|5
a alalalalaalalalalallala|ala
0 213(4|51(6|7 |8|9|a|b |c |d |e |f
x X |x [x |x [x|x |x|x|[x |x [x |x |x |x

Figure 1: Routing table of a Pastry node with
nodeld 65alz, b = 4. Digits are in base 16, =
represents an arbitrary suffix. The IP address
associated with each entry is not shown.

populated in the routing table. Each node maintains IP ad-
dresses for the nodes in its leaf set. The leaf set is the set of [
nodes with nodelds that are numerically closest to the present
node’s nodeld, with [/2 larger and /2 smaller nodelds than
the current node’s id. A typical value for [is approximately
[8 xlogi1g N .

Message routing: At each routing step, a node normally
forwards the message to a node whose nodeld shares with
the key a prefix that is at least one digit (or b bits) longer
than the prefix that the key shares with the present node’s
id. If no such node is known, the message is forwarded to
a node whose nodeld shares a prefix with the key as long as
the current node, but is numerically closer to the key than the
present node’s id. Such a node is guaranteed to exist in the
leaf set unless the message has already arrived at the node
with numerically closest nodeld, or its immediate neighbor!.
And, unless all /2 nodes in one half of the leaf set have failed
simultaneously, at least one of those nodes must be live.

The Pastry routing procedure is shown in Figure 3. Fig-
ure 2 shows the path of an example message. Analysis shows
that the expected number of forwarding hops is slightly below
[loges N, with a distribution that is tight around the mean. A
deterministic upper bound for the number of routing hops is
128/b+1, assuming correct routing tables and no concurrent
node failures. Moreover, simulation shows that the routing is
highly resilient to node failures.

To achieve self-organization, Pastry must dynamically
maintain its node state, i.e., the routing table and leaf set,
in the presence of new node arrivals, node failures, node re-
coveries, and network partitions.

I'The last clause takes care of a pathological case where the numerically
closest node does not share a nodeld prefix with the key.

0| 2%-1

. d471f1

-\ d467c4

& d462ba

d46alc
d4213f

‘ Route(d46alc)

65alfc *-\'/a/'

Figure 2: Routing a message from node
65al f c with key d46alc. The dots depict live
nodes in Pastry’s circular namespace.

d13da3

(1) if (d.isBetween(L_;/2, Ly2))

2) /I d is within numerical range of local leaf set (mod 2128y
3) forward to L;, s.th. |d — L;| is minimal;
4) else

) / use the routing table
6) Letl = shl(d,a);

(@) if (R;ll exists and is live)

®) forward to R;i’ ;

()] else

(10) // rare case

(11) forwardtot € L U R, s.th.
(12) shi(t,d) > 1,

(13) [t —d| <|a—d|

Figure 3: Pastry routing procedure, executed when a message
with key d arrives at a node with nodeld a. R} is the entry in
the routing table R at column ¢ and row [. L; is the i-th clos-
est nodeld in the leaf set L, where a negative/positive index
indicates counterclockwise/clockwise from the local node in
the id space, respectively. L_;/» and L;/» are the nodes at
the edges of the local leaf set. d; represents the I’s digit in
the key d. shi(a,b) is the length of the prefix shared among
a and b, in digits.

Node addition: A newly arriving node with the new nodeld
X can initialize its state by asking any existing Pastry node A
to route a special message using X as the key. The message is
routed to the existing node Z with nodeld numerically closest
to X. X then obtains the leaf set from Z and the ith row of
the routing table from the node encountered along the route
from A to Z whose nodeld matches X in the first ¢ — 1 dig-
its. Using this information, X can correctly initialize its own
routing table and leaf set. Finally, X announces its presence

to the initial members of its leaf set, which in turn update
their own leaf sets and routing tables. Given an appropriate
leaf set size (e.g., > 2°), one can show that, with high prob-
ability, all nodes whose routing tables are affected by X'’s
arrival are notified.

Node failure: When a node fails, the leaf sets and routing
tables of a number of other nodes must be updated. Leaf set
memberships is actively maintained. The members of each
leaf set periodically exchange keep-alive messages. If a node
is unresponsive for a period T, it is presumed failed. All
members of the failed node’s leaf set are then notified and
they update their leaf sets. Since the leaf sets of nodes with
adjacent nodelds overlap, this update is trivial.

Routing table entries that refer to failed nodes are repaired
lazily. During message forwarding, when a routing table en-
try is found that is either empty or the referenced node has
failed, Pastry routes the message to another node with numer-
ically closer nodeld (lines 11-13 in Figure 3). If the down-
stream node has a routing table entry that matches the next
digit of the message’s key, it automatically informs the up-
stream node of that entry.

Node recovery: The node recovery protocol is optimized
to reduce the overhead of temporary node failures. A recov-
ering Pastry node first attempts to contact nodes in its last
known leaf set and obtains their leaf sets. If the numerical
range of nodelds in one of those sets still includes the recov-
ering node’s nodeld, the node updates its own leaf set based
on the information it receives and then notifies the current
members of its leaf set of its presence. Otherwise, the node
follows the normal protocol for node addition.

Network partitions: A network partition can cause the ap-
parent simultaneous failure of a large number of nodes at
random points in the nodeld space. In extreme cases, such
a partition could cause the failure of /2 nodes with adjacent
nodelds. This (rare) case requires a special recovery proce-
dure, since live nodes that are separated by [/2 or more failed
nodes in the nodeld space are not aware of each other. Briefly,
the live nodes at the edges of such a sequence of failed nodes
locate each other by sending messages towards the other us-
ing their remaining live routing table entries, then form a new
leaf set.

4 Pastry locality properties

This section focuses on Pastry’s locality properties. Pastry
seeks to exploit proximity in the underlying Internet, by rout-
ing through as short a path as possible, finding nearest copies
of objects, etc. It relies on a scalar proximity metric that indi-
cates the “distance” between any given pair of Pastry nodes.

It is assumed that each Pastry node can measure or other-
wise obtain the distance between itself and any node with a
known IP address. Furthermore, it is assumed that the prox-
imity metric reflects static properties of the underlying phys-
ical network, rather than prevailing traffic conditions.

The choice of a proximity metric depends on the desired
qualities of the resulting overlay (e.g., low delay, high band-
width, low network utilization). In practice, metrics such as
round-trip time (minimum of a series of pings), bandwidth
(measured, for instance, using packet pair techniques), the
number of IP routing hops (measured using traceroute), or
some combination thereof could be used. Choosing an ap-
propriate proximity metric for p2p overlay networks is the
subject of future work and beyond the scope of this paper.

Pastry’s locality properties derive from its attempt to mini-

mize the distance, according to the proximity metric, to each
of the nodes that appear in a node’s routing table, subject to
the constraints imposed on nodeld prefixes. It is expensive
to achieve this goal precisely in a large system because it re-
quires O(N) communication. Therefore, Pastry uses heuris-
tics that require only O(logys N') communication but only en-
sure that routing table entries are close but not necessarily the
closest. More precisely, Pastry ensures the following invari-
ant for each node’s routing table:
Proximity invariant: Each entry in a node X ’s routing ta-
ble refers to a node that is near X, according to the proxim-
ity metric, among all live Pastry nodes with the appropriate
nodeld prefix.

In Section 4.1, we show how Pastry’s node joining pro-
tocol maintains the proximity invariant. Next, we consider
the effect of the proximity invariant on Pastry’s routing. Ob-
serve that as a result of the proximity invariant, a message
is normally forwarded in each routing step to a nearby node,
according to the proximity metric, among all nodes whose
nodeld shares a longer prefix with the key. Moreover, the ex-
pected distance traveled in each consecutive routing step in-
creases exponentially, because the density of nodes decreases
exponentially with the length of the prefix match. From this
property, one can derive three distinct properties of Pastry
with respect to network locality:

Total distance traveled The expected distance of the last
routing step tends to dominate the total distance traveled by a
message. As a result, the average total distance traveled by a
message exceeds the distance between source and destination
node only by a small constant value. Analysis and simula-
tions on two Internet topology models presented in Section 6
confirm this.

Local route convergence The paths of two Pastry messages
sent from nearby nodes with identical keys tend to converge
at a node near the source nodes, in the proximity space. To
see this, observe that in each consecutive routing step, the
messages travel exponentially larger distances towards an ex-
ponentially shrinking set of nodes. Thus, the probability of
a route convergence increases in each step, even in the case

where earlier (smaller) routing steps have moved the mes-
sages farther apart. This result has significance for caching
applications layered on Pastry. Popular objects requested by
a nearby node and cached by all nodes along the route are
likely to be found when another nearby node requests the ob-
ject. Also, this property is exploited in Scribe [9] to achieve
low link stress in an application level multicast system.
Locating the nearest replica If replicas of an object are
stored on k nodes with adjacent nodelds, Pastry messages re-
questing the object have a tendency to first reach a node near
the client node. To see this, observe that Pastry messages ini-
tially take small steps in the proximity space, but large steps
in the nodeld space. Applications can exploit this property to
make sure that client requests for an object tend to be handled
by a replica that is near the client. Exploiting this property is
application-specific, and is discussed in [8].

An analysis of these properties follows in Section 5. Sim-
ulation results that confirm and quantify these properties on
two Internet topology models follow in Section 6.

4.1 Node addition and failure

Next, we present the Pastry node join protocol and show how
this protocol maintains the proximity invariant.

First, recall from Section 3 that a new node X must con-
tact an existing Pastry node A when joining the system. A
then routes a message using X as the key, and the new node
obtains the nth row of its routing table from the node encoun-
tered along the path from A to X whose nodeld matches X
in the first n — 1 digits. We will show that the proximity in-
variant holds on X ’s resulting routing table, if node A is near
X, according to the proximity metric.

First, consider the top row of X’s routing table, obtained
from node A. Assuming the triangulation inequality holds in
the proximity space, it is easy to see that the entries in the top
row of A’s routing table are also close to X. Next, consider
the nth row of X ’s routing table, obtained from the node A,,
encountered along the path from A to X. By induction, this
node is Pastry’s approximation to the node closest to A that
matches X ’s nodeld in the first n — 1 digits. Therefore, if the
triangulation inequality holds, we can use the same argument
to conclude that the entries of the nth row of A,,’s routing
table should be close to X.

At this point, we have shown that the proximity invariant
holds in X’s routing table. To show that the node join pro-
tocol maintains the proximity invariant globally in all Pastry
nodes, we must next show how the routing tables of other
affected nodes are updated to reflect X’s arrival. Once X
has initialized its own routing table, it sends the nth row of
its routing table to each node that appears as an entry in that
row. This serves both to announce its presence and to propa-
gate information about nodes that joined previously. Each of
the nodes that receives a row then inspects the entries in the
row, performs probes to measure if X or one of the entries is

nearer than the corresponding entry in its own routing table,
and updates its routing table as appropriate.

To see that this procedure is sufficient to restore the prox-
imity invariant in all affected nodes, consider that X and the
nodes that appear in row n of X’s routing table form a group
of 2 nearby nodes whose nodelds match in the first n digits.
It is clear that these nodes need to know of X’s arrival, since
X may displace a more distant node in one of the node’s rout-
ing tables. Conversely, a node with identical prefix in the first
n digits that is not a member of this group is likely to be more
distant from the members of the group, and therefore from X;
thus, X’s arrival is not likely to affect its routing table and,
with high probability, it does not need to be informed of X’s
arrival.

Node failure Recall that failed routing tables entries are re-
paired lazily, whenever a routing table entry is used to route
a message. Pastry routes the message to another node with
numerically closer nodeld (lines 11-13 in Figure 3). If the
downstream node has a routing table entry that matches the
next digit of the message’s key, it automatically informs the
upstream node of that entry.

We need to show that the entry supplied by this procedure
satisfies the proximity invariant. If a numerically closer node
can be found in the routing table, it must be an entry in the
same row as the failed node. If that node supplies a substi-
tute entry for the failed node, its expected distance from the
local node is therefore low, since all three nodes are part of
the same group of nearby nodes with identical nodeld prefix.
On the other hand, if no replacement node is supplied by the
downstream node, we trigger the routing table maintenance
task (described in the next section) to find a replacement en-
try. In either case, the proximity invariant is preserved.

4.2 Routing table maintenance

The routing table entries produced by the node join protocol
and the repair mechanisms are not guaranteed to be the clos-
est to the local node. Several factors contribute to this, in-
cluding the heuristic nature of the node join and repair mech-
anisms with respect to locality. Also, many practical proxim-
ity metrics do not strictly satisfy the triangulation inequality
and may vary over time. However, limited imprecision is
consistent with the proximity invariant, and as we will show
in Section 6, it does not have a significant impact on Pastry’s
locality properties.

However, one concern is that deviations could cascade,
leading to a slow deterioration of the locality properties over
time. To prevent a deterioration of the overall route qual-
ity, each node runs a periodic routing table maintenance task
(e.g., every 20 minutes). The task performs the following
procedure for each row of the local node’s routing table. It
selects a random entry in the row, and requests from the as-
sociated node a copy of that node’s corresponding routing

table row. Each entry in that row is then compared to the
corresponding entry in the local routing table. If they differ,
the node probes the distance to both entries and installs the
closest entry in its own routing table.

The intuition behind this maintenance procedure is to ex-
change routing information among groups of nearby nodes
with identical nodeld prefix. A nearby node with the ap-
propriate prefix must be know to at least one member of the
group; the procedure ensures that the entire group will even-
tually learn of the node, and adjust their routing tables ac-
cordingly.

Whenever a Pastry node replaces a routing table entry be-
cause a closer node was found, the previous entry is kept in
a list of alternate entries (up to ten such entries are saved in
the implementation). When the primary entry fails, one of
the alternates is used until and unless a closer entry is found
during the next periodic routing table maintenance.

4.3 Locating a nearby node

Recall that for the node join algorithm to preserve the prox-
imity invariant, the starting node A must be close to the new
node X, among all live Pastry nodes. This begs the question
of how a newly joining node can detect a nearby Pastry node.
One way to achieve this is to perform an “expanding ring” IP
multicast, but this assumes the availability of IP multicast. In
Figure 4, we present an efficient algorithm by which a node
may discover a nearby Pastry node, given that it has knowl-
edge of some Pastry node at any location. Thus, a joining
node is only required to obtain knowledge of any Pastry node
through out-of-band means, as opposed to obtaining knowl-
edge of a nearby node. The algorithm exploits the property
that location of the nodes in the seeds’ leaf set should be uni-
formly distributed over the network. Next, having discovered
the closest leaf set member, the routing table distance proper-
ties are exploited to move exponentially closer to the location
of the joining node. This is achieved bottom up by picking
the closest node at each level and getting the next level from
it. The last phase repeats the process for the top level until no
more progress is made.

In this section, we have shown at an intuitive level why
the Pastry node join protocol preserves the proximity invari-
ant, and how Pastry’s locality properties can be derived from
the proximity invariant. However, as part of this argument,
we have relied on a few assumptions that do not generally
hold in the Internet. For instance, the triangulation inequality
does not generally hold for most practical proximity metrics
in the Internet. Also, nodes are not uniformly distributed in
the resulting proximity space. Therefore, it is necessary to
confirm the robustness of Pastry’s locality properties using
simulations on Internet topology models. Results of simula-
tions based two Internet topology models will be presented
in Section 6.

(1) discover(seed)

2) nodes = getLeafSet(seed)

3) forall node in nodes

4) nearNode = closerToMe(node,nearNode)

(®)] depth = getMaxRoutingTableLevel(nearNode)

6) while (depth > 0)

(7 nodes = getRoutingTable(nearNode,depth - -)
8) forall node in nodes

©)] nearNode = closerToMe(node,nearNode)

(10) end while
11 do

(12) nodes = getRoutingTable(nearNode,0)

(13) currentClosest = nearNode

(14) forall node in nodes

(15) nearNode = closerToMe(node,nearNode)
(16) while (currentClosest != nearNode)

(17) return nearNode

Figure 4: Simplified nearby node discovery algorithm. seed
is the Pastry node initially known to the joining node.

5 Analysis

In this section, we present analytical results for Pastry’s rout-
ing properties. First, we analyze the distribution of the num-
ber of routing hops taken when a Pastry message with a ran-
domly chosen key is sent from a randomly chosen Pastry
node. This analysis then forms the basis for an analysis of
Pastry’s locality properties. Throughout this analysis, we as-
sume that each Pastry node has a perfect routing table. That
is, a routing table entry may be empty only if no node with an
appropriate nodeld prefix exists, and all routing table entries
point to the nearest node, according to the proximity metric,
with the appropriate nodeld prefix. In practice, Pastry does
not guarantee perfect routing tables. Simulation results pre-
sented in Section 6 show that the performance degradation
due to this inaccuracy is minimal. Due to space constraints,
the details of the analysis and the proofs are omitted here;
they are avaliable at http://dosa.ecn.purdue.edu:8080.

5.1 Route probability matrix

The analysis of the distribution of the number of routing hops
is based on the statistical population of the nodeld space.
Since the assignment of nodelds is assumed to be randomly
uniform, this population can be captured by the binomial dis-
tribution (see, for example, [1]). For instance, the distribution
of the number of nodes with a given value of the most signif-
icant nodeld digit, out of N nodes, is given by b(k; N, 1/2%).

Recall from Figure 3 that at each node, a message can be
forwarded using one of three branches in the forwarding pro-
cedure. In case P4, the message is forwarded using the leaf
set L (line 3); in case Pp using the routing table R (line 8);

and in case P¢ using a node in L U R (lines 11-13). We for-
mally define the probabilities of taking these branches as well
as of two special cases in the following.

Definition 1 Ler prob(h,l, N, Px) denote the probability of
taking branch Px,X € {A, B,C}, at the (h + 1)th hop in
routing a message with random key, starting from a node ran-
domly chosen from N nodes, with a leaf set of size l. Further-
more, we define prob(h,l, N, P}) as the probability that the
node encountered after the h-th hop is already the numeri-
cally closest node to the message, and thus the routing ter-
minates, and define prob(h,l, N, Pg) as the probability that
the node encountered after the h-th hop already shares the
(h + 1) digits with the key, thus skipping the (h + 1)th hop.

We denote prob(h,l, N,Px),h € [0,128/b — 1],X €
{A, A", B, B',C'} as the probability matrix of Pastry routing.
The following Lemma gives the building block for deriving
the full probability matrix as a function of N and [.

Lemma 1 Assume branch Pg has been taken during the first
h hops in routing a random message D, i.e. the message D
is at an intermediate node X which shares the first h dig-
its with D. Let K be the total number of random uniformly
distributed nodelds that share the first h digits with D. The
probabilities in taking different paths at the (h + 1)th hop is

prob(h,l, K, P4)
prob(h,l, K, P}) -1 K 1
prob(h,l, K, Pg) | = Z Z b(jo; K, Q—b)-
prob(h,l, K, Pp) d=0 jo=0
prob(h,l, K, Pc)
K—jo
> b K = jo, gy—) - prob-pabe(j, jo, K = jo = j, b, 1)
j=0

where prob_pabc(ji, je, 3r, b, 1) calculates the five probabil-
ities assuming there are ji, j., jr nodelds that shared the first
h digits with D, but whose (h + 1)th digits are smaller than,
equal to, and larger than that of D, respectively.

Since the randomly uniformly distributed nodelds that fall
in a particular segment of the namespace containing a fixed
prefix of h digits follow the binomial distribution, the hth
row of the probability matrix can be calculated by summing
over all possible nodeld distributions in that segment of the
namespace the probability of each distribution multiplied by
its corresponding probability vector given by Lemma 1. Fig-
ure 5 plots the probabilities of taking branches P4, Pg, and
P at each actual hop (i.e. after the adjustment of collapsing
skipped hops) of Pastry routing for N = 60000, with [= 32
and b = 4. Tt shows that the log1¢(IN)-th hop is dominated
by P4 hops while earlier hops are dominated by Pg hops.
The above probability matrix can be used to derive the dis-
tribution of the numbers of routing hops in routing a random
message. Figure 6 plots this distribution for N = 60000 with
I = 32 and b = 4. The probability matrix can also be used to

N=60000, I=32, b=4, Expected (hops) = 3.67

o .

2 N

S

g o8t

<

a

8 06

S

g

S 04f

£

X

g

5 02

3

Qo

e L

o 0 1 2 3 4

Hop number h
Figure 5: Probabilities Pr(h,l, N, Pa), Pr(h,l,N,Pg),
Pr(h,l, N, P¢) and expected number of hops for N = 60000,
with [= 32 and b = 4. (From analysis.)
N=60000, =32, b=4, Expected (hops) = 3.67
1 ‘ ‘
0.8 |

2 06

£

2

o

a 04f

0.2 |
0 I e ‘ ‘ .
0 1 2 3 4 5 6

Number of routing hops

Figure 6: Distribution of the number of routing hops per message
for N = 60, 000, with [= 32 and b = 4. (From analysis.)

derive the expected number of routing hops in Pastry routing
according to the following theorem.

Theorem 1 Let the expected number of additional hops after
taking Pc for the first time, at the hth hop, be denoted as
Cp,(h,l,N,Pc). The expected number of routing hops in
routing a message with random key D starting from a node
randomly chosen from the N nodes is

128/b—1
Z prob(h,l, N, Pa) — prob(h,l, N, Py) +
h=0
prob(h,l, N, Pg) — prob(h,l, N, Pp) +
prob(h,l, N, Pc) + Cp,(h,l,N, Pc) - prob(h,l, N, Pc)

5.2 Expected routing distance

Next, we analyze the expected distance a message travels in
the proximity space, while it is being routed through Pastry.
To make the analysis tractable, it is assumed that the locations
of the Pastry nodes are random uniformly distributed over

the surface of a sphere, and that the proximity metric used
by Pastry equals the geographic distance between pairs of
Pastry nodes on the sphere. The uniform distribution of node
locations and the use of geographic distance as the proximity
metric are clearly not realistic. In Section 6 we will present
two sets of simulation results, one for conditions identical
to those assumed in the analysis, and one based on Internet
topology models. A comparison of the results indicates that
the impact of our assumptions on the results is limited.

The following Lemma gives the average distance in each
hop traveled by a message with a random key sent from a
random starting node, as a function of the hop number and
the hop type.

Lemma 2 (1) In routing message D, after h Pg hops, if RhD”
is not empty, the expected hop_dist(h, R, Pg) is Rcos™!(1—
gb(A+1)+1

2.

(2) In routing message D, if path P4 is taken at any given
hop, the hop distance hop_dist(h, R, Pa) is E.

) In routing message D, after h hops, if path Pc is
taken, the hop distance hop_dist(h, R, Pc) is hop-dist(h —
1, R, Pg), which with high probability is followed by a hop
taken via Py, i.e. with distance ”'TR.

The above distance hop_dist(h, R, Pg) comes from the
density argument. Assuming nodelds are uniformly dis-
tributed over the surface of the sphere, the average distance
of the next Pp hop is the radius of a circle that contains on
average one nodeld (i.e. the nearest one) that share (h + 1)
digits with D.

Given the vector of the probabilities of taking branches
P4, Pg, and P¢ at the actual hth hop (e.g. Figure 5), and the
above vector of per-hop distance for the three types of hops
at the hth hop, the average distance of the hth actual hop is
simply the dot-product of the two vectors, i.e. the weighted
sum of the hop distances by the probabilities that they are
taken. These results are presented in the next section along
with simulation results.

5.3 Local route convergence

Next, we analyze Pastry’s route convergence properties when
two random Pastry nodes send a message with the same ran-
domly chosen key. Specifically, we are interested in the dis-
tance the messages travel in the proximity space until the
point where their routes converge, as a function of the dis-
tance between the starting nodes in the proximity space.

To simplify the analysis, we consider three scenarios. In
the worst-case scenario, it is assumed that at each routing
hop prior to the point where their routes converge, the mes-
sages travel in opposite directions in the proximity space. In
the average-case scenario, it is assumed that prior to con-
vergence, the messages travel such that their distance in the
proximity space does not change. In the best case scenario,

the messages travel towards each other in the proximity space
prior to their convergence.

Theorem 2 Let C1 and C2 be the two starting nodes on a
sphere of radius R from which messages with an identical,
random key are being routed. Let the distance between C1
and C2 be d0. Then the expected distance that the two mes-
sages will travel before their paths merge is

logsz i<j
dist(d0,R) = > [](1 —prob_hop(i,d0, R))hopdist(j, R)
j=0 i=0

, S(hop_dist(j,R),dj,R
where prob_hop(j,d0, R) = Ssuffaoci (hzosifﬁsz(ij)?R),

dj = do+ 2 - Zﬁié hop_dist(j, R) in the worst case,
or dj = dO in the average case, or dj = max(0,d0 —
2 - Zﬁié hop_dist(j, R)) in the best case, respectively,
S(r,d, R) denotes the intersecting area of two circles of ra-
dius r centered at two points on a sphere of radius R that are
a distance of d < 2r apart, and Ssurface(r, R) denotes the
surface area of a circle of radius r on a sphere of radius R.

Figure 7 plots the average distance traveled by two mes-
sages sent from two random Pastry nodes with the same ran-
dom key, as a function of the distance between the two start-

ing nodes. Results are shown for the “worst case”, “average
case”, and “best case” analysis.

2500

2000

1500

1000 1
Worst case, N=60k —+—
Average case, N=60k ----x---
Best case, N=60k -+

500

Average Pastry distance to convergence point

0 500 1000 1500 2000 2500 3000 3500
Network distance between source nodes

Figure 7: Distance among source nodes routing messages with the
same key, versus the distance traversed until the two paths converge,
for a 60,000 node Pastry network, with 1=32 and b=4. (From analy-
sis.)

6 Experimental results

In this section, we present experimental results quantifying
Pastry’s locality properties. All results were obtained using a
Pastry implementation running on top of a network simulator.
The Pastry parameters were set to b = 4 and the leafset size
{ = 32. Unless otherwise stated, results where obtained with
a simulated Pastry overlay network of 60,000 nodes.

6.1 Network topologies

Three simulated network topologies were used in the exper-
iments. The “Sphere” topology corresponds to the topology
assumed in the analysis of Section 5. Nodes are placed at
uniformly random locations on the surface of a sphere with
radius 1000. The distance metric is based on the topological
distance between two nodes on the sphere’s surface. Results
produced with this topology model should correspond closely
to the analysis, and it was used primarily to validate the sim-
ulation environment. However, the sphere topology is not
realistic, because it assumes a uniform random distribution
of nodes on the Sphere’s surface, and its proximity space is
very regular and strictly satisfies the triangulation inequality.

A second topology was generated using the Georgia Tech
transit-stub network topology model [13]. The round-trip de-
lay (RTT) between two nodes, as provided by the topology
graph generator, is used as the proximity metric with this
topology. We use a topology with 5050 nodes in the core,
where a LAN with an average of 100 nodes is attached to each
core node. Out of the resulting 505,000 LAN nodes, 60,000
randomly chosen nodes form a Pastry overlay network. As
in the real Internet, the triangulation inequality does not hold
for RTTs among nodes in the topology model.

Finally, we used the Mercator topology and routing mod-
els [11]. The topology model contains 102,639 routers and
it was obtained from real measurements of the Internet using
the Mercator program [4]. The authors of [11] used real data
and some simple heuristics to assign an autonomous system
to each router. The resulting AS overlay has 2,662 nodes.
Routing is performed hierarchically as in the Internet. A
route follows the shortest path in the AS overlay between the
AS of the source and the AS of the destination. The routes
within each AS follow the shortest path to a router in the next
AS of the AS overlay path.

We built a Pastry overlay with 60,000 nodes on this topol-
ogy by picking a router for each node randomly and uni-
formly, and attaching the node directly to the router with a
LAN link. Since the topology is not annotated with delay in-
formation, the number of routing hops in the topology was
used as the proximity metric for Pastry. We count the LAN
hops when reporting the length of the Pastry routes. This is
conservative because the cost of these hops is usually negligi-
ble and Pastry’s overhead would be lower if we did not count
LAN hops.

6.2 Pastry routing hops and distance ratio

In the first experiment, 200,000 lookup messages are routed
using Pastry from randomly chosen nodes, using a random
key. Figure 8 shows the number of Pastry routing hops and
the distance ratio for the sphere topology. Distance ratio is
defined as the ratio of the distance traversed by a Pastry mes-
sage to the distance between its source and destination nodes,

measured in terms of the proximity metric. The distance ra-
tio can be interpreted as the penalty, expressed in terms of the
proximity metric, associated with routing a messages through
Pastry instead of sending the message directly in the Internet.

Four sets of results are shown. “Expected” represents the
results of the analysis in Section 5. “Normal routing table”
shows the corresponding experimental results with Pastry.
“Perfect routing table” shows results of experiments with a
version of Pastry that uses perfect routing table. That is, each
entry in the routing table is guaranteed to point to the nearest
node with the appropriate nodeld prefix. Finally, “No local-
ity” shows results with a version of Pastry where the locality
heuristics have been disabled.

4 3.67 3.68 3.68 3.69 3.68

126 133 137

111

Expected| Perfect | Normal No Expected
Routing | Routing | Locality

Perfect | Normal No
Routing | Routing | Locality
Table Table

Distance ratio

Number of hops

Figure 8: Number of routing hops and distance ratio, sphere
topology.

All experimental results correspond well with the results
of the analysis, thus validating the experimental apparatus.
As expected, the expected number of routing hops is slightly
below l0og1660,000 = 3.97 and the distance ratio is small.
The reported hop counts are virtually independent of the net-
work topology, therefore we present them only for the sphere
topology.

The distance ratio obtained with perfect routing tables is
only marginally better than that obtained with the real Pas-
try protocol. This confirms that the node join protocol pro-
duces routing tables of high quality, i.e., entries refer to nodes
that are nearly the closest among nodes with the appropriate
nodeld prefix. Finally, the distance ratio obtained with the lo-
cality heuristics disabled is significantly worse. This speaks
both to the importance of proximity based routing, and the
effectiveness of Pastry’s heuristics.

6.3 Routing distance

Figure 9 shows the distance messages travel in each consec-
utive routing hops. The results confirm the exponential in-
crease in the expected distance of consecutive hops up to the
fourth hops, as predicted by the analysis. Note that the fifth
hop is only taken by a tiny fraction (0.004%) of the messages.
Moreover, in the absence of the locality heuristics, the aver-

1800
1600 -

1400 -

B

ISEERN]

S o

S o
. .

o]
(=]
]

Per-hop distance
(2]
o
o

W Expect
O Perfect Routing Table
® Normal Routing Table
& No Locality

N

o

=)
L

N

(=3

=]
L

o
L

Hop number

Figure 9: Distance traversed per hop, sphere topology.

age distance traveled in each hop is constant and corresponds
to the average distance between nodes (1571 = (7 x r)/2,
where r is the radius of the sphere).

600

O Normal Routing Tables
M Perfect Routing Tables
= No locality

Per-hop distance
w
o
o

Hop Number

Figure 10: Distance traversed per hop, GATech topology.

Figures 10 and 11 show the same results for the GATech
and the Mercator topologies, respectively. Due to the non-
uniform distribution of nodes and the more complex proxim-
ity space in these topologies, the expected distance in each
consecutive routing step no longer increases exponentially,
but it still increases monotonically. Moreover, the node join
algorithm continues to produce routing tables that refer to
nearby nodes, as indicated by the modest difference in hop
distance to the perfect routing tables in the first three hops.

The proximity metric used with the Mercator topology
makes Pastry’s locality properties appear in an unfavorable
light. Since the number of nodes within & IP routing hops
increases very rapidly with k, there are very few “nearby”
Pastry nodes. Observe that the average distance traveled in
the first routing hop is almost half of the average distance
between nodes (i.e., it takes almost half the average distance
between nodes to reach about 16 other Pastry nodes). As
a result, Pastry messages traverse relatively long distances
in the first few hops, which leads to a relatively high dis-
tance ratio. Nevertheless, we chose to include these results
to demonstrate that Pastry’s locality properties are good even

10

N
N A O ®
. . |

i
o
L

o o]
L L

Per-hop distance

O Normal Routing Tables
H Perfect Routing Tables

@ No Locality

Hop Number

Figure 11: Distance traversed per hop, Mercator topology.

under adverse conditions.

Figures 12, 13 and 14 show raster plots of the distance
messages travel in Pastry, as a function of the distance be-
tween the source and destination nodes, for each of the three
topologies, respectively. Messages were sent from 20,000
randomly chosen source nodes with random keys in this ex-
periment. The mean distance ratio is shown in each graph as
a solid line.

The results show that the distribution of the distance ra-
tio is relatively tight around the mean. Not surprisingly, the
sphere topology yields the best results, due to its uniform dis-
tribution of nodes and the geometry of its proximity space.
However, the far more realistic GATech topology yields still
very good results, with a mean distance ratio of 1.59, a max-
imal distance ratio of about 8.5, and distribution that is fairly
tight around the mean. Even the least favorable Mercator
topology yields acceptable results, with a mean distance ra-
tion of 2.2 and a maximum of about 6.5.

7000

6000 +

5000 +
Mean = 1.37,

4000

3000 +

2000 +

1000 -

Distance traveled by Pastry message

800 1200 1600 2000 2400 2800

Distance between source and destination

0 400

3200

Figure 12: Distance traversed versus distance between source
and destination, sphere topology.

6.4 Local route convergence

The next experiment evaluates the local route convergence
property of Pastry. In the experiment, 10 nodes were selected
randomly, and then for each of these nodes, 6,000 other nodes

2500

Mean = 1.59

2000 +

1500 -

1000 -

500 -

Distance traveled by Pastry message

0 += T T T T T
0 200 400 600 800 1000
Distance between source and destination

1200 1400

Figure 13: Distance traversed versus distance between source
and destination, GATech topology.

80

Mean = 2.2
70 4

60 - i

50 4 -

40

30 4

20

Distance traveled by Pastry message

10 4 i

0

0 5 10 15 20 25 30 35 40

Distance between source and destination

45

Figure 14: Distance traversed versus distance between source
and destination, Mercator topology.

were chosen such that the topological distance between each
pair provides good coverage of the range of possible dis-
tances. Then, 100 random keys were chosen and messages
where routed via Pastry from each of the two nodes in a pair,
with a given key.

To evaluate how early the paths convergence, we use the
metric (Cdﬁ‘:si + c;fsg)/2 where, ¢4 is the distance traveled
from the node where the two paths converge to the destina-
tion node, and s! and s are the distances traveled from each
source node to the node where the paths converge. The met-
ric expresses the average fraction of the length of the paths
traveled by the two messages that was shared. Note that the
metric is zero when the paths converge in the destination.
Figures 15, 16 and 17 show the average of the convergence
metrics versus the distance between the two source nodes.
As expected, when the distance between the source nodes is
small, the paths are likely to converge quickly. This result
is important for applications that perform caching, or rely on
efficient multicast trees [8, 9].

Figure 18 shows the average distance traveled from the
source nodes to the node where the paths converge, as a func-
tion of the distance between the sources nodes. Note that the
convergence node could be the destination. We included this

11

0.9
0.8
0.7
0.6
0.5+
0.4+
0.3 4
0.2 4
0.1

Convergence metric

\

0 T T T Y T T
0 400 800 1200 1600 2000 2400

Distance between two source nodes

2800 3200

Figure 15: Convergence metric versus the distance between
the source nodes, sphere topology.

1

09 H
0.8 -
0.7 |
0.6 1

0.5+
0.4+
0.3 4
0.2 4
0.1+

Convergence metric

0 T T T
0 200 400 600
Distance between two source nodes

Figure 16: Convergence metric versus distance between the
source nodes, GATech topology.

graph for the sphere topology, as this allows a direct compar-
ison with the results of the analysis (Figure 7). The results
match well.

6.5 Overhead of node join protocol

Next, we measure the overhead incurred by the node join pro-
tocol to maintain the proximity invariant in the routing tables.
We quantify this overhead in terms of the number of probes,
where each probe corresponds to the communication required
to measure the distance, according to the proximity metric,
among two nodes. Of course, in our simulated network, a
probe simply involves looking up the corresponding distance
according to the topology model. However, in a real network,
probing would likely require at least two message exchanges.
The number of probes is therefore a meaningful measure of
the overhead required to maintain the proximity invariant.
Figure 19 shows the maximum, mean and minimum num-
ber of probes performed by a node joining the Pastry net-
work. The results were generated for Pastry networks of
between 1,000 and 60,000 nodes. In each case, the probes
performed by the last ten nodes that joined the Pastry net-
work were recorded, which are the nodes likely to perform
the most probes given the size of the network at that stage.

0.7

0.6

0.5 \

0.4 4

0.3 4

Convergence Metric

0.2 4

0.1 4

0 T T T T T T T
10 15 20 25 30 35

Distance between two source nodes

40

Figure 17: Convergence metric versus distance between the
source nodes, Mercator topology.

2500

2000 +

1500 -

1000 -

500

Average Pastry distance to convergence point

0 - T T T T T T
0 500 1000 1500 2000 2500 3000

Network distance between source nodes

3500

Figure 18: Distance to node where message paths converge,
versus the distance between the two source nodes, sphere
topology.

Figure 20 shows the corresponding number of probes per-
formed by nodes other than the joining node during a join.

It is assumed here that once a node has probed another
node, it stores the result and does not probe again. The num-
ber of nodes contacted during the joining of a new node is
(2° — 1)logye N + 1, where N is the number of Pastry nodes.
This follows from the expected number of nodes in the rout-
ing table, and the size of the leaf set. Although every node
that appears in the joining node’s routing table receives in-
formation about all the entries in the same row of the joining
node’s routing table, it is very likely that the receiving node
already knows many of these nodes, and thus their distance.
As a result, the number of probes performed per node is low
(on average less than 2). This means that the total number
of nodes probed is low, and the probing is distributed over a
large number of nodes. The results were virtually identical
for the GATech and the Mercator topologies.

6.6 Node failure

In the next experiment, we evaluate the node failure recov-
ery protocol (Section 4.1) and the routing table maintenance
(Section 4.2). Recall that leaf set repair is instantaneous,

12

w
o

Max
—Mean |
—Min

w
IS

N N w w
o] =] N
L L L L

Number of nodes probed by joining node
N
S

N
N

T T T T T
0 10000 20000 30000 40000 50000
Number of nodes in Pastry network

60000

Figure 19: Number of probes performed by a newly joining
node for Pastry networks between 1,000 and 60,000 nodes,
sphere topology.

1000

100 +

Total number of nodes probed

= Number of nodes performing probes
10

—Mean number of probes per node

—W.N"\/\—N/_\/\/\/w_-\/\w

0 10000

Number of probes per node join

20000 30000 40000 50000

Number of nodes in Pastry network

60000

Figure 20: Number of probes per-join performed by nodes
other than the joining node for Pastry networks between
1,000 and 60,000 nodes, sphere topology.

failed routing table entries are repaired lazily upon next use,
and a periodic routing table maintenance task runs periodi-
cally (every 20 mins) to exchange information with randomly
selected peers.

In the experiment, a 50,000 node Pastry overlay is cre-
ated based on the GATech topology, and 200,000 messages
from random sources with random keys are routed. Then,
20,000 randomly selected nodes are made to fail simultane-
ously, simulating conditions that might occur in the event of
a network partition. Prior to the next periodic routing ta-
ble maintenance, a new set of 200,000 random message are
routed. After another periodic routing table maintenance, an-
other set of 200,000 random messages are routed.

Figure 21 shows both the number of hops and the distance
ratio at various stages in this experiment. Shown are the av-
erage number of routing hops and the average distance ratio,
for 200,000 messages each before the failure, after the fail-
ure, after the first and after the second round of routing table
maintenance. The “no failure” result is included for compar-
ison and corresponds to a 30,000 node Pastry overlay with
no failures. Moreover, to isolate the effects of the routing ta-

ble maintenance, we give results with and without the routing
table maintenance enabled.

45
4 + - - - W Routing Table Maintenance Enabled
3.5 1 — - o0 | @ Routing Table Maintenance Disabled
34
2.5+
21
1.5 u
14
0.5 u
04 | |
Before | After |After1|After2| No [Before| After | After 1 |After2| No
failure | failure | round |rounds | failure {failure | failure | round |rounds | failure
50000 30000 50000 30000
Number of Hops Distance Ratio

Figure 21: Routing hops and distance ratio for a 50,000 node
Pastry overlay when 20,000 nodes simultaneously fail, GAT-
ech topology.

During the first 200,000 message transmissions after the
massive node failure, the average number of hops and average
distance ratio increase only mildly (from 3.54 to 4.17 and 1.6
to 1.86, respectively). This demonstrates the robustness of
Pastry in the face of massive node failures. After each round,
the results improve and approach those before the failure after
two rounds.

With the routing table maintenance disabled, both the
number of hops and the distance ratio do not recover as
quickly. Consider that the routing table repair mechanism is
lazy and only repairs entries that are actually used. Moreover,
a repair generally involves an extra routing hop, because the
message is routed to a numerically closer node (third branch
of the routing algorithm). Each consecutive burst of 200,000
messages is likely to encounter different routing table entries
that have not yet been fixed (about 95,000 entries were re-
paired during each bursts). The periodic routing table main-
tenance, on the other hand, replaces failed entries that have
not yet been used as part of its routine. It is intuitive to see
why the distance ratio recovers more slowly without routing
table maintenance. The replacement entry entry provided by
the repair mechanisms is generally relatively close, but not
necessarily among the closest. The periodic routing table
maintenance performs probing and is likely to replace such
an entry with a better one.

We also measured the cost of the periodic routing table
maintenance, in terms of network probes to determine the
distance of nodes. On average, less than 20 nodes are being
probed each time a node performs routing table maintenance,
with a maximum of 82 probes. Since the routing table main-
tenance is performed every 20 minutes and the probes are
likely to target different nodes, this overhead is not signifi-
cant. However, when many large overlay networks perform
probing in the Internet, there can be a significant burden on
the network. For this reason, several project are currently

13

working on a generic measurement infrastructure for the In-
ternet. We expect that this work will provide a solution to this
problem in the long term.

6.7 Load balance

Next, we consider how maintaining the proximity invariant
in the routing tables affects load balance in the Pastry rout-
ing fabric. In the simple Pastry algorithm without the locality
heuristics, or in protocols like Chord that don’t consider net-
work proximity, the “indegree” of a node, i.e., the number of
routing table entries referring to a any given node, should be
balanced across all nodes. This is a desirable property, as it
tends to balance message forwarding load across all partici-
pating nodes in the overlay.

When routing tables entries are initialized to refer to the
nearest node with the appropriate prefix, this property may
be compromised, because the distribution of indegrees is now
influenced by the structure of the underlying physical net-
work topology. Thus, there is an inherent tradeoff between
proximity based routing and load balance in the routing fab-
ric. The purpose of the next experiment is to quantify the de-
gree of imbalance in indegrees of nodes, caused by the prox-
imity invariant.

Figure 22 shows the cumulative distribution of indegrees
for a 60,000 node Pastry overlay, based on the GATech topol-
ogy. As expected, the results show that the distribution of in-
degrees is not perfectly balanced. The results also show that
the imbalance is most significant at the top levels of the rout-
ing table (not shown in the graph), and that the distribution
has a thin tail. This suggests that it is appropriate to deal with
these potential hotspots reactively rather than proactively. If
one of the nodes with a high indegree becomes a hotspot,
which will depend on the workload, it can send backoff mes-
sages. The nodes that receive such a backoff message find an
alternative node for the same slot using the same technique as
if the node was faulty. Since the most significant imbalance
occurs at the top levels of the routing table, changing routing
table entries to point to an alternative node will not increase
the delay penalty significantly. There are many alternative
nodes that can fill out these slots and the distance traversed
in the first hops accounts for a small fraction of the total dis-
tance traversed. We conclude that imbalance in the routing
fabric as a result of the proximity invariant does not appear
to be a significant problem.

6.8 Discovering a nearby seed node

Finally, we evaluate the discovery algorithm used to find a
nearby Pastry node, presented in Section 4.3. In each of
1,000 trials, we chose a pair of nodes randomly among the
60,000 Pastry nodes. One node in the pair is considered the
joining node that wishes to locate a nearby Pastry node, the
other is treated as the seed Pastry node known to the joining

60000

L

1023
50000

40000 -

30000 4

20000

Cumalative number of nodes

10000 A

0 f t
100

In-degree

1000 10000

Figure 22: Indegree distribution of 60,000 Pastry nodes,
GATech topology.

Exact | Average Average Number

closest | Distance | RTO Distance | Probes
Sphere 95.3% 11.0 37.1 157
GATech | 83.7% 82.1 34.1 258
Mercator | 32.1% 2.6 6.0 296

Table 1: Results for the closest node discovery algorithm.

node. Using this seed node, the node discovery algorithm was
used to discover a node near the joining node, according to
the proximity metric. Table 1 shows the results for the three
different topologies. The first column shows the number of
times the algorithm produced the closest existing node. The
second column shows the average distance, according to the
proximity metric, of the node produced by the algorithm, in
the cases where the nearest node was not found. For compar-
ison, the third column shows the average distance between a
node and its row zero routing table entries. The fourth col-
umn shows the number of probes performed per trial.

In the sphere topology, over 95% of the found nodes are the
closest. When the closest is not found, the average distance
to the found node is significantly less than the average dis-
tance to the entries in the first level of the routing table. More
interestingly, this is also true for the Mercator topology, even
though the number of times the closest node was found is low
with this topology. The GATech result is interesting, in that
the fraction of cases where the nearest node was found is very
high (almost 84%), but the average distance of the produces
node in the cases where the closest node was not found is
high. The reason is that the highly regular structure of this
topology causes the algorithm to sometimes get into a “local
minimum”, by getting trapped in a nearby network. Overall,
the algorithm for locating a nearby node is effective. Results
show that the algorithms allows newly joining nodes to effi-
ciently discover a nearby node in the existing Pastry overlay.

14

7 Conclusion

This paper presents an analysis and an experimental eval-
uation of the network locality properties of a p2p overlay
network, Pastry. Analysis shows that good network locality
properties can be achieved with very low overhead in syn-
thetic network topologies. A refined protocol for node join-
ing and node failure recovery significantly reduces the over-
head of maintaining a topology-aware overlay. Simulations
on two different Internet topology models then show that
these properties hold also in more realistic network topolo-
gies. We conclude that exploiting network proximity can be
accomplished effectively and with low overhead in a self-
organizing peer-to-peer overlay network.

References
[1] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction
to Algorithms. The MIT Press, Cambridge, MA, 1990.

F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica.
Wide-area cooperative storage with cfs. In 18th ACM Sympo-
sium on Operating Systems Principles, Oct. 2001.

(2]

(3]

J. K. et al. Oceanstore: An architecture for global-scale per-
sistent store. In Proc. ASPLOS 2000, November 2000.

[4] R. Govindan and H. Tangmunarunkit. Heuristics for internet
map discovery. In Proc. 19th IEEE INFOCOM, pages 1371-

1380, Tel Aviv, Israel, March 2000. IEEE.

[5] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing
nearby copies of replicated objects in a distributed environ-

ment. Theory of Computing Systems, 32:241-280, 1999.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A Scalable Content-Addressable Network. In
Proc. of ACM SIGCOMM, Aug. 2001.

(6]

[71 A.Rowstron and P. Druschel. Pastry: Scalable, distributed ob-
ject location and routing for large-scale peer-to-peer systems.
In International Conference on Distributed Systems Platforms

(Middleware), Nov. 2001.
[8]

A. Rowstron and P. Druschel. Storage management and
caching in PAST, a large-scale, persistent peer-to-peer stor-
age utility. In 18th ACM Symposium on Operating Systems

Principles, Oct. 2001.

[9] A. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel.
Scribe: The design of a large-scale event notification in-
frastructure. In Third International Workshop on Networked

Group Communications, Nov. 2001.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service for
internet applications. In Proceedings of the ACM SIGCOMM
’01 Conference, San Diego, California, August 2001.

[10]

[11] H. Tangmunarunkit, R. Govindan, D. Estrin, and S. Shenker.
The impact of routing policy on internet paths. In Proc. 20th

IEEE INFOCOM, Alaska, USA, Apr. 2001.

[12]

(13]

(14]

P. F. Tsuchiya. The landmark hierarchy: a new hierarchy for
routing in very large networks. In SIGCOMM’SS, Stanford,
CA, 1988.

E. Zegura, K. Calvert, and S. Bhattacharjee. How to model an
internetwork. In INFOCOMY96, 1996.

B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An
infrastructure for fault-resilient wide-area location and rout-
ing. Technical Report UCB//CSD-01-1141, U. C. Berkeley,
April 2001.

15

