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Abstract

Generic peer-to-peer (p2p) overlay networks like CAN,

Chord, Pastry and Tapestry offer a novel platform for a va-

riety of scalable and decentralized distributed applications.

These systems provide efficient and fault-tolerant routing,

object location and load balancing within a self-organizing

overlay network. One important aspect of these systems is

how they exploit network proximity in the underlying Inter-

net. In this paper, we present a comprehensive study of the

network locality properties of a p2p overlay network. Results

obtained via analysis and via simulation of two large-scale

topology models indicate that it is possible to efficiently ex-

ploit network proximity in self-organizing p2p substrates. A

simple heuristic measures a scalar proximity metric among a

small number of nodes, incurring only a modest additional

overhead for organizing and maintaining the overlay net-

work. The resulting locality properties improve application

performance and reduce network usage in the Internet sub-

stantially. Finally, we study the impact of proximity-based

routing on the load balancing in the p2p overlay.

1 Introduction

Several recent systems (CAN [6], Chord [10], Pastry [7] and

Tapestry [14]) provide a self-organizing substrate for large-

scale peer-to-peer applications. These systems can be viewed

as providing a scalable, fault-tolerant distributed hash table,

in which any item can be located within a bounded number

of routing hops, using a small per-node routing table. While

there are algorithmic similarities among each of these sys-

tems, one important distinction lies in the approach they take

to considering and exploiting proximity in the underlying In-

ternet. Chord, for instance, does not currently consider net-

work proximity at all. As a result, its protocol for maintaining

the overlay network is very light-weight, but messages may

travel arbitrarily long distances in the Internet in each routing

hop.

In CAN, each node measures its network delay to a set of

landmark nodes, in an effort to determine its relative position

in the Internet and to construct an Internet topology aware

overlay. Tapestry and Pastry exploit locality by measuring

a proximity metric among pairs of nodes, and by choosing

nearby nodes for inclusion in their routing tables. Early re-

sults for the resulting locality properties are promising. In

Tapestry and Pastry, for instance, the average total “distance”

traveled by a message is only a small and constant factor

larger than the “distance” between source and destination

in the underlying network. However, these results come at

the expense of more expensive overlay maintenance protocol,

relative to Chord. Also, proximity based routing may com-

promise the load balance in the p2p overlay network. More-

over, it remains unclear to what extent the locality properties

hold in the actual Internet, with its complex, dynamic, and

non-uniform topology. As a result, the cost and effectiveness

of proximity based routing in these p2p overlays remain un-

clear.

To address these questions, this paper presents results of a

comprehensive study of Pastry’s locality properties via anal-

ysis and via simulations based on two large-scale Internet

topology models. Moreover, we propose an improved node

join and failure protocol that substantially decreases the over-

lay maintenance cost relative to the original implementa-

tion [7], at the expense of a negligible reduction in the quality

of the Pastry’s routing properties. The results indicate that the

locality properties are robust on a variety of network topol-

ogy models. Moreover, the load imbalance caused by the

proximity based routing is modest, and hot spots can be eas-

ily dispersed without affecting overall route quality. While

our analysis and simulations are based on Pastry, many of

our results apply to Tapestry and Chord as well. We conclude

that it is possible to exploit network proximity in p2p overlay

networks with low overhead and without compromising their

self-organizing and load balancing properties.

The rest of this paper is organized as follows. Related work

is discussed in Section 2. In Section 3, we provide a brief

overview of the Pastry protocol. Pastry’s locality properties,

and the new protocols for node joining and failure recovery

are presented in Section 4. An analysis of Pastry’s locality
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properties follows in the Section 5. Section 6 presents exper-

imental results, and we conclude in Section 7.

2 Related work

CAN [6], Chord [10] and Tapestry [14] are closely related to

Pastry. Each of these protocols form a self-organizing over-

lay network and provide a load-balanced, fault-tolerant dis-

tributed hash table, in which items can be inserted and looked

up in a bounded number of forwarding hops. CAN, Tapestry

and Pastry each use heuristics to exploit proximity in the In-

ternet, and the resulting properties have been studied in prior

work. To the best of our knowledge, this paper is the first

study that looks at both costs and benefits of proximity based

routing in a p2p overlay, and considers the impact of node

failures on those costs and benefits.

Pastry and Tapestry are related to the work by Plaxton et

al. [5] and to routing in the landmark hierarchy [12]. The

approach of routing based on address prefixes, which can be

viewed as a generalization of hypercube routing, is common

to all these schemes. However, neither Plaxton nor the land-

mark approach are fully self-organizing. Pastry and Tapestry

differ in their approach to locating the numerically closest

node in the sparsely populated nodeId space, and for man-

aging replication. Pastry uses overlapping sets of neighbor-

ing nodes in the nodeId space (leaf sets), both to locate the

destination in the final routing hop, and to store replicas of

data items for fault tolerance. Tapestry uses a different con-

cept called surrogate routing to locate the destination, and it

inserts replicas of data items using different keys. The ap-

proach to achieving network locality is very similar in both

systems.

The Chord protocol is closely related to Pastry and

Tapestry, but instead of routing based on address prefixes,

Chord forwards messages based on numerical difference with

the destination address. Unlike Pastry and Tapestry, Chord

currently makes no explicit effort to exploit network proxim-

ity. However, locality heuristics similar to the ones used in

Pastry could presumably be added to Chord.

CAN routes messages in a
✄
-dimensional space, where

each node maintains a routing table with ☎✝✆ ✄✟✞
entries and

any node can be reached in ☎✝✆ ✄✡✠☞☛✍✌✏✎✑✞
routing hops. Un-

like Pastry, Tapestry and Chord, the CAN routing table does

not grow with the network size, but the number of routing

hops grows faster than ✒✔✓✖✕ ✠
. The work on CAN [6] ex-

plored two techniques to improve routing performance by us-

ing information about the network topology. In the first tech-

nique, each node measures the RTT to each of its neighbors

and messages are forwarded to the neighbor with the max-

imum ratio of progress to RTT. This technique differs from

the one used in Pastry because the set of neighbors of a node

is chosen without regard to their proximity; this has the dis-

advantage that all neighbors may be quite far from the node.

The second technique measures the distances between each

node and a set of landmark servers to compute the coordi-

nates of the node in the CAN space such that neighbors in

the CAN space are topologically close. This technique can

achieve good performance but it has the disadvantage that it

is not fully self-organizing; it requires a set of well-known

landmark servers. In addition, it may cause significant im-

balances in the distribution of nodes in the CAN space that

lead to hotspots.

Existing applications built on top of Pastry include

PAST [8] and SCRIBE [9]. Other peer-to-peer applications

that were built on top of generic routing and location sub-

strates are OceanStore [3] (Tapestry) and CFS [2] (Chord).

3 Pastry

Pastry is described in detail in [7], and a brief summary is

provided here. Pastry is a generic, efficient, scalable, fault re-

silient, and self-organizing peer-to-peer substrate. Each Pas-

try node has a unique, uniform randomly assigned nodeId in

a circular 128-bit identifier space. Given a 128-bit key, Pas-

try routes an associated message towards the live node whose

nodeId is numerically closest to the key. Moreover, each Pas-

try node keeps track of its neighboring nodes in the names-

pace and notifies application of changes in the set. These

capabilities can be used to build a distributed, fault-tolerant

hashtable, which in turn can be used to support a variety of

decentralized, distributed applications.

Assuming a network consisting of
✠

nodes, the expected

number of forwarding hops to deliver a messages with a

random key is ✗✙✘✔✒✔✓✖✕✛✚✏✜ ✠✣✢
( ✤ is a configuration parameter

with typical value 4). The tables required in each node have

only ☎✝✆✥✒✔✓✖✕✛✚✏✜ ✠✦✞
entries, where each entry maps an existing

nodeId to the associated node’s IP address. Upon a node fail-

ure or the arrival of a new node, the invariants in all affected

tables can be restored by exchanging ☎✝✆✔✒✥✓✖✕ ✚ ✜ ✠✦✞
messages.

In the following paragraphs, we briefly sketch the Pastry rout-

ing scheme.

Node state: For the purposes of routing, nodeIds and keys

are thought of as a sequence of digits in base ✧✛★ . A node’s

routing table is organized into ✩✖✧✛✪✡✫✬✧✭★ rows and ✧✭★✯✮✰✩
columns. The ✧✭★✱✮✲✩ entries in row ✳ of the routing table

refer to nodes whose nodeIds share the first ✳ digits with the

present node’s nodeId; the ✳✵✴✶✩ th nodeId digit of a node in

column ✷ of row ✳ equals ✷ . The column in row ✳ corre-

sponding to the value of the ✳✸✴✹✩ ’s digits of the local node’s

nodeId remains empty. Figure 1 depicts an example routing

table.

A routing table entry is also left empty if no node with

the appropriate nodeId prefix is known. The uniform ran-

dom distribution of nodeIds ensures an even population of

the nodeId space; thus, on average only ✘✔✒✔✓✖✕ ✚ ✜ ✠✣✢
levels are
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Figure 1: Routing table of a Pastry node with

nodeId ❈✭❉✛❊❋✩❍● , ✤❏■▲❑ . Digits are in base 16, ●
represents an arbitrary suffix. The IP address

associated with each entry is not shown.
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Figure 2: Routing a message from node❈✡❉✬❊❴✩✖❵❜❛ with key
✄ ❑✡❈✛❊❴✩❍❛ . The dots depict live

nodes in Pastry’s circular namespace.

populated in the routing table. Each node maintains IP ad-

dresses for the nodes in its leaf set. The leaf set is the set of ✒
nodes with nodeIds that are numerically closest to the present

node’s nodeId, with ✒❝✫✛✧ larger and ✒❝✫✛✧ smaller nodeIds than

the current node’s id. A typical value for ✒ is approximately✘❞✪❢❡❣✒✥✓✖✕ ☛✐❤ ✠✣✢
.

Message routing: At each routing step, a node normally

forwards the message to a node whose nodeId shares with

the key a prefix that is at least one digit (or ✤ bits) longer

than the prefix that the key shares with the present node’s

id. If no such node is known, the message is forwarded to

a node whose nodeId shares a prefix with the key as long as

the current node, but is numerically closer to the key than the

present node’s id. Such a node is guaranteed to exist in the

leaf set unless the message has already arrived at the node

with numerically closest nodeId, or its immediate neighbor1.

And, unless all ✒❝✫✛✧ nodes in one half of the leaf set have failed

simultaneously, at least one of those nodes must be live.

The Pastry routing procedure is shown in Figure 3. Fig-

ure 2 shows the path of an example message. Analysis shows

that the expected number of forwarding hops is slightly below✘❞✒✥✓✖✕ ✚ ✜ ✠✣✢
, with a distribution that is tight around the mean. A

deterministic upper bound for the number of routing hops is

128/b+1, assuming correct routing tables and no concurrent

node failures. Moreover, simulation shows that the routing is

highly resilient to node failures.

To achieve self-organization, Pastry must dynamically

maintain its node state, i.e., the routing table and leaf set,

in the presence of new node arrivals, node failures, node re-

coveries, and network partitions.

1The last clause takes care of a pathological case where the numerically

closest node does not share a nodeId prefix with the key.

(1) if ( ❥✟❦ ❧✥♠♦♥q♣✏rts✉♣✈♣♦✇②①❞③⑤④⑦⑥⑨⑧❶⑩✈❷❶③②⑥⑨⑧❶⑩✏❸ )
(2) // ❥ is within numerical range of local leaf set (mod ❹✑❺ ⑩t❻ )

(3) forward to ③②❼ , s.th. ❽ ❥❿❾➀③➁❼✐❽ is minimal;

(4) else

(5) // use the routing table

(6) Let ➂➄➃➅♠♦➆✟➂❝①➇❥✟❷➉➈✭❸ ;
(7) if ( ➊❣➋➍➌⑥ exists and is live)

(8) forward to ➊❣➋➍➌⑥ ;

(9) else

(10) // rare case

(11) forward to r➏➎✝③✯➐➑➊ , s.th.

(12) ♠♦➆✟➂❝①➒r➍❷t❥✛❸➏➓☞➂ ,
(13) ❽ r➔❾➀❥➄❽✑→✹❽ ➈❢❾➀❥➄❽

Figure 3: Pastry routing procedure, executed when a message

with key
✄

arrives at a node with nodeId ❊ . ➣↕↔➙ is the entry in

the routing table ➣ at column ➛ and row ✒ . ➜ ↔ is the i-th clos-

est nodeId in the leaf set ➜ , where a negative/positive index

indicates counterclockwise/clockwise from the local node in

the id space, respectively. ➜✱➝ ➙ ✌ ✚ and ➜ ➙ ✌ ✚ are the nodes at

the edges of the local leaf set.
✄ ➙ represents the ✒ ’s digit in

the key
✄
. ➞➠➟❋✒❶✆✥❊❋➡✏✤ ✞ is the length of the prefix shared among❊ and ✤ , in digits.

Node addition: A newly arriving node with the new nodeId➢
can initialize its state by asking any existing Pastry node ➤

to route a special message using
➢

as the key. The message is

routed to the existing node ➥ with nodeId numerically closest

to
➢

.
➢

then obtains the leaf set from ➥ and the ➛ th row of

the routing table from the node encountered along the route

from ➤ to ➥ whose nodeId matches
➢

in the first ➛➏✮➦✩ dig-

its. Using this information,
➢

can correctly initialize its own

routing table and leaf set. Finally,
➢

announces its presence
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to the initial members of its leaf set, which in turn update

their own leaf sets and routing tables. Given an appropriate

leaf set size (e.g., ➧➨✧✛★ ), one can show that, with high prob-

ability, all nodes whose routing tables are affected by
➢

’s

arrival are notified.

Node failure: When a node fails, the leaf sets and routing

tables of a number of other nodes must be updated. Leaf set

memberships is actively maintained. The members of each

leaf set periodically exchange keep-alive messages. If a node

is unresponsive for a period ➩ , it is presumed failed. All

members of the failed node’s leaf set are then notified and

they update their leaf sets. Since the leaf sets of nodes with

adjacent nodeIds overlap, this update is trivial.

Routing table entries that refer to failed nodes are repaired

lazily. During message forwarding, when a routing table en-

try is found that is either empty or the referenced node has

failed, Pastry routes the message to another node with numer-

ically closer nodeId (lines 11-13 in Figure 3). If the down-

stream node has a routing table entry that matches the next

digit of the message’s key, it automatically informs the up-

stream node of that entry.

Node recovery: The node recovery protocol is optimized

to reduce the overhead of temporary node failures. A recov-

ering Pastry node first attempts to contact nodes in its last

known leaf set and obtains their leaf sets. If the numerical

range of nodeIds in one of those sets still includes the recov-

ering node’s nodeId, the node updates its own leaf set based

on the information it receives and then notifies the current

members of its leaf set of its presence. Otherwise, the node

follows the normal protocol for node addition.

Network partitions: A network partition can cause the ap-

parent simultaneous failure of a large number of nodes at

random points in the nodeId space. In extreme cases, such

a partition could cause the failure of ✒❝✫✛✧ nodes with adjacent

nodeIds. This (rare) case requires a special recovery proce-

dure, since live nodes that are separated by ✒❝✫✛✧ or more failed

nodes in the nodeId space are not aware of each other. Briefly,

the live nodes at the edges of such a sequence of failed nodes

locate each other by sending messages towards the other us-

ing their remaining live routing table entries, then form a new

leaf set.

4 Pastry locality properties

This section focuses on Pastry’s locality properties. Pastry

seeks to exploit proximity in the underlying Internet, by rout-

ing through as short a path as possible, finding nearest copies

of objects, etc. It relies on a scalar proximity metric that indi-

cates the “distance” between any given pair of Pastry nodes.

It is assumed that each Pastry node can measure or other-

wise obtain the distance between itself and any node with a

known IP address. Furthermore, it is assumed that the prox-

imity metric reflects static properties of the underlying phys-

ical network, rather than prevailing traffic conditions.

The choice of a proximity metric depends on the desired

qualities of the resulting overlay (e.g., low delay, high band-

width, low network utilization). In practice, metrics such as

round-trip time (minimum of a series of pings), bandwidth

(measured, for instance, using packet pair techniques), the

number of IP routing hops (measured using traceroute), or

some combination thereof could be used. Choosing an ap-

propriate proximity metric for p2p overlay networks is the

subject of future work and beyond the scope of this paper.

Pastry’s locality properties derive from its attempt to mini-

mize the distance, according to the proximity metric, to each

of the nodes that appear in a node’s routing table, subject to

the constraints imposed on nodeId prefixes. It is expensive

to achieve this goal precisely in a large system because it re-

quires ☎✝✆ ✠✦✞
communication. Therefore, Pastry uses heuris-

tics that require only ☎✝✆✥✒✔✓✖✕✛✚ ✜ ✠☞✞
communication but only en-

sure that routing table entries are close but not necessarily the

closest. More precisely, Pastry ensures the following invari-

ant for each node’s routing table:

Proximity invariant: Each entry in a node
➢

’s routing ta-

ble refers to a node that is near
➢

, according to the proxim-

ity metric, among all live Pastry nodes with the appropriate

nodeId prefix.

In Section 4.1, we show how Pastry’s node joining pro-

tocol maintains the proximity invariant. Next, we consider

the effect of the proximity invariant on Pastry’s routing. Ob-

serve that as a result of the proximity invariant, a message

is normally forwarded in each routing step to a nearby node,

according to the proximity metric, among all nodes whose

nodeId shares a longer prefix with the key. Moreover, the ex-

pected distance traveled in each consecutive routing step in-

creases exponentially, because the density of nodes decreases

exponentially with the length of the prefix match. From this

property, one can derive three distinct properties of Pastry

with respect to network locality:

Total distance traveled The expected distance of the last

routing step tends to dominate the total distance traveled by a

message. As a result, the average total distance traveled by a

message exceeds the distance between source and destination

node only by a small constant value. Analysis and simula-

tions on two Internet topology models presented in Section 6

confirm this.

Local route convergence The paths of two Pastry messages

sent from nearby nodes with identical keys tend to converge

at a node near the source nodes, in the proximity space. To

see this, observe that in each consecutive routing step, the

messages travel exponentially larger distances towards an ex-

ponentially shrinking set of nodes. Thus, the probability of

a route convergence increases in each step, even in the case

4



where earlier (smaller) routing steps have moved the mes-

sages farther apart. This result has significance for caching

applications layered on Pastry. Popular objects requested by

a nearby node and cached by all nodes along the route are

likely to be found when another nearby node requests the ob-

ject. Also, this property is exploited in Scribe [9] to achieve

low link stress in an application level multicast system.

Locating the nearest replica If replicas of an object are

stored on ➫ nodes with adjacent nodeIds, Pastry messages re-

questing the object have a tendency to first reach a node near

the client node. To see this, observe that Pastry messages ini-

tially take small steps in the proximity space, but large steps

in the nodeId space. Applications can exploit this property to

make sure that client requests for an object tend to be handled

by a replica that is near the client. Exploiting this property is

application-specific, and is discussed in [8].

An analysis of these properties follows in Section 5. Sim-

ulation results that confirm and quantify these properties on

two Internet topology models follow in Section 6.

4.1 Node addition and failure

Next, we present the Pastry node join protocol and show how

this protocol maintains the proximity invariant.

First, recall from Section 3 that a new node
➢

must con-

tact an existing Pastry node ➤ when joining the system. ➤
then routes a message using

➢
as the key, and the new node

obtains the ✳ th row of its routing table from the node encoun-

tered along the path from ➤ to
➢

whose nodeId matches
➢

in the first ✳➭✮▲✩ digits. We will show that the proximity in-

variant holds on
➢

’s resulting routing table, if node ➤ is near➢
, according to the proximity metric.

First, consider the top row of
➢

’s routing table, obtained

from node ➤ . Assuming the triangulation inequality holds in

the proximity space, it is easy to see that the entries in the top

row of ➤ ’s routing table are also close to
➢

. Next, consider

the ✳ th row of
➢

’s routing table, obtained from the node ➤❢➯
encountered along the path from ➤ to

➢
. By induction, this

node is Pastry’s approximation to the node closest to ➤ that

matches
➢

’s nodeId in the first ✳✸✮☞✩ digits. Therefore, if the

triangulation inequality holds, we can use the same argument

to conclude that the entries of the ✳ th row of ➤ ➯ ’s routing

table should be close to
➢

.

At this point, we have shown that the proximity invariant

holds in
➢

’s routing table. To show that the node join pro-

tocol maintains the proximity invariant globally in all Pastry

nodes, we must next show how the routing tables of other

affected nodes are updated to reflect
➢

’s arrival. Once
➢

has initialized its own routing table, it sends the ✳ th row of

its routing table to each node that appears as an entry in that

row. This serves both to announce its presence and to propa-

gate information about nodes that joined previously. Each of

the nodes that receives a row then inspects the entries in the

row, performs probes to measure if
➢

or one of the entries is

nearer than the corresponding entry in its own routing table,

and updates its routing table as appropriate.

To see that this procedure is sufficient to restore the prox-

imity invariant in all affected nodes, consider that
➢

and the

nodes that appear in row ✳ of
➢

’s routing table form a group

of ✧✛★ nearby nodes whose nodeIds match in the first ✳ digits.

It is clear that these nodes need to know of
➢

’s arrival, since➢
may displace a more distant node in one of the node’s rout-

ing tables. Conversely, a node with identical prefix in the first✳ digits that is not a member of this group is likely to be more

distant from the members of the group, and therefore from
➢

;

thus,
➢

’s arrival is not likely to affect its routing table and,

with high probability, it does not need to be informed of
➢

’s

arrival.

Node failure Recall that failed routing tables entries are re-

paired lazily, whenever a routing table entry is used to route

a message. Pastry routes the message to another node with

numerically closer nodeId (lines 11-13 in Figure 3). If the

downstream node has a routing table entry that matches the

next digit of the message’s key, it automatically informs the

upstream node of that entry.

We need to show that the entry supplied by this procedure

satisfies the proximity invariant. If a numerically closer node

can be found in the routing table, it must be an entry in the

same row as the failed node. If that node supplies a substi-

tute entry for the failed node, its expected distance from the

local node is therefore low, since all three nodes are part of

the same group of nearby nodes with identical nodeId prefix.

On the other hand, if no replacement node is supplied by the

downstream node, we trigger the routing table maintenance

task (described in the next section) to find a replacement en-

try. In either case, the proximity invariant is preserved.

4.2 Routing table maintenance

The routing table entries produced by the node join protocol

and the repair mechanisms are not guaranteed to be the clos-

est to the local node. Several factors contribute to this, in-

cluding the heuristic nature of the node join and repair mech-

anisms with respect to locality. Also, many practical proxim-

ity metrics do not strictly satisfy the triangulation inequality

and may vary over time. However, limited imprecision is

consistent with the proximity invariant, and as we will show

in Section 6, it does not have a significant impact on Pastry’s

locality properties.

However, one concern is that deviations could cascade,

leading to a slow deterioration of the locality properties over

time. To prevent a deterioration of the overall route qual-

ity, each node runs a periodic routing table maintenance task

(e.g., every 20 minutes). The task performs the following

procedure for each row of the local node’s routing table. It

selects a random entry in the row, and requests from the as-

sociated node a copy of that node’s corresponding routing
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table row. Each entry in that row is then compared to the

corresponding entry in the local routing table. If they differ,

the node probes the distance to both entries and installs the

closest entry in its own routing table.

The intuition behind this maintenance procedure is to ex-

change routing information among groups of nearby nodes

with identical nodeId prefix. A nearby node with the ap-

propriate prefix must be know to at least one member of the

group; the procedure ensures that the entire group will even-

tually learn of the node, and adjust their routing tables ac-

cordingly.

Whenever a Pastry node replaces a routing table entry be-

cause a closer node was found, the previous entry is kept in

a list of alternate entries (up to ten such entries are saved in

the implementation). When the primary entry fails, one of

the alternates is used until and unless a closer entry is found

during the next periodic routing table maintenance.

4.3 Locating a nearby node

Recall that for the node join algorithm to preserve the prox-

imity invariant, the starting node ➤ must be close to the new

node
➢

, among all live Pastry nodes. This begs the question

of how a newly joining node can detect a nearby Pastry node.

One way to achieve this is to perform an “expanding ring” IP

multicast, but this assumes the availability of IP multicast. In

Figure 4, we present an efficient algorithm by which a node

may discover a nearby Pastry node, given that it has knowl-

edge of some Pastry node at any location. Thus, a joining

node is only required to obtain knowledge of any Pastry node

through out-of-band means, as opposed to obtaining knowl-

edge of a nearby node. The algorithm exploits the property

that location of the nodes in the seeds’ leaf set should be uni-

formly distributed over the network. Next, having discovered

the closest leaf set member, the routing table distance proper-

ties are exploited to move exponentially closer to the location

of the joining node. This is achieved bottom up by picking

the closest node at each level and getting the next level from

it. The last phase repeats the process for the top level until no

more progress is made.

In this section, we have shown at an intuitive level why

the Pastry node join protocol preserves the proximity invari-

ant, and how Pastry’s locality properties can be derived from

the proximity invariant. However, as part of this argument,

we have relied on a few assumptions that do not generally

hold in the Internet. For instance, the triangulation inequality

does not generally hold for most practical proximity metrics

in the Internet. Also, nodes are not uniformly distributed in

the resulting proximity space. Therefore, it is necessary to

confirm the robustness of Pastry’s locality properties using

simulations on Internet topology models. Results of simula-

tions based two Internet topology models will be presented

in Section 6.

(1) discover(seed)

(2) nodes = getLeafSet(seed)

(3) forall node in nodes

(4) nearNode = closerToMe(node,nearNode)

(5) depth = getMaxRoutingTableLevel(nearNode)

(6) while (depth ➲ 0)

(7) nodes = getRoutingTable(nearNode,depth - -)

(8) forall node in nodes

(9) nearNode = closerToMe(node,nearNode)

(10) end while

(11) do

(12) nodes = getRoutingTable(nearNode,0)

(13) currentClosest = nearNode

(14) forall node in nodes

(15) nearNode = closerToMe(node,nearNode)

(16) while (currentClosest != nearNode)

(17) return nearNode

Figure 4: Simplified nearby node discovery algorithm. seed

is the Pastry node initially known to the joining node.

5 Analysis

In this section, we present analytical results for Pastry’s rout-

ing properties. First, we analyze the distribution of the num-

ber of routing hops taken when a Pastry message with a ran-

domly chosen key is sent from a randomly chosen Pastry

node. This analysis then forms the basis for an analysis of

Pastry’s locality properties. Throughout this analysis, we as-

sume that each Pastry node has a perfect routing table. That

is, a routing table entry may be empty only if no node with an

appropriate nodeId prefix exists, and all routing table entries

point to the nearest node, according to the proximity metric,

with the appropriate nodeId prefix. In practice, Pastry does

not guarantee perfect routing tables. Simulation results pre-

sented in Section 6 show that the performance degradation

due to this inaccuracy is minimal. Due to space constraints,

the details of the analysis and the proofs are omitted here;

they are avaliable at http://dosa.ecn.purdue.edu:8080.

5.1 Route probability matrix

The analysis of the distribution of the number of routing hops

is based on the statistical population of the nodeId space.

Since the assignment of nodeIds is assumed to be randomly

uniform, this population can be captured by the binomial dis-

tribution (see, for example, [1]). For instance, the distribution

of the number of nodes with a given value of the most signif-

icant nodeId digit, out of
✠

nodes, is given by ✤✑✆❝➫❜➳ ✠ ➡❍✩➠✫✛✧✛★ ✞ .
Recall from Figure 3 that at each node, a message can be

forwarded using one of three branches in the forwarding pro-

cedure. In case ➵➺➸ , the message is forwarded using the leaf

set ➜ (line 3); in case ➵➺➻ using the routing table ➣ (line 8);
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and in case ➵➺➼ using a node in ➜☞➽✵➣ (lines 11-13). We for-

mally define the probabilities of taking these branches as well

as of two special cases in the following.

Definition 1 Let ➾❋➚✑✓✬✤✑✆✥➟②➡✍✒❶➡ ✠ ➡➍➵➁➪ ✞
denote the probability of

taking branch ➵➺➪➑➡ ➢✲➶↕➹ ➤➘➡✍➴➷➡✏➬➑➮ , at the ✆✥➟➭✴➱✩ ✞ th hop in

routing a message with random key, starting from a node ran-

domly chosen from
✠

nodes, with a leaf set of size ✒ . Further-

more, we define ➾❋➚✑✓✬✤✑✆✥➟②➡✍✒❶➡ ✠ ➡➍➵❐✃➸ ✞
as the probability that the

node encountered after the ➟ -th hop is already the numeri-

cally closest node to the message, and thus the routing ter-

minates, and define ➾❒➚✑✓✬✤✑✆❝➟❮➡➍✒✐➡ ✠ ➡✍➵❐✃➻ ✞
as the probability that

the node encountered after the ➟ -th hop already shares the✆✥➟✸✴▲✩ ✞ digits with the key, thus skipping the ✆✥➟✸✴▲✩ ✞ th hop.

We denote ➾❋➚➠✓✬✤✬✆✥➟②➡✍✒✐➡ ✠ ➡✍➵➺➪ ✞ ➡✏➟ ➶Ï❰ Ð ➡Ñ✩➠✧✬✪✡✫✛✤✵✮Ò✩✈Ót➡ ➢Ô➶➹ ➤➘➡✍➤q✃✔➡➍➴➷➡✍➴➑✃❝➡➍➬➑➮ as the probability matrix of Pastry routing.

The following Lemma gives the building block for deriving

the full probability matrix as a function of
✠

and ✒ .
Lemma 1 Assume branch ➵➁➻ has been taken during the first➟ hops in routing a random message Õ , i.e. the message Õ
is at an intermediate node

➢
which shares the first ➟ dig-

its with Õ . Let Ö be the total number of random uniformly
distributed nodeIds that share the first ➟ digits with Õ . The
probabilities in taking different paths at the ✆❝➟➘✴▲✩ ✞ th hop is×ØØØØ

Ù
Ú✟ÛÑÜ❍Ý ①❞➆❋❷➉➂✔❷❶Þ✯❷➉ß❜à❮❸Ú✟ÛÑÜ❍Ý ①❞➆❋❷➉➂✔❷❶Þ✯❷➉ß❏áà ❸Ú✟ÛÑÜ❍Ý ①❞➆❋❷➉➂✔❷❶Þ✯❷➉ß➔â➺❸Ú✟ÛÑÜ❍Ý ①❞➆❋❷➉➂✔❷❶Þ✯❷➉ß áâ ❸Ú✟ÛÑÜ❍Ý ①❞➆❋❷➉➂✔❷❶Þ✯❷➉ß➔ã➁❸

ä✍åååå
æ ➃ ⑩ ✜ ④ ❺ç

➋➍è❒é
êçëtì è➄é

Ý ①îí é✖ï Þ✯❷✱ð❹Ññ ❸➔ò
ê ④ ëtìçë è➄é

Ý ①îí ï Þó❾✝í é ❷ ❥❹ ñ ❾ ð ❸➔ò Ú✟Û❍ÜÑÝ Ú ➈ Ý➍ô ①îí✖❷✔í é ❷✐Þó❾✝í é ❾✝í✖❷✐➆❋❷❶➂➇❸
where ➾❋➚➠✓✬✤ ➾❋❊⑦✤♦❛✬✆öõ ➙ ➡❝õ➠÷❍➡❝õ✖ø✬➡✏➟❮➡➍✒ ✞ calculates the five probabil-

ities assuming there are õ ➙ ➡❝õ➠÷Ñ➡❝õ✖ø nodeIds that shared the first➟ digits with Õ , but whose ✆✥➟✸✴▲✩ ✞ th digits are smaller than,

equal to, and larger than that of Õ , respectively.

Since the randomly uniformly distributed nodeIds that fall

in a particular segment of the namespace containing a fixed

prefix of ➟ digits follow the binomial distribution, the ➟ th

row of the probability matrix can be calculated by summing

over all possible nodeId distributions in that segment of the

namespace the probability of each distribution multiplied by

its corresponding probability vector given by Lemma 1. Fig-

ure 5 plots the probabilities of taking branches ➵➁➸ , ➵➺➻ , and➵ ➼ at each actual hop (i.e. after the adjustment of collapsing

skipped hops) of Pastry routing for
✠ ■✶❈ Ð✭Ð✛Ð✛Ð

, with ✒➁■✶ù✭✧
and ✤✝■ú❑ . It shows that the ✒✔✓✖✕ ☛❶❤ ✆ ✠✦✞

-th hop is dominated

by ➵ ➸ hops while earlier hops are dominated by ➵ ➻ hops.

The above probability matrix can be used to derive the dis-

tribution of the numbers of routing hops in routing a random

message. Figure 6 plots this distribution for
✠ ■û❈ Ð✛Ð✭Ð✛Ð

with✒②■▲ù✡✧ and ✤✱■û❑ . The probability matrix can also be used to
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derive the expected number of routing hops in Pastry routing

according to the following theorem.

Theorem 1 Let the expected number of additional hops after
taking ➵➺➼ for the first time, at the ➟ th hop, be denoted as➬✡✠☞☛ ✆❝➟❮➡➍✒✐➡ ✠ ➡✍➵➺➼ ✞

. The expected number of routing hops in
routing a message with random key Õ starting from a node
randomly chosen from the

✠
nodes is

❺ ⑩t❻✐⑧ ñ ④ ❺ç
✌ è❒é

Ú✟ÛÑÜ❍Ý ①❞➆❋❷➉➂✔❷❶ý✸❷✐ß❜à❮❸ ❾ Ú✟ÛÑÜ❍Ý ①❞➆❋❷➉➂✥❷❶ý✸❷➉ß áà ❸✎✍
Ú✟Û❍ÜÑÝ ①❞➆❒❷✐➂✥❷✐ý✸❷✐ß❜â➺❸ ❾ Ú✟ÛÑÜ❍Ý ①❞➆❋❷➉➂✥❷❶ý✸❷➉ß áâ ❸✏✍Ú✡Û❍ÜÑÝ ①❞➆❋❷➉➂✥❷✐ý✸❷✐ß ã ❸✑✍✓✒✕✔ ☛ ①❞➆❋❷✐➂✥❷✐ý✸❷❶ß ã ❸❜ò Ú✟ÛÑÜÑÝ ①❞➆❋❷t➂✥❷❶ý✸❷✐ß ã ❸

5.2 Expected routing distance

Next, we analyze the expected distance a message travels in

the proximity space, while it is being routed through Pastry.

To make the analysis tractable, it is assumed that the locations

of the Pastry nodes are random uniformly distributed over
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the surface of a sphere, and that the proximity metric used

by Pastry equals the geographic distance between pairs of

Pastry nodes on the sphere. The uniform distribution of node

locations and the use of geographic distance as the proximity

metric are clearly not realistic. In Section 6 we will present

two sets of simulation results, one for conditions identical

to those assumed in the analysis, and one based on Internet

topology models. A comparison of the results indicates that

the impact of our assumptions on the results is limited.

The following Lemma gives the average distance in each

hop traveled by a message with a random key sent from a

random starting node, as a function of the hop number and

the hop type.

Lemma 2 (1) In routing message Õ , after ➟ ➵ ➻ hops, if ➣ ✖✕✗✘
is not empty, the expected ➟❒✓✏➾ ✄ ➛✐➞✄✙✈✆✥➟②➡✍➣✸➡✍➵ ➻ ✞

is ➣↕❛✈✓✬➞ ➝ ☛ ✆✐✩❴✮✚ ✜✛✚ ✗✢✜✤✣✛✥✦✜☞✣✧ ✞
.

(2) In routing message Õ , if path ➵ ➸ is taken at any given

hop, the hop distance ➟❋✓✏➾ ✄ ➛✐➞★✙✈✆❝➟❮➡➍➣✸➡✍➵ ➸ ✞
is ✩✤✪ ✫✚ .

(3) In routing message Õ , after ➟ hops, if path ➵➁➼ is

taken, the hop distance ➟❋✓✏➾ ✄ ➛✐➞✄✙✈✆✥➟②➡✍➣✸➡✍➵➺➼ ✞
is ➟❋✓✏➾ ✄ ➛✐➞✄✙✈✆✥➟✯✮✩✛➡➍➣✸➡✍➵➺➻ ✞

, which with high probability is followed by a hop

taken via ➵ ➸ , i.e. with distance ✩✤✪ ✫✚ .

The above distance ➟❋✓✏➾ ✄ ➛➉➞✄✙✈✆❝➟❮➡➍➣➑➡➍➵ ➻ ✞
comes from the

density argument. Assuming nodeIds are uniformly dis-

tributed over the surface of the sphere, the average distance

of the next ➵➺➻ hop is the radius of a circle that contains on

average one nodeId (i.e. the nearest one) that share ✆❝➟✝✴ ✩ ✞
digits with Õ .

Given the vector of the probabilities of taking branches➵ ➸ , ➵ ➻ , and ➵ ➼ at the actual ➟ th hop (e.g. Figure 5), and the

above vector of per-hop distance for the three types of hops

at the ➟ th hop, the average distance of the ➟ th actual hop is

simply the dot-product of the two vectors, i.e. the weighted

sum of the hop distances by the probabilities that they are

taken. These results are presented in the next section along

with simulation results.

5.3 Local route convergence

Next, we analyze Pastry’s route convergence properties when

two random Pastry nodes send a message with the same ran-

domly chosen key. Specifically, we are interested in the dis-

tance the messages travel in the proximity space until the

point where their routes converge, as a function of the dis-

tance between the starting nodes in the proximity space.

To simplify the analysis, we consider three scenarios. In

the worst-case scenario, it is assumed that at each routing

hop prior to the point where their routes converge, the mes-

sages travel in opposite directions in the proximity space. In

the average-case scenario, it is assumed that prior to con-

vergence, the messages travel such that their distance in the

proximity space does not change. In the best case scenario,

the messages travel towards each other in the proximity space

prior to their convergence.

Theorem 2 Let ➬✸✩ and ➬❐✧ be the two starting nodes on a
sphere of radius ➣ from which messages with an identical,
random key are being routed. Let the distance between ➬✸✩
and ➬❐✧ be

✄ Ð
. Then the expected distance that the two mes-

sages will travel before their paths merge is

❥✑❧✥♠➍r✏①➇❥ ✁ ❷✐➊✱❸❮➃ ⑥ ✬✮✭✮✯ ✜✢✰çë è➄é
❼✲✱ ë✳
❼ è➄é ① ð ❾ Ú✟Û❍ÜÑÝ ➆ Ü❶Ú ①➇❧➉❷✐❥ ✁ ❷➉➊✱❸➉❸t➆ Ü❶Ú ❥✑❧❝♠➍r➍①îí➠❷➉➊✱❸

where ➾❒➚✑✓✬✤ ➟❋✓✏➾➁✆öõ✭➡ ✄ Ð ➡✍➣ ✞ ■ ✴✶✵ ✘✂✷✹✸ ✎ ↔✻✺✹✼ ✵✾✽❀✿ ✫❂❁ ✿ ✎ ✽❀✿ ✫❂❁✴❄❃✛❅❇❆✮❈❀❉❋❊❍●❇✵ ✘■✷✹✸ ✎ ↔✻✺❏✼ ✵❑✽❀✿ ✫❂❁ ✿ ✫❂❁ ,✄ õ ■ ✄ Ð ✴ ✧✟▲✑▼❖◆✂P ✽◆❇◗❂❘ ➟❒✓✏➾ ✄ ➛✐➞✄✙✈✆ õ✭➡✍➣ ✞
in the worst case,

or
✄ õ ■ ✄ Ð

in the average case, or
✄ õ ■þ✷✣❊✡●➁✆ Ð ➡ ✄ Ð ✮✧❙▲❚▼❯◆✂P ✽◆❇◗❱❘ ➟❋✓✏➾ ✄ ➛✐➞✄✙✈✆ õ✭➡➍➣ ✞✍✞

in the best case, respectively,❲ ✆❞➚✑➡ ✄ ➡➍➣ ✞
denotes the intersecting area of two circles of ra-

dius ➚ centered at two points on a sphere of radius ➣ that are

a distance of
✄ ✗Ï✧✑➚ apart, and

❲
✺✹❳ ø✢❨✂❩Ñ÷✹❬ ✆❞➚✑➡✍➣ ✞

denotes the

surface area of a circle of radius ➚ on a sphere of radius ➣ .

Figure 7 plots the average distance traveled by two mes-

sages sent from two random Pastry nodes with the same ran-

dom key, as a function of the distance between the two start-

ing nodes. Results are shown for the “worst case”, “average

case”, and “best case” analysis.
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Figure 7: Distance among source nodes routing messages with the

same key, versus the distance traversed until the two paths converge,

for a 60,000 node Pastry network, with l=32 and b=4. (From analy-

sis.)

6 Experimental results

In this section, we present experimental results quantifying

Pastry’s locality properties. All results were obtained using a

Pastry implementation running on top of a network simulator.

The Pastry parameters were set to ✤❐■ó❑ and the leafset size✒➁■✶ù✭✧ . Unless otherwise stated, results where obtained with

a simulated Pastry overlay network of 60,000 nodes.
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6.1 Network topologies

Three simulated network topologies were used in the exper-

iments. The “Sphere” topology corresponds to the topology

assumed in the analysis of Section 5. Nodes are placed at

uniformly random locations on the surface of a sphere with

radius 1000. The distance metric is based on the topological

distance between two nodes on the sphere’s surface. Results

produced with this topology model should correspond closely

to the analysis, and it was used primarily to validate the sim-

ulation environment. However, the sphere topology is not

realistic, because it assumes a uniform random distribution

of nodes on the Sphere’s surface, and its proximity space is

very regular and strictly satisfies the triangulation inequality.

A second topology was generated using the Georgia Tech

transit-stub network topology model [13]. The round-trip de-

lay (RTT) between two nodes, as provided by the topology

graph generator, is used as the proximity metric with this

topology. We use a topology with 5050 nodes in the core,

where a LAN with an average of 100 nodes is attached to each

core node. Out of the resulting 505,000 LAN nodes, 60,000

randomly chosen nodes form a Pastry overlay network. As

in the real Internet, the triangulation inequality does not hold

for RTTs among nodes in the topology model.

Finally, we used the Mercator topology and routing mod-

els [11]. The topology model contains 102,639 routers and

it was obtained from real measurements of the Internet using

the Mercator program [4]. The authors of [11] used real data

and some simple heuristics to assign an autonomous system

to each router. The resulting AS overlay has 2,662 nodes.

Routing is performed hierarchically as in the Internet. A

route follows the shortest path in the AS overlay between the

AS of the source and the AS of the destination. The routes

within each AS follow the shortest path to a router in the next

AS of the AS overlay path.

We built a Pastry overlay with 60,000 nodes on this topol-

ogy by picking a router for each node randomly and uni-

formly, and attaching the node directly to the router with a

LAN link. Since the topology is not annotated with delay in-

formation, the number of routing hops in the topology was

used as the proximity metric for Pastry. We count the LAN

hops when reporting the length of the Pastry routes. This is

conservative because the cost of these hops is usually negligi-

ble and Pastry’s overhead would be lower if we did not count

LAN hops.

6.2 Pastry routing hops and distance ratio

In the first experiment, 200,000 lookup messages are routed

using Pastry from randomly chosen nodes, using a random

key. Figure 8 shows the number of Pastry routing hops and

the distance ratio for the sphere topology. Distance ratio is

defined as the ratio of the distance traversed by a Pastry mes-

sage to the distance between its source and destination nodes,

measured in terms of the proximity metric. The distance ra-

tio can be interpreted as the penalty, expressed in terms of the

proximity metric, associated with routing a messages through

Pastry instead of sending the message directly in the Internet.

Four sets of results are shown. “Expected” represents the

results of the analysis in Section 5. “Normal routing table”

shows the corresponding experimental results with Pastry.

“Perfect routing table” shows results of experiments with a

version of Pastry that uses perfect routing table. That is, each

entry in the routing table is guaranteed to point to the nearest

node with the appropriate nodeId prefix. Finally, “No local-

ity” shows results with a version of Pastry where the locality

heuristics have been disabled.
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Figure 8: Number of routing hops and distance ratio, sphere

topology.

All experimental results correspond well with the results

of the analysis, thus validating the experimental apparatus.

As expected, the expected number of routing hops is slightly

below ✒✔✓✖✕ ☛❶❤ ❈ Ð ➡ Ð✭Ð✛Ð ■ ù✏❪ ❫✤❴ and the distance ratio is small.

The reported hop counts are virtually independent of the net-

work topology, therefore we present them only for the sphere

topology.

The distance ratio obtained with perfect routing tables is

only marginally better than that obtained with the real Pas-

try protocol. This confirms that the node join protocol pro-

duces routing tables of high quality, i.e., entries refer to nodes

that are nearly the closest among nodes with the appropriate

nodeId prefix. Finally, the distance ratio obtained with the lo-

cality heuristics disabled is significantly worse. This speaks

both to the importance of proximity based routing, and the

effectiveness of Pastry’s heuristics.

6.3 Routing distance

Figure 9 shows the distance messages travel in each consec-

utive routing hops. The results confirm the exponential in-

crease in the expected distance of consecutive hops up to the

fourth hops, as predicted by the analysis. Note that the fifth

hop is only taken by a tiny fraction (0.004%) of the messages.

Moreover, in the absence of the locality heuristics, the aver-
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Figure 9: Distance traversed per hop, sphere topology.

age distance traveled in each hop is constant and corresponds

to the average distance between nodes ( ✩➠❉❵❴✟✩➷■ ✆✲❛❝❜✦➚ ✞ ✫✛✧ ,
where r is the radius of the sphere).
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Figure 10: Distance traversed per hop, GATech topology.

Figures 10 and 11 show the same results for the GATech

and the Mercator topologies, respectively. Due to the non-

uniform distribution of nodes and the more complex proxim-

ity space in these topologies, the expected distance in each

consecutive routing step no longer increases exponentially,

but it still increases monotonically. Moreover, the node join

algorithm continues to produce routing tables that refer to

nearby nodes, as indicated by the modest difference in hop

distance to the perfect routing tables in the first three hops.

The proximity metric used with the Mercator topology

makes Pastry’s locality properties appear in an unfavorable

light. Since the number of nodes within ❞ IP routing hops

increases very rapidly with ❞ , there are very few “nearby”

Pastry nodes. Observe that the average distance traveled in

the first routing hop is almost half of the average distance

between nodes (i.e., it takes almost half the average distance

between nodes to reach about 16 other Pastry nodes). As

a result, Pastry messages traverse relatively long distances

in the first few hops, which leads to a relatively high dis-

tance ratio. Nevertheless, we chose to include these results

to demonstrate that Pastry’s locality properties are good even
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Figure 11: Distance traversed per hop, Mercator topology.

under adverse conditions.

Figures 12, 13 and 14 show raster plots of the distance

messages travel in Pastry, as a function of the distance be-

tween the source and destination nodes, for each of the three

topologies, respectively. Messages were sent from 20,000

randomly chosen source nodes with random keys in this ex-

periment. The mean distance ratio is shown in each graph as

a solid line.

The results show that the distribution of the distance ra-

tio is relatively tight around the mean. Not surprisingly, the

sphere topology yields the best results, due to its uniform dis-

tribution of nodes and the geometry of its proximity space.

However, the far more realistic GATech topology yields still

very good results, with a mean distance ratio of 1.59, a max-

imal distance ratio of about 8.5, and distribution that is fairly

tight around the mean. Even the least favorable Mercator

topology yields acceptable results, with a mean distance ra-

tion of 2.2 and a maximum of about 6.5.

0

1000

2000

3000

4000

5000

6000

7000

0 400 800 1200 1600 2000 2400 2800 3200

Distance between source and destination

D
is

ta
n

c
e

 t
ra

v
e

le
d

 b
y

 P
a

s
tr

y
 m

e
s

s
a

g
e

Mean = 1.37

Figure 12: Distance traversed versus distance between source

and destination, sphere topology.

6.4 Local route convergence

The next experiment evaluates the local route convergence

property of Pastry. In the experiment, 10 nodes were selected

randomly, and then for each of these nodes, 6,000 other nodes
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Figure 13: Distance traversed versus distance between source

and destination, GATech topology.
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Figure 14: Distance traversed versus distance between source

and destination, Mercator topology.

were chosen such that the topological distance between each

pair provides good coverage of the range of possible dis-

tances. Then, 100 random keys were chosen and messages

where routed via Pastry from each of the two nodes in a pair,

with a given key.

To evaluate how early the paths convergence, we use the

metric ❡❣❢✹❤❢✹❤✢✐❦❥❋❧♠♦♥ ❢✹❤❢✹❤♣✐q❥✮r♠❵s♣t❄✉ where, ✈★✇ is the distance traveled

from the node where the two paths converge to the destina-

tion node, and ①■②❢ and ①✂③❢ are the distances traveled from each

source node to the node where the paths converge. The met-

ric expresses the average fraction of the length of the paths

traveled by the two messages that was shared. Note that the

metric is zero when the paths converge in the destination.

Figures 15, 16 and 17 show the average of the convergence

metrics versus the distance between the two source nodes.

As expected, when the distance between the source nodes is

small, the paths are likely to converge quickly. This result

is important for applications that perform caching, or rely on

efficient multicast trees [8, 9].

Figure 18 shows the average distance traveled from the

source nodes to the node where the paths converge, as a func-

tion of the distance between the sources nodes. Note that the

convergence node could be the destination. We included this
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Figure 15: Convergence metric versus the distance between

the source nodes, sphere topology.
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Figure 16: Convergence metric versus distance between the

source nodes, GATech topology.

graph for the sphere topology, as this allows a direct compar-

ison with the results of the analysis (Figure 7). The results

match well.

6.5 Overhead of node join protocol

Next, we measure the overhead incurred by the node join pro-

tocol to maintain the proximity invariant in the routing tables.

We quantify this overhead in terms of the number of probes,

where each probe corresponds to the communication required

to measure the distance, according to the proximity metric,

among two nodes. Of course, in our simulated network, a

probe simply involves looking up the corresponding distance

according to the topology model. However, in a real network,

probing would likely require at least two message exchanges.

The number of probes is therefore a meaningful measure of

the overhead required to maintain the proximity invariant.

Figure 19 shows the maximum, mean and minimum num-

ber of probes performed by a node joining the Pastry net-

work. The results were generated for Pastry networks of

between 1,000 and 60,000 nodes. In each case, the probes

performed by the last ten nodes that joined the Pastry net-

work were recorded, which are the nodes likely to perform

the most probes given the size of the network at that stage.
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source nodes, Mercator topology.
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Figure 18: Distance to node where message paths converge,

versus the distance between the two source nodes, sphere

topology.

Figure 20 shows the corresponding number of probes per-

formed by nodes other than the joining node during a join.

It is assumed here that once a node has probed another

node, it stores the result and does not probe again. The num-

ber of nodes contacted during the joining of a new node is

❡ ✉❵④✕⑤⑦⑥✂s❋⑧✛⑨✂⑩ ③✢❶❋❷ ♥❙⑧ , where N is the number of Pastry nodes.

This follows from the expected number of nodes in the rout-

ing table, and the size of the leaf set. Although every node

that appears in the joining node’s routing table receives in-

formation about all the entries in the same row of the joining

node’s routing table, it is very likely that the receiving node

already knows many of these nodes, and thus their distance.

As a result, the number of probes performed per node is low

(on average less than 2). This means that the total number

of nodes probed is low, and the probing is distributed over a

large number of nodes. The results were virtually identical

for the GATech and the Mercator topologies.

6.6 Node failure

In the next experiment, we evaluate the node failure recov-

ery protocol (Section 4.1) and the routing table maintenance

(Section 4.2). Recall that leaf set repair is instantaneous,
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Figure 19: Number of probes performed by a newly joining

node for Pastry networks between 1,000 and 60,000 nodes,

sphere topology.
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Figure 20: Number of probes per-join performed by nodes

other than the joining node for Pastry networks between

1,000 and 60,000 nodes, sphere topology.

failed routing table entries are repaired lazily upon next use,

and a periodic routing table maintenance task runs periodi-

cally (every 20 mins) to exchange information with randomly

selected peers.

In the experiment, a 50,000 node Pastry overlay is cre-

ated based on the GATech topology, and 200,000 messages

from random sources with random keys are routed. Then,

20,000 randomly selected nodes are made to fail simultane-

ously, simulating conditions that might occur in the event of

a network partition. Prior to the next periodic routing ta-

ble maintenance, a new set of 200,000 random message are

routed. After another periodic routing table maintenance, an-

other set of 200,000 random messages are routed.

Figure 21 shows both the number of hops and the distance

ratio at various stages in this experiment. Shown are the av-

erage number of routing hops and the average distance ratio,

for 200,000 messages each before the failure, after the fail-

ure, after the first and after the second round of routing table

maintenance. The “no failure” result is included for compar-

ison and corresponds to a 30,000 node Pastry overlay with

no failures. Moreover, to isolate the effects of the routing ta-
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ble maintenance, we give results with and without the routing

table maintenance enabled.
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Figure 21: Routing hops and distance ratio for a 50,000 node

Pastry overlay when 20,000 nodes simultaneously fail, GAT-

ech topology.

During the first 200,000 message transmissions after the

massive node failure, the average number of hops and average

distance ratio increase only mildly (from 3.54 to 4.17 and 1.6

to 1.86, respectively). This demonstrates the robustness of

Pastry in the face of massive node failures. After each round,

the results improve and approach those before the failure after

two rounds.

With the routing table maintenance disabled, both the

number of hops and the distance ratio do not recover as

quickly. Consider that the routing table repair mechanism is

lazy and only repairs entries that are actually used. Moreover,

a repair generally involves an extra routing hop, because the

message is routed to a numerically closer node (third branch

of the routing algorithm). Each consecutive burst of 200,000

messages is likely to encounter different routing table entries

that have not yet been fixed (about 95,000 entries were re-

paired during each bursts). The periodic routing table main-

tenance, on the other hand, replaces failed entries that have

not yet been used as part of its routine. It is intuitive to see

why the distance ratio recovers more slowly without routing

table maintenance. The replacement entry entry provided by

the repair mechanisms is generally relatively close, but not

necessarily among the closest. The periodic routing table

maintenance performs probing and is likely to replace such

an entry with a better one.

We also measured the cost of the periodic routing table

maintenance, in terms of network probes to determine the

distance of nodes. On average, less than 20 nodes are being

probed each time a node performs routing table maintenance,

with a maximum of 82 probes. Since the routing table main-

tenance is performed every 20 minutes and the probes are

likely to target different nodes, this overhead is not signifi-

cant. However, when many large overlay networks perform

probing in the Internet, there can be a significant burden on

the network. For this reason, several project are currently

working on a generic measurement infrastructure for the In-

ternet. We expect that this work will provide a solution to this

problem in the long term.

6.7 Load balance

Next, we consider how maintaining the proximity invariant

in the routing tables affects load balance in the Pastry rout-

ing fabric. In the simple Pastry algorithm without the locality

heuristics, or in protocols like Chord that don’t consider net-

work proximity, the “indegree” of a node, i.e., the number of

routing table entries referring to a any given node, should be

balanced across all nodes. This is a desirable property, as it

tends to balance message forwarding load across all partici-

pating nodes in the overlay.

When routing tables entries are initialized to refer to the

nearest node with the appropriate prefix, this property may

be compromised, because the distribution of indegrees is now

influenced by the structure of the underlying physical net-

work topology. Thus, there is an inherent tradeoff between

proximity based routing and load balance in the routing fab-

ric. The purpose of the next experiment is to quantify the de-

gree of imbalance in indegrees of nodes, caused by the prox-

imity invariant.

Figure 22 shows the cumulative distribution of indegrees

for a 60,000 node Pastry overlay, based on the GATech topol-

ogy. As expected, the results show that the distribution of in-

degrees is not perfectly balanced. The results also show that

the imbalance is most significant at the top levels of the rout-

ing table (not shown in the graph), and that the distribution

has a thin tail. This suggests that it is appropriate to deal with

these potential hotspots reactively rather than proactively. If

one of the nodes with a high indegree becomes a hotspot,

which will depend on the workload, it can send backoff mes-

sages. The nodes that receive such a backoff message find an

alternative node for the same slot using the same technique as

if the node was faulty. Since the most significant imbalance

occurs at the top levels of the routing table, changing routing

table entries to point to an alternative node will not increase

the delay penalty significantly. There are many alternative

nodes that can fill out these slots and the distance traversed

in the first hops accounts for a small fraction of the total dis-

tance traversed. We conclude that imbalance in the routing

fabric as a result of the proximity invariant does not appear

to be a significant problem.

6.8 Discovering a nearby seed node

Finally, we evaluate the discovery algorithm used to find a

nearby Pastry node, presented in Section 4.3. In each of

1,000 trials, we chose a pair of nodes randomly among the

60,000 Pastry nodes. One node in the pair is considered the

joining node that wishes to locate a nearby Pastry node, the

other is treated as the seed Pastry node known to the joining

13



0

10000

20000

30000

40000

50000

60000

1 10 100 1000 10000

In-degree

C
u

m
a

la
ti

v
e

 n
u

m
b

e
r 

o
f 

n
o

d
e

s 1023

Figure 22: Indegree distribution of 60,000 Pastry nodes,

GATech topology.

Exact Average Average Number

closest Distance RT0 Distance Probes

Sphere 95.3% 11.0 37.1 157

GATech 83.7% 82.1 34.1 258

Mercator 32.1% 2.6 6.0 296

Table 1: Results for the closest node discovery algorithm.

node. Using this seed node, the node discovery algorithm was

used to discover a node near the joining node, according to

the proximity metric. Table 1 shows the results for the three

different topologies. The first column shows the number of

times the algorithm produced the closest existing node. The

second column shows the average distance, according to the

proximity metric, of the node produced by the algorithm, in

the cases where the nearest node was not found. For compar-

ison, the third column shows the average distance between a

node and its row zero routing table entries. The fourth col-

umn shows the number of probes performed per trial.

In the sphere topology, over 95% of the found nodes are the

closest. When the closest is not found, the average distance

to the found node is significantly less than the average dis-

tance to the entries in the first level of the routing table. More

interestingly, this is also true for the Mercator topology, even

though the number of times the closest node was found is low

with this topology. The GATech result is interesting, in that

the fraction of cases where the nearest node was found is very

high (almost 84%), but the average distance of the produces

node in the cases where the closest node was not found is

high. The reason is that the highly regular structure of this

topology causes the algorithm to sometimes get into a “local

minimum”, by getting trapped in a nearby network. Overall,

the algorithm for locating a nearby node is effective. Results

show that the algorithms allows newly joining nodes to effi-

ciently discover a nearby node in the existing Pastry overlay.

7 Conclusion

This paper presents an analysis and an experimental eval-

uation of the network locality properties of a p2p overlay

network, Pastry. Analysis shows that good network locality

properties can be achieved with very low overhead in syn-

thetic network topologies. A refined protocol for node join-

ing and node failure recovery significantly reduces the over-

head of maintaining a topology-aware overlay. Simulations

on two different Internet topology models then show that

these properties hold also in more realistic network topolo-

gies. We conclude that exploiting network proximity can be

accomplished effectively and with low overhead in a self-

organizing peer-to-peer overlay network.
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