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ABSTRACT
The performance of current automatic speech recognition 
(ASR) systems radically deteriorates when the input speech is 
corrupted by various kinds of noise sources. Quite a few of 
techniques have been proposed to improve ASR robustness in 
the past several years. Histogram equalization (HEQ) is one of 
the most efficient techniques that have been used to 
compensate the nonlinear distortion. In this paper, we 
explored the use of the data fitting scheme to efficiently 
approximate the inverse of the cumulative density function of 
training speech for HEQ, in contrast to the conventional table-
lookup or quantile based approaches. Moreover, the temporal 
average operation was also performed on the feature vector 
components to alleviate the influence of sharp peaks and 
valleys that were caused by non-stationary noises. Finally, we 
also investigated the possibility of combining our approaches 
with other feature discrimination and decorrelation methods. 
All experiments were carried out on the Aurora-2 database and 
task. Encouraging results were initially demonstrated. 
Index Terms: histogram equalization, data fitting, temporal 
average, robustness 

1. INTRODUCTION
Varying environmental effects, such as ambient noises, noises 
caused by the recording equipments and transmission 
channels etc., often lead to severe mismatch between the 
acoustic conditions for the training and test speech data. Such 
mismatch no doubt will make the performance of an 
automatic speech recognition (ASR) system degrade 
dramatically. Substantial efforts have been made and also a 
number of techniques have been presented to cope with this 
issue and improve the ASR performance in the last two 
decades. In general, these techniques fall into three main 
categories: (1) enhancement, (2) normalization and (3) 
adaptation, while these approaches can be conducted either in 
the feature domain or in the model domain [1].  

Quite several well-known normalization methods for the 
feature domain have been developed. For example, cepstral 
mean normalization (CMN) is a simple but effective way to 
remove the time-invariant distortions introduced by the 
transmission channel. A nature extension of CMN is cepstral 
mean and variance normalization (CMVN) [2] that 
normalizes not only the features’ means but also their 
variances. Although these two methods do provide better 
ASR performance, they to some extent have their inherent 
limitation. They can only deal with linear distortions and 
cannot adequately compensate the non-linear environmental 
effects due to their linear property. On the other hand, in 
order to compensate the non-linear environmental effects, the 
histogram equalization (HEQ) approaches have been 
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posed and extensively studied in the recent past, which 
e also been shown their superiority over the linear 
pensation approaches, such as CMN and CMVN. A nice 

ture of the HEQ approaches is that they not only attempt to 
tch speech feature means or variances, but also completely 
tch the feature distribution of the training and test data 
ng transformation functions that are estimated based on the 

ulative density functions (CDFs) of the training and test 
a. Even though HEQ has been shown its superiority for 
ture compensation, however, most of the current 
roaches still have room for improvement. For example, 
 table-lookup HEQ [3] typically needs a set of large tables 
t in memory (the need of huge disk storage consumption) 

 performing the feature transformation, while the quantile 
ed HEQ [5, 6] instead needs on-line exhaustive search or 
imization of the coefficients of the transformation function 
e need of high computation cost) before the transformation 
ctually performed. 
 Based on the these observations, in this paper, we 
lored the use of the data fitting scheme to efficiently 
roximate the inverse of the CDF of training speech for 
Q, in contrast to the conventional table-lookup or quantile 
ed approaches. Moreover, the temporal average operation 
s also performed on the feature vector components to 
viate the influence of sharp peaks and valleys that were 
sed by non-stationary noises. Finally, we also investigated 
 possibility of combining our approaches with other 
ture discrimination and decorrelation methods. 
 The rest of this paper is organized as follows. Section 2 
cribes the basic concept of HEQ and the quantile based 
togram equalization (QHEQ), which is an extension of 
Q. Section 3 elucidates our feature normalization 
roaches. Then, the experimental settings and a series of 
R experiments conducted are presented in Section 4. 
ally, conclusions are drawn in Section 5. 

2. HISTOGRAM EQUALIZATION  

. Basic Formulation 

Q has its roots in the assumption that the transformed 
ech feature distributions of the test (or noisy) data should 
identical to that of the training (or reference) data, for 
ich the speech features can be estimated either from the 
l-frequency filter bank outputs [4, 7] or from the cepstral 
fficients [8, 9]. Under this assumption, the aim of HEQ is 
find a transformation function that can convert the 

tribution of each feature vector component of the test 
ech into a predefined target distribution which corresponds
that of the training speech. The formulation is described as 
lows [9, 10]. Let x  be a feature vector component which 
lows the distribution )(xpTest . A transformation function 
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xF  converts x  to y  that follows a reference distribution 
)( ypTrain  according to the following expression: 

,)()()(
1

1
dy

ydFyFp
dy
dxxpyp TestTestTrain  (1) 

where )(1 yF is the inverse function of )(xF . Moreover, the 
relationship between the cumulative probability density 
functions (CDFs) respectively associated with the test and 
training speech is governed by: 
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where )( xC Test  and )( yC Train are respectively the CDFs 
for the test and training speech data; y is the corresponding 
output of the transformation function xF ; and the 
transformation function xF  has the following property: 

,)()( 1 xCCxF TestTrain  (3) 

where 1
TrainC  is the inverse function of TrainC . Due to a finite 

number of speech features being considered, the cumulative 
histograms are used instead of the cumulative probability 
density functions for practical implementation. The 
cumulative histogram of each feature vector component of all 
training data is computed and divided into a set of equally-
probable bins, where the mean iy  of each bin i  is taken as 
one of the representative outputs of the transformation 
function )( xF . That is, each feature vector component x  of 
the test utterance is replaced by the mean of a specific bin in 
the cumulative histogram of the training speech data that 
corresponds to the same bin position of x  in the histogram of 
the test data. However, normalization of the test data alone 
results in only moderate gain of performance improvement. It 
is usually necessary to normalize the training data in the same 
way to avoid mismatch and to achieve good performance [11]. 
Moreover, because a set of cumulative histograms of all 
speech feature vector dimensions of the training data have to 
be kept in memory for the table-lookup of restored feature 
values, such an approach needs huge disk storage consumption 
and the table-lookup is also time-consuming. 

2.2. Quantile-Based Histogram Equalization (QHEQ)  

In [5, 12], a parametric type of histogram normalization, 
which was referred to as the quantile based histogram (QHEQ) 
approach, has been proposed. QHEQ attempts to calibrate the 
CDF of each feature vector component of the test data to that 
of the training data in a quantile-corrective manner instead of 
full-match of the cumulative histogram as that done by the 
table-lookup approach described above. A transformation 
function )( xH  is applied to each feature vector component 
x to make the CDF of the equalized feature match that 
observed in training: 

,1)(
KK

K Q
x

Q
xQxH  (4) 

where K  is the total number of quantiles; KQ  is the K -th
quantile of a specific feature vector dimension calculated from 
the utterance; and  and  are transformation coefficients. 
For each feature vector dimension,  and  are optimized 
using the following equation: 
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,minarg
1
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2

,
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k

train
kk QQH  (5) 

ere train
kQ is the k -th quantile of the same feature vector 

ension calculated from the training speech. It allows the 
imation of the transformation function performing merely 
the basis of a single test utterance (or eventually, a short 
rance), without using additional adaptation data [5]. 

wever, in order to find the optimal transformation 
fficients for each feature vector dimension, an exhaustive 

d search is required, which in fact is time-consuming.

3. IMPROVED APPROACHES

. Polynomial-Fit Histogram Equalization (PHEQ) 

st squares regression is a mathematical optimization 
thod which, when given a series of data points ),( ii vu  with 

N,,2, , attempts to find a function iuG  whose output iv~  is 
sely approximates iv . That is, it minimizes the sum of the 
ares error (or the squares of the ordinate differences) 
ween the points )~,( ii vu  and their corresponding points ),( ii vu
the data. The function iuG  to be estimated can be either 
ar or nonlinear in its coefficients. For example, if iuG  is a 
ar M -order polynomial function: 

,2
210

M
iMiii uauauaau (6)

ere Maaa ,,, 10  are the coefficients, then its corresponding 
ares error 2E can be defined as:

.
1

2

0
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i

M

m

m
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this paper, we presented a polynomial-fit histogram 
alization approaches (PHEQ) that uses least squares 
ression to fit the inverse function of the CDF of the training 
ech. For each speech feature vector dimension of the 
ning data, given the pair of the CDF iTrain yC  of the vector 
ponent iy  and iy  itself, the linear polynomial function 

iTrain y  with output iy~  can be expressed as: 

,~
0

m
iTrain

M

m
miiTrain yCayy    (8)

ere the coefficients ma can be estimated by minimizing the 
ares error 2E expressed in the following equation: 

,
2

1 0

N

i

m
iTrain

M

m
mi yCay  (9) 

ere N  is the total number of training speech feature vectors. 
ring speech recognition, for each feature vector dimension, 
 vector components of the test utterance are simply sorted 
an ascending order to obtain the corresponding cumulative 
togram value of each vector component, which can be then 
en as an input to the corresponding inverse function G  to 
ain the restored component value.
A quantile-based CDF matching (QCM) approach using 

st squares regression for CDF matching between the 
ning and test speech data was also proposed recently [6], in 
ich a set of pairs of the means iTrainiTest ,, ,  in the 
responding bins i  of the histograms of each feature vector 
ension of the test and training data were used for 

imating a linear polynomial function that transforms iTest,

iTrain, . Once the transformation function of each feature 
tor dimension is obtained, it can be used to transform the 
responding feature vector component in the test data. 
wever, the corresponding experimental results reported in 



[6] were not conducted on the standard evaluation task, so 
they can not be directly adopted here for comparison.  

3.2. Temporal Average (TA) 

Though the above HEQ approaches are very effective in 
matching the global feature statistics of the test (or noisy) 
speech to that of the training (or reference) speech, the 
undesired sharp peaks or valleys of the feature vector 
component sequence of a noisy speech utterance that are 
caused by some non-stationary noise can not be restored well 
to that of the original clean speech utterance, as illustrated in 
the upper and middle parts of Figure 1. Therefore, in this 
paper, a finite impulse response moving average filtering 
operation was performed on the time trajectory of the PHEO 
restored feature vector component sequence, and each feature 
vector component is then replaced by its corresponding 
temporal average (TA): 

L

Ll
lty

L
ty ~

12
1  (10) 

where ty~  is the PHEQ restored feature vector component at 
time t  and ty  is the corresponding one after the TA 
operation; and the span order L is empirically set to 2. The 
feature vector component sequence after the TA operation is 
shown in the lower part of Figure 1. Notice that the TA 
operation also can be implemented with an exponential 
moving average filter [13]. 

4. EXPERIMENTAL RESULTS 

4.1. Experimental Setup 

The speech recognition experiments were conducted under 
various noise conditions using the Aurora-2 database and task 
[14]. The Aurora-2 database is a subset of the TI-DIGITS, 
which contains a set of connected digit utterances spoken in 
English; while the task consists of the recognition of the 
connected digit utterances interfered with various noise 
sources at different signal-to-noise ratios (SNRs), in which 
Sets A and B are artificially contaminated with eight different 
types of real world noises (e.g., the subway noise, street noise, 
etc.) in a wide range of SNRs (-5dB, 0dB, 5dB, 10dB, 15dB, 
20dB and Clean) and the channel distortion is additionally 
included in Set C. For the baseline system, the training and 
recognition tests used the HTK recognition toolkit [15], which 
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lowed the setup originally defined for the ETSI AURORA 
luations.

More specifically, each digit was modeled as a left-to-
ht continuous density HMM with 16 states and three 
gonal Gaussian mixtures per state. Two additional silence 
dels were defined. One had three states with six Gaussian 
tures per state for modeling the silence at the beginning 
 at the end of each utterance. The other one had one state 
h 6 Gaussian mixtures for modeling the interword short 
se. In the front-end speech analysis, a 39-dimensional 
ture vector was extracted at each time frame, including 12 
l frequency cepstral coefficients (MFCCs), the logarithm of 
 energy and the corresponding delta and acceleration 
fficients. The frame length is 25 ms and the corresponding 

me shift is 10 ms [14]. 

. Experiments on PHEQ and TA 

 first evaluated the performance of the PHEQ and TA 
roaches. For PHEQ, either all feature vector components 

the means of the histogram quantile bins of the training data 
re used for estimating the linear polynomial function (i.e., 
 inverse function of the CDF). Different numbers of 
togram quantile bins (1000, 100 and 10) and different 
ers of the polynomial regression were extensively 
estigated. The results are shown in Table 1, which are 
raged for three sets (Sets A, B and C) and SNR levels 
ween 0 dB and 20 dB. As can be seen, for both clean- and 
lti-condition training, the word error rate (WER) is slightly 
roved when the order of the polynomial regression 
omes higher. However, the improvements seem to saturate 
 most cases when the order is set to seven. Moreover, the 
imation of the linear polynomial function using 100 
togram quantile bins yields the best performance for most 
es. Therefore, in the following experiments, the linear 
ynomial function was set with a regression order of seven 
 was estimated using 100 histogram quantile bins. On the 
er hand, the TA operation was additionally performed on 
 resultant feature vector component of the PHEQ approach 
 the results are respectively shown in the ninth rows 
EQ-TA) of Tables 2 and 3 for clean- and multi-condition 

ning. As the results indicate, TA is very effective for clean-
dition training, and it provides an average WER reduction 
about 4.0%. While, for multi-condition training, the WER 
uction provided by TA is almost negligible, which is 
inly because that multi-condition training to some extent 
 model very well the sharp peaks or valleys of the feature 

Polynomial Order raining
ondition 3 5 7 9 

All Training Data 22.39 21.54 21.08 21.30

1000 Quantiles 21.80 21.46 21.13 21.16
100 Quantiles 22.68 21.31 20.75 20.55

Clean-
ondition
raining

10 Quantiles 23.42 22.20 22.54 23.42
All Training Data 10.80 10.34 10.43 10.54

1000 Quantiles 10.48 10.32 10.40 10.45
100 Quantiles 10.73 10.45 10.36 10.45

Multi-
ondition
raining

10 Quantiles 11.65 10.61 10.79 11.58
ble 1: Average word error rates (WERs) with respect to 
ferent numbers of training data and different polynomial 
ers which were used in the estimation of the 

nsformation function of PHEQ. 



vector component sequence that was caused by various noise 
sources at different SNRs. 

4.3. Comparison with Other Compensation Approaches 

Then, we compared our presented feature normalization 
approaches with the conventional approaches. The WER 
results for the baseline MFCC system and the ETSI standard 
system, as well as CMVN, HEQ and QHEQ, for clean- and 
multi-condition training are respectively shown in Tables 2 
and 3.  Notice that the results for the ETSI system, HEQ and 
QHEQ were directly adopted from [14], [4] and [5], 
respectively. As compared with the results of PHEQ shown in 
the eighth rows of Tables 2 and 3 (which were obtained with 
the best setting indicated by Table 1), it can be found that 
PHEQ provides significant performance boosts for the 
baseline MFCC system, and it is also better than CMVN, and 
competitive to HEQ and QHEQ. If TA is further applied after 
the PHEQ operation (PHEQ-TA), the recognition results of 
PHEQ-TA will be considerably better than that of HEQ and 
QHEQ for clean-condition training.

4.4. Integration with the Discriminative Feature 
Transformation and Feature Normalization Approaches 

Finally, we integrated our proposed feature normalization 
approach, i.e. PHEQ-TA, with the conventional discriminative 
feature transformation and feature decorrelation approaches, 
in which HLDA (Heteroscedastic Linear Discriminant 
Analysis) was used for discriminative feature transformation 
and MLLT (Maximum Likelihood Linear Transform) for 
feature decorrelation. HLDA and MLLT were conducted 
directly on the Mel-frequency filter bank outputs before 
PHEQ-TA. For HLDA and MLLT, the states of each HMM 
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[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10

[11

[12

[13

[14

[15

Clean-Condition Training 
Method Set A Set B Set C Average

MFCC (Baseline) 41.06 41.52 40.03 41.04
ETSI 38.69 44.25 28.76 38.93

CMVN 27.73 24.60 27.17 26.37
HEQ 19.72 18.57 19.24 19.16

QHEQ 23.53 21.90 22.36 22.64
PHEQ 20.98 20.17 21.43 20.75

PHEQ-TA 16.83 15.10 20.02 16.78
HLDA-MLLT+CMVN 21.63 21.37 21.59 21.52

HLDA-MLLT+PHEQ-TA 15.98 15.96 15.91 15.96
Table 2: Comparison between the WER results of the baseline 
and various approaches under clean-condition training. 

Multi-Condition Training 
Method Set A Set B Set C Average

MFCC (Baseline) 14.78 16.01 19.33 16.18
ETSI 10.64 10.76 12.85 11.13

CMVN 12.70 12.45 14.52 12.98
HEQ 10.02 10.41 10.34 10.24

QHEQ 10.20 10.75 10.76 10.53
PHEQ    9.91    9.41  13.14 10.36

PHEQ-TA  9.41  9.53   11.21    9.82
HLDA-MLLT+CMVN  9.49   9.51 10.40   9.68

HLDA-MLLT+PHEQ-TA 9.06  8.87  8.55  8.88
Table 3: Comparison between the WER results of the baseline 
and various approaches under multi-condition training. 
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re taken as the unit for class assignment. The front-end 
cessing was conducted with HLDA and then with MLLT. 
e feature vectors from every nine successive frames were 
iced together to form the supervectors for the construction 
the HLDA transformation matrix. The dimension of the 
ultant vectors was set to 39. As can be seen from the last 
s of Tables 2 and 3, HLDA-MLLT can provide significant 

formance gains when combined with PHEQ-TA. It is also 
 same situation when HLDA-MLLT is combined with 
VN, as shown in the tenth rows of Tables 2 and 3. 

5. CONCLUSIONS
this paper, we have investigated the use of data fitting 
emes to efficiently approximate the inverse of the CDF of 
 training speech for HEQ, in contrast to the conventional 
le-lookup or quantile based approaches. Moreover, the 
poral average operation also has been performed on the 

ture vector components to alleviate the influence of sharp 
ks and valleys that were caused by non-stationary noises. 
ally, the presented feature normalization approaches have 
n integrated with the conventional feature discrimination 
 decorrelation approaches. Significant performance gains 
e been initially demonstrated. 
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