
Exploiting Partial Information in Taxonomy
Construction

Rob Shearer, Ian Horrocks and Boris Motik

Oxford University Computing Laboratory, Oxford, UK

1 Introduction

One of the core services provided by description logic (DL) reasoners is classifica-
tion: determining the subsumption quasi-ordering over the concept names occurring in
a knowledge base (KB) and caching this information in the form of a directed acyclic
graph known as the concept hierarchy or taxonomy. For less expressive DLs, such as
members of the EL family, it may be possible to derive all the relevant subsumption
relationships in a single computation [Baader et al., 2005]. In general, however, it will
be necessary to “deduce” the subsumption relation by performing individual subsump-
tion tests between pairs of concept names. For n concept names this will, in the worst
case, require n2 tests, but for the tree-shaped hierarchies typically found in realistic
KBs much better results can be achieved using algorithms that construct the taxonomy
incrementally by traversing the partially-constructed taxonomy in order to find the right
place to insert each concept name.

This kind of algorithm suffers from two main difficulties. First, individual subsump-
tion tests can be computationally expensive—for some complex KBs, even state-of-the-
art reasoners may take a long time to perform a single test. Second, even when subsump-
tion tests themselves are very fast, a knowledge base containing a very large number of
concepts1 will obviously result in a very large taxonomy, and repeatedly traversing this
structure can be costly.

The first difficulty is usually addressed by using an optimized construction that tries
to minimize the number of subsumption tests performed in order to deduce the sub-
sumption relation. Most implemented systems use an “enhanced traversal” algorithm
due to Ellis [1991] and to Baader et al. [1994] which adds concepts to the taxonomy
one at a time using a two-phase top-down and bottom-up breadth-first search of the
partially-constructed taxonomy. The algorithm exploits the structure of the KB to iden-
tify “obvious” subsumers (so-called told-subsumers) of each concept, and uses this in-
formation in a heuristic that chooses the order in which concepts are added, the goal
being to construct the taxonomy top-down; it also exploits information from the top-
down search in order to prune the bottom-up search.2

The second difficulty can be addressed by optimizations that try to identify a subset
of the concepts for which complete information about the subsumption relation can be

1 For the sake of brevity we will from now on take concept to mean concept name unless other-
wise stated.

2 Other optimizations can be used to decrease the cost of individual subsumption tests (see, e.g.,
[Tsarkov et al., 2007]), but these techniques are largely orthogonal to classification optimiza-
tions.



deduced without performing any individual subsumption tests. This can be achieved,
e.g., by identifying completely-defined concepts [Tsarkov et al., 2007]—those for which
only structurally-obvious subsumption relationships hold. Having constructed part of
the taxonomy using such a technique, the remaining concepts can be added using the
standard enhanced traversal algorithm.

In this paper we present a new classification algorithm that generalizes and refines
the above techniques. Starting with a set of known subsumption relationships and a
(larger) set of possible subsumption relationships, it computes the subsumption quasi-
ordering by extending the known set and reducing the possible set until the two coin-
cide. An important advantage of our algorithm is that it is able to exploit partial infor-
mation about all concepts as well as complete information about some concepts. We
show how such known and possible relationships can be derived from data generated in
the course of (hyper) tableau-based subsumption and satisfiability testing; this approach
provides an efficient generalization of the told-subsumer and completely-defined opti-
mizations, both of which derive partial information from structural analysis of the KB.
When the known and possible sets do not coincide, our algorithm incrementally com-
putes additional (non-)subsumption relationships, and maximally exploits the resulting
information to refine the sets of known and possible subsumers; this can be seen as a
generalization of the search-pruning optimizations introduced by Baader et al..

We have used a prototypical implementation of our new algorithm to compare its
behavior with that of the classification algorithms implemented in state-of-the-art DL
systems. The comparison shows that our algorithm can dramatically reduce the num-
ber of subsumption tests performed when classifying a KB. Moreover, in contrast to
the completely-defined optimization, the behavior of our algorithm degrades gracefully
as the gap between the sets of initially-known and possible subsumption relationships
increases.

2 Preliminaries

Given a set of elements U = {a, b, c, ...}, let R be a binary relation over U , i.e., a
subset of U × U . We say that there is a path from a to b in R if there exist elements
c0, ..., cn ∈ U such that c0 = a, cn = b, and 〈ci, ci+1〉 ∈ R for all 0 ≤ i < n.
The transitive closure of R is the relation R+ such that 〈a, b〉 ∈ R+ iff there is a path
from a to b in R. The transitive-reflexive closure R∗ of R is the transitive closure of the
reflexive extension of R, i.e. R+ ∪ {〈a, a〉 | a ∈ U}.

A binary relation is a quasi-ordering if it is both reflexive and transitive. Clearly,
the subsumption relation on a set of concepts is a quasi-ordering. Note, however, that it
is not a partial-ordering, because it is not antisymmetric: C v D and D v C does not
imply that C = D.

The restriction of a relationR to a subsetD ofU is the relationR[D] = R ∩ (D ×D).
All restrictions of a reflexive relation are reflexive, and all restrictions of a transitive re-
lation are transitive; thus, a restriction of a quasi-ordering is itself a quasi-ordering.
Further, if R ⊆ S for relations R and S, then R[D] ⊆ S[D] for all D ⊆ U .



3 Deducing a Quasi-Ordering

Given a universe U , a quasi-ordering R over U and a finite set of elements D ⊆ U , we
consider the problem of computing the restrictionR[D] via tests of the form 〈a, b〉 ∈?R.
If U is the set of (arbitrary) concepts in a DL L, R is the subsumption relation over U
and D is the set of concept names occurring in an L-KB K, then computing R[D] is
equivalent to classifying K, and the relevant tests are subsumption tests.

We assume that we begin with partial information about R: we are provided with a
set K = {〈a0, b0〉, ..., 〈am, bm〉} where 〈ai, bi〉 ∈ R for 0 ≤ i ≤ m, and also with a
set Kneg = {〈c0, d0〉, ..., 〈cn, dn〉} where 〈ci, di〉 6∈ R for 0 ≤ i ≤ n. We call the set
K the known portion of R. In this paper we do not operate on the set Kneg directly;
our presentation instead refers to its complement U × U \Kneg , which we denote by
P and call the possible portion of R. It is thus the case that K ⊆ R ⊆ P . If no partial
information is available, then K = ∅ and P = U × U .

We can use the result of each test 〈a, b〉 ∈?R to further refine the bounds on R by
either adding 〈a, b〉 toK or removing it from P ; eventuallyK[D] = R[D] = P [D]. We
next show, however, that the bounds onR can sometimes be refined without performing
additional tests by combining information from K and P .

3.1 Maximizing Partial Information

The key to minimizing the number of explicit tests required to discover R[D] is maxi-
mizing the information gained from K and P . To do so, we exploit the knowledge that
R is a quasi-ordering. In this case, K ⊆ R obviously implies that K∗ ⊆ R, so we can
use K∗ to obtain a tighter lower bound on R. Less obvious is the fact that we can also
obtain a tighter upper bound on R by identifying pairs in P which are not consistent
with K and the transitivity of R.

For example, consider the case shown in Figure 1(a). If we know that b is a successor
of a in R (i.e., 〈a, b〉 ∈ K), then an element c can be a successor of b only if it is also
a successor of a (if 〈a, c〉 6∈ P then 〈b, c〉 6∈ R). Further, a can be a successor of an
element d only if b is also a successor of d.

Both of these examples are special cases of the structure shown in Figure 1(b): if u
is a successor of u′ and v′ is a successor of v, then an edge from u to v would form a
path all the way from u′ to v′, requiring v′ to be a successor of u′. Since R is reflexive
we can choose u′ = u or v = v′ to see that v can be a successor of u only if v is a
successor of u′ and v′ is also a successor of u. We use this to formalize a subset bP cK
of P , and show that bP cK is the tightest possible upper bound on R.

Definition 1 Let K and P denote two relations such that K∗ ⊆ P . We define the
reduction bP cK of P due to K as follows:

bP cK = P ∩ {〈u, v〉 | ∀u′, v′ : {〈u′, u〉, 〈v, v′〉} ⊆ K∗ → 〈u′, v′〉 ∈ P}

Lemma 1 Let K and P denote two relations such that K∗ ⊆ P . (i) For all quasi-
orders R such that K ⊆ R ⊆ P , it is the case that R ⊆ bP cK . (ii) Let S be a proper
subrelation of bP cK . Then there exists a quasi-ordering R such that K ⊆ R ⊆ P and
S ⊂ R; i.e. bP cK is minimal.



a

b

c

d

only if

only if

(a) Simple cases

u′

u v

v′

only if

(b) General case

Fig. 1: Eliminating possible edges: if the solid edges are known to be in quasi-ordering
R, then the gray edges can be in R only if the indicated dashed edges are in R.

Proof. (i) Let 〈u, v〉 be a tuple in R. If there exist no elements u′ and v′ such that
{〈u′, u〉, 〈v, v′〉} ⊆ K∗ then clearly 〈u, v〉 ∈ bP cK . If such elements u′ and v′ do exist,
then {〈u′, u〉, 〈v, v′〉} ⊆ R since K∗ ⊆ R. Because R is transitive and 〈u, v〉 ∈ R, it
is the case that 〈u′, v′〉 ∈ R, thus 〈u′, v′〉 ∈ P . Consequently, 〈u, v〉 ∈ bP cK , so
R ⊆ bP cK .

(ii) Choose elements a and b such that 〈a, b〉 ∈ bP cK but 〈a, b〉 6∈ S. Let R be the
transitive-reflexive closure of the relation K ∪ {〈a, b〉}. Clearly K ⊆ R and S ⊂ R.
Let 〈u, v〉 be any tuple in R. There are three cases:

1. 〈u, v〉 = 〈a, b〉. Then 〈u, v〉 ∈ P since 〈a, b〉 ∈ bP cK and bP cK ∈ P .
2. 〈u, v〉 ∈ K+. Then 〈u, v〉 ∈ P since K∗ ⊆ P .
3. 〈u, a〉 ∈ K∗ and 〈b, v〉 ∈ K+. Then 〈u, v〉 ∈ P since 〈a, b〉 ∈ bP cK .

For any tuple 〈u, v〉 ∈ R, it is the case that 〈u, v〉 ∈ P , thus K ⊆ R ⊆ P and S ⊂ R.
ut

Note that bP cK itself is not necessarily transitive: given three elements a, b, and c
and the relation P = {〈a, a〉, 〈b, b〉, 〈c, c〉, 〈a, b〉, 〈b, c〉}, it is the case that bP c∅ = P .
Of course no transitive subrelation R of P contains both 〈a, b〉 and 〈b, c〉.

3.2 Taxonomy Construction and Searching

As described in Section 3.1, given relations K and P such that K ⊆ R ⊆ P for some
unknown quasi-ordering R, a tuple 〈a, b〉 is an element of R if 〈a, b〉 ∈ K∗, and 〈a, b〉
is not an element of R if 〈a, b〉 6∈ bP cK ; the only “unknown” elements of R are the
tuples in bP cK \ K∗. Further, each test of the form 〈a, b〉 ∈?R provides additional
information which can be used to extend K or restrict P . This suggests the following
simple procedure for deducing the restriction R[D] of a quasi-ordering R to domain D:

COMPUTE-ORDERING(K,P,D)
1 while K∗[D] 6= bP cK [D]
2 do choose some a, b ∈ D such that 〈a, b〉 ∈ bP cK \K∗
3 if 〈a, b〉 ∈?R then add 〈a, b〉 to K
4 else remove 〈a, b〉 from P
5 return K[D]



In the case where no information about the quasi-ordering R[D] is available other
than K and P , the above procedure performs well. In many cases, however, some gen-
eral properties about R[D] can be assumed. In the case where R represents subsump-
tion relationships between concepts, for example, R[D] is typically much smaller than
D×D (i.e., relatively few pairs of concepts are in a subsumption relationship). In such
cases, it is beneficial to use heuristics that exploit the (assumed) properties of R[D]
when choosing a and b in line 2 of the above procedure.

We summarize below a variant of COMPUTE-ORDERING which performs well
when the restriction to be computed is treelike in structure and little information about
the ordering is available in advance. This procedure is designed to perform individual
tests in an order similar to the enhanced traversal algorithm; however, it minimizes the
number of individual tests performed by maximally exploiting partial information.

The algorithm chooses an element of a ∈ D for which complete information about
R[D] is not yet known. It identifies the subset V ↑ ⊆ D of elements b for which
〈a, b〉 ∈ R, and the subset V ↓ ⊆ D of elements b for which 〈b, a〉 ∈ R, updating
K and P accordingly. In order to compute these sets efficiently, we make use of the
subroutines SUCCESSORS and PREDECESSORS, which perform the actual tests. The
SUCCESSORS and PREDECESSORS functions are derived from the enhanced traversal
algorithm: they perform a breadth-first search of the transitive reduction K� of the
known subsumptions K—the smallest relation whose transitive closure is K∗. In order
to avoid the cost of repeated traversals of K�, we restrict the searches to, respectively,
the possible successors and predecessors of a. We omit the details of these search rou-
tines for the sake of brevity.

COMPUTE-ORDERING-2(K,P,D)
1 while K∗[D] 6= bP cK [D]
2 do choose some a, x ∈ D s.t. 〈a, x〉 ∈ bP cK \K∗ or 〈x, a〉 ∈ bP cK \K∗
3 let B be the possible successors of a, i.e. D ∩ {b | 〈a, b〉 ∈ bP cK \K∗}
4 if B 6= ∅ then V ↑ ← SUCCESSORS(a,K�[B])
5 add 〈a, b〉 to K for every element b of V ↑

6 remove 〈a, b〉 from P for every element b of B \ V ↑
7 let B be the possible predecessors of a, i.e. D ∩ {b | 〈b, a〉 ∈ bP cK \K∗}
8 if B 6= ∅ then V ↓ ← PREDECESSORS(a,K�[B])
9 add 〈b, a〉 to K for every element b of V ↓

10 remove 〈b, a〉 from P for every element b of B \ V ↓
11 return K[D]

4 Extracting Subsumption Information from Models

We next turn our attention to the specific case of identifying all subsumption relation-
ships between the concepts of a knowledge base K. Instead of treating a reasoning
service as an oracle that answers boolean queries of the form “is A subsumed by B
w.r.t. K?” (which we will write K |=? AvB), we consider how information generated
internally by common reasoning algorithms can be exploited to discover information
about the subsumption quasi-ordering.



4.1 Identifying Non-Subsumptions

Most modern reasoners for Description Logics, including HermiT, Pellet, and FaCT++,
transpose subsumption queries into satisfiability problems; in particular, to determine
if K |= Av⊥, these reasoners test whether the concept A is satisfiable w.r.t. K. They
do this by trying to construct (an abstraction of) a Tarski-style model of K in which
the extension of A is nonempty. We begin by providing an abbreviated formalization of
such models (see Baader et al. [2003] for more details):

Definition 2 Given sets of concept names NC , role names NR and individual names
NI , an interpretation I = (∆I , ·I) consists of a nonempty set ∆I and an interpretation
function ·I which maps every element of NC to a subset of ∆I , every element of NR to
a subset of ∆I ×∆I and every element of NI to an element of ∆I . An interpretation
I is a model of an axiom A v B if AI ⊆ BI (similar definitions hold for other kinds
of statement); it is a model of a KB K if it models every statement in K.

Let A and B be concepts. A model I of K is a witness for the satisfiability of A
w.r.t. K if AI is nonempty; it is a witness for the nonsubsumption A 6v B w.r.t. K if
AI 6⊆ BI , i.e., if there exists i ∈ ∆I s.t. i ∈ AI and i 6∈ BI .

The algorithms in question typically represent the model being constructed as an
ABox, i.e., as a set of assertions of the form x :C and 〈x, y〉 :R for individuals x, y,
(possibly complex) concepts C and roles R [Baader et al., 2003]. An ABox including
the assertion x :C represents a model in which xI ∈ CI . To construct a witness for
the satisfiability of a concept A, the ABox is initialised with an assertion x :A and the
construction proceeds in a goal-directed manner by adding further assertions only as
necessary in order to ensure that the ABox represents a model of K.

Assuming that the construction is successful, the resulting ABox/model provides a
rich source of information. For example, for any concept B such that x :(¬B) is in the
ABox, it is the case that xI 6∈ BI ; thus the model is a witness for the non-subsumption
K |= A 6vB for all such concepts B. In many cases, the non-presence of x :B in the
ABox is sufficient to conclude the relevant non-subsumption; in fact, when using a
hypertableau algorithm, this is always the case.

The goal-directed nature of the ABox construction means that the models con-
structed are typically quite small. As a result, these models tend to be extremely rich
in non-subsumption information: in a typical witness for the satisfiability of A, i.e.,
a model I of K with i ∈ AI , there will be relatively few other concepts B such
that i ∈ BI , and thus I will identify the vast majority of concepts in K as non-
subsumers of A. For this reason, it is almost always more efficient to record the set
PA = {B | i ∈ AI and i ∈ BI for some i} of “possible subsumers” of A.

4.2 Identifying Subsumptions

While single models allow us to detect non-subsumptions, additional information about
the space of possible models is required in order to identify subsumption relationships.
Sound and complete tableau reasoning algorithms systematically explore the space of
all “canonical” models (typically tree- or forest-shaped models), on the basis that, if
any model exists, then one of these canonical models also exists. In particular, when



K includes disjunctions or other sources of nondeterminism, it may be necessary to
choose between several possible ways of modelling such statements, and to backtrack
and try other possible choices if the construction fails.

For such algorithms, it is usually easy to show that, if the ABox was initialized with
x :A, the construction did not involve any nondeterministic choices, and the resulting
ABox includes the assertion x :B, then it is the case that in any model I of K, i ∈ AI
implies i ∈ BI , i.e., thatK |= AvB. Moreover, as we have already seen in Section 4.1,
such an ABox is (at least in the hypertableau case) a witness to the non-subsumption
K |= A 6vB for all concepts B such that x :B is not in the ABox. Thus, when testing
the satisfiability of a conceptA, it may be possible to derive complete information about
the subsumers of A.

The hypertableau-based HermiT reasoner is designed to reduce nondeterminism,
and completely avoids it when dealing with Horn-SHIQ KBs; for such KBs it is thus
able to derive complete information about the subsumers of a concept A using a single
satisfiability test. This allows HermiT to derive all relevant subsumption relationships
in a Horn-SHIQ knowledge base as a side effect of performing satisfiability tests on
each of the named concepts [Motik et al., 2007].

This idea can be extended so as to also derive useful information from nonde-
terministic constructions by exploiting the dependency labeling typically used to en-
able “dependency-directed backtracking”—an optimization which reduces the effects
of nondeterminism in reasoning [Horrocks, 1997]. In the resulting ABoxes, each as-
sertion is labelled with the set of choice points on which it depends. An empty label
indicates that the relevant assertion will always be present in the ABox, regardless of
any choices made during the construction process. Thus, if the ABox is initialized with
x :A, an empty-labelled assertion x :B in the resulting ABox can be treated in the same
way as if the construction had been completely deterministic. Performing a satisfiability
test on A may, therefore, allow some subsumers of A to be identified even when non-
deterministic choices are made during reasoning. In practice, almost all of the actual
subsumers of A can usually be identified in this way.

It is easy to see that this idea is closely related to, and largely generalizes, the told
subsumer and completely-defined optimizations. For a completely defined concept A,
a satisfiability test on A will be deterministic (and typically rather trivial), and so will
provide complete information about the subsumers of A. Similarly, if B is a told sub-
sumer of A, then an ABox initialized with x :A will always produce x :B, and almost
always deterministically (it is theoretically possible that x :B will be added first due to
some nondeterministic axiom in the KB).

5 Related Work

Computing a quasi- (or partial-) ordering for a set of n incomparable elements clearly
requires n2 individual tests—naı̈vely comparing all pairs is thus “optimal” by the sim-
plest standard. The literature therefore focuses on a slightly more sophisticated metric
which considers both the number of elements in the ordering as well as the width of the
ordering—the maximum size of a set of mutually incomparable elements. Faigle and
Turán [1985] have shown that the number of comparisons needed to deduce an ordering
of n elements with width w is at most O(wn log(n/w)) and Daskalakis et al. provide



an algorithm which approaches this bound by executing O(n(w+ log n)) comparisons
[2007]. Taxonomies, however, tend to resemble trees in structure, and the width of a
subsumption ordering of n elements is generally close to n/2. Further, the algorithms
of Faigle and Turán as well as Daskalakis et al. rely on data structures which require
O(nw) storage space even in the best case, and thus exhibit quadratic performance
when constructing a taxonomy.

A taxonomy-construction strategy which performs well for tree-like relations is de-
scribed by Ellis [1991]: elements are inserted into the taxonomy one at a time by finding,
for each element, its subsumers using a breadth-first search of all previously-inserted
elements top-down, and then its subsumees using a breadth-first search bottom-up.
Baader et al. further refine this technique to avoid redundant subsumption tests dur-
ing each search phase: during the top search phrase, a test K |=? AvB is performed
only if K |= AvC for all subsumers C of B [1994]. This can be seen as a special case
of our bP cK pruning of possible subsumers, with the restriction that it only applies
to subsumption tests performed in a prescribed order. These traversal algorithms can
be further optimized using the clustering technique proposed by Haarslev and Möller
[2001], which avoids the inefficiency of traversing flat taxonomies by introducing new
concepts to enforce a maximum branching factor for all taxonomy nodes. This opti-
mization can also be incorporated into our approach.

Baader et al. also describe techniques for identifying subsumers without the need
for multiple subsumption tests by analyzing the syntax of concept definitions in a KB:
if a KB contains an axiom of the form A v B u C where A and B are atomic con-
cepts, then B is a “told subsumer” of A, as are all the told subsumers of B. The various
simplification and absorption techniques described by Horrocks [1997] increase the
applicability of such analysis. Haarslev et al. further extend this analysis to detect non-
subsumption: an axiom of the formA v ¬BuC implies thatA andB are disjoint, thus
neither concept subsumes the other (unless both are unsatisfiable) [2001]. Tsarkov et al.
describe a technique for precisely determining the subsumption relationships between
“completely defined concepts”—concepts whose definitions contain only conjunctions
of other completely defined concepts [2007]. All these optimizations can be seen as spe-
cial cases of (non-)subsumption information being derived from (possibly incomplete)
calculi as described in Section 4.

6 Empirical Evaluation

In order to determine if our new algorithm is likely to improve classification perfor-
mance in practice we conducted two experiments using large KBs derived from life-
science applications.

First, we compared the performance of our new algorithm with the enhanced traver-
sal algorithm. In order to analyze how much improvement is due to the information
extracted directly from models and how much is due to our new approach to taxonomy
construction, we extend the enhanced traversal algorithm such that it first performs a
satisfiability test on every concept and constructs a cache of information derived from
the resulting models using the techniques described in Section 4. During the subsequent
taxonomy construction, subsumption tests are performed only if the relevant subsump-
tion relationship cannot be determined by consulting the cache. Note that this caching



Table 1: Algorithm Comparison
Relation Size ET New

Known Possible Tests Seconds Tests Seconds
335 476 335 476 0 190 0 17
335 476 2 244 050 152 362 246 24 796 22
335 476 4 147 689 303 045 257 49 308 31
335 476 6 046 804 455 054 292 73 945 33
335 476 7 940 847 606 205 305 98 613 34
251 880 335 476 80 878 634 19 773 28
251 880 2 244 050 439 002 740 50 143 32
251 880 4 147 689 794 513 809 79 038 40
251 880 6 046 804 1 151 134 836 107 416 46
251 880 7 940 847 1 506 752 919 136 190 50
168 052 335 476 143 913 1079 62 153 62
168 052 2 244 050 673 768 1267 146 823 91
168 052 4 147 689 1 201 904 1320 226 670 93
168 052 6 046 804 1 729 553 1414 304 784 98
168 052 7 940 847 - - 381 330 130

technique strictly subsumes the “told subsumer” and “primitive component” optimiza-
tions described by Baader et al..

We implemented both algorithms within the HermiT reasoner [Motik et al., 2007]
and performed testing using the well-known US National Cancer Institute thesaurus
(NCI), a large but simple KB containing 27,653 classes. The models constructed by
HermiT during satisfiability testing of these classes provide complete information about
the subsumption ordering for this KB, so both algorithms are able to classify it with-
out performing any additional tests. To study how the algorithms compare when less-
than-complete information is available, we limited the amount of information extracted
from HermiT’s models, reducing the number of known subsumptions and increasing
the number of possible subsumptions to varying degrees. The number of full subsump-
tion tests required for classification as well as the running times for each algorithm are
given in Table 1.

As the table shows, our simple implementation of the enhanced traversal algorithm
(ET) is substantially slower than the new algorithm even when complete information is
available; this is the result of the “insertion sort” behavior of ET described in Section 5.

When complete information is not available, our algorithm consistently reduces the
number of subsumption tests needed to fully classify the knowledge base by an order
of magnitude.

In a second experiment, we compared the implementation of our new algorithm in
HermiT with the widely-used Description Logic classifiers FaCT++ and Pellet. Both of
these systems are quite mature and implement a wide range of optimizations to both
taxonomy construction and subsumption reasoning; we were thus able to compare our
new algorithm with existing state-of-the-art implementations.



Table 2: System Comparison
FaCT++ Pellet HermiT

KB Classes Tests Seconds Tests Seconds Tests Seconds
NCI 27 653 4 506 097 2.3 - 16.1 27 653 22

NCI∃ 27 654 8 658 610 4.4 - 16.7 27 654 21.0
NCIt 27 655 8 687 327 5.1 10 659 876 95.4 48 389 37.0
NCI∃∀ 27 656 18 198 060 473.9 10 746 921 1098.3 27 656 20.8

GO 19 529 26 322 937 8.6 - 6.0 19 529 9.2
GO∃ 19 530 26 904 495 12.7 - 6.9 19 530 9.7
GOt 19 531 26 926 653 15.5 21 280 377 170.0 32 614 15.2

GALEN 2749 313 627 11.1 131 125 8.4 2749 3.3
GALEN∃ 2750 327 756 473.5 170 244 9.7 2750 3.5
GALENt 2751 329 394 450.5 175 859 9.8 4657 40.5

In this case, in addition to NCI we used the Gene Ontology (GO), and the well-
known GALEN medical terminology KB. Both NCI and GO have been specifically con-
structed to fall within the language fragment which existing reasoners are able to clas-
sify quickly; GALEN, in contrast, necessitates substantially more difficult subsumption
testing but contains an order of magnitude fewer concepts. In order to estimate how
the different algorithms would behave with more expressive KBs, for each KB K we
constructed two extensions: K∃ which adds the single axiom > v ∃R.A for a fresh
role name R and fresh concept A, and Kt which adds the axiom > v A t B for fresh
conceptsA andB. For NCI we constructed a further extension NCI∃∀ by adding the ax-
ioms > v ∃R.A and C v ∀R.B for each of the 17 most general concepts C occurring
in the KB. Each of these extensions increases the complexity of individual subsumption
tests and reduces the effectiveness of optimizations that try to avoid performing some
or all of the tests that would otherwise be needed during classification.

The number of classes in each KB as well as the number of tests performed (includ-
ing all concept satisfiability and subsumption tests) and the time taken by each reasoner
are shown in Table 2. The Pellet system makes use of a special-purpose reasoning pro-
cedure for KBs that fall within the EL fragment [Baader et al., 2005]; for such KBs we
do not, therefore, list the number of subsumption tests performed by Pellet.

As Table 2 shows, HermiT’s new classification algorithm dramatically reduces the
number of subsumption tests performed when classifying these KBs. This does not,
however, always result in faster performance. This is largely due to optimizations used
by the other reasoners which greatly reduce the cost of subsumption testing for sim-
ple KBs: the overwhelming majority of subsumption tests performed by FaCT++, for
example, can be answered using the pseudo-model merging technique described by
Horrocks [1997].

Most of these optimizations could equally well be used in HermiT, but in the ex-
isting implementation each subsumption test performed by HermiT is far more costly.
The number of subsumption tests performed by HermiT is, however, far smaller than for
the other reasoners, and its performance also degrades far more gracefully as the com-
plexity of a knowledge base increases: adding a single GCI or disjunction to a KB can



prevent the application of special-case optimizations in Pellet and FaCT++, greatly in-
creasing the cost of subsumption testing and, due to the very large number of tests being
performed, vastly increasing the time required for classification. The NCI∃∀ knowledge
base, for example, eliminates any benefit from the pseudo-model merging optimization
(since no two pseudo-models can be trivially merged), and this causes the classification
time to increase by roughly two orders of magnitude for both Pellet and FaCT++. In
contrast, HermiT’s classification time is unaffected. The relatively poor performance of
HermiT on the GALENt KB is due to the fact that the underlying satisfiability testing
procedure is particularly costly when there are large numbers of branching points, even
if no backtracking is actually required.

7 Discussion and Future Work

We have described a new algorithm for taxonomy construction that effectively exploits
partial information derived from structural analysis and/or reasoning procedures, and
we have shown that, when compared to the widely-used enhanced traversal algorithm,
it can dramatically reduce both the number of individual comparisons and the total
processing time for realistic data sets. For simple KBs, our prototype implementa-
tion makes the HermiT reasoner competitive with state-of-the-art reasoners which im-
plement special-purpose optimizations of the subsumption testing procedure for such
cases; on more expressive KBs our new system substantially outperforms existing sys-
tems.

Future work will include extending HermiT to incorporate some of the subsumption
testing optimizations used in other systems, in particular reducing the overhead cost
of individual subsumption tests. We believe that this will greatly improve HermiT’s
performance on simple KBs; as we have seen, it is already highly competitive on more
complex KBs.

The procedure we describe in Section 4 extracts subsumption relationships involv-
ing only the concept used to initialize a model. This is because the dependency labeling
implemented in tableau reasoners is currently designed only to allow the application
of dependency-directed backtracking, and discards a great deal of dependency infor-
mation. We intend to explore more sophisticated dependency labeling strategies which
allow the extraction of additional subsumption information.

We also want to investigate meaningful complexity bounds for taxonomy searching
and construction tasks. As we have seen, a completely naı̈ve search routine is optimal if
only the number of elements is considered. We will attempt to obtain tighter bounds for
certain classes of relation: relations with linear taxonomy graphs, for example, can be
deduced with only n log n comparisons. Bounds based on more sophisticated metrics
may also be possible; e.g., bounds based on the total number of subsumption relations
instead of the number of elements.

Finally, preliminary testing demonstrates that when significant partial information
is available, the COMPUTE-ORDERING-2 procedure, based on the breadth-first search
of the enhanced traversal algorithm, offers little advantage over COMPUTE-ORDERING,
which performs tests in an arbitrary order; in many cases the performance of COMPUTE-
ORDERING-2 is actually worse. Investigating other heuristics for choosing the order in
which to perform tests will also be part of our future work.



References

1994. Franz Baader, Bernhard Hollunder, Bernhard Nebel, Hans jurgen Pro Tlich, and Enrico
Franconi. An empirical analysis of optimization techniques for terminological representation
systems or: Making KRIS get a move on. Applied Artificial Intelligence. Special Issue on
Knowledge Base Management, 4:270–281, 1994.

2003. Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider, editors. The Description Logic Handbook: Theory, Implementation and Applica-
tions. Cambridge University Press, 2003.

2005. F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proc. of the 19th Int. Joint
Conf. on Artificial Intelligence (IJCAI 2005), pages 364–369, 2005.

2007. Constantinos Daskalakis, Richard M. Karp, Elchanan Mossel, Samantha Riesenfeld, and
Elad Verbin. Sorting and selection in posets. CoRR, abs/0707.1532, 2007.

1991. Gerard Ellis. Compiled hierarchical retrieval. In In 6th Annual Conceptual Graphs Work-
shop, pages 285–310, 1991.

1985. Ulrich Faigle and György Turán. Sorting and recognition problems for ordered sets. In
Kurt Mehlhorn, editor, STACS, volume 182 of Lecture Notes in Computer Science, pages 109–
118. Springer, 1985.

2001. V. Haarslev and R. Möller. High performance reasoning with very large knowledge bases:
A practical case study. In B. Nebel, editor, Proceedings of Seventeenth International JointŁ
Conference on Artificial Intelligence, IJCAI-01, pages 161–166, 2001.

2001. Volker Haarslev, Ralf Möller, and Anni-Yasmin Turhan. Exploiting pseudo models for
tbox and abox reasoning in expressive description logics. In IJCAR, pages 61–75, 2001.

1997. Ian Horrocks. Optimising Tableaux Decision Procedures for Description Logics. PhD
thesis, University of Manchester, 1997.

2007. Boris Motik, Rob Shearer, and Ian Horrocks. Optimized Reasoning in Description Logics
using Hypertableaux. In Frank Pfenning, editor, Proc. of the 21st Conference on Automated
Deduction (CADE-21), volume 4603 of LNAI, pages 67–83, Bremen, Germany, July 17–20
2007. Springer.

2007. Dmitry Tsarkov, Ian Horrocks, and Peter F. Patel-Schneider. Optimising terminological
reasoning for expressive description logics. J. of Automated Reasoning, 2007.


	Rob Shearer, Ian Horrocks and Boris Motik

