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Abstract

We investigated the computational properties of natural

object hierarchy in the context of constellation object class

models, and its utility for object class recognition. We first

observed an interesting computational property of the ob-

ject hierarchy: comparing the recognition rate when using

models of objects at different levels, the higher more inclu-

sive levels (e.g., Closed-Frame Vehicles or Vehicles) exhibit

higher recall but lower precision when compared with the

class specific level (e.g., bus). These inherent differences

suggest that combining object classifiers from different hi-

erarchical levels into a single classifier may improve clas-

sification, as it appears like these models capture different

aspects of the object. We describe a method to combine

these classifiers, and analyze the conditions under which

improvement can be guaranteed. When given a small sam-

ple of a new object class, we describe a method to transfer

knowledge across the tree hierarchy, between related ob-

jects. Finally, we describe extensive experiments using ob-

ject hierarchies obtained from publicly available datasets,

and show that the combined classifiers significantly improve

recognition results.

1. Introduction

Human cognition relies on a hierarchal representation of

objects in the world (see examples in Fig. 1), in the pro-

cess of recognizing and referring to objects. How can we

use such hierarchical structure to improve object recogni-

tion and categorization? This question has been addressed

in a number of recent papers, mostly pursuing different di-

rections to exploit this hierarchy when confronted with new

categories (the small sample problem). The directions un-

der study included the transfer of knowledge from known

to new categories using Bayesian priors [11], sharing parts

between objects at different levels of the hierarchy and im-

proving generalization [13, 3], learning distance functions

using related classes [6, 9], and transferring features [10, 4]

or structure [5] from known classes to new ones. Often,

Figure 1. The four hierarchies used in our experiments. Categories at

different levels of the tree are labeled (and color-coded) as follows: ’L’

denotes the Leaf level, ’P’ denotes the Parent level, ’G’ denotes the Grand-

parent level, and ’R’ the level of all objects. Our largest hierarchy (lowest

diagram above) contains object classes from the CalTech256 database [8].

The facial hierarchy contains objects from [12].

when working on object class recognition, objects are repre-

sented by parts (or features) learned directly from example

images of each object category, where relations between the

parts (geometrical and possibly other) may sometimes be

captured by graphical models trained using the same data.

We address the question posed above from a somewhat

different point of view. We observe that the natural object

hierarchy offers at our disposal a rich family of classifiers,

for each category in each node of the hierarchy tree; the

similarity between these classifiers varies, possibly in some

relation to the distance between them on the object tree,

but they all share some common characteristics. For exam-

ple, if we build these classifiers with a discriminative algo-

rithm that uses the background images of the CalTech256
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database [8], then all the classifiers are trained to distin-

guish a certain isolated object from a background of clut-

ter. Such commonalities may permit the combination of

different classifiers to improve the recognition of specific

object classes. We expect this improvement to be more pro-

nounced when using related objects, and in particular ob-

jects from higher (inclusive) levels in the hierarchy tree.

The idea of combining classifiers has been extensively

studied in the machine learning community under different

frameworks, including committee machines, ensemble av-

erage, or boosting. In light of the so-called bias/variance

dilemma [7], the ensemble average of a number of classi-

fiers should improve generalization, as long as the classi-

fiers are both accurate and diverse. One common way to

obtain such a collection of classifiers is to train different

classifiers with different samples of the training data. But

note that the object recognition classifiers, trained to recog-

nize different objects at different levels of the object hier-

archy tree, may be viewed as just such - classifiers trained

on different resamples of the training data. Viewed this way,

we may expect to see improvement when combining any set

of classifiers, even those trained to recognize very distinct

objects. At the same time, for obvious reasons, we expect to

see larger improvement when combining classifiers trained

to recognize similar objects (those closer to each other on

the tree), as compared to very different ones.

Thus the main conceptual contribution of this paper is to

identify the object hierarchy as a source of classifier vari-

ability, which is induced by different and inherently mean-

ingful resampling of the training data. We then go ahead

and describe a framework to combine the classifiers lin-

early, using each classifier’s probabilistic output and the

corresponding LRT (Loglikelihood Ratio Test) value. This

approach is somewhat different, and possibly more power-

ful, than the traditional ensemble of classifiers, since each

object classifier builds a different representation of the data

based on the training subset that it sees. The approach dif-

fers from boosting and bagging in that the data resampling

is not based on some bootstrapping procedure, but on super-

vised information given to the system via the object hierar-

chy tree. Clearly our approach could be augmented with

boosting to further improve results.

The rest of this paper is organized as follows. First, we

review in Section 2 the object class constellation model used

to obtain each object classifier, and describe how we com-

bine these classifiers. We also discuss the theory underlying

our approach. In Section 4 we show that a number of in-

tuitive object hierarchies (described in Section 3), provided

by a human teacher, reveal consistent and sensible computa-

tional characteristics. Specifically, classifiers built for more

specific objects (such as ’bus’) - corresponding to the lowest

level in the object tree, are characterized by high precision

(or high specificity) and low recall (low sensitivity), while

classifiers built for more general classes of objects at the

next levels up the tree (such as ’vehicle’) show the opposite

- low specificity and high sensitivity. In general, the speci-

ficity of object classifiers decreases as we ascend the object

tree. Then, In Section 5, we describe how to use the hier-

archy to transfer knowledge between classes, as a way to

address the small sample problem. Finally, we investigate

in Section 6 combined classifiers as a general framework

for the construction of object recognizers. We show empiri-

cally that combined classifiers improve performance signif-

icantly (over all constituent classifiers), and that typically

three-level combinations perform better still than two-level

combinations.

2. Combining Object Models

Our object class model To learn object models, we use

the method described in [2], because its computational ef-

ficiency allows us to consider models (and images) with

many features. The algorithm learns a generative rela-

tional part-based object model, modeling appearance, lo-

cation and scale. Location and scale are relative to the un-

known object location and scale, as captured by a star-like

Bayesian network. The model’s parameters are discrimina-

tively optimized using an extended boosting process. This

model has been shown to achieve competitive recognition

results on standard benchmark datasets, approaching the

state-of-the-art in object class recognition. Thus we be-

lieve that the results and improvements we show are gen-

eral, and can be replicated with other, conceptually similar,

part-based models.

Based on this model and some simplifying assumptions,

the likelihood ratio test function is approximated (using the

MAP interpretation of the model) by

F (x) = max
C

P∑

k=1

max
u∈Q(x)

log p(u|C, θk) − ν (1)

with P parts, threshold ν, C denoting the object’s location

and scale, and Q(x) the set of extracted image features.

Classifier combination rule In our experiments we com-

bined 2, 3 and 4 object classifiers. For each classifier,

we used its LRT value from (1), obtaining a 2-, 3- or 4-

dimensional vector respectively. We then trained a Support

Vector Machine classifier with the same training data repre-

sented in this new vector space, using a linear kernel.

The bias/variance dilemma Let x ∈ X denote the im-

age, F (x) the LRT output of the classifier from (1), and

D(x) denote the binary random variable assigning 1 to class

images, and -1 to background images. It can be readily



shown that the mean-square error between classifier F and

the desired output D can be decomposed as follows:

E[(F (x) − E[D(x)])2] = B(F (x)) + V (F (x))

B(F (x)) = (E[F (x)] − E[D(x)])2

V (F (x)) = E[(F (x) − E[F (x)])2]

where B(F (x)) denotes the classifier’s bias, and V (F (x))
its variance. It can also be shown that when considering

an ensemble average of such classifiers, the bias of the new

classifier remains the same as the bias of F (x), but its vari-

ance is reduced. As a result, the mean square error of the

new classifier is also reduced.

The sensitivity/specificity tradeoff We now analyze the

case of two classifier combination, where one classifier has

high sensitivity and low specificity and the other has low

sensitivity and high specificity. Recall that this is the com-

putational property that distinguishes object classifiers from

lower levels of the object hierarchy tree and classifiers from

higher levels of the tree (see Section 4), and thus this anal-

ysis is revealing.

Given the function F (x) from (1), define the classifier

F ∗(x) = sign(F (x))1. Let F1(x), F2(x) denote two clas-

sification functions, and G(x) = F1(x)+F2(x)
2 its ensemble

average. Let G∗(x) = sign(G(x)) denote the correspond-

ing classifier, and let G∗∗(x) =
F∗

1
(x)+F∗

2
(x)

2 denote an-

other related classifier.

We compute the error probability PE of classifier G∗(x):

4PE(G∗(x)) = E[(G∗(x) − D(x))2] (2)

= E[((G∗(x) − G∗∗(x)) + (G∗∗(x) − D(x)))2]

= E[(G∗ − G∗∗)2] + E[( 1

2
(F ∗

1 − D))2]

+E[( 1

2
(F ∗

2 − D))2] + 2E[( 1

2
(F ∗

1 − D))( 1

2
(F ∗

2 − D))]

+2E[(G∗ − G∗∗)]{E[ 1

2
(F ∗

1 − D)] + E[ 1

2
(F ∗

2 − D)]}

Note that

E[( 1

2
(F ∗

i (x) − D(x)))2] = PE(F ∗

i )

and

E[ 1

2
(F ∗

i (x) − D(x))] = P [F ∗

i (x) = 1, D(x) = −1]

−P [F ∗

i (x) = −1, D(x) = 1] = ∆S(F ∗

i )

where ∆S(F ∗

i ) denotes the classifier’s preference to either

recall (sensitivity) or precision (a measure typically simi-

lar to specificity)2, i.e., its sensitivity minus its specificity.

1For convenience, we define the sign function as sign(F ) = 1 if F ≥

0, and sign(F ) = −1 if F < 0.
2Notation reminder: recall and sensitivity denote the rate of true pos-

itives, specificity denotes the rate of true negatives, and precision denotes

the fraction of true positives among all examples identified as positive.

Henceforth we shall call ∆S(F ∗

i ) the ’recall/precision pri-

macy’. Finally,

E[(G∗ − G∗∗)2] = P (F∗

1
=1,F∗

2
=−1) + P (F∗

1
=−1,F∗

2
=1)

≤ PE(F ∗

1 ) + PE(F ∗

2 )

(with equality only when F ∗

1 , F ∗

2 err on disjoint sets of ex-

amples).

Putting all the above together, we get

4PE(G∗) ≤2PE(F ∗

1 ) + 2PE(F ∗

2 ) + 2∆S(F ∗

1 )∆S(F ∗

2 )]

+2E[(G∗ − G∗∗)](∆S(F ∗

1 ) + ∆S(F ∗

2 ))

−2ρ( 1

2
(F ∗

1 − D), 1

2
(F ∗

2 − D)) (3)

where ρ(X, Y ) = E[XY ] − E[X]E[Y ] denotes the non-

normalized correlation coefficient of X, Y .

We can now state our main result:

Result: Assume that F ∗

1 , F ∗

2 are two classifiers with op-

posite recall/precision primacy, i.e. and w.l.o.g., ∆S(F ∗

1 ) ≥
0 and ∆S(F ∗

2 ) ≤ 0; thus ∆S(F ∗

1 ) · ∆S(F ∗

2 ) ≤ 0. As-

sume further that the magnitude of their primacy is similar,

i.e., |∆S(F ∗

1 )| ≈ |∆S(F ∗

2 )|, and that their correlation with

respect to the data is small, i.e., |ρ( 1

2
(F ∗

1 − D), ( 1

2
(F ∗

2 −
D)))| < |E[ 1

2
(F ∗

1 − D)]E[ 1

2
(F ∗

2 − D)]|. Then it follows

from (3) that

PE(G∗) ≤
PE(F ∗

1 ) + PE(F ∗

2 )

2

In other words, the error probability of the combined classi-

fier is smaller (usually significantly so) than the mean error

probability of the constituent classifiers.

In practice, we see that the combined error is typically

smaller than the minimal error of the constituent classifiers

with opposite recall/precision primacy, see Section 6.

3. Datasets and General Experimental Setup

Datasets

In our experiments, we used an extensive data set con-

taining various objects that can be found in natural scenes.

As much as possible, classes were taken from standard

benchmark datasets, with a few exceptions (to be detailed

shortly). We organized these objects into four natural hier-

archies. Examples from the object classes and background

images can be viewed in Fig. 2. A summary of the hierar-

chies is provided in Fig. 1.

In the rest of this paper we use the following notation to

refer to object classes at different levels in the hierarchy (see

Fig. 1): specific object classes, like ’Elk’ and ’Tricycle’, are

labeled ’L’ (for Leaf). More inclusive categories, like ’Ter-

restrial Animals’, are labeled ’P’ (for Parent). Categories at



Bus Tricycle Camel Grand Classic

Paino Guitar

D-Room Coffee KA Clutter Object

Chair Table Background Background

Figure 2. Examples taken from the object classes and background images,

used to train and test our different Category level models, see Fig. 1.

the next level up, like ’Animals’, are labeled ’G’ (for Grand-

parent). Finally, the category of all objects is denoted ’R’

(for Root).

For the discriminative learning procedure (see Section 2)

and in order to evaluate the recognition results, we used two

types of background. When using classes from the Cal-

Tech256 dataset [8] (the lowest hierarchy in Fig. 1), we used

their Clutter Background images as well. With the remain-

ing 3 smaller hierarchies and to achieve greater variability

(and additional challenges) in the conditions of our exper-

iments, we used our own Object Background dataset, con-

taining various images of objects different from the learnt

objects. This background was manually collected using

Google, PicSearch and online catalogues.

CalTech256 Object Hierarchy This hierarchy includes

pictures of various objects from the CalTech256 dataset [8],

see Fig. 1. We chose objects that can be naturally organized

into a sensible hierarchy: ’Animals’ - including ’Terres-

trial Animals’ and ’Winged Animals’, and ’Ground Trans-

portation’ - including ’Open-Frame Vehicles’ and ’Closed-

Frame Vehicles’. Models were learnt for objects from the

’Terrestrial Animals’ and ’Open-Frame Vehicles’ classes;

other objects were used for training ’G’ and ’R’ level mod-

els. The CalTech256 Clutter Background was used with

this dataset. We note that our category affiliations may not

be identical to those used in [8], in an attempt to empha-

size visual similarities over functional (thus ignoring, for

example, the motorized vs. un-motorized distinction); we

also used different names for the inclusive categories. The

images in the Ground-Transportation Category were flipped

to achieve uniform orientation (all vehicles pointing right-

wards).

Closed-frame VehicleII Hierarchy This hierarchy con-

tains 5 classes of common vehicles (more so than those in

the CalTech256 database), contrasted with pictures from the

’Object Background’. Pictures (for the vehicle classes and

background) were chosen manually from Google and Pic-

Search, showing vehicles at similar canonical orientation.

Faces Hierarchy This hierarchy contains pictures of 5 in-

dividuals taken from [12], with varying facial expressions.

Basic-Level Hierarchy This hierarchy was built to match

standard hierarchies favored in the cognitive science liter-

ature, representing canonical categorization levels (basic-

level, sub-ordinate, and super-ordinate). Pictures were ob-

tained from the CalTech101 subset of [8], or collected using

mainly online shopping catalogues.

General experimental setup

In general, we always tested recognition performance for

specific object categories from level ’L’ (leaf) of all the re-

spective hierarchies. Thus, for example, when comparing

three models such as ’Llama’, ’Animal’, and ’Terrestrial

Animal’, they were all tested on the recognition of Llama

pictures.

For each hierarchy, all models were trained with the

same background images but different object images. All

tests were done with the same background and test images,

and the same algorithm parameters. Each experiment was

repeated 60-100 times, with new random samples of train

and test images. Since the Equal Error Rate (denoted EER)

of the ROC is not well suited when the number of posi-

tive examples is much smaller than the number of negative

examples [1], we used the preferred EER of the Recall Pre-

cision Curve (RPC).

To compare performance, we report two measures: (i)

Precision and Recall of each classifier; (ii) EER of the RPC

curve for each classifier, computed by varying the threshold

of the optimal linear SVM classifier.

4. Object Hierarchy

We study the computational properties distinguishing

objects from different levels in the object hierarchy tree, re-

vealing opposite recall/precision primacy - high precision

for the lowest level (specific) models, and high recall for

higher level (inclusive) models. With sufficiently large sam-

ples per object, and given that we always test the recognition

of object classes from level ’L’, not surprisingly object mod-

els from level ’L’ show superior recognition performance.

In accordance, we see a decrease in performance as we use

models ascending the object hierarchy tree.

Experimental setup We tested the recognition of each

specific object from level ’L’ by 5 types of models learnt

using object categories from different levels in the hierar-

chy tree, see Table 1. To assure fair comparison, all models

saw the same train images of the ’L’ object they were tested

on; an illustrative example of this procedure is shown in

Table 1. In different experiments we varied the number of

train images per ’L’ object: 5, 10, 15, 20, 25 and 30. Three



hierarchies were used: CalTech256 Object, Closed-frame

VehicleII, and Faces.

Exp Category training set Example:

L P G R DB Llama

1 1 Llama

2 5 Llama, Camel, Dog, Elk

Elephant

3 5 Llama, Duck, Owl

Swan, Ostrich

4 5 Llama, Soda-can, Sock

Segway, Motorbike

5 5 Llama, Segway, Tricycle

Motorbike, Mountainbike

Table 1. This table shows the 5 different models learnt and evaluated on

the recognition of ’L’ level objects. ’DB’ refers to a ’G’-level category

from a Different Branch of the tree. Examples are shown for the Llama as

’L’ level object. In each different experiment, each ’L’ class provided the

same fixed amount of pictures to the training set (5, 10, 15, 20, 25 or 30.)

With all the 3 hierarchies, we used test data composed

of images of the target object and images of the relevant

background in equal proportion. None of the test images

was used for training. With the CalTech256 Object Hier-

archy, where the models are learnt using the Clutter Back-

ground, we also conducted additional experiments, using

for test data images from the target ’L’ object mixed with

images of a different ’L’ object.

4.1. Results

Recall and Precision are shown in Fig. 3, comparing

recognition when using ’L’ and ’P’ level models (left), and

’L’ and ’G’ level models (right). In the first comparison

(Leaf vs. Parent), only 4 representative examples from the

3 hierarchies are shown; very similar results were obtained

with all other objects. In the second comparison (Leaf

vs. Grandparent), all objects from the CalTech256 Object

Hierarchy are shown. These graphs clearly show the Re-

call/Precision Primacy effect, where ’L’ models show high

precision and low recall in recognition, while ’P’ and ’G’

models show high recall and low precision. This happens

for all objects, regardless of the number of training exam-

ples.

The Recall Precision Curve and its corresponding EER

are shown in Fig. 4 for two representative examples. Not

surprisingly, we see that with sufficient training examples

per ’L’ object (as for the Dog class), the ’L’ model performs

best, and performance deteriorates as we ascend the object

hierarchy. As the sample per class decreases, the advantage

of the ’L’ model over the ’P’ model decreases, eventually

the ’P’ model might outperform the ’L’ model. Once again,

similar phenomenon is observed for all objects.

Looking more closely at these results, we see that the

Figure 3. Recall and Precision of classifiers. Left column: four represen-

tative object classes, recognized with the ’L’, ’P’ and the combined ’L+P’

models. ’SU’ refers to the SUV class, ’Mr’ - Motorbike, ’Ep’ - Elephant,

’KA’- one of the female faces. The numbers indicate the size of the train

set (e.g., ’SU5’ refers to the SUV model trained with 5 SUV examples).

Right column: all learnt object classes from the CalTech256 Object Hier-

archy trained with 30 images per object class, and recognized with the ’L’,

’G’ and the combined ’L+G’ models.

recall/precision primacy difference occurs regardless of the

overall recognition rate. Specifically, for the Elephant with

10 training examples, we see from Fig. 4 that the ’P’ model

performs better than the ’L’ model, and vice versa for the

Elephant with 30 training examples. Still, Fig. 3 shows the

same Recall/Precision primacy in both cases.

5. Using hierarchy to transfer knowledge

We study here how to transfer information between re-

lated objects, located nearby in the object hierarchy tree, to

handle the problem of small sample or the appearance of

new objects.

Experimental setup We tested the recognition of each

specific object from level ’L’ by 7 types of models learnt

using object categories from different (more inclusive) lev-

els in the hierarchy tree, see Table 2, which also shows an

illustrative example of this procedure. The test background

set consisted of 75 background images, while the test object

set consisted of 30 images. Only the Basic-Level Hierarchy

was used.

5.1. Results

Fig. 5 shows the results. Clearly the ’P’ class model

transfers information most effectively (seen in the superi-



Figure 4. Performance of the different category level models. Top & mid-

dle: left column - the EER of the RPC, right column - full RPC curve where

the point of the original classifier is highlighted . Once again, ’L’ denotes

the Leaf category, ’P’ - Parent, ’G’ - GrandParent, ’R’ - Root, and ’DB’

- Different Branch. Top: performance of all models tested on the ’Dog’

class from the Caltech256 hierarchy. Middle: same for the ’Mountain-

Bike’ class from the Caltech256 hierarchy. Bottom: performance of the

’L’ and ’P models on the ’SUV’ class from the ’Closed-Frame VehiclesII’

hierarchy and on the Elephant class from the ’Terrestrial Animals’. EER

scores are shown as a function of the size of the training set - increasing

from 5 up to 25 for the SUV, sizes 10 and 30 for the Elephant. Note the

decrease in the performance superiority of the SUV ’P’ model over the ’L’

model till it is insignificant, as the train size increases. Note the opposite

superiority of ’L’ vs. ’P’ models when comparing the two Elephant class

models.

ority of Exp. 3 over Exp. 5-7), and improves performance

over the small sample case (seen in the superiority of Exp. 4

over Exp. 2).

5.2. Discussion

The results above show a clear hierarchy structure, where

models which are learnt from nearby objects (brothers)

in the object hierarchy tree can substantially improve the

recognition results of each other. It shows the possibility for

the success of a learning-to-learn scheme - where fewer ex-

amples of the goal object class are used in the learning pro-

cess, augmented by examples from different related classes.

Ex Object training set Example:

L P G DB BG Classic Guitar

1 35 Classic Guitar

2 1 Classic Guitar

3 30 Electric Guitar

4 1 30 Classic, Electric Guitar

5 30 Grand Piano

6 30 Living Room Chair

7 30 Background

Table 2. The models learnt in the different experiments on the transfer of

information between classes. ’L’ refers to the Leaf level, ’P’ to the Parent,

’G’ to the Grandparent, ’DB’ to a Different Branch of the tree, and ’BG’

to the background.

Figure 5. Transfer of knowledge between related classes. Description of

the different experiments is given in Table 2.

6. Using hierarchy to improve classification via

combination

We now ask whether the combination of two or more ob-

ject model classifiers, which are based on different category

levels, can improve the performance of the original classi-

fiers.

Experimental setup We used the same setup, same data,

and same learnt models as used in Section 4. We tested

different combinations by combining two or more models

from different category levels as described in Section 2. The

different combinations that we studied are summarized in

Table 3.

For comparison, we used a naı̈ve alternative method,

which learned directly an object model using the same set

of images as used by the combined model. Each image in

this set was initially weighted to reflect its true weight on

the combined model. For example, when combining two

models such as ’Llama’ and ’Terrestrial Animals’, we note

that the Llama images provided all the training set for the

Llama model, and only 20% of the training set for the ’Ter-



Exp Example:

Llama as Leaf Level

L+P ’Llama’ + ’Terrestrial Animals’

L+G ’Llama’ + ’Animals’

L+R ’Llama’ + ’Tree Root’

L+DB ’Llama’ + ’Open-Frame Vehicles’

P+G ’Terrestrial Animals’ + ’Animals’

L+P+G ’Llama’ + ’Terrestrial Animals’ + ’Animals’

L+P+G+R ’Llama’ + ’Terrestrial Animals’ + ’Animals’

+ ’Tree Root’

Table 3. The different combinations we studied: ’+’ denotes a combina-

tion of two models. ’L’ refers to the Leaf level, ’P’ - Parent, ’G’ - Grand-

parent, ’R’ - Root, and ’DB’ - Different Branch.

Figure 6. Comparison of combined and original classifiers. ’L’ denotes a

leaf model, ’P’ - parent model, ’G’ - grandparent model, ’L+P’ leaf/parent

combined model and ’L+G’ leaf/grandparent combined model. Top: ob-

ject models recognized with the ’L’, ’P’ and the combined ’L+P’ mod-

els. Bottom: object models recognized with the ’L’, ’G’ and the combined

’L+G’ models. Top-Left: CalTech256 Object Hierarchy, ’Open-frame Ve-

hicle’ and ’Terrestrial Animal’, with 30 training images per object class.

Specifically, ’Mr’ denotes the Motorbike class, ’Mn’ - Mountain-Bike ,

’Sg’ - Segway, ’To’ - Touring-Bike, ’Tri’ - Tricycle, ’Ca’ - Camel, ’Do’ -

Dog, ’Ep’ - Elephant, ’Ek’ - Elk, ’Lm’ - Llama. Top-Right: ’Closed-Frame

VehicleII’ Hierarchy with 15 training images per object class, and ’Faces’

Hierarchy with 5 training images per object class. Bottom: CalTech256

Object Hierarchies, with 30 training images per object class

restrial Animals’ model; thus in the training of the com-

bined model, the Llama training set received total weight of

0.6, while the remaining 4 classes received total weight of

0.4. The background train set remained unchanged.

6.1. Results

Fig. 6 shows the EER recognition results for all 20 ob-

jects, from the ’P’ classes of ’Terrestrial Animals’, ’Open-

Figure 7. All different combinations of classifiers. Left: the EER of the

RPC. Right: full RPC (Recall Precision Curves). Top: results when recog-

nizing the ’Dogs’ class. Bottom: results with the ’Mountain Bike’ class.

Frame Vehicles’, ’Closed-Frame VehiclesII’, and ’Faces’.

We show recognition results with 3 models - ’L’, ’P’, and

the combined ’L+P’, fixing the number of training examples

to 30, 30, 15, and 5 for each object in the 4 ’P’ classes re-

spectively. We also show recognition results with 3 models

- ’L’, ’G’, and the combined ’L+P’, with 30 training exam-

ples and two classes of the CalTech256 Object Hierarchy.

Clearly, almost always, the combined model performed

better than both constituent models. This happened for all

objects and all training conditions, regardless of which of

the constituent models was initially superior. The only ex-

ception occurred in the experiments with only 5 training

images per object class (small sample). Moreover, in all ex-

periments the combined model improved significantly the

weak measure (either Recall or Precision) of each of the

constituent models, as demonstrated in Fig. 3.

Fig. 7 shows results with the 7 different classifier combi-

nations, listed in Table 3, for two object classes. These are

representative results - similar results were obtained with all

other classes. Note that the two-level combinations that ob-

tain the highest performance are either the ’L+P’ or ’L+G’.

Not surprisingly, therefore, the best results are obtained

with the three- and four-level combinations (’L+P+G’ and

’L+P+G+R’ respectively).

Fig. 8 shows the EER of the RPC in the second test

condition, when test examples included an equal number

of images from the target object and another unrelated dis-

tractor object (instead of the standard background images).

Not surprisingly, when the ’L’ model was combined with

a model whose training set included pictures of the dis-

tractor object, the performance of the combined model was

reduced. However, interestingly enough, this reduction is

rather slight (see Fig. 8). This decrease remains slight even

when the ’L’ model is combined with a very poor classifier

(under these conditions), like the ’R’ or ’DB’ ones. Thus



Figure 8. The EER of the RPC when the test examples included images

of the target object - the ’Mountain Bikes’ - and another object (instead

of the standard background images). Top: models tested against ’Camel’.

Bottom: models tested against ’Tricycle’.

these results seem to suggest that the improvement obtained

by the combined classifier against the standard background

is not accomplished at the high cost of reducing the discrim-

inability of the new classifier against other, possibly related,

objects.

Finally, we note that in most cases, the comparison

against the naı̈ve model showed superior results for the

combined model, while in the other cases the advantage of

the naı̈ve model was not significant. On the other hand, the

training time of the naı̈ve model was substantially longer.

Moreover, this training procedure is not modular, while the

combination scheme we described is rather flexible.

7. Summary and Discussion

We analyzed the computational properties of constella-

tion object class models, built to describe object categories

at different levels of the object hierarchy tree. An interesting

observation emerged, when comparing specific object mod-

els, trained using images of objects corresponding to the

leaves of the hierarchy tree, with models built to describe

categories at higher levels of the object hierarchy tree. The

first (specific) models exhibit higher precision, while the

second (inclusive) models exhibit higher recall. We pro-

vided the theoretical analysis showing why this situation

should be favorable for the success of a classifier combined

from two such constituents (one with higher precision, the

other with higher recall), and demonstrated experimentally

that significant improvement is indeed achieved in all cases.

In our experiments the combined model performed better

than all constituents models in almost all cases. The im-

provement magnitude was larger when the constituent clas-

sifiers corresponded to nearby objects in the hierarchy tree,

showing that this improvement is not due simply to the

larger training set.

In all our experiments, we used a specific part-based

model that can be learned rather efficiently, and can there-

fore handle a relatively large number of parts (or features).

Although we did not perform experiments to this effect, we

believe that this improvement can be obtained with any ob-

ject class model, and that the phenomena we have observed

do not depend on the specific model we used.
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