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ABSTRACT

Wireless body area networks promise to revolutionize health monitoring by al-

lowing the transition from centralized health care services to ubiquitous and pervasive

health monitoring in every-day life. One of the major challenges in the design of such

systems is the energy consumption as wireless body area networks are battery-powered.

Recent results in telecardiology show that compressed sensing (CS) is a promising tool

to lower energy consumption in wireless body area networks for electrocardiogram

(ECG) monitoring. However, the performance of current CS-based algorithms, in

terms of compression rate and reconstruction quality of the ECG, still falls behind

the performance attained by state-of-the-art wavelet-based algorithms. This is mainly

because current CS-based algorithms exploit only the sparsity of the signal, ignor-

ing important signal structure information that can be known a priori and lead to

enhanced reconstruction results.

This dissertation presents methods to exploit prior knowledge of the ECG in

order to improve the reconstruction quality and to increase the compression rates

offered by current CS-based algorithms. First, we describe an algorithm that exploits

prior information about the wavelet dependencies across scales and the high fraction

of common support of the wavelet coefficients of consecutive ECG segments.

One of the main challenges in the reconstruction of ECG signals via CS-based

algorithms is the recovery of the small-magnitude wavelet coefficients. This dissertation

also presents a weighted ℓ1 minimization algorithm, based on a maximum a posteriori

(MAP) approach, that exploits the exponentially decaying magnitude of the detail

coefficients across scales and the accumulation of signal energy in the approximation

subband.

xiii



In real scenarios, ECG recordings are often corrupted by artifacts. This disser-

tation also presents a robust reconstruction method for ECG signals in the presence of

electromyographic noise. To achieve this objective, robust statistics are used to develop

appropriate methods addressing the problem of electromyographic noise, which can be

modeled as impulsive noise.

Most prior work in CS ECG has employed analytical sparsifying transforms

such as wavelets. Another contribution of this dissertation is to adaptively learn a

sparsifying transform (overcomplete dictionary) that exploits the multi-scale sparse

representation of ECG signals. By calculating subdictionaries at different data scales,

we are able to exploit the correlation within each wavelet subband and, subsequently,

represent the data in a more efficient manner.

Generic sparsity models that are not tied to a specified structure are also ex-

plored in this dissertation. More precisely, restricted Boltzmann machines and deep

belief networks are employed to model the sparsity pattern of ECG signals with the

goal of exploiting higher-order statistical dependencies between sparse coefficients.

The effectiveness of the proposed algorithms is demonstrated on real ECG sig-

nals from the MIT-BIH Arrhythmia Database. Results show that the proposed al-

gorithms require fewer measurements and offer superior reconstruction accuracy than

existing CS-based methods for ECG compression.

xiv



Chapter 1

INTRODUCTION

1.1 Motivation and Background

A wireless body area network (WBAN) is a radio frequency-based wireless net-

working technology that connects small nodes with sensor capabilities in, on, or around

a human body. These biosensors are capable of measuring physiological signals, such

as heart rate, blood pressure, electrocardiogram, blood oxygen level, respiration rate,

etc. The obtained measurements are transmitted to a central processing system, which

transfers the information to a medical network where health-care professionals can as-

sess the users health condition [16]. The main motivation behind the advancement of

WBANs is the need to provide pervasive, long-term and continuous healthcare moni-

toring without restricting the user from their daily life activities.

The energy consumption is a primary design constraint in WBANs given that

they are battery powered [16]. The WBAN energy consumption can be divided into

three main processes: sensing, wireless communication and data processing. However,

the process that consumes most of the energy is the wireless transmission of data [16],

which indicates that some data reduction operation should be performed at the sen-

sor node to reduce the energy cost of the network. In addition, data reduction can

supplement the bandwidth constraints of the WBAN when many sensor nodes are

required to measure different physiological signals. Mamaghanian et al. [56] recently

proposed to use CS to lower energy consumption and complexity in WBAN-enabled

ECG monitors. Compressed sensing is an emerging field that exploits the structure of

signals to acquire data at a rate proportional to the information content rather than

the frequency content, therefore allowing sub-Nyquist sampling [11,13,27]. When this

1



sampling strategy is introduced in WBANs, it gives rise to sensor nodes that efficiently

acquire a small group of random linear measurements that are wirelessly transmitted to

remote terminals. Indeed, sensor nodes can achieve high compression of ECG data with

low computational cost when using a sparse binary sensing matrix [56]. Mamaghanian

et al. [56] performed system-level comparisons between a CS-based algorithm and a

state-of-the-art wavelet transform-based algorithm for ECG compression. Both algo-

rithms were implemented on the Shimmer embedded platform and the comparison was

based on signal reconstruction metrics, embedded memory usage, energy consumption,

and CPU execution time.

In another publication [21], Chen et al. presented a hardware implementation

of a CS encoder, fabricated in a 90 nm CMOS. Their architecture was presented in

the context of medical sensors and is the first fully integrated circuit realization of a

CS encoder. They employed a pseudo-random Bernoulli sampling matrix in order to

simplify matrix multiplication operations and to lower complexity and data storage.

A compression factor of 10X was attained without the need for any general purpose

memory or processing at the sensor node. An important contribution of their work

is a comparison between implementations of a CS encoder in the analog and digital

domains. Analog domain implementations are usually preferred in CS scenarios since

they lead to sampling frequency reduction of ADC converters. However, ADC perfor-

mance is not a limitation in WBAN, and therefore the criteria for best performance is

determined by the power consumption of the implementation. Chen et al. presented a

power/performance analysis of analog and digital implementations of the proposed CS

encoder and found that the digital implementation is more energy-efficient and suit-

able for WBANs. Similarly, Dixon et al. [26] presented a digital-domain CS encoder

architecture with applications to ECG and electroencephalogram signals. Bernoulli

matrices with different structures, such as Toeplitz, circulant and triangular, were con-

sidered in this work. The study indicates that the use of Bernoulli circulant matrices

leads to compression factors of 16X and offers superior reconstruction performance

for ECG signals and reduction in hardware complexity and energy consumption. The

2



reconstruction algorithms employed in their work were orthogonal matching pursuit,

compressive sampling matching pursuit, and normalized iterative hard thresholding.

In a recent work [93], Zhang et al. proposed the application of block sparse

Bayesian learning (BSBL) for the reconstruction of fetal ECG signals from compressed

random measurements. The BSBL algorithm is a CS algorithm that exploits the spatial

and structural information of block-sparse signals and achieves accurate reconstruction

regardless of the non-sparsity of fetal ECG signals. Their study focuses on the recon-

struction algorithm instead of the CS encoder hardware implementation. One of the

advantages of the algorithm is that it exploits correlation within each block. The BSBL

algorithm is based on a maximum a posteriori estimation that adopts a multi-variate

Gaussian prior for the block sparse signal. The experimental results of their work

suggest that incorporating signal structure information can significantly boost the per-

formance of CS reconstruction algorithms. The successful application of CS to fetal

ECG motivates the development of new algorithms that exploit structural information

of adult ECG signals. The energy efficiency property associated to CS architectures is

useful for wireless body area networks-enabled ECG systems.

Most state-of-the-art algorithms for ECG compression are based on wavelet

transforms because of their straightforward implementation and desirable time and

frequency localization properties [41, 44, 54]. The main works in this area are charac-

terized by hierarchical tree structures, such as embedded zero-tree wavelet (EZW) [41]

and set partitioning in hierarchical tree (SPIHT) [54], which leverage the correlations

of the wavelet coefficients across scales within a hierarchically decomposed wavelet tree.

The EZW algorithm prioritizes the transmission of the location and sign of the

most significant wavelet coefficients. For the transmission of the insignificant coeffi-

cients, the EZW algorithm exploits the self-similarity of the wavelet transform across

scales, meaning that if a wavelet coefficient at a coarse scale has low magnitude, then it

is highly likely that the wavelet coefficients in the same spatial location at finer scales

also have low magnitude. The embedded coding scheme places the most important

bits at the beginning of the bit-stream so that the encoding or decoding process can
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terminate when a desired bit-count or distortion metric is met. A wavelet coefficient

is considered significant if its magnitude exceeds the threshold of the current iteration.

SPIHT is a modified and enhanced version of EZW. SPIHT differs from EZW in that

significant coefficients are uncovered by examining entire sets and subsets until the

algorithm narrows in on the exact coefficient value.

The traditional ECG compression methods based on wavelets, such as SPIHT

and EZW, still outperform the CS-based methods in terms of compression rate and

reconstruction quality. The reason behind this result is that current CS-based meth-

ods for ECG only consider the simplistic sparsity model, without exploiting all the

structural information present in the ECG.

Most of the previous work related to the application of CS to ECG refers to the

design of the sampling matrix and the hardware implementation of the CS encoder.

There is limited work regarding the development of novel CS reconstruction algorithms

especially adapted to ECG. Therefore, the motivation of this dissertation is the need for

development of new CS reconstruction algorithms that can be applied to ECG signals

and exploit their structural information.

To the best of our knowledge, there is no work that studies the ECG compressive

sensing problem in the presence of real noise. However, there are numerous non-cardiac

contaminants, such as electromyographic noise, that unavoidably corrupt the ECG

during data acquisition. This fact leads to the second motivation of this dissertation:

the need for developing CS techniques that address ECG reconstruction in the presence

of electromyographic noise.

1.2 Contributions and Dissertation Outline

This dissertation focuses on CS reconstruction algorithms for ECG signals by

exploiting prior knowledge. Fundamental questions addressed include how to leverage

the rich structure and quasi-periodicity of the ECG, as well as how to exploit knowledge

of the noise sources corrupting the ECG acquisition in order to improve the performance

of CS reconstruction algorithms as applied to ECG signals. The work presented in this
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thesis is one of the first attempts on the application of CS to ECG signals. This work

has led to nine conference papers [17, 19, 66, 67, 70–74], one journal publication [75],

and two submitted journal articles [68, 69]. Our key contributions include:

• Exploration and analysis of the properties of the ECG wavelet representation

that can be employed as prior information in CS reconstruction algorithms.

• Development of CS reconstruction algorithms that exploit the structure of the

ECG wavelet representation. Specifically, the algorithms exploit the following

properties:

– Wavelet domain dependencies across scales.

– Accumulation of energy in the approximation wavelet subband.

– Magnitude decay of the wavelet coefficients across scales.

– High fraction of common support between the wavelet representation of

consecutive ECG segments.

• Development of a CS reconstruction algorithm that exploits higher-order statis-

tical dependencies between coefficients of the ECG sparse representation using

wavelets and overcomplete learned dictionaries.

• Design of a block CS scheme that employs a different overcomplete learned dic-

tionary for each scale of signal representation.

• Development of robust CS methods for reconstruction of ECG signals in the

presence of electromyographic noise.

• Evaluation performance of the proposed methods and comparison with state-of-

the-art algorithms for ECG compression through extensive simulations.

These contributions are organized into five chapters:
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In Chapter 2, we design, discuss and evaluate ECG reconstruction algorithms

that exploit wavelet domain dependencies across subbands and common support be-

tween consecutive ECG segments. First, we study the ECG wavelet representation

and note important properties such as the high fraction of common support shared

by consecutive ECG segments of fixed length and the tree structure formed by the

largest wavelet coefficients. We propose reconstruction algorithms that are based on

the framework of model-based CS, a new CS framework that enables reduction in the

number of measurements by exploiting prior knowledge of the signal support. The per-

formance of the proposed algorithms is evaluated and compared with state-of-the-art

algorithms for ECG compression.

Chapter 3 introduces the use of multi-scale dictionaries to the reconstruction

of ECG signals. By employing subdictionaries at different data scale, we are able to

exploit the correlation within each wavelet subband. This chapter also presents a block

compressed sensing scheme that allows for independent sampling of each wavelet sub-

band. This sampling scheme is very efficient as it offers the flexibility of using different

number of measurements for different data scales according to the corresponding spar-

sity level. Simulations with the MIT-BIH Arrhythmia Database show the results of

sensing and reconstructing the ECG sparse representation at each scale.

Chapter 4 addresses the CS reconstruction of ECG signals by exploiting the

magnitude decay of the ECG wavelet coefficients across scales. We first note that the

traditional ℓ1 minimization fails to reconstruct the ECG wavelet representation as it

ignores the magnitude disparity of the wavelet coefficients across subbands. A weighted

ℓ1 minimization algorithm, based on a maximum a posteriori approach, is presented

in this chapter. The resulting weights depend on the exponential magnitude decay

rate of the ECG wavelet coefficients. A training stage is also proposed for estimation

of the decay rate via maximum likelihood. Simulation results show that the proposed

weighted version of ℓ1 minimization significantly outperforms the traditional version.
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In Chapter 5, a robust CS method for the reconstruction of ECG signals in the

presence of electromyographic noise is presented. It is known that the Gaussian distri-

bution fails to model electromyographic noise due to its impulsive behavior. A more

realistic approach is to model muscle noise with the symmetric α-stable distribution,

which is the model adopted in this chapter. For the reconstruction of the ECG sparse

representation, an optimization problem that minimizes the ℓp norm of the residual

error subject to a constraint on the ℓ0 norm of the sparse representation is proposed.

Most CS algorithms use the ℓ2 norm as they assume a Gaussian model for the noise;

however, we employ the ℓp norm because it is related to the dispersion, which measures

the spread of the density around its location parameter for the case of symmetric α-

stable distributions. This chapter also introduces an iterative hard thresholding-based

algorithm to solve the ℓp minimization problem.

Chapter 6 presents a statistical approach that uses restricted Boltzmann ma-

chines (RBMs) and deep belief networks (DBNs) to model the prior distribution of the

sparsity pattern of ECG signals. Such a prior is employed by a maximum a posteriori

estimator for the reconstruction. It is shown through simulations that the proposed

scheme leads to significantly superior reconstruction results when compared with CS

methods that do not exploit any statistical dependencies between sparse coefficients.

The proposed approach also outperforms CS methods that only exploit pair–wise cor-

relations between sparse coefficients.
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1.3 Notation

Let Φ ∈ R
N×M , x ∈ R

N , r ∈ R, and Γ ⊆ {1, 2, . . . , N}, then

Φ† Moore-Penrose pseudo-inverse of matrix Φ

ΦΓ Submatrix obtained by extracting the columns of matrix Φ corresponding

to the indexes in Γ

ΦT Transpose of matrix Φ

supp(x) Support of vector x

Γc Complement of the set Γ

|Γ| Cardinality of the set Γ

|r| Absolute value of real number r
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1.4 Brief Review of Compressed Sensing

1.4.1 Introduction

For nearly six decades, the sampling rate of signal acquisition systems has been

determined by the Shannon-Nyquist theorem, which states that the sampling rate

must be at least twice the signal’s bandwidth. This is commonly known as the Nyquist

rate. However, we are living in an era of data deluge that calls for developing new

acquisition systems that go beyond the traditional limits of sampling theory. There

are modern applications where the resulting Nyquist rate is either too high to be

physically realizable or too costly. In addition, the traditional sampling scheme is

highly inefficient as it is usually followed by a compression stage where a large number

of samples are discarded in order to reduce transmission rates and storage.

Compressed sensing has recently emerged as a response to the need for new

sensing techniques. Compressed sensing is a new framework for signal acquisition and

sensor design, which enables a significant reduction in the sampling and computation

costs for sensing sparse or compressible signals. Under the CS framework, signals are

directly sampled in a compressed form, which makes the sensing process much more

efficient. The theory of CS was initially developed by Candès, Romberg, Tao [11,

13] and Donoho [27], who showed that a finite-dimensional sparse or compressible

signal can be recovered from a small set of linear, nonadaptive measurements. Unlike

traditional sampling that acquires samples uniformly in time, CS systems typically

acquire measurements in the form of inner products between the signal and a set of

vectors incoherent with the sparsity basis. Randomness plays a key role in the CS

theory as random matrices satisfy the incoherence property with any orthonormal

sparsity basis with high probability.

The CS reconstruction process also differs from traditional approaches. In the

Nyquist-Shannon framework, signal reconstruction is achieved through sinc interpola-

tion; while in CS, it involves nonlinear methods. Current reconstruction algorithms

can be classified into three main categories: convex methods [14, 22, 84], greedy algo-

rithms [8,59,85], and Bayesian methods [5,81,94]. Examples of convex methods include
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basis pursuit denoising [22], which can recover the signal exactly under mild conditions

and is robust to measurement noise. Greedy algorithms offer the advantage of be-

ing computationally efficient, but usually at the expense of reconstruction accuracy.

Bayesian approaches exploit the sparsity condition by assuming a sparsity-inducing

prior for the signal of interest that is then estimated via Bayesian inference. During

the past 10 years, CS has been extensively applied by mathematicians, computer scien-

tists and engineers in different different fields, such as medical imaging, computational

biology, geoscience, radar, astronomy, and communications [48] .

This section summarizes the theory of CS. The organization of the section is as

follows: In section 1.4.2, the problem of sensing and reconstruction of sparse signals

is presented. The conditions that the sampling matrix need to satisfy to ensure signal

recoverability are presented in this section as well. Section 1.4.3 introduces some of

the main CS reconstruction algorithms in the literature. We focus on the algorithms

that have been applied to the reconstruction of ECG signals. Finally, section 1.4.4

introduces the concept of a sparsity basis, which enables the extension of the CS theory

to a larger family of signals.

1.4.2 The Compressed Sensing Problem

Under the traditional sampling scheme, there are applications (e.g., digital im-

ages and video cameras) that require large efforts in order to sample the signal at the

Nyquist rate, and afterwards most of the information is discarded at the compression

stage because the number of samples exceeds the storage and transmission rates ca-

pabilities of current systems. There are other applications (e.g., medical scanners and

radars) where sampling at the Nyquist rate is too expensive or difficult to be physi-

cally realizable. Therefore, a question arises at this point: is it possible to accurately

reconstruct a signal from a number of samples much lower than what is dictated by the

Nyquist-Shannon theorem? The theory of CS offers a positive answer to this question

in the case of sparse and compressible signals.
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A signal x is K-sparse when it has at most K nonzeros, i.e., ‖x‖0 = supp(x) =

K. The set of all K-sparse signals is defined as

ΣK = {x : ‖x‖0 = K}. (1.1)

In real scenarios, it is rare to find exactly sparse signals. Instead, it is common to

encounter signals that are compressible. A compressible signal is one which can be

well approximated by a sparse signal (i.e. most of its entries are approximately zero).

The compressibility of a signal x is measured in terms of the error produced by the

best K-sparse approximation x̂ ∈ ΣK in terms of the ℓp norm

σK(x)p = min
x̂∈ΣK

‖x− x̂‖p. (1.2)

The compression of x reduces to storing the K largest entries of x.

Let x ∈ R
N be a signal that is either K-sparse or compressible. Consider a

sensing system that acquires M < N linear and nonadaptive measurements. This

process can be mathematically represented as

y = Φx, (1.3)

where Φ ∈ R
M×N represents a dimensionality reduction and y ∈ R

M represents the

measurement vector. It seems impossible to recover x from y since the linear system

(1.3) is underdetermined, and therefore, it has infinitely many solutions. However,

the assumption that the signal is sparse or compressible changes the character of the

problem. More precisely, the signal x can be reconstructed from y if the matrix Φ sat-

isfies some special conditions, e.g., the null space property [27], the restricted isometry

property [15], or the coherence [9].

The reconstruction of x is related to the ℓp norm of a vector, which is defined

for p ∈ [1,∞] as
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‖x‖p =











(
∑N

i=1 |xi|p)
1
p p ∈ [1,∞)

maxi=1,2,...,N |xi| p =∞.

The signal x can be reconstructed from y by solving an ℓ1 minimization problem

argmin
x
‖x‖1 s.t. y = Φx. (1.4)

Problem (1.4) is referred to as basis pursuit.

Real data acquisition systems are always affected by the presence of noise.

Therefore, a more realistic setting is to assume noisy measurements of the form

y = Φx+ r, (1.5)

where r is white Gaussian noise. There are variations of the basis pursuit algorithm

(1.4) that reliably approximate the signal of interest from noisy measurements. For

example, the basis pursuit with ℓ2 constraint relaxes the condition that the recovered

signal explains exactly the measurements [10]. The reconstruction is attained by solving

the optimization problem

argmin
x
‖x‖1 s.t. ‖y − Φx‖2 ≤ ǫ (1.6)

for some ǫ > 0. Reconstruction guarantees for the basis pursuit with ℓ2 constraint are

provided in [10]. Basis pursuit denoising (BPDN), which refers to the solution of

argmin
x

1

2
‖y − Φx‖22 + λ‖x‖1, (1.7)

yields the same result as the constrained problem (1.6) for some choice of the parameter

λ, which is unknown a priori. The selection of the parameter λ balances the trade-off

between sparsity and reconstruction fidelity. Note that as λ→ 0, the solution of (1.7)

behaves like basis pursuit.
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1.4.2.1 The null-space property

The null space of Φ is defined as

N (Φ) = {z : Φz = 0}. (1.8)

To recover all sparse signals x from the measurements Φx, then any pair of distinct

vectors x, x′ ∈ ΣK need to satisfy Φx 6= Φx′. If Φx = Φx′ then Φ(x − x′) = 0 with

x − x′ ∈ Σ2K , and therefore, Φ uniquely represents all x ∈ ΣK if and only if N (Φ)

contains no vectors in Σ2K . Matrices that satisfy this condition can be characterized by

the spark concept. The spark of a matrix is the smallest number of linearly dependent

columns. Based on this concept, the following theorem provides guarantees for sparse

signal recoverability.

Theorem 1. (Corollary 1 of [29]) For any vector y ∈ R
M , there exists at most one

signal x ∈ ΣK such that y = Φx if and only if spark(Φ) > 2K.

Since spark(Φ) ∈ [2,M + 1], theorem 1 yields the requirement M ≥ 2K. Theo-

rem 1 provides guarantees in the case of exactly sparse signals, but additional conditions

need to be imposed in the case of compressible signals. The null space property (NSP)

is applicable to compressible signals and it formally presents the notion that vectors in

the null space of Φ should not be too concentrated on a small subset of indices.

Definition 1. A matrix Φ is said to satisfy the NSP of order K with constant C > 0

if

‖ηT‖2 ≤ C
‖ηT c‖1√

K
(1.9)

for every η ∈ N (Φ) and for all T such that |T | ≤ K.

Suppose that X is an ℓNp space. To measure the reconstruction quality of com-

pressible signals x ∈ R
N by using a specific recovery algorithm ∆ : RM → R

N , it is

necessary to define reconstruction guarantees of the form

‖∆(Φx)− x‖X ≤ C0σK(x)X , (1.10)
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where ‖ · ‖X denotes the norm in the X-space, σK(x)X is as defined in (1.2), and C0

is a constant independent of N and K. Theorem 2 states that the NSP is a necessary

and sufficient condition for having reconstruction guarantees of the form (1.10).

Theorem 2. (Corollary 3.3 of [23]) Suppose that K > 0 and integer, Φ a sampling ma-

trix, and ∆ : RM → R
N denotes an arbitrary reconstruction algorithm. If Φ satisfies the

NSP (1.9) in X of order 2K with constant C0/2, then the pair (Φ, ∆) satisfies (1.10)

with constant C0. Conversely, if ∆ satisfies (1.10), then Φ has the NSP (1.9) in X of

order 2K with constant C0.

1.4.2.2 The restricted isometry property

The fact that the null space property does not account for noise makes it im-

practical for real scenarios. Instead, the restricted isometry property [15] proposed by

Donoho and Tao implies stability under noise.

Definition 2. A matrix Φ satisfies the restricted isometry property (RIP) of order K

if there exists a δK ∈ (0, 1) such that

(1− δK)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δK)‖x‖22, (1.11)

holds for all x ∈ ΣK .

A matrix Φ having a small restricted isometry constant means that every sub-

set of K or fewer columns is approximately an orthonormal system. If a matrix Φ

satisfies the restricted isometry property of order 2K, then Φ approximately preserves

the distance between any two K-sparse vectors. It is worth noting that if Φ satisfies

the RIP of order K with constant δK , then Φ also satisfies the RIP of order K ′ with

constant δK ′ ≤ δK for any K ′ < K. It was shown in [12] that if Φ has restricted

isometry constants such that δK + δ2K + δ3K < 1, then the ℓ1 minimization problem

(1.4) reconstructs any sparse signal with support size of at least K. Similar recon-

struction guarantees, in terms of the RIP, are obtained for the reconstruction of signals

contaminated by noise via the basis pursuit with ℓ2 constraint [10].
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It was shown by Candes and Tao [12], as well as Donoho [27], that certain

families of random matrices, such as Gaussian or Bernoulli matrices, satisfy the RIP

of order K with δK < δ < 1 for some value of δ independent of N provided that M is

of the order O(Klog(N/K)).

Theorem 3. (Theorem 2.12 of [77]) Let Φ ∈ R
M×N be a Gaussian matrix having i.i.d.

entries of mean 0 and variance 1/M or a Bernoulli matrix having i.i.d. entries equal

to ±1/
√
M with probability 1/2. Let ǫ, δ ∈ (0, 1) and assume

M ≥ Cδ−2(Klog(N/K) + log(ǫ−1)) (1.12)

for C > 0. Then the RIP constant of Φ satisfies δK ≤ δ with probability at least 1− ǫ.

The matrix multiplication operations with Gaussian matrices are computation-

ally expensive for signals of high dimension (e.g. images or videos), O(MN). An

alternative that enables efficient sampling is the use of random Fourier ensembles,

as the matrix multiplication can be replaced by the Fast Fourier Transform (FFT)

Cooley-Tukey algorithm, and therefore, the complexity can be reduced to O(N logN).

In this case, the sampling matrix is given by Φ = SF , where F ∈ R
N×N is the dis-

crete Fourier transform on R
N and the matrix S ∈ R

M×N picks M elements of any

N -dimensional vector at random. Deterministic constructions of sampling matrices

satisfying the RIP are also possible [25] but they suffer from high lower bounds on the

number of measurements with respect to the RIP of order K.

1.4.2.3 Coherence

It is typically difficult to verify if a given matrix satisfies the RIP or the null

space property. In fact, it has combinatorial computational complexity. The concept

of coherence of a sampling matrix provides a computable guarantee for signal recover-

ability.
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Definition 3. The coherence µ(Φ) of a matrix Φ ∈ R
M×N is the largest absolute

normalized inner product between different pair of columns of Φ

µ(Φ) = max
1≤i,j≤M,i 6=j

|φT
i φj|

‖φi‖2‖φi‖2
, (1.13)

where φi is the ith column of Φ.

The coherence is always in the range µ(Φ) ∈
[√

N−M
M(N−1)

, 1
]

. The lower bound is

usually known as the Welch bound and is approximately µ(Φ) ≥ 1/
√
M for N ≫M .

Theorem 4 poses a condition on Φ, based on the coherence, that guarantees

uniqueness.

Theorem 4. (Theorem 12 of [29]) If

K <
1

2

(

1 +
1

µ(Φ)

)

, (1.14)

then there exists at most one signal x ∈ ΣK for each measurement vector y ∈ R
M such

that y = Φx.

Reconstruction guarantees for the BPDN algorithm (1.7) in terms of the coher-

ence are presented in Theorem 5.

Theorem 5. (Corolary 1 of [6]) Assume that Φ has coherence µ and that x ∈ ΣK with

K ≤ 1/(3µ). Also, assume that measurements y are of the form y = Φx + r, where

the entries of r are i.i.d. N(0, σ2). Let λ =
√

8σ2(1 + α)log(N −K) for some small

α > 0. Then with probability greater than

(

1− 1

(N −K)α

)

(1− exp(−K/7))

the solution x̂ to 1.7 is unique, supp(x̂) ⊂ supp(x), and

‖x̂− x‖22 ≤
(√

3 + 3
√

2(1 + α)log(N −K)
)2

Kσ2
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1.4.3 Reconstruction Methods

In this section, we describe some of the main reconstruction algorithms to solve

the CS problem presented in Chapter 1.4.2. We focus on two families of recovery algo-

rithms: convex optimization methods and greedy algorithms. Most of the previously

proposed CS recovery algorithms for ECG fall into one of these categories.

1.4.3.1 Convex optimization methods

Since CS focuses on the reconstruction of sparse signals, it is natural to try to

recover sparse signals by solving an ℓ0 minimization problem

argmin
x
‖x‖0 s.t. y = Φx. (1.15)

Problem (1.15) is an NP-complete combinatorial optimization problem. It is difficult

to solve due to the non-convexity of the ℓ0 norm. Instead, Chen, Donoho and Saun-

ders [22] proposed to solve a different optimization problem, coined Basis Pursuit (1.4),

which was introduced in Chapter 1.4.2. Basis pursuit attains the same solution as ℓ0

minimization under certain conditions on the matrix Φ, e.g., the null space property,

the RIP, or the coherence, which were introduced in Chapter 1.4.2. Problem (1.4)

is tractable since it can be posed as a linear program. It is worth noting that (1.4)

corresponds to a convex optimization problem and can be seen as a convex relaxation

of (1.15). The computational complexity of problem (1.4) is O(N3).

An intuitive understanding that the l1 minimization can provide a sparse solu-

tion is provided by Fig. 1.1 For this example, let x be 1-sparse in the canonical basis

of R2. The solid lines Vy = {v ∈ R
2 : Φv = y}, intersecting the axes, represent the

linear constraint and the dotted lines represent the ℓp ball with p = 1 and p = 2. The

solutions that minimize the ℓp norm, p = 1, 2, subject to the linear constraint are rep-

resented by x̂. The solution of the ℓ1 minimization lies on one of the axes, while the ℓ2

minimization solution contains non-zero coordinates and does not match the original

x.
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Figure 1.1: Best approximation of a signal in R
2 by a one-dimensional subspace using

the ℓ1 norm (left) and the ℓ2 norm (right).

1.4.3.2 Greedy algorithms

In addition to convex optimization methods, a family of iterative greedy algo-

rithms [8, 59, 85] has received significant attention due to their algorithmic simplicity

and low complexity. Greedy algorithms iteratively build up an approximate solution

to the ℓ0 minimization problem (1.15) by updating the support set at each iteration.

It has been shown that greedy algorithms may outperform ℓ1 minimization in some

cases. Three of the main iterative greedy algorithms are Orthogonal Matching Pursuit

(OMP) [85], Compressive Sampling Matching Pursuit (CoSaMP) [59], and Iterative

Hard Thresholding (IHT) [8].

• Orthogonal Matching Pursuit: OMP iteratively tries to estimate the support Γ

of the sparse signal x by starting with Γ = ∅ and then adding a new element to

Γ at each iteration. The criteria for the selection of the new element depends

on the residual vector. The residual vector represents the component of the

measurement vector y that cannot be explained by the columns of ΦΓ. Let

Γj and x̂j be the current estimate of the support and the reconstructed signal,

respectively, at the jth iteration. Then the residual vector rj can be defined as

rj = y − Φx̂j , where supp(x̂j) ⊆ Γj . The new element added to Γj corresponds

to the index of the column of Φ that produces the largest inner product with rj.
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Algorithm 1 Orthogonal Matching Pursuit (OMP)

Require: Matrix Φ and measurements y.
1: Initialize j = 0, r0 = y, Γ0 = ∅.
2: while halting criterion false do

3: j ← j + 1
4: γj ← argmaxi |〈Φi, r

j〉|
5: Γj ← Γj−1 ∪ {γj}
6: x̂j |Γj ← Φ†

Γjy, x̂
j |Γjc ← 0

7: end while

8: return x̂← x̂j

The signal x̂j |Γj is updated by solving a least squares problem x̂j |Γj = Φ†
Γjy and

the remaining components are set to zero, x̂j |(Γj)c = 0. Algorithm 1 summarizes

the OMP algorithm.

Trop and Hilbert [85] showed that the OMP algorithm is capable of recovering

sparse signals with high probability.

Theorem 6. (Theorem 2.3 of [59]) Let Φ ∈ R
M×N be a sub-Gaussian matrix

and x ∈ R
N be a K-sparse signal. Then the OMP algorithm recovers x from the

measurements y = Φx with high probability, provided that M = O(KlogN).

Even though OMP does not have strong recovery guarantees as compared to ℓ1

minimization, it offers great advantages in terms of speed.

• Compressive Sampling Matching Pursuit: CoSaMP is an iterative greedy algo-

rithm that offers the same theoretic performance guarantees as even the best

convex optimization approaches [59]. At each iteration, several components of

the vector x are selected based on the largest correlation values between the

columns of Φ and the residual vector. If they are found sufficiently reliable, their

indices are added to the current support estimate of x. CoSaMP solves the least

squares on the current support to obtain a signal approximation. This is repeated

until all the recoverable portion of the signal is found. Algorithm 2 describes the

CoSaMP method.

Theorem 7 presents the optimal recovery guarantees and running time of CoSaMP.
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Algorithm 2 Compressive Sampling Matching Pursuit (CoSaMP)

Require: Matrix y = Φx and measurements y.
1: Initialize j = 0, r0 = y, x0 = 0.
2: while halting criterion false do

3: j ← j + 1
4: e← ΦT rj−1

5: Ω← supp(e2K)
6: T ← Ω ∪ supp(x̂j−1)
7: b|T ← Φ†

Ty, b|T c ← 0
8: x̂j ← bK
9: rj ← y − Φx̂j

10: end while

11: return x̂← x̂j

Theorem 7. (Theorem 4.1 of [59]) Let Φ ∈ R
M×N be a matrix satisfying the

RIP of order 2K with δ2K < c, y = Φx+ r be a noisy observation of an arbitrary

signal x, and xK/2 be the best K/2-sparse approximation to x. Given a precision

parameter η, the CoSaMP algorithm produces a K-sparse approximation x′ such

that

‖x− x′‖2 ≤ Cmax

{

η,
1√
K
‖x− xK/2‖1 + ‖r‖2

}

. (1.16)

The running time of CoSaMP is O(Llog(‖x‖2/η)), where L bounds the cost of

the matrix-vector multiply operation with Φ.

Needell et al. [59] showed that only a fixed number of iterations is necessary to

reduce the reconstruction error to an optimal amount.

• Iterative Hard Thresholding: IHT is a powerful method for sparse recovery that

converges to a local minimum of the problem statement

min
x
‖y − Φx‖22 subject to ‖x‖0 ≤ K, (1.17)

by using the recursion

xj+1 = HK(x
j + ΦT (y − Φxj)) (1.18)
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where HK is a non-linear operator that sets to zero all elements other than the

K largest elements (in magnitude). IHT is a very simple algorithm that recovers

sparse and compressible vectors with a minimal number of observations and with

near optimal accuracy, whenever the matrix Φ has a small RIP [8].

Theorem 8 shows that IHT reduces the estimation error at each iteration and is

guaranteed to come within a constant factor of the best K-sparse approximation

of the original signal.

Theorem 8. (Theorem 4 of [8]) Let Φ ∈ R
M×N be a matrix satisfying the RIP

of order 3K with δ3K < 1/
√
32, y = Φx+r be a noisy observation of an arbitrary

signal x, and xK be the best K-sparse approximation to x. At each iteration j,

the IHT algorithm produces a K-sparse approximation x̂j such that

‖x− x̂j‖2 ≤ 2−j‖xK‖2 + 6ǫ (1.19)

where

ǫ = ‖x− xK‖2 +
1√
K
‖x− xK‖1 + ‖r‖2. (1.20)

1.4.4 The Sparsity Basis

Signals of interest are not necessarily sparse in the canonical basis; however,

they may have a concise representation when expressed in a convenient basis. Let

x ∈ R
N be expanded in an orthonormal basis Ψ = [Ψ1Ψ2 . . .ΨN ] as follows

x =

N
∑

i=1

siψi, (1.21)

where s is the N × 1 column vector of transform coefficients, si = 〈x, ψi〉 = ψT
i x.

As described in Chapter 1.4.2, the compressed measurements are of the form

y = Φx. By replacing x from (1.21), y can be written as

y = ΦΨs = Θs, (1.22)
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where Θ = ΦΨ. Therefore, in this case, it is required that the matrix Θ satisfies the

RIP condition. If Φ is a sub-Gaussian matrix and Ψ is an orthogonal matrix, then the

matrix Θ = ΦΨ will also have a sub-Gaussian distribution. If, in addition, the number

of measurements M is sufficiently high, then the matrix Θ also satisfies the RIP with

high probability [2].

The signal x is K-sparse if only K of the si coefficients in (1.22) are nonzero,

where K ≪ N . This definition is consistent with (1.1) when Ψ = I. The signal x is

compressible if their coefficients si, sorted in order of decreasing magnitude, exhibit

a power-law decay. This is also consistent with the definition of compressible signals

presented in Chapter 1.4.2 when Ψ = I.

Consider the case of ECG signals. It is known that ECG signals are compressible

in the wavelet domain. Indeed, state-of-the-art algorithms for ECG compression are

wavelet-based methods [41,54]. Figure 1.2 (a) illustrates an ECG sequence from record

117 of the MIT-BIH Arrhythmia Database. The corresponding wavelet representation

using Daubechies-4 and a decomposition level L = 4 is plotted in Fig. 1.2 (b). Most

of the wavelet coefficients have very low magnitude, being nearly zero for the highest-

frequency wavelet subband. By organizing the wavelet coefficients in order of decreasing

absolute value, it is noted in Fig. 1.2 (c) that they decay rapidly. Figure 1.2 (d)

illustrates the resulting signal after keeping only the 10% largest (in magnitude) wavelet

coefficients and setting the others to zero.

The fact that compressible signals can be well approximated by K-sparse rep-

resentations is the foundation of transform coding [55]. A standard transform coding

algorithm encodes only the magnitude and location of the K most significant trans-

form coefficients. Modern lossy coders such as MP3, JPEG, and JPEG 2000 exploit

the principles of transform coding [47].

Sparsity plays a prominent role in other applications as well. For signal de-

noising [28], the small-magnitude transform coefficients are set to zero as they are

considered as pure noise. In statistics and learning theory, sparsity is employed to

avoid overfitting [87].
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Figure 1.2: Sparsity of ECG signals in the wavelet domain. (a) Original ECG se-
quence. (b) Wavelet representation. (c) Sorted wavelet coefficients in
order of decreasing absolute value (logarithmic scale). (d) Recovered
signal from the 10% largest (in magnitude) wavelet coefficients.
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Chapter 2

EXPLOITING PRIOR KNOWLEDGE IN COMPRESSED SENSING

WIRELESS ECG SYSTEMS

2.1 Introduction

Even though previous works validate the potential of compressed sensing (CS)

for energy-efficient electrocardiogram (ECG) compression [26,56,93], the performance

of CS in terms of compression rate and ECG reconstruction quality is still unsatis-

factory when compared to the results attained by state-of-the-art algorithms based

on exploiting magnitude correlation across wavelet subbands [41, 54]. Most previous

CS-based ECG compression works exploit only the sparsity of the signal, ignoring im-

portant signal structure information that can be known a priori and lead to enhanced

reconstruction results.

This chapter describes the application of a CS algorithm that enables exploita-

tion of ECG signal structure in the reconstruction process. Two key signal structure

properties are incorporated into the proposed algorithm. The first property captures

the wavelet domain dependencies across subbands and the second exploits the signif-

icant fraction of common wavelet coefficient support for consecutive ECG segments.

The proposed algorithm falls within the framework of model-based CS [3]—a new

CS framework based on unions of subspaces—that can enhance signal reconstruction

while reducing the number of measurements. The motivation for using a model-based

approach is that it enables the incorporation of structural dependencies between the

locations of the signal coefficients caused by R wave events. However, it is worth

mentioning that the proposed algorithm differs from traditional model-based recovery

algorithms [3, 57] in two respects. First, it uses prior support estimate knowledge to
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leverage the small variation in the support set of adjacent data sequences. Second, it

excludes the selection of coefficients from the lowest-energy wavelet subband.

The performance of the proposed method is evaluated using the MIT-BIH Arry-

thmia Database [39]. Given that most CS ECG application works use the basis pursuit

denoising (BPDN) algorithm [26, 56], system-level comparisons are provided based on

implementations of the BPDN and proposed reconstruction algorithms. Simulations

are also performed with the bound-optimization-based BSBL algorithm, previously

employed by Zhilin et al. [93] for non-invasive fetal ECG, in order to compare with

other structured sparsity-based CS reconstruction algorithms. Results indicate that

the proposed algorithms outperform both BPDN and bound-optimization-based BSBL

in terms of compression rate and reconstruction quality.

The organization of this chapter is as follows. Section 2.2 presents a brief review

of model-based CS [3]. Section 2.3 describes the connected subtree structure encoun-

tered in the wavelet representation of the ECG and studies the support variation across

consecutive ECG segments. In Section 2.4, the proposed method is presented. Numeri-

cal results for the proposed method and comparisons with a benchmark state-of-the-art

algorithm for ECG compression, SPIHT, are presented in 2.5. Finally, we conclude in

Section 2.6 with closing remarks.

2.2 Background

2.2.1 Brief Review of Model-based Compressed Sensing

Model-based compressive sensing is a new paradigm that aims to capture the

inter-dependency structure in the support of the large signal coefficients using a union-

of-subspaces model [3]. This model decreases the degrees of freedom of the signal by

allowing only some configurations of support for the largest coefficients.

Let x be aK-sparse signal. Then, x lies in ΣK ⊂ R
N , which is a union of

(

N
K

)

sub-

spaces of dimension K. A union-of-subspaces model allows only some K-dimensional

subspaces in ΣK and leads to representations that incorporate signal structure. Let

x|Ω denote the coordinates of x corresponding to the set of indices Ω ⊆ 1, . . . , N , and
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let Ωc represent the complement of Ω. Then, the signal model MK is defined as the

union of mK canonical K-dimensional subspaces

MK =

mK
⋃

m=1

Xm,Xm = {x : x|Ωm
∈ R

K , x|Ωc
m
= 0} (2.1)

where {Ω1, . . . ,ΩmK
} is the set of all allowed supports with |Ωm| = K for each m =

1 . . .mK . It should be noted that MK ⊆ Σk and that MK contains mK ≤
(

N
K

)

subspaces. Signals fromMK are called K-model sparse.

A similar treatment is applied to compressible signals. A compressible signal

x ∈ RN that is nearly K-model sparse can be approximated to the best model-based

approximation inMK . The ℓ2 error produced by the approximation is given by

σMK
= inf

x̄∈MK

‖x− x̄‖2. (2.2)

The algorithm that provides the best K-term approximation of the signal x under

the model MK is denoted as M(x,K). Thus, the error σMK
can also be written

as σMK
= ‖x −M(x,K)‖2. A sparsity model M = {M1,M2, . . .} produces nested

approximations if the support of M(x,K∗) contains the support of M(x,K) for all

K < K∗. If the signal model produces nested approximations, then the support of the

difference vector M(x, jK)−M(x, (j − 1)K) lies in a small union of subspaces. These

difference vectors form sets of residual subspaces. The jth set of residual subspaces of

size K is defined as

Rj,K(M) = {u ∈ R
N s.t. u = M(x, jK)−M(x, (j − 1)K) for some x ∈ R

N}, (2.3)

for j = 1, . . . , ⌈N/K⌉. A structured compressible signal x can be robustly recovered

from the compressive measurements y = Φx if the matrix Φ satisfies the restricted

amplification property (RAmP) [3]. A matrix Φ has the (ǫK , r)-restricted amplification

26



property for the residual subspaces Rj,K of modelM if

‖Φu‖22 ≤ (1 + ǫK)j
2r‖u‖22 (2.4)

for any u ∈ Rj,K and for each 1 ≤ j ≤ ⌈N/K⌉.
Baraniuk et al. [3] incorporated the union-of-subspaces models into two well-

known CS recovery algorithms, CoSaMP and IHT, through a single modification in

the algorithms. The modification, in practice, replaces the best K-term approximation

with a best K-term model-based approximation.

2.2.2 Tree-structured Sparsity Models

One example of a structured sparsity model is that encountered in signals whose

most significant wavelet coefficients are organized into a tree structure, and where the

largest coefficients cluster along the branches of the tree [3].

Consider an N -dimensional signal x. Given a wavelet function ψ and a scaling

function ϕ, the wavelet representation of x is defined in terms of shifted versions of ϕ

and shifted and dilated versions of ψ

x =

NL−1
∑

i=0

aL,iϕL,i +

L
∑

j=1

Nj−1
∑

i=0

dj,iψj,i, (2.5)

where j denotes the scale of analysis and L denotes the coarsest scale. Nj = N/2j

indicates the number of coefficients at scale j ∈ {1, . . . , L} and i represents the position,
0 ≤ i ≤ Nj − 1. The wavelet transform consists of the scaling coefficients aL,i and

wavelet coefficients dj,i. Using the previous notation, we write x = Ψs, where Ψ is the

orthogonal matrix containing the wavelet and scaling functions as columns and s =

[d1,0 . . . d1,N1−1 . . . dL,0 . . . dL,NL−1aL,1 . . . aL,NL−1]
T is the vector of scaling and wavelet

coefficients. The vector s can be decomposed into L + 1 subvectors. The first L

subvectors are denoted by dj, j = 1, . . . , L, and the jth subvector contains all of the

wavelet coefficients for scale j. The last subvector corresponds to the scaling coefficients
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and is denoted as aL. Thus, s can also be written as s = [d1d2 . . . dLaL]
T .

The wavelet atoms form a binary tree structure where the wavelet coefficient dj,i

is the parent of its two children dj+1,2i and dj+1,2i+1. This nesting property causes rapid

transitions and other singularities to manifest as chains of large coefficients along the

branches of the wavelet tree [24]. This gives rise to the concept of a connected subtree,

which refers to a connected set of nodes Ω meeting the condition that whenever a

coefficient dj,i ∈ Ω, then its parent also belongs to Ω. In [3], Baraniuk et al. assumed

NL = 1 for simplicity and defined the structured sparsity model TK as the union of all

K-dimensional subspaces corresponding to supports Ω that form connected subtrees,

TK =

{

x = aL,0ϕL,0 +

L
∑

j=1

Nj−1
∑

i=0

dj,iψj,i : d|Ωc = 0, |Ω| = K,

Ω forms a connected subtree

}

, (2.6)

where Ωc denotes the complement of the set Ω. To find the best K-term tree-based ap-

proximation, Baraniuk et al. used the condensing sort and select algorithm (CSSA) [4],

which solves for

x∗ = argmin
x̄∈Tk

‖x− x̄‖2 (2.7)

by using a two-stage process. The first stage merges the non-monotonic segments of

the tree branches with an iterative sort-and-average routine. The second stage simply

sorts the wavelet coefficients once they are organized in a monotonic non-increasing

sequence along the branches out from the root.

2.3 Motivation

In this section, we analyze the structure of the wavelet representation of ECG

signals to motivate the incorporation of prior information in CS-based recovery algo-

rithms for ECG reconstruction. We concentrate on exploiting two key properties of the

ECG wavelet coefficients. The first property is the connected subtree structure formed
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by the largest (in magnitude) wavelet coefficients, and the second property is the high

fraction of common support between adjacent ECG segments.

2.3.1 Connected Subtree Structure of ECG Wavelet Coefficients

Sharp transition regions in the time domain generate large magnitude wavelet

coefficients that persist along the branches of the wavelet tree, forming connected

rooted subtrees [24]. This behavior is also present in the wavelet representation of

ECG signals and is connected with R wave events. This idea is illustrated in Fig. 2.1,

which shows that coefficients subvectors dj , j = 1, . . . , 5, and a5, corresponding to the

Daubechies-4 wavelet transform of an ECG time series using a decomposition level

L = 5. The subvectors are plotted as rows stacked on top of each other. The ECG

time series, located at the bottom of Fig. 2.1, corresponds to an extract of 11.5 seconds

from record 117 of the MIT-BIH Arrhythmia Database. Each coefficient vector is time-

shifted so that the tree structure can be clearly identified. For visualization purposes,

the magnitude of the coefficients is normalized so that the Euclidean norm of each

wavelet subband is unity.

Examining the wavelet representation in Fig. 2.1, it is noticed that the large

coefficients are aligned and propagate across scales, forming a connected tree struc-

ture. This persistence property is mainly noticed in subbands d4, d3, and d2. These

results suggest that the tree-structured sparsity model described in Section 2.2.2 is

an appropriate model to represent the support of the most significant ECG wavelet

coefficients. The tree structure is intrinsically related to the shape of the ECG cycles.

When compared with the ECG time series, it is noted that the large coefficients are

connected with the QRS complexes, which can be regarded as sharp transition regions

of the signal. We propose to exploit the tree-structured sparse representation as ad-

ditional prior information for the CS reconstruction of ECG signals. As stated by the

model-based CS framework [3], knowledge of the signal support potentially leads to

high quality reconstruction using fewer measurements, and thus higher compression

performance.
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Figure 2.1: Daubechies-4 coefficients subvectors dj , j = 1 . . . 5, and a5 for ECG time
series.
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2.3.2 Common Support Between Consecutive ECG Segments

In this section, we study how the support of two consecutive ECG segments

varies. Consider the 10-min long single leads extracted from records 100, 101, 102,

107, 109, 111, 115, 117, 118 and 119 in the MIT-BIH Arrhythmia Database, which

are sampled at 360 Hz, and form 100 consecutive sequences of 2048 samples for each

record. Let Ωt denote the support of the K = 225 largest (in magnitude) wavelet

coefficients of sequence st, where t = 1, . . . , 100 denotes the order of the sequences.

Consider the fraction of common support between two consecutive sequences, denoted

as σt,t−1, which is defined as

σt,t−1 =
|Ωt ∩ Ωt−1|
|Ωt|

, t = 2, . . . , 100. (2.8)

The averaged results over the entire ECG data set are illustrated in Fig. 2.2,

where the data points are connected for visualization purposes only. The fraction of

common support is high, always greater than 0.65, which indicates that we can use the

support of the previous data sequence to improve the estimate of the support of the

current data sequence. In designing the CS-based reconstruction algorithm, we propose

to include support information of previous reconstructed data sequences to improve

the performance. A related work by Wang et al. [91] shows how to iteratively enhance

recovery of a signal by solving basis pursuit in the first iteration to obtain a support

estimate, solving the problem of basis pursuit with partially known support [88] with

this support estimate, and repeating the steps. Their work attains exact reconstruction

guarantees for a single iteration even if the initial support estimate includes a small

fraction of indices outside the true support.
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Figure 2.3: Block Diagram of the proposed ECG compression method.

2.4 Methods

The proposed ECG compression method based on compressive sensing is de-

scribed in this section. The method is summarized in Fig. 2.3. The process initiates

with the sampling of the ECG signals through linear random measurements, followed

by a redundancy removal module and a quantization stage. The quantized samples are

entropy coded and transmitted to a remote terminal where the reconstruction is per-

formed. The presented contribution focuses on the reconstruction algorithm that relies

on prior knowledge of ECG wavelet coefficient structure. A more detailed explanation

of each stage is given below.

2.4.1 Sampling and Encoding

The first step addresses the sampling of consecutive ECG segments of length N .

Let x denote an ECG segment. The information we acquire about x can be described by

y = Φx, where Φ is a M ×N matrix. In order to recover the best K-term model-based

approximation of the original signal, the matrix Φ needs to satisfy the restricted ampli-

fication property (RAmP). It is known that sub-Gaussian matrices meet this condition

with high probability [3]. Here we build the entries of the matrix Φ by independently
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sampling from a symmetric Bernoulli distribution (P(Φi,j = ±1/
√
M = 1/2)) in order

to facilitate an efficient hardware implementation. The use of Bernoulli matrices, as

compared to other sub-Gaussian matrices, results in simpler circuit complexity, data

storage, and computation requirements [21].

To realize the analog hardware implementation of CS matrices, Mamaghanian et

al. [58] recently proposed the spread spectrum random modulator pre-integrator. This

architecture starts with a pre-modulation block, followed by a random demodulation

pre-integrator architecture, which is composed of parallel channels of random demod-

ulators. Each random demodulator is, in turn, composed of three stages. The first

stage refers to the multiplication of the input signal with a pseudo-random sequence

that takes values ±1 with equal probability. The second stage incorporates a low-pass

filter to avoid aliasing and the final stage corresponds to a standard ADC.

The use of the described sampling procedure results in similar adjacent mea-

surement vectors. This is caused by the quasi-periodic nature of the ECG signal and

the use of a fixed sampling matrix. To further improve the compression and reduce the

amount of redundant information, we implemented the same redundancy removal and

entropy coding stages proposed by Mamaghanian et al. [56]. The redundancy removal

stage computes the difference between two consecutive measurement vectors and only

transmits this difference to the quantization module. In [56], it was shown that the

variance of the difference signals between consecutive measurement vectors is lower

than the variance of the original measurement vectors, which leads to a reduction in

the number of bits for signal representation, from 12 to 9 bits. An 8-bit optimal scalar

quantizer designed with the Lloyd-Max algorithm is utilized [38] and entropy coding

stage uses Huffman coding to further increase the compression ratio.

2.4.2 Reconstruction Algorithm using Prior Information

The original samples must be recovered from the transmitted difference between

consecutive vectors. Therefore, at the remote terminal, Huffman decoding followed by

recovery of the original samples is employed. For reconstruction of the ECG signal,
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two iterative algorithms that are easily modified to incorporate prior ECG wavelet

representation structure information are proposed. The algorithms are CoSaMP and

IHT, which were previously modified by Baraniuk et al. [3] to incorporate structured

sparsity models and which are described in more detail in Section 1.4.3.2. Their modi-

fication results in replacing the nonlinear sparse approximation step with a structured

sparse approximation. These algorithms are known in the literature as model-based

CoSaMP and model-based IHT; both have provable robust guarantees. One of the

main properties of model-based CoSAMP is that robust signal recovery requires only

a number of measurements that is proportional to the sparsity level of the signal.

The sparsity model employed in this work corresponds to a modified version of

the tree-structured sparsity model described in Section 2.2.2. The modification is based

on the fact that ECG wavelet coefficients at scale j = 1 correspond to coefficients with

nearly zero magnitude, as illustrated in Fig. 2.4, and should therefore not be included

in the best K-term model-based signal approximation. Thus, we select NL scaling

coefficients and define T ⋆
K as

T ⋆
K =

{

x =

NL−1
∑

i=0

aL,iϕL,i +

L
∑

j=1

Nj−1
∑

i=0

dj,iψj,i : supp(d1,i) ∈ Ωc for all i, d|Ωc = 0,

|Ω| = K,Ω forms a connected subtree

}

. (2.9)

Denote the algorithm that finds the best K-term tree-based approximation by

T(x,K). That is,

T(x,K) = argmin
x̄∈T ⋆

k

‖x− x̄‖2. (2.10)

The model-based CoSaMP and the model-based IHT, using the tree-structured spar-

sity model T ⋆
K , are summarized in Algorithms 3 and 4, respectively, and are referred

to as modified model-based CoSaMP (MMB-CoSaMP) and modified model-based IHT

(MMB-IHT). The halting criterion for both algorithms can be a fixed number of itera-

tions or a bound on the residual norm, ‖rj‖2 ≤ ǫ, for some predetermined ǫ > 0. Note
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Figure 2.4: Wavelet decomposition of level L = 5 for ECG time series using
Daubechies-4.

that in the algorithm tables, the Moore-Penrose pseudo-inverse of Θ is denoted by Θ†,

ΘT denotes the submatrix obtained by extracting the columns of Θ corresponding to

the indexes in T , b|T represents the entries of b corresponding to the set of indices T ,

and the support of s is denoted by supp(s). Also, we use the condensing sort and select

algorithm [4] to solve for the optimization problem in (2.10).

As in model-based CoSaMP, MMB-CoSaMP starts the iteration by calculating

the correlation values between the columns of Θ and the residual of the previous itera-

tion rj−1 (step 4). The correlation values are used to find support of the best 2K-term

tree-based approximation (step 5), which is subsequently merged with the support of

the previous iteration (step 6). The next step refers to solving a least-squares problem

to approximate the target signal on the updated support (step 7). To enforce a sparse

solution, the algorithm finds the best K-term tree-based approximation of the least

squares solution (step 8) and finalizes with the update of the residual (step 9).

Similarly, MMM-IHT also resembles model-based IHT. The algorithm itera-

tively solves (1.17) by moving in the opposite direction of the gradient of ‖y−Θs‖22 at
each iteration (step 4). MMM-IHT enforces a sparse solution by selecting the best K-

term tree-based approximation of b (step 5) and finalizes with an update of the residual
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(step 6). It is worth emphasizing that the proposed algorithms exploit the wavelet tree

structure in the steps that refer to the best K-term tree-based approximation defined

in (2.10). Both MMB-IHT and MMB-CoSaMP differ from the traditional model-based

approaches in the initialization step and in the K-term tree-based approximation of

the signal.

Unlike the traditional model-based approaches, the proposed algorithms always

include the scaling coefficients in the K-term tree-based approximation of the signal,

which is of great importance given that the scaling coefficients accumulate most of the

ECG signal energy. The initialization step is a modification with respect to traditional

approaches because it incorporates support information from the previously recon-

structed signal. In Section 2.3.2, it is noted that a high fraction of support is shared

between two consecutive ECG segments. The two consecutive ECG segments in the

wavelet domain are denoted by st and st−1. With the aim of exploiting this information,

the first signal estimate is determined by solving a least squares problem using the sup-

port of the previously reconstructed ECG segment, Λ = supp(st−1). The contribution

of this estimate is subtracted from the measurement vector and iterated on the residual.

These steps are implemented in the initialization of Algorithms 3 and 4. In both al-

gorithms, MMB-IHT and MMB-CoSaMP, the support set is refined through iterations

by addition of promising new atoms and deletion of unnecessary atoms. In this way,

we expect the algorithms to preserve the common support (supp(st)∩ supp(st−1)) and

to replace the unnecessary atoms (supp(st−1) \ supp(st)) with the innovation support

of the current ECG sequence, i.e. (supp(st) \ supp(st−1)).

2.5 Experimental Results

To validate the proposed methods, compressed measurements are generated

using a set of records from the MIT-BIH Arrhythmia Database [39] as the original

signals. Every file in the database contains two lead recordings sampled at 360 Hz

with 11 bits per sample of resolution. However, since body area networks adopt lower

sampling frequencies than 360 Hz, each ECG recording is resampled at 250 Hz. The
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sampling frequency of 250 Hz is commonly used for ECG monitoring in body area

networks [62]. Experiments are carried out and averaged over 10-min long single leads

extracted from records 100, 101, 102, 103, 107, 109, 111, 115, 117, 118 and 119. This

data set was proposed in [54]; it consists of a variety of signals with different rhythms,

wave morphologies and abnormal heartbeats. Results are presented for averages of 100

repetitions of each experiment, with a different realization of the random measurement

matrix at each time.

2.5.1 Performance Evaluation

The compression ratio (CR), the percentage root-mean-square difference (PRD),

the normalized version of PRD (PRDN), the quality score (QS), and the the recon-

struction SNR (R-SNR) are used as performance measures. The CR is defined as the

number of bits required for the original signal over the number of bits required for the

compressed signal. Here the original signals refer to the resampled ECG records at 250

Hz. The reconstruction SNR is defined as

R-SNR = 10log10
‖x‖22
‖x− x̂‖22

, (2.11)

where x and x̂ denote the N -dimensional original and reconstructed signals, respec-

tively. The PRD is defined as PRD = (‖x − x̂‖2/‖x‖2) × 100. Let e denote an

N -dimensional vector of ones and x̄ be the mean value of x. The PRDN is defined as

PRDN = (‖x− x̂‖2/‖x− x̄e‖2)× 100, and the QS as QS = CR/PRD [36].

2.5.2 Practical Considerations

The length of the ECG segments is set to N = 256, so that the acquisition

time can be sufficiently short (approximately 1 sec at the rate of 250 Hz) for real-

time monitoring. The orthogonal Daubechies-4 wavelets is chosen as the sparsifying

transform. For the reconstruction algorithms, the halting criterion is either a maximum

number of iterations (we selected 70 for our simulations) or a bound on the residual

norm, ‖rt‖2 ≤ ǫ. We selected ǫ = 1× 10−3‖y‖2.
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Algorithm 3 MMB-CoSaMP

Require: Matrices Θ = ΦΨ and Ψ, measurements y, sparsity level K, support of pre-
viously reconstructed ECG segment Λ, structured sparse approximation algorithm
T.

1: Initialize ŝ0|Λ = Θ†
Λy, ŝ0|Λc = 0, r0 = y −Θŝ0, j = 0.

2: while halting criterion false do

3: j ← j + 1
4: e← ΘTrj−1

5: Ω← supp(ΨT
T(Ψe, 2K))

6: T ← Ω ∪ supp(ŝj−1)

7: b|T ← Θ†
Ty, b|T c ← 0

8: ŝj ← ΨT
T(Ψb,K)

9: rj ← y −Θŝj
10: end while

11: return x̂← Ψŝj

For the sparsity level, a sequence of residual energy is defined. The elements in

the vector of wavelet coefficients s are ordered according to their square magnitudes,

such that

|s(1)|2 ≥ |s(2)|2 ≥ . . . ≥ |s(N−1)|2 ≥ |s(N)|2. (2.12)

The sequence of residual energy is defined as

CK =

N
∑

j=1

|s(j)|2 −
K
∑

j=1

|s(j)|2

N
∑

j=1

|s(j)|2
, K = 1, . . . , N. (2.13)

From each record of the data set, 300 ECG segments of length N = 256 are selected.

The sequence of residual energy is averaged over all the selected ECG segments and

over all the different records. The results are plotted in Fig. 2.5 in logarithmic scale.

The sparsity level is selected as the value of K that satisfies averaged CK = 0.001,

which corresponds to K = 34 and is indicated in Fig. 2.5 with dotted lines. This result

indicates that the most significant 34 wavelet coefficients approximately accumulate

99.999% of the total signal energy.
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Algorithm 4 MMB-IHT

Require: Matrices Ψ, Φ, and Θ = ΦΨ, measurements y, sparsity level K, support of
previously reconstructed ECG segment Λ, structured sparse approximation algo-
rithm T.

1: Initialize ŝ0|Λ = Θ†
Λy, ŝ0|Λc = 0, x̂0 = Ψŝ0, r0 = y − Φx̂0, j = 0

2: while halting criterion false do

3: j ← j + 1
4: b← x̂j−1 + ΦT rj−1

5: x̂j ← T(b,K)
6: rj ← y − Φx̂j
7: end while

8: return x̂← x̂j
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Figure 2.5: Sequence of residual energy averaged over the selected set of records from
the MIT-BIH Arrhythmia Database.

Given that the ECG recordings are sampled at 250Hz, the sampling interval be-

comes ∆t = 1/250 seconds. A decomposition level L = 5 is utilized so that the scaling

coefficients vector a5, associated with a physical scale of 25∆t = 25/250 = 0.13 seconds,

approximately isolate the T waves, and thus the detail coefficients capture the QRS

complex. In this way, the largest (in magnitude) detail coefficients are expected to

exhibit a connected subtree structure caused by the QRS complexes, as shown in

Fig. 2.1. The ECG reconstruction quality, using both MMB-CoSaMP and MMB-IHT

algorithms, is evaluated as a function of the wavelet decomposition level. The results
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are averaged over the selected set of records for a number of measurements m = 3K.

The results in Fig. 2.6 indicate that the selection of L = 5 is indeed a good choice

for the decomposition level. The data points are connected for visualization purposes

only.

Sparse binary matrices have recently been proposed for CS ECG since they lead

to fast computations and low-memory requirements [56]. An experiment is designed

to test the performance of the proposed algorithms when using sparse binary matrices.

Similarly to the work in [56], two types of sparse binary matrices, matrix I and matrix

II, are employed. Matrix I has only q ≪ N nonzero elements in each column. Each

nonzero element takes the value 1/
√
q and its location is chosen randomly. Matrix

II has only q ≪ N nonzero elements in each column. Each nonzero element takes

the value ±1/√q with equal probability and its location is chosen randomly. In [56],

the value of q = ⌊0.025 × N⌋ provides a good tradeoff between execution time and

reconstruction quality. The same relation between the value of q and N is selected for

the proposed experiment, q = ⌊0.025 × N⌋ = 6. The reconstruction performance of

the proposed algorithms using the Bernoulli matrix and the sparse binary matrices is

shown in Table I. The results correspond to averaged PRD values over the entire set of

selected records. Even though all the matrices have a similar performance for CR ≤ 6,

the performance of the sparse binary matrices deteriorates for CR > 6. Hence, the

dense Bernoulli matrix is selected as the sampling matrix for the proposed methods.

Nevertheless, the minimal detriment to performance suggests that sparse binary sensing

matrices are a plausible alternative for CS ECG.
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Figure 2.6: Reconstruction SNR as a function of the wavelet decomposition level.
Number of measurements m = 3K.

Table 2.1: PRD obtained by MMB-IHT and MMB-CoSaMP for different sensing
matrices

Reconstruction
algorithm

Sampling
matrix

CR

3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

MMB-
IHT

Bernoulli 3.31 3.32 3.32 3.33 3.35 3.55 3.81 4.05 4.43 4.91

Matrix I 3.42 3.42 3.47 3.7 3.85 4.23 4.8 5.71 6.7 7.79

Matrix II 3.42 3.43 3.45 3.55 3.67 3.99 4.32 4.68 5.2 5.82

MMB-
CoSaMP

Bernoulli 2.98 2.99 2.99 3.11 3.24 3.49 4.02 4.8 9.74 25.58

Matrix I 2.99 2.99 3.04 3.12 3.62 3.92 5.12 6.9 14.01 28.15

Matrix II 3.01 3.01 3.03 3.07 3.4 3.7 4.8 6.2 12.9 27.74
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2.5.3 Evaluation of ECG Reconstruction using the Proposed Method

This section presents an experiment to evaluate how the reconstruction of ECG

signals changes as the amount of prior knowledge of the support set varies. The best

performance is achieved with the oracle estimate. Assume an oracle reveals the support

set Ω of the K most significant wavelet coefficients of the signal of interest. The oracle

estimate corresponds to the least squares projection onto the subspace spanned by the

columns of Θ with indices in Ω. This experiment also considers the case where no

prior information is known about the support set Ω, and the signal is reconstructed

using the traditional CoSaMP [59] and the traditional IHT [8]. The performance of all

these methods is compared with the performance attained by the proposed algorithms,

MMB-CoSaMP and MMB-IHT.

The results are averaged over the set of selected records and illustrated in

Fig. 2.7. The error bars indicate plus and minus one standard deviation across ECG

records. Given that the objective of this first experiment is only to evaluate the re-

construction of the proposed scheme, we restrict our method to the sampling and

reconstruction of the signals and exclude the redundancy removal, quantization, and

entropy coding stages. For this experiment, the reconstruction SNR is used to evaluate

the quality of the recovered signals as a function of the oversampling ratio M/K.

As shown in Fig. 2.7, the proposed algorithms outperform the traditional CoSaMP

and IHT, indicating that exploiting the connected subtree structure of the most sig-

nificant wavelet coefficients, as well as the common support between consecutive ECG

segments, results in a large reduction of the required number of measurements to

achieve successful recovery of ECG signals. It is also noted from Fig. 2.7 that the

algorithms based on IHT require fewer measurements than the algorithms based on

CoSaMP to attain good reconstruction. The results of the proposed methods are the

closest to the best achievable performance obtained by the oracle estimate.
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2.5.4 Evaluation of Compression Performance

For the second experiment, the reconstruction algorithm in the compression

scheme, Fig. 2.8, is varied. The proposed MMB-CoSaMP and MMB-IHT are first

used as reconstruction algorithms, and their results are compared with BPDN, the

bound-optimization-based BSBL algorithm, and an overcomplete dictionary-based re-

construction algorithm. The results are also compared with SPIHT, a state-of-the-art

algorithm for ECG compression. The same entropy coding stage of the proposed

method is added to SPIHT to ensure fairness in the comparison. The results of the

PRD as a function of the compression ratio are illustrated in Fig. 2.8. The results are

averaged over the entire set of selected records.

Basis pursuit denoising is the reconstruction algorithm selected by Mamagha-

nian et al. [56] and Dixon et al. [26] for the recovery of ECG signals. However, the

results in Fig. 2.8 indicate that the proposed compression scheme works significantly

better when MMB-IHT and MMB-CoSaMP are used as reconstruction algorithms than

when BPDN is employed. These results are expected, as the proposed reconstruction

algorithms exploit prior knowledge of the signal structure, unlike BPDN, which only

leverages the sparsity of the signals.

Unlike BPDN, the bound-optimization-based BSBL algorithm, denoted as BO-

BSBL, provides flexibility to exploit the block structure and intra-block correlation of

the signal sparsity pattern. Even though it was previously employed to reconstruct

non-invasive fetal ECG [93], it is also successfully applied in the recovery of adult ECG

in the wavelet domain. The reason is the clustering property of the ECG wavelet

coefficients that suggests the use of a block-sparsity model. This property refers to the

tendency of the large coefficients to cluster together into blocks, as it is suggested by

Fig. 2.1. For the implementation of the BO-BSBL algorithm, the block partition was

set to h = 15 and the maximum number of iterations to 30. Even though the BO-

BSBL algorithm offers performance superior to BPDN, it is outperformed by MMB-

IHT and MMB-CoSaMP. This result suggests that the connected subtree structured

sparsity model may be more appropriate to represent the largest (in magnitude) ECG
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Figure 2.7: Comparison of MMB-CoSaMP and MMB-IHT with CoSaMP, IHT, and
the oracle estimate. Reconstruction SNR averaged over all the records of
the selected data set for different number of measurements.

wavelet coefficients than is the block sparsity model. In addition, the incorporation of

prior support knowledge also contributes to the superior performance attained by the

proposed methods.

It is of interest to compare the performance of the proposed algorithms with

overcomplete dictionary-based reconstruction methods. In a previous work [66], we

propose the use of a multi-scale dictionary D ∈ R
N×J , J > N , for CS ECG, with

the aim of combining the advantages of multi-scale representations using wavelets with

the benefits of dictionary learning. The dictionary D is divided into subdictionaries

according to the corresponding wavelet subband and each subdictionary is learned

separately. The idea behind this approach is to exploit correlations within each wavelet

subband. The multi-scale dictionary-based algorithm, denoted as MS-BPDN, aims to

solve problem (1.1) with Θ = ΦΨD, instead of Θ = ΦΨ, by using basis pursuit
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denoising. According to the results in Fig. 2.8, the proposed algorithms outperformMS-

BPDN because they exploit additional signal structure information. However, it is also

noticed that MS-BPDN outperforms the traditional wavelet based-BPDN algorithm,

which suggests the promising application of adaptive overcomplete dictionaries to CS

ECG.

The results of SPIHT are illustrated in Fig. 2.8, with the aim of evaluating

how the proposed compression scheme compares with current ECG compression meth-

ods. SPIHT is a benchmark state-of-the-art algorithm for ECG compression. SPIHT

utilizes an optimized embedded coding of the wavelet coefficients that increases the

compression rates and makes it outperform the results of the proposed methods, at the
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Table 2.2: Performance of MMB-IHT and MMB-CoSaMP for CR=6.4

Record
MMB-IHT MMB-CoSaMP

PRD PRDN QS PRD PRDN QS

100 3.65 7.73 1.75 3.86 8.18 1.66

101 5.86 7.79 1.09 5.83 7.76 1.09

102 4.84 8.34 1.32 5.21 8.98 1.22

103 3.94 4.8 1.62 4.17 5.08 1.53

107 3.56 3.68 1.79 3.99 4.13 1.6

109 3.91 4.51 1.63 4.13 4.75 1.54

111 5.91 6.99 1.08 6.21 7.35 1.02

115 2.74 6.62 2.33 2.57 6.19 2.49

117 2.11 7.84 3.03 2.11 7.86 3.02

118 2.54 4.61 2.51 2.86 5.2 2.23

119 2.29 4.5 2.78 2.61 5.12 2.45

expense of requiring more computations. The time complexity of the SPIHT encoder is

O(N logN) [63], while the matrix-vector multiplication of the CS encoder, Φx, requires

only O(N) operations when Φ is a random symmetric Bernoulli matrix [53]. Therefore,

the use of a CS encoder offers a substantial complexity reduction.

The difference in compression performance between wavelet transform-based

methods and CS-based methods was previously noted by Mamaghanian et al. [56],

who emphasized the substantial lower power consumption offered by CS-based meth-

ods. Even though the proposed algorithm does not outperform SPIHT in terms of

compression ratio, it offers better compression and reconstruction performance than

previously proposed CS-based methods for ECG compression, such as BPDN and BO-

BSBL.

There is significant variability among the set of ECG records, and therefore, it is

instructive to calculate the reconstruction performance of the proposed algorithms for

each ECG recording. The results are illustrated in Table II. For almost all the records,

MMB-IHT provides better performance than MMB-CoSaMP.
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2.5.5 Visual Evaluation

Finally, visual study of the reconstructed and error signals using the proposed

compression scheme is also presented. Two records with different clinical characteristics

are selected for the study: 118 and 119. Record 119 contains ventricular ectopic

heartbeats while the record 118 contains right bundle branch block heartbeats. The

results for a CR = 6.4 are shown in Fig. 2.9 for record 119 and in Fig. 2.10 for record

118. For the two records, the recovered signals are a good estimate of the original signals

and they preserve detailed information for clinical diagnosis. It should be noted that

the reconstructed signals using MMB-IHT exhibit less artifacts than the reconstructed

signals using MMB-CoSaMP.
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Figure 2.9: Visual evaluation of the reconstruction of record 119 using MMB-
CoSaMP and MMB-IHT. CR = 6.4. PRD=2.61 (MMB-CoSaMP),
PRD=2.29 (MMB-IHT).
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Figure 2.10: Visual evaluation of the reconstruction of record 118 using MMB-
CoSaMP and MMB-IHT. CR = 6.4. PRD=2.86 (MMB-CoSaMP),
PRD=2.54 (MMB-IHT).
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2.6 Conclusions

The universal applicability of compressed sensing to sparse signals lies in the fact

that no specific prior information about the signals is assumed, apart from the sparsity

condition. However, for a particular application, some prior information about the

signals is typically available. In this chapter, we showed that for the specific application

of compressed sensing to ECG compression, the appropriate incorporation of prior

information into the reconstruction procedures leads to more accurate reconstruction

and higher compression rates. More precisely, we exploit prior information on the

connected subtree structure formed by largest (in magnitude) wavelet coefficients and

the common support of the wavelet representation of consecutive ECG segments are

exploited. The model-based CoSaMP and model-based IHT algorithms are modified

to incorporate support knowledge from the previously reconstructed data sequence.

The tree-structured sparsity model is also modified to exclude the selection of atoms

from the lowest-energy wavelet subband. We justified the application of a model-based

compressed sensing approach with the fact that R wave events cause a connected

subtree structure of large magnitude wavelet coefficients. In addition, we also selected

an appropriate wavelet decomposition level to enable the formation of such structure.

The proposed scheme was evaluated for the compression of a set of eleven ECG

records from the MIT-BIH Arrhythmia Database encompassing a variety of signals with

different rhythms, wave morphologies and abnormal heartbeats. The experimental re-

sults were evaluated in terms of PRD and compression ratio. The proposed method

outperformed the results of previously proposed CS-based methods for ECG compres-

sion while still maintaining the low-complexity and energy-efficient implementation

inherent to CS-based approaches.
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Chapter 3

MULTI-SCALE DICTIONARY LEARNING FOR COMPRESSIVE

SENSING ECG

3.1 Introduction

Compressed sensing as applied to ECG utilizes the sparsity of ECG signals

to enable accurate reconstruction from undersampled data. Most prior work in CS

ECG has employed analytical sparsifying transforms such as wavelets. Even though

analytical and pre-defined transformations, such as wavelets, offer fast implementa-

tions and a highly sparse representation of natural signals, recent work on adaptively

learning the basis functions has demonstrated improved performance over analytical

functions [1, 33]. Motivated by this, sparse dictionary learning has recently been ap-

plied to ECG reconstruction. For instance, in [90], the authors used K-SVD [1] to

learn an overcomplete dictionary from the ECG data itself. Based on this dictionary,

the electrocardiogram was reconstructed using the orthogonal matching pursuit algo-

rithm [85]. Similarly, the authors in [35] also focused on reconstructing ECG signals

using dictionary learning algorithms. However, in this case, they used a family of iter-

ative least squares-based dictionary learning algorithms using block oriented dictionar-

ies, unrestricted overlapping dictionaries, and overlapping dictionaries with predefined

structure.

Recently, the idea of multi-scale dictionary learning was introduced in [60], in-

spired by the fact that natural signals frequently come at different scales. This approach

combines the advantages of multi-scale representations using wavelets with the benefits

of dictionary learning. In this chapter, we use multi-scale dictionary learning to create

a sparsifying transform for the ECG that allow us to exploit the correlation within each

wavelet subband and, subsequently, represent the data in a more efficient manner. The
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learned dictionary is later used in a block-based compressive sensing framework where

each wavelet subband is sampled and reconstructed independently.

3.2 Background and Related Work

This section gives an overview of the traditional dictionary learning problem

and of multi-scale dictionary learning using wavelets [60].

3.2.1 Traditional Dictionary Learning

We first describe the mathematical model for the dictionary learning problem.

Let Y = [y1 . . . yL] ∈ R
N×L denotes the set of N -dimensional training samples. The

classic methodology for constructing the overcomplete dictionary D = [d1 . . . dJ ] ∈
R

N×J (J > N) tries to solve the following optimization problem

argmin
X,D

‖Y −DX‖2F s. t. ‖xi‖0 < T, ∀i (3.1)

with X = [x1 . . . xL] ∈ R
J×L denoting the sparse codes of input signals Y , and T the

pre-specified sparsity threshold.

The Method of optimal directions [34] is essentially a dictionary learning algo-

rithm inspired by the generalized Lloyd algorithm (GLA) [38] and used to solve the

problem in (3.1). GLA is an iterative algorithm designed for optimizing vector quan-

tization codebooks. At each iteration, MOD alternates between sparse coding of the

examples based on the current dictionary and an update process for the dictionary

atoms so as to better fit the data.

In the dictionary update stage, MOD assumes the coefficient vector X as known,

and seeks an update of the dictionary that minimizes the mean square error given by

‖E‖2F = ‖[e1, e2, . . . , eN ]‖2F = ‖Y −DX‖2F . (3.2)
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Taking the derivative of the above formula with respect to D (X and Y are

fixed), (Y −DX)XT = 0, results in the following dictionary update expression

D(t+1) = Y X(t)T (X(t)X(t)T )−1. (3.3)

MOD derives the best possible dictionary in the mean square error sense for a fixed

coefficient matrix X .

In the sparse coding stage, D is fixed, and the problem reduces to searching for

sparse representations with coefficients summarized in the matrix X . The problem can

be decoupled to L distinct problems of the form

argmin
xi

‖yi −Dxi‖22 s. t. ‖xi‖0 < T, for i = 1, 2, . . . , L. (3.4)

In this chapter, problem (3.4) is addressed by using the orthogonal matching pursuit

algorithm [85] described in Section 1.4.3.2.

3.2.2 Multi-scale Dictionary Learning using Wavelets

Each atom in D can be expressed as a linear combination of pre-atoms extracted

from the wavelet synthesis matrix Ws, i.e. D = WsA. Based on this representation,

the learning problem can be expressed by the following modification to (3.1)

argmin
X,A

‖Y −WsAX‖2F s. t. ‖xi‖0 ≤ T, ∀i (3.5)

This model suggests that the data can be expressed by a sparse combination of atoms,

which are themselves combinations of atoms from the wavelet dictionary. Since Ws is

square and unitary, the optimization problem in (3.5) can equivalently be written as

argmin
X,A

‖WaY −AX‖2F s. t. ‖xi‖0 ≤ T, ∀i (3.6)

where Wa denotes the wavelet analysis operator (forward wavelet transform). The

signal representation in the wavelet domain can be seen as a collection of coefficient
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Figure 3.1: Block Diagram of the proposed method

subbands, and subsequently, we can train different subdictionaries Ab for each of these

subbands

∀b argmin
Ab,Xb

‖(WaY )b −AbXb‖2F s. t. ‖xi,b‖0 ≤ Tb, ∀i (3.7)

with b denoting the different wavelet coefficient subbands. Problem (3.7) can be solved

using the MOD algorithm.

3.3 Methods

This chapter proposes the reconstruction of ECG signals using a CS approach

where the dictionary is adaptively learned from ECG training data. The proposed

scheme is divided into two main stages: the dictionary learning stage and the CS stage.

Both stages require preprocessing of ECG signals, which refers to period normalization

of ECG cycles. The first step is the detection of the R peaks. Since each ECG cycle

may have a different duration, all cycles are normalized to the same length N by using

cubic-spline interpolation [70]. The original periods are sent to the decoder as side
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information since they are needed for the recovery stage. The normalized cycles are

organized column-wise in a matrix. The dictionary learning and the CS stage are

described thoroughly in this section. The block diagram of the proposed compression

scheme is presented in Fig. 3.1.

3.3.1 Dictionary Learning in the Wavelet Domain

After preprocessing the training data, we get a matrix Y ∈ R
N×L whose columns

correspond to normalized heartbeats. The length and the number of normalized ECG

cycles are denoted by N and L, respectively. For the dictionary learning, we first build

a matrix S ∈ R
N×L by applying the one-dimensional wavelet transform to each of the

columns in Y . That is, S = WacY , where the operator Wac is the one-dimensional

forward wavelet transform applied in a column-wise manner.

Assuming the wavelet decomposition level is B, the matrix S can be decom-

posed into B + 1 submatrices, each representing a different wavelet subband. That is

S = [S1 . . . SB+1]
T , where the first B submatrices, Sb ∈ R

N/2b×L, correspond to the

discrete wavelet coefficients at scales b = 1, . . . , B, and the submatrix SB+1 ∈ R
N/2B×L

corresponds to the approximation subband. For each wavelet subband Sb, a sub-

dictionary Ab is trained with a number of atoms Kb. The training is performed by

solving the following optimization problem with the MOD algorithm

∀b argmin
Ab,Xb

‖Sb −AbXb‖2F s. t. ‖xi,b‖0 < Tb, ∀i. (3.8)

where Xb = [x1,b . . . xL,b] ∈ R
Kb×L denotes the sparse code of the input signal Sb, and

Tb the pre-specified sparsity threshold.

3.3.2 Compressed Sensing Reconstruction of ECG Signals

As a result of preprocessing the ECG data, we obtain a matrix F ∈ R
N×P

whose columns correspond to normalized ECG cycles. N and P are the length and

the number of normalized ECG cycles, respectively. Let the operator Wsc be the one-

dimensional inverse wavelet transform applied in a column-wise manner, the matrix
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F can be expressed as F = WscV , where V ∈ R
N×P is the corresponding wavelet

representation.

As with matrix S in the dictionary learning stage, we can decompose V into

different wavelet subbands. That is V = [V1 . . . VB+1]
T , where the first B subma-

trices, Vb ∈ R
N/2b×P , b = 1, . . . , B, correspond to the wavelet coefficients at scales

b = 1, . . . , B, and the submatrix VB+1 ∈ R
N/2B×P corresponds to the approximation

subband.

The information we gather about Vb = [v1,b . . . vP,b], b = 1, . . . , B, can be de-

scribed by Gb = [g1,b . . . gP,b] = ΦbVb, where Φb is a mb × N/2b matrix, that needs to

satisfy the restricted isometry property [15] in order to recover Vb. It is known that

random matrices satisfy this condition with overwhelming probability. Here we assume

that the entries of the matrix Φb, b = 1, . . . , B, are independently sampled from the

normal distribution with mean zero and variance 1/mb. Similarly, the matrix VB can

be sampled with a random matrix ΦB ∈ mB × N/2B, such that GB = ΦBVB. The

effective matrix Φ, such that G = [G1 . . . GB+1]
T = ΦV , is a block diagonal matrix

whose diagonal elements correspond to Φb, b = 1, . . . , B + 1,

Φ =

















Φ1

Φ2

. . .

ΦB+1

















We propose to sample the matrix of normalized heartbeats, F , with the matrix

ΦWac. That is,

ΦWacF = ΦWacWscV

= ΦV = G
(3.9)

To further improve the compression and reduce the amount of redundant in-

formation, we use Huffman coding. An 9-bit optimal scalar quantizer designed with

the Lloyd-Max algorithm is utilized [38]. The matrices Vb, b = 1, . . . , B + 1, can be

sparsely represented using the dictionaries built in the dictionary learning stage, i.e.
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Vb = AbXb, where Xb = [x1,b . . . xL,b] denotes the corresponding sparse code. For the

reconstruction of the sparse codes, the basis pursuit algorithm with ℓ2 constraint is

employed as follows

min ‖xi,b‖1 s. t. ‖gi,b − ΦbAbxi,b‖2 ≤ ǫ, ∀i, 1 ≤ b ≤ B + 1 (3.10)

where ǫ bounds the amount of noise unavoidibly corrupting the data.

Each matrix Vb is reconstructed by calculating Vb = AbXb. The matrix of

normalized ECG cycles F is reconstructed by applying the one-dimensional inverse

wavelet transform to the columns of V , i.e. F = WscV . The original cycles are

recovered by using cubic spline interpolation [70].

3.4 Experimental Results

This section describes three experiments employed to evaluate the performance

of the proposed scheme. The ECG data in our experiments are from the MIT-BIH

Arrhythmia Database, sampled at 360 Hz with a resolution of 11 bits/sample. We use

the Daubechies db4 wavelets at decomposition level B = 3. The detail subbands are

denoted as V1, V2, and V3, while the approximation subband is denoted as V4. For our

simulations, results are averaged over 50 trials.

The PRD and CR are used as performance measures in the simulations. After

the preprocessing stage, all ECG cycles are normalized to the length N = 256. For the

dictionary learning stage, the training data are constructed as a set of L = 30N = 7680

ECG cycles from records 100, 102, 230, and 109. We execute the MOD algorithm for

a total of 50 iterations, training subdictionaries containing 3N atoms for both the

approximation subband, V4, and the detail subband at scale b = 3, V3. Since the

subdictionary for the detail subband at scale b = 2 needs to express a higher level of

variability than the ones for scales 3 and 4, we train a subdictionary with 4N atoms

for V2. The coefficients of the subband V1 are close to zero, and therefore there is

no significant need to sample them and recover their magnitude. Thus, we opt for

approximating the coefficients of V1 to zero.
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Figure 3.2: Comparison of CS-based methods using different dictionaries. ECG com-
pression is evaluated using PRD as a function of the compression ratio.

The proposed method is evaluated with 4000 ECG cycles that are not included

in the training set. Even though the length of the wavelet subbands decreases across

scales, we sample all the subbands Vb, b = 2, . . . , 4, with the same number of measure-

ments because the magnitude of the wavelet coefficients tends to increase across scales.

Each subband is sampled independently with matrices having i.i.d. entries drawn from

a standard normal distribution with normalized columns.

We compare our approach with the single-scale version of the proposed method,

which is described in [60]. We also compare the results with the CS reconstruction

using the standard wavelet basis as the sparsifying transform. In Fig. 3.2, the results

are shown in terms of the PRD as a function of the compression ratio. The error

bars indicate plus and minus one standard deviation across ECG records. Since the

objective is to attain accurate reconstruction of signals, the range of interest is restricted

to PRD values between 0 and 9. In this range, dictionary learning-based methods offer

better performance than the CS method that uses standard wavelet dictionaries. This

figure also shows that introducing multi-scale dictionaries in CS algorithms improves

the quality of the reconstruction of ECG signals compared to single-scale approaches.
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Evaluation of the reconstruction of each wavelet subband with the proposed

algorithm and comparison with the results of the single-scale and wavelet dictionaries

are also presented. For this experiment, we restrict our method to sampling and

reconstruction of the signals and exclude the quantization and entropy coding stages.

Figure 3.3 illustrates the results. The proposed approach provides the best performance

for all the different wavelet subbands. Of special interest is the performance attained

for V3 and V4, the wavelet subbands that accumulate most of the signal energy. The

proposed method achieves almost perfect reconstruction of these subbands when using

a number of measurements greater than 115.

In this work, visual study of error signals is also considered. Error signals

are calculated as the difference between original and reconstructed signals. In the

last experiment, the waveforms of record 100 produced by the proposed reconstruction

scheme are visually evaluated in Fig. 3.4. The reconstructed signal remains close to the

original signal and the error is equally distributed along the temporal axis. This implies

that the proposed method performs well locally and does not incorporate outliers in

the reconstruction.
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Figure 3.3: Reconstruction results of wavelet subbands V2, V3, and V4 using CS-based
methods with different dictionaries. (a) Approximation subband, V4. (b)
Detail subband V3. (c) Detail subband V2.
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Figure 3.4: Reconstruction of record 100 using using 65 measurements. PRD=4.35.
(a) Original signal. (b) Reconstructed signal. (c) Error signal.
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3.5 Conclusions

In this chapter, a novel CS-based method for the acquisition and reconstruc-

tion of the ECG is presented. The proposed scheme exploits the fact that different

wavelet subbands contain data at different scales to efficiently learn dictionaries for

sparse and redundant representation of ECG data. This chapter also proposes an

efficient acquisition method that allows for independent sampling of each wavelet sub-

band. Consequently, the number of measurements for each wavelet subband can be

selected according to the location of the largest wavelet coefficients. Simulation results

demonstrate the superior performance of the proposed approach as compared to other

CS-based methods, and also show dramatic reconstruction improvement of the wavelet

subbands that accumulate most of the signal energy.
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Chapter 4

A WEIGHTED ℓ1 MINIMIZATION ALGORITHM FOR COMPRESSED

SENSING ECG

4.1 Introduction

Compressive sensing, as detailed in previous chapters, has recently been applied

to ECG acquisition and reconstruction with the aim of lowering energy consumption

and sampling rates in WBANs for ambulatory ECG monitoring. However, most cur-

rent methods only adopt a sparse prior on the ECG wavelet representation, without

exploiting the rich structure of the ECG wavelet coefficients. In this chapter, we pro-

pose a reconstruction algorithm that goes beyond simply assuming that ECG signals

are compressible in a wavelet basis by exploiting the a priori statistical information

that ECG signals exhibit in the wavelet domain.

Recent works have exploited the incorporation of prior information about the

signal of interest into CS-based reconstruction algorithms. In [3], for instance, a con-

nected tree structure was assumed in the wavelet domain, which restricted the class of

signals that could be reconstructed to be piecewise smooth. A different approach was

proposed by He et al. [40], in a work that imposed the structure statistically using a

Bayesian prior, instead of making an explicit imposition of the coefficients structure.

In [17], we showed that iterative CS algorithms can be easily modified to incorporate

known support in the recovery process.

A latent problem when trying to reconstruct ECG signals using CS-based meth-

ods is the inability to accurately recover the low-magnitude coefficients of the wavelet

representation [93]. To alleviate this problem, we propose to incorporate prior in-

formation about the magnitude decay of the wavelet coefficients across subbands in

the reconstruction algorithm. More precisely, we derive a weighted ℓ1 minimization
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algorithm, based on a MAP approach, with a weighting scheme based on the stan-

dard deviation of the wavelet coefficients at different scales. In addition, the weighting

scheme also takes into consideration the fact that the approximation subband coeffi-

cients accumulate most of the signal energy. Experimental results on ECG records from

the MIT-BIH Arrhythmia Database validate the superior performance of the proposed

algorithm, in terms of reconstruction quality and number of measurements, compared

to current CS-based methods with application to wireless ECG systems.

4.2 Motivation and Background

4.2.1 Problem Formulation

Let x ∈ R
N and Ψ ∈ R

N×N be an ECG signal and a wavelet basis, respectively.

Thus, signal x can be well approximated by a linear combination of a small set of

vectors from Ψ, i.e. x ≈ ∑K
i=1 siψi, where K ≪ N . Let Φ be an M × N sensing

matrix, M < N . The problem addressed in this chapter is the recovery of x from

undersampled linear measurements of the form y = Φx + n = ΦΨs + n, where n

accounts for the additive Gaussian sampling noise. If we define Θ = ΦΨ, then the

measurement vector becomes y = Θs + n. As described in previous chapters, the

reconstruction of s is typically attained via the BPDN algorithm:

min
s

1

2
‖y −Θs‖22 + λ‖s‖1, (4.1)

with λ a parameter that controls the trade-off between sparsity and reconstruction

fidelity. Problem (4.1) can be viewed as a MAP estimate for s under the assumption

that each component of s is drawn i.i.d. from a Laplace prior [52].

4.2.2 Wavelet representation

Given a scaling function ϕ and a wavelet function ψ, the wavelet representation

of x can be expressed in terms of shifted versions of ϕ and shifted and dilated versions
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of ψ

x =

N1−1
∑

i=0

a1,iϕ1,i +

L
∑

j=1

Nj−1
∑

i=0

dj,iψj,i, (4.2)

where j denotes the scale of analysis and L indicates the finest scale. Nj = N/2L−j+1

corresponds to the number of coefficients at scale j ∈ {1, . . . , L} and i represents the

position, 0 ≤ i ≤ Nj − 1. The wavelet transform consists of the scaling coefficients

a1,i and wavelet coefficients dj,i. Using vector notation, we write x = Ψs, where s =

[a1,1 . . . a1,N1−1d1,0 . . . d1,N1−1 . . . dL,0 . . . dL,NL−1]
T is the vector of scaling and wavelet

coefficients and Ψ is the orthogonal matrix containing the wavelet and scaling functions

as columns. The vector s can be decomposed into L+1 subvectors. The first subvector

corresponds to the scaling coefficients and is denoted as a1. The next L subvectors are

denoted by dj, j = 1, . . . , L, and the jth subvector contains all of the wavelet coefficients

for scale j. Thus, s can also be written as s = [a1d1d2 . . . dL]
T .

4.2.3 Motivation

The optimization problem in (4.1) only considers the sparsity of the ECG

wavelet representation and, therefore, it does not exploit all of the rich structure

present in the ECG wavelet representation. Recent CS efforts show that the incor-

poration of prior knowledge into standard sparse recovery algorithms can boost their

performance [17, 89]. Along these lines, we aim to find properties of the ECG wavelet

representation that can be incorporated into CS-based algorithms to improve the re-

construction and reduce the number of necessary measurements.

An experiment is performed to evaluate the recovery of ECG signals when only

the sparsity property is exploited in the reconstruction. The selected signal, denoted

as x and illustrated in Fig. 4.1(a), corresponds to a sequence of the record 117 from the

MIT-BIH Arrythmia Database, formed by N = 2048 samples. Figure 4.1(b) presents

its corresponding wavelet representation, using Daubechies-4 and a decomposition level

L = 5. The dotted lines indicate the separation between consecutive wavelet subbands.

Note that the approximation subband accumulates most of the signal energy. The
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Figure 4.1: Reconstruction of ECG signals using BPDN (a) Original signal. (b)
Wavelet representation. (c) Relative error signal.

sparsity level is selected as the number of coefficients that accumulates 99.99% of

the signal energy, which corresponds to K = 210 for the selected sequence. The

sequence is sensed with a random CS matrix satisfying the RIP, and with the number

of measurements set asM = 630. The reconstruction is performed with the traditional

BPDN algorithm presented in (4.1) and the performance, in terms of the relative

reconstruction error, is illustrated in Fig. 4.1(c). The relative reconstruction error is

defined as (x − x̂)/x, where x̂ is the recovered signal. From Fig. 4.1(c), it is noted

that the error in the reconstruction of the detail subbands d4 and d5 has the highest

magnitude, which is detrimental for medical diagnosis purposes.

The unsatisfactory performance of BPDN in reconstructing ECG signals mo-

tivates the development of new CS-based algorithms for ECG reconstruction. This

chapter aims at advancing CS ECG by exploiting two properties of the ECG wavelet
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representation. More precisely, we exploit the fact that the approximation subband

coefficients accumulate most of the signal energy and that the magnitude of the detail

wavelet coefficients decreases across scales.

4.3 Methods

The same compression scheme presented in Chapter 2.4 and illustrated in Fig. 2.3

is employed here. The entries of the sampling matrix Φ are independently sampled from

a symmetric Bernoulli distribution (P(Φi,j = ±1/
√
M = 1/2)) to facilitate an efficient

hardware implementation [21]. An 8-bit optimal scalar quantizer designed with the

Lloyd-Max algorithm is utilized. The contribution of this chapter is the reconstruction

algorithm, which is different from that presented in Chapter 2.4.

An important property of CS is its ability to reconstruct signals in total blind-

ness of any structure beyond standard sparsity on a given basis. However, this property

does not discard the possibility of adapting or optimizing the CS recovery process to

the specific signal at hand in order to reduce the number of measurements needed to

faithfully represent it. This section aims to reconstruct the vector s from the measure-

ments y = Θs+ n, where n is the noise corrupting the data. A maximum a posteriori

(MAP) approach is proposed for the reconstruction of s. To favor a sparse estimate,

a Laplacian distribution with standard deviation σi is adopted for each entry si of s;

that is

p(si) =
1√
2σi

exp

(

−
√
2‖si‖1
σi

)

. (4.3)

The entries of s are assumed to be independent. The noise n is modeled as independent

and Gaussian with zero mean and variance equal to σ2
n. To infer s from y, we maximize

the conditional probability distribution p(s|y,Θ), which can be expressed by means of

Bayes’s rule as

p(s|y,Θ) ∝ p(y|Θ, s)p(s). (4.4)

Because the noise is assumed to be Gaussian, the likelihood function is given by
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p(y|Θ, s) ∝ exp (−‖y −Θs‖22/(2σ2
n)). Therefore, maximizing the posterior distribu-

tion p(s|y,Θ) leads to

sMAP = argmax
s

p(s|y,Θ) (4.5)

= argmax
s

(

log p(y|Θ, s) +
∑

i

log p(si)

)

(4.6)

= argmin
s

(

‖y −Θs‖22
2σ2

n

+
∑

i

√
2‖si‖1
σi

)

. (4.7)

The problem in (4.7) can also be expressed as

sMAP = argmin
s

(

1

2
‖y −Θs‖22 + λ‖Ws‖1

)

, (4.8)

where W is a diagonal matrix, whose ith diagonal element is of the form 1/σi, and λ

is a tuning parameter. This problem is equivalent to BPDN when all σi are equal.

The solution of problem (4.8) requires the standard deviations for each coeffi-

cient of the wavelet representation, which are unknown in our case. To cope with this

issue, we propose to model the variance variation across scales with exponential decay

functions. As presented in Section 4.2.3, the detail wavelet coefficients of ECG signals

tend to decrease across scales, and this behavior can be enforced by modeling the vari-

ances so that they decay exponentially as the scale becomes finer. This corresponds to

the model proposed by Romberg et al. [79]:

σ2
j = C2−jα j = 1, . . . , L, (4.9)

where C and α are the model parameters and j is the scale of analysis. In this model,

the σi, i = 1, . . . , N values are made equal for all coefficients within a scale, and

therefore, σ2
j refers to the variance of the coefficients at scale j.

Define W ⋆ =
√
CW and λ⋆ = λ/

√
C. Then, problem (4.8) can be reformulated
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as the following ℓ1 weighted minimization

sMAP = argmin
s

(

1

2
‖y −Θs‖22 + λ⋆‖W ⋆s‖1

)

, (4.10)

where λ⋆ is regarded as a tuning parameter. Using eq. (4.9) and the fact that each

diagonal entry of W satisfies Wi,i = 1/σi, we infer that the diagonal elements of W ⋆

corresponding to scale j are of the form 2jα/2. Traditional ℓ1 minimization is therefore

a special case where these standard deviations are assumed to be equal.

As presented in Chapter 4.2.3, the approximation subband coefficients accu-

mulate most of the signal energy and, therefore, should be included in the sparse

representation of the ECG. To exploit this property, we employ an approach similar

to that of Vaswani et al. [89] to reconstruct a sparse signal when part of the support

is known a priori. This approach consists of finding the signal that satisfies the data

fidelity constraint and is the sparsest outside of the known support. In our approach,

this idea is implemented by setting to zero the diagonal entries of W ⋆ corresponding

to the approximation subband, i.e.. W ⋆
i,i = 0 for i = 1, . . . , N1.

As the diagonal entries ofW ⋆ only depend on the value of α, problem (4.10) can

be solved after α is calculated. This leads to the need for a training stage to estimate

the value of α. The first step in this training estimates the standard deviations σj ,

j = 1, . . . , L using maximum likelihood estimation. Once the variances are estimated,

simple linear regression is employed to solve for α in the following equation, derived

from (4.9),

log2σ
2
j = log2C − jα, j = 1, . . . , L. (4.11)

4.4 Experimental Results

To validate the proposed method, the MIT-BIH Arrythmia Database [39] is

employed for both training and testing. The data set proposed by Lu et al. [54] is

used in our experiments. It consists of records 100, 101, 102, 103, 107, 109, 111, 115,

117, 118 and 119, which encompasses a variety of signals with different rhythms, QRS
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Figure 4.2: Scatter plot of j versus log2σ
2
j and fitted regression line.

complex morphologies and ectopic beats. The length of the sliding window is set to

N = 2048, a commonly used segment length value for ECG processing. The orthogonal

Daubechies-4 wavelets is employed as the sparsifying transform and the decomposition

level is set to L = 5.

The reconstruction SNR and the PRD are employed as performance measures

for experiments. The first experiment aims at finding the parameter α in (4.11) through

simple linear regression. The training data consists of the wavelet representation of 330

ECG sequences of length N = 2048 from the selected set of records; 30 sequences per

record. Let cj denote the vector formed by the concatenation of the wavelet subbands

from the training data at scale j. The standard deviations σj , j = 1, . . . , L, are

first calculated using the maximum likelihood estimate of the standard deviation of a

Laplacian distribution,

(σj)ML =

√
2‖cj‖1
Pj

j = 1, . . . , L, (4.12)

where Pj refers to the dimension of cj. Figure 4.2 shows the scatter plot with scale j

displayed on the horizontal axis and log2 σ
2
j on the vertical axis. The continuous line
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in Fig. 4.2, with slope −α = −1.62, corresponds to the fitted regression line.

The second experiment is performed to compare the proposed reconstruction

algorithm with the BPDN algorithm, which is the reconstruction algorithm selected

by Mamaghanian et al. [56], Dixon et al. [26], and Chen et al. [21] for the recovery

of ECG signals. The experiment is carried out and averaged over 10-min long single

leads extracted from the selected set of records. Results are shown in Fig. 4.3. The

reconstruction SNR is used to evaluate the quality of the recovered signals as a function

of the number of measurementsM . The measurements are corrupted by additive white

Gaussian noise with σr = 0.05. Chen et al. [22] proposed to set the tuning parameter

to the value λ = σr
√

2log(N). The same criteria is adopted for the selection of the

tuning parameters in our experiments. The results of the entire compression scheme,

including redundancy removal of measurements, quantization, and Huffman coding, are

presented in Fig. 4.4. The error bars indicate plus and minus one standard deviation

across ECG records.

As shown in Figs. 4.3 and 4.4, the proposed algorithm outperforms the tra-

ditional BPDN algorithm as it requires fewer measurements while achieving superior

reconstruction quality. These results are expected as the proposed method exploits

prior knowledge of the signal structure, unlike BPDN, which only leverages the signal

sparsity.
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Figure 4.3: Comparison of the proposed method with BPDN.
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4.5 Conclusion

This chapter proposes an ECG signal reconstruction scheme based on a weighted

ℓ1 minimization method. The proposed weighting scheme allows the efficient use of in-

formation on two important properties of the ECG wavelet representation: energy

concentration in the approximation subband and exponential magnitude decay of the

detail coefficients across scales. The proposed algorithm was evaluated for the recon-

struction of a set of eleven ECG records from the MIT-BIH Arrhythmia Database

encompassing a variety of signals with different rhythms, QRS complex morphologies

and ectopic beats. Results show significant performance gains over the traditional basis

pursuit denoising algorithm.
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Chapter 5

COMPRESSIVE SENSING FOR ECG SIGNALS IN THE PRESENCE

OF ELECTROMYOGRAPHIC NOISE

5.1 Introduction

Existing works on the CS to the ECG ignore the presence of real noise that

severely affects the reconstruction. Of particular interest is the electromyographic

(EMG) noise, which is difficult to remove due to the significant overlapping of its

spectral content with that of the ECG. Electromyographic noise is caused by the con-

traction of other muscles besides the heart. When other muscles in the vicinity of

the electrodes contract, they generate depolarization and repolarization waves that

can also be captured by the ECG sensors. Electromyographic noise is unavoidable in

ambulatory ECG monitorirng, which requires recording of the heart electrical activity

without interrupting the daily life activities of the user. In this scenario, each move-

ment may result in large disturbance and noise in the recorded signal. This chapter

presents a CS-based method to reconstruct ECG signals in the presence of EMG noise.

A variety of algorithms have been proposed for EMG noise removal [50, 64, 83].

Since ECG signals are quasi-periodic, ensemble averaging has been proposed for EMG

suppression [50]. However, this method is restricted to one particular QRS morphol-

ogy at a time and requires a large number of heartbeats. A different approach for

EMG noise removal employs time-varying lowpass filtering using a filter with variable

frequency response [83]. A third approach for suppression of EMG interference on the

ECG, based on the application of the discrete cosine transform in conjunction with

singular value decomposition, is proposed in [64].

White Gaussian noise is usually employed to model EMG signals. Muscle noise

however, frequently shows an impulsive behavior. Thus, the Gaussian model fails to
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accurately represent the EMG noise distribution. This impulsive behavior of muscle

artifacts distorts low-amplitude ECG wave components, such as the P wave. Impul-

siveness is more evident in recordings acquired during exercise and sports practice [64].

As a better fitting model for EMG noise, the α-stable distribution was introduced

in [61]. In this chapter, the symmetric α-stable (SαS) distribution is used to model

the EMG interference and the proposed reconstruction algorithm is based on fractional

lower-order moments, which efficiently deal with the large variance of the noise. Sev-

eral studies have shown that the family of α-stable distributions, and particularly the

class of SαS distributions, is a powerful statistical tool for modeling highly impulsive

signals [46, 49].

To the best of our knowledge, the family of SαS distributions has never been

employed to model measurement noise in a CS framework due to the lack of closed-

form expressions for the density functions and the lack of well-defined second-order

statistics. Most algorithms for reconstruction of sparse signals from noisy compressive

measurements provide bounds for the ℓ2 reconstruction error based on the assumption

that the noise is Gaussian, bounded, or has finite variance [46, 49]. However, such

assumption does not apply for heavy-tailed processes exhibiting very large or infinite

variance.

Recent works address the recovery of sparse signals from measurements cor-

rupted by impulsive noise. In [18], Carrillo et al. proposed a non-convex reconstruction

algorithm based on robust statistics theory that seeks a solution that minimizes the ℓ1

norm subject to a nonlinear constraint based on the Lorentzian norm. The drawback

of this method is that it is computationally slow and complex. Robust versions of

CoSaMP, IHT, and OMP, using robust weighting of the residuals and robust regres-

sion, in place of least squares regression, was shown to succeed in the reconstruction of

sparse signals in the presence of impulsive noise. A more recent work [45] proposes a

Bayesian approach for the reconstruction of sparse signals in the presence of impulsive

noise. This approach is based on Bayesian theory, robust statistics, and fast relevance

vector machine methods.

76



Our proposed reconstruction algorithm for ECG signals in the presence of muscle

artifacts seeks a solution that minimizes the ℓp norm of the noise subject to a constraint

on the ℓ0 norm of the sparse representation of the ECG, thereby defining a feasible

set that diminishes the effect of gross errors. The proposed method is validated using

real EMG data from the MIT-BIH Noise Stress Test Database and ECG data from the

MIT-BIH Arrhythmia Database [39].

5.2 Background

5.2.1 Noise in Ambulatory ECG

Ambulatory ECG recordings are usually contaminated by both biologic and

environmental sources. Examples of environmental noise include the 60 (or 50) Hz

interference and its harmonics generated by power lines, instrumentation noise, and

radio-frequency and electrosurgical noise. Examples of biologic interference include

the baseline wander mainly caused by respiration, motion artifact, and electromyogram

caused by the muscle activity.

Electromyographic noise is usually the most difficult form of noise to remove

from ambulatory ECG signals. One of the reasons is that the spectrum of the EMG

overlaps that of the ECG, particularly in the 0.01 Hz-100 Hz frequency range. Another

difficulty is that the EMG morphology is similar to that of the P, QRS, and T waves.

Figure 5.1 shows a muscle artifact record from the MIT-BIH Noise Stress Test Database

of 120-second duration.
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Figure 5.1: Muscle artifact record from the MIT-BIH Noise Stress Test Database.

5.2.2 Review of SαS Distributions

A class of SαS distributions can be characterized by their distribution having

a characteristic function given by the exponential

exp(iδt− γ|t|α), (5.1)

where α is the characteristic exponent restricted to the range 0 < α ≤ 2, δ is the

real-valued location parameter, γ is the dispersion of the distribution that determines

the spread of the density around its location parameter. The characteristic exponent α

controls the heaviness of the distribution tails. Thus, SαS random variables with small

α values are highly impulsive. Note that the case of α = 2 corresponds to Gaussian

random variables.

An important characteristic of SαS distributions with α < 2 is the infinite

second-order moments. Consequently, all moments of order p < α are defined and

are called fractional lower-order moments (FLOMs). In particular, the FLOMs of

78



X ∼ fα(γX , δ = 0) are given by

E{|X|p} = (C(p, α)γX)
p, 0 < p < α, (5.2)

where

(C(p, α))p =
Γ(1− p

α
)

cos(π
2
p)Γ(1− p) (5.3)

From (5.3), we get an expression for the dispersion of X of the form

γX = (E{|X|p})1/p(C(p, α))−1 (5.4)

5.3 Robust Reconstruction Algorithm

5.3.1 Problem Formulation

The additive noise model of the acquired ECG signal is

x = x0 + n, (5.5)

where n is the EMG noise and x0 is the original signal, represented by a linear superpo-

sition of K elements of an orthonormal wavelet basis, Ψ. That is x0 =
∑K

i=1 siψi = Ψs.

If we consider linear random measurements as in the traditional CS literature, then

y = Φx0 + r, (5.6)

with r = Φn. From the properties of SαS distributions, if X ∼ fα(γX , 0) and Y ∼
fα(γY , 0) are independent SαS random variables, then

cX ∼ fα(|c|γX, 0) (5.7)

for c 6= 0 and X + Y ∼ fα((γ
α
X + γαY )

1/α, 0). Thus, it follows that r is also SαS

distributed with the same α as n.
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The dispersion parameter of SαS distributions, defined in (5.4), is closely re-

lated to the variance of Gaussian distributions in the sense that it is also a measure of

the spread of the variable. From (5.4), we know that the dispersion depends linearly

on the fractional lower-order moments. Therefore, minimizing the pth FLOM of a

SαS-distributed random variable r results in the minimization of the dispersion of its

distribution. The proposed algorithm for the reconstruction of ECG signals contam-

inated by EMG noise corresponds to an optimization problem that minimizes the ℓp

norm of the residual error subject to an sparsity constraint as follows

min
s∈RN

‖y − ΦΨs‖pp s. t. ‖s‖0 ≤ ǫ, (5.8)

where ǫ is a sparsity threshold. For choosing the value of p, we use the method pro-

posed in [86], which is based on minimizing the standard deviation of a FLOM-based

covariation estimator.

5.3.2 An Iterative Reweighted Least Squares Approach

Iterative reweighted least squares has been successfully applied to the recovery

of sparse signals [20]. In this chapter, we propose to use an iterative reweighted least

squares approach to replace the ℓp norm of equation (5.8) by a weighted ℓ2 norm.

First, a diagonal matrix W ∈ R
N×N is defined. Each diagonal element of W is of the

form Wi = |ri|(p−2)/2, where ri corresponds to the ith element of the residual vector

r = y−ΦΨs. This definition of the matrix W leads to the replacement of the ℓ2 norm

of the weighted residual to the ℓp norm of the residual, ‖Wr‖22 = ‖r‖pp. Therefore,

problem (5.8) can be reformulated as

min
s∈Rn
‖W (y − ΦΨs)‖22 s. t. ‖s‖0 ≤ ǫ, (5.9)

Given that p−2 is negative, the weights Wi are undefined whenever ri = 0. The

traditional approach for dealing with this kind of problem is to add a small δ > 0 to the

residual. The same approach is adopted in this chapter. Also, note that 0 ≤ Wi < 1
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since the range of p is 0 < p < 2. As expected, the weights tend to zero for large

residual error components.

5.3.3 Algorithm

An IHT algorithm is employed to solve the problem in (5.9). Let s(0) = 0 and

use the recursion

s(t+1) = HK−L(s
(t) + µg(t)) (5.10)

where HK−L(·) is a non-linear operator that sets to zero all the elements other than

the L coefficients in the low-pass approximation wavelet subband together with the

largest K − L remaining elements, µ is a step size, t is the iteration index, and

g = −∇s‖W (y − ΦΨs)‖22 (5.11)

= (ΦΨ)TW 2(y − ΦΨs) (5.12)

is the negative gradient of the objective function. The thresholding operator HK−L(·)
ensures the selection of the subband that accumulates the majority of the signal energy

at each iteration. The computational complexity of (5.10) is identical to the complexity

of the traditional IHT (1.18), except for the additional cost of the multiplication by

the matrix of weights.

Let Γ(t) denote the support of s(t). It is assumed that Γ(t) corresponds to the right

support. Therefore, the objective becomes the minimization of ‖W (y−(ΦΨ)Γ(t))sΓ(t)‖22,
where sΓ(t) denotes the entries of vector s corresponding to the set of indices Γ(t). A

gradient descent approach using the iteration

s
(t+1)

Γ(t) = s
(t)

Γ(t) + µ(ΦΨ)TΓ(t)W
(t)2(y − (ΦΨ)Γ(t)s

(t)

Γ(t)) (5.13)

is employed to solve this minimization problem. If the support is fixed, the optimal

81



step size is easily calculated as the value of µ that minimizes the objective function

‖W (t)(y − (ΦΨ)Γ(t))s
(t+1)

Γ(t) ‖22 (5.14)

at each iteration. That is,

µ(t) =
‖g(t)

Γ(t)‖22
‖W (t)(ΦΨ)Γ(t)g

(t)

Γ(t)‖22
. (5.15)

We propose to calculate the step size using (5.15) at each iteration and update s(t+1)

as follows

s(t+1) = HK−L(s
(t) + µ(t)g(t)). (5.16)

If the support of s(t+1) differs from the support of s(t), then the optimality of µ(t) is no

longer guaranteed. If

‖y − (ΦΨ)s(t+1)‖pp > ‖y − (ΦΨ)s(t)‖pp, (5.17)

we use a backtracking algorithm that sets µ(t) ← µ(t)/2 until a decrease in the objective

function of (5.8) is observed.

5.4 Experimental Results

Experiments are carried out over a 10-min long single-ECG lead from the MIT-

BIH Arrhythmia Database. The EMG noise is taken from the MIT-BIH Noise Stress

Test Database, which contains three half-hour recordings of noise typical in ambulatory

ECG recordings. Simulated noisy records with different SNR values are generated by

scaling the noise records from the MIT-BIH Noise Stress Test Database and adding

them to the ECG signals from the MIT-BIH Arrhythmia Database.
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The normalized mean square error (NMSE) and the reconstruction SNR (R-

SNR) are used as performance measures. The NMSE is defined as

NMSE =
‖x− x̂‖22
‖x‖22

, (5.18)

where x and x̂ denote the N -dimensional original and reconstructed signals, respec-

tively. The reconstruction SNR is defined as

R-SNR = 10log10
‖x‖22
‖x− x̂‖22

. (5.19)

All the results are averaged over the set of records 117, 100, 115 and 119. The

signal is sampled and recovered in a block-by-block manner. The length of each block

is set to N = 1024. Bernoulli sensing matrices are employed and Daubechies db4

wavelets are used as the sparsifying transform. The results are averaged over one

hundred different realizations of the sensing matrix.

In the first experiment, the performance of the proposed algorithm is compared

with iterative hard thresholding with partially known support (IHT-PKS) [19]. Unlike

the least squares IHT (1.18), IHT-PKS uses a thresholding operator HK−L(·) that

ensures the selection of the approximation wavelet subband at each iteration. That

is, the thresholding operator of IHT-PKS is the same as the thresholding operator of

the proposed algorithm. The SNR of the noisy input signal is set to 10 dB while the

number of samples is varied. The result of this experiment is shown in Fig. 5.2(a). The

proposed method is preferred since it outperforms IHT-PKS in the reconstruction of

ECG signals.

The proposed algorithm is also compared with IHT-PKS when the SNR of the

input signal is varied from 6 dB to 18 dB and the number of measurements is fixed to

M = 320. In Fig. 5.2(b), the proposed algorithm exhibits superior performance even

when the acquired signals are highly contaminated with EMG noise.

Figure 5.3 illustrates the reconstruction of record 117 when contaminated with
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EMG noise at an SNR of 16 dB. The number of measurements for this experiment is set

to M = 640. Figure 5.3 (a) and (b) show the original record and the corrupted record,

respectively. Figure 5.3 (c) shows the recovered signal, which attains a R-SNR of 23

dB. The proposed recovery algorithm removes the impulsiveness of the contaminated

signal and attains accurate reconstruction.
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Figure 5.2: Comparison of the proposed method with IHT-PKS.
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Figure 5.3: Visual evaluation of the reconstruction of record 117 using the proposed
recovery algorithm.
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5.5 Conclusions

This chapter develops an algorithm to reconstruct ECG signals contaminated

by EMG noise from compressive measurements. This type of noise is a serious limita-

tion in ambulatory ECG recording systems since each movement may result in large

disturbance. Modeling the noise as symmetric α-stable and using an ℓp-based iterative

hard thresholding algorithm for ECG reconstruction lead to superior recovery perfor-

mance compared to the least squares iterative hard thresholding. Simulation results

with ECG records from the MIT-BIH Arrhythmia Database and muscle artifacts from

the MIT-BIH Noise Stress Test Database are presented.
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Chapter 6

EXPLOITING RESTRICTED BOLTZMANN MACHINES AND DEEP

LEARNING ARCHITECTURES IN COMPRESSED SENSING

WIRELESS ECG SYSTEMS

6.1 Introduction

In this chapter, we aim at reducing the number of necessary measurements

to achieve faithful ECG reconstruction by exploiting the representational power of

restricted Boltzmann machines (RBMs) and deep belief networks (DBNs) to model

the probability distribution of the sparsity pattern of ECG signals. The determined

probability distribution is then employed in a MAP approach for the reconstruction.

Exact solution of the MAP estimator can become computational unfeasible since the

complexity increases exponentially with the signal length. To overcome this limitation,

we propose an orthogonal matching pursuit–based algorithm to maximize the posterior

distribution of the sparsity pattern. The motivation for using this approach is to

capture the higher-order statistical dependencies between the coefficients of the ECG

sparse representation, which in turn, leads to superior reconstruction accuracy and

reduction in the number of measurements, as it is shown via experiments.

There are two main reasons for using RBMs and DBNs. First, they possess

tremendous representational power and, second, inference and parameter learning are

easily achieved [7,51,82]. Indeed, Le Roux et al. [51] showed that a RBM can model any

discrete distribution and that adding hidden units yields strictly enhanced modeling

performance unless the RBM already perfectly models the data. Similarly, Sutskever et

al. [82] showed that deep belief networks can approximate any distribution over binary

vectors to an arbitrary level of accuracy, even when the width of each layer is limited to

the dimensionality of the data. Deep belief networks are the main architectures in deep

88



learning, the new ground breaking paradigm in artificial intelligence [7]. Therefore,

this chapter links deep learning with CS by exploring the capabilities of deep learning

architectures in modeling the statistical dependencies in the sparsity pattern of ECG

signals.

In this chapter, overcomplete dictionaries and wavelets are selected to sparsely

represent ECG signals. Even though the bulk of CS theory has been developed for

signals that have a sparse representation in an orthonormal basis, recent efforts have

been made to extend CS theory to signals that are sparse with respect to an overcom-

plete dictionary [31, 32, 78]. The coherence between the columns of an overcomplete

dictionary poses some limitations in extending the CS theory to sparse overcomplete

representations [27, 78]. However, Raught et al. [78] showed that CS is viable in the

context of signals that are sparse in an overcomplete dictionary. They studied the con-

ditions on the overcomplete dictionary that, in combination with a random sampling

matrix, results in small restricted isometry constants.

Training of the dictionaries results in a set of sparse codes associated with the

training data, which are often discarded after training since the main interest lies

in the dictionary. Instead, we propose to utilize the sparse codes support to train

either a RBM or a DBN, which is later used by a CS reconstruction algorithm that

fully exploits the model. The reason for incorporating deep learning architectures into

the reconstruction is to exploit higher-order dependencies between sparse coefficients.

The proposed scheme falls within the structured CS framework [30], which aims at

exploiting signal structure by considering more elaborate priors that go beyond the

simplistic sparsity prior. Even though ECG signals have a rich structure, most of the

previous CS ECG works only exploit signal sparsity.

The performance of the proposed scheme is evaluated using the MIT-BIH Arry-

thmia Database [39]. Experimental results include comparisons with the BPDN algo-

rithm, the most widely used reconstruction algorithm in the CS ECG literature [26,56].

Experiments are also performed with the BO-BSBL algorithm [93], and with the model-

based CoSaMP and model-based Iterative Hard Thresholding algorithms [75] in order
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to compare with other CS reconstruction algorithms that also exploit signal structure.

Simulation results indicate that the proposed algorithm offers superior reconstruction

accuracy for the low-measurement regime.

6.2 Background on Deep Belief Networks and Restricted Boltzmann Ma-

chines

Deep learning is the new ground breaking paradigm in artificial intelligence [7].

It aims at learning hierarchical feature representations with higher level features formed

by the composition of lower level features. Deep learning is inspired by biological

structures in human brain mechanisms for processing of natural signals. The most

extensively investigated and widely deployed deep learning architecture, the DBN [42],

is presented in this section.

Restricted Boltzmann machines are the building blocks of DBNs. They are

probabilistic generative models that learn a joint probability distribution of training

data. A RBM is composed of a single visible layer and a single hidden layer. The visible

units v = [v1v2 . . . vJ ]
T correspond to the input variables of the data that needs to be

modeled. The hidden units h = [h1h2 . . . hP ]
T are trained to capture higher-order data

correlations that are observed at the visible units. Symmetric connections between

the layers are represented by a weight matrix W . The structure of a RBM forms a

bipartite graph, as shown in Fig. 6.1(a).

In a RBM, units within the same layer are not connected. Therefore, the pos-

terior distribution over hidden vectors factorizes into a product of independent distri-

butions for each hidden unit. The RBM parameters can be optimized by performing

stochastic gradient ascent on the log–likelihood of training data. Given that comput-

ing the exact gradient of the log–likelihood is intractable, the contrastive divergence

approximation [43] is typically employed.

In a RBM, the joint distribution p(v, h) over the visible units v and the hidden

units h is defined as

p(v, h) =
exp(−E(v, h))

Z
, (6.1)
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where E(v, h) is the energy function and Z =
∑

v

∑

h exp(−E(v, h)) is the normaliza-

tion term. For a Bernoulli (visible)–Bernoulli (hidden) RBM, the energy function takes

the form

E(v, h) = −vTWh− bTv v − bThh, (6.2)

where W denotes the weights between visible and hidden units, and bv and bh are the

bias terms. The conditional distributions over hidden and visible units take the form

p(hj = 1|v) = σ((bh)j +W T
·j v), (6.3)

p(vi = 1|h) = σ((bv)i +Wi·h), (6.4)

where σ(x) = (1 + e−x)−1, and W·j and Wi· correspond to the jth column and ith row

of matrix W , respectively.

A DBN architecture is composed of a stack of RBMs. The lowest–level RBM

learns a shallow model of the data. The RBM at the next level captures high–order

correlations between the hidden units of the first, and so on. A DBN with L layers

models the joint distribution between the visible layer v and the hidden layers hl,

l = 1, . . . , L as follows

p(v, h1, . . . , hL) = p(v|h1)
(

L−2
∏

l=1

p(hl|hl+1)

)

p(hL−1, hL). (6.5)

The log-probability of the training data can be improved by adding layers to the net-

work, which, in turn, increases the true representational power of the network [42].

Let v = h0. The bias vector of layer l and the weight matrix that represents the

connections between layer l− 1 and layer l are denoted by bhl and W l, respectively. A

schematic representation of a DBN with one visible and three hidden layers is shown

in Fig. 6.1(b). The top two layers form a restricted Boltzmann machine, which is an

undirected graphical model, and the lower layers form a directed generative model.
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Figure 6.1: (a) Schematic of a restricted Boltzmann machine. (b) Schematic of a
deep belief network of one visible and three hidden layers.

The main breakthrough introduced by Hinton et al. [42] was a greedy, layer–wise

unsupervised learning algorithm that allows efficient training of DBNs. This algorithm

trains each RBM separately, making the time complexity of the DBN learning linear

to the size and depth of the networks.

6.3 Proposed Compressed Sensing Scheme

The proposed scheme requires training data of the same class as the signal to

be reconstructed. A training stage is employed to learn a prior model for the sparsity

pattern of the signal class. The proposed CS reconstruction algorithm exploits the

determined prior in a MAP approach. The CS and training stages are described thor-

oughly in this section. The training stage varies depending on the employed sparsifying

transform, either orthonormal bases or overcomplete learned dictionaries. The block

diagram of the proposed CS scheme is presented in Fig. 6.2.
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Figure 6.2: Block diagram of the proposed CS scheme.

6.3.1 Compressed Sensing Stage

6.3.1.1 Problem formulation

Let D ∈ R
N×Q denote the sparsifying transform employed to represent a signal

x ∈ R
N , i.e. x = Ds + r, where s and r are the sparse representation and the repre-

sentation error, respectively. A Gaussian distribution with zero mean and covariance

Σr is assumed for r. In this thesis, we consider the traditional synthesis–based CS

approach that aims at reconstructing the sparse representation s of a signal x from

undersampled and noisy measurements of the form y = Φx + n, where Φ ∈ R
M×N is

the sampling matrix and n accounts for the additive Gaussian sampling noise of zero

mean and variance σ2
n. Vector y can also be written as

y = ΦDs+ Φr + n. (6.6)

Let η = Φr + n and Ξ = ΦD, then vector y takes the form

y = Ξs+ η. (6.7)
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As both r and n are Gaussian distributed, vector η is also Gaussian distributed with

zero mean and covariance Ση = ΦΣrΦ
T + σ2

nI. We adopt the commonly used assump-

tion that the sampling noise variance σ2
n is known [65, 76, 92].

The approach proposed in [65] is adopted in this thesis, namely first calculating

the MAP estimator of the sparsity pattern and then calculating the MAP estimator of

the sparse vector. The support of s, of cardinality K, is denoted as θ. Let sθ denote

the nonzero coefficients of s. A Gaussian distribution with zero mean and variance σ2
si

is assumed for each nonzero coefficient si, i ∈ θ. The same probability distribution is

employed in [37, 65] for nonzero sparse coefficients. Then, the conditional distribution

of sθ given θ is given by

sθ|θ ∼ N (0,Σθ), (6.8)

where Σθ ∈ R
K×K is a diagonal matrix, whose diagonal is formed by the variances of

the nonzero coefficients σ2
si
, i ∈ θ.

The Gaussian distribution of η leads to the following distribution for the likeli-

hood p(y|sθ, θ):
y|sθ, θ ∼ N (Ξθsθ,Ση). (6.9)

By integrating the product of p(sθ|θ) and p(y|sθ, θ) over all possible sθ, an expression

for the probability distribution p(y|θ) is obtained,

p(y|θ) = C × det
(

ΞT
θ Σ

−1
η ΞθΣθ + I

)−1/2
exp

{

1

2
yTΣ−1

η ΞθP
−1ΞT

θ Σ
−1
η y

}

, (6.10)

where C = det(2πΣη)
−1/2exp

{

−1
2
yTΣ−1

η y
}

and P = ΞT
θ Σ

−1
η Ξθ + Σ−1

θ .

The MAP estimator of θ, denoted by θ̂, can be calculated as

θ̂ = argmax
θ

p(θ|y) = argmax
θ

p(y|θ)p(θ). (6.11)

The posterior distribution p(sθ̂|y, θ̂) has a Gaussian distribution with mean µs and
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covariance Σs, such that

µs = Σθ̂Ξ
T
θ̂
(Ξθ̂Σθ̂Ξ

T
θ̂
+ Ση)

−1y (6.12)

Σs = Σθ̂ − Σθ̂Ξ
T
θ̂
(Ξθ̂Σθ̂Ξ

T
θ̂
+ Ση)

−1Ξθ̂Σθ̂. (6.13)

Therefore, the MAP estimate of s, denoted as ŝθ̂, is directly obtained from the mean

of the posterior, i.e.,

ŝθ̂ = argmax
s
θ̂

p(sθ̂|y, θ̂), (6.14)

= Σθ̂Ξ
T
θ̂
(Ξθ̂Σθ̂Ξ

T
θ̂
+ Ση)

−1y.

An expression for p(θ) needs to be calculated to solve for (6.11). Define the

sparsity pattern S{θ} associated with the support θ as S
{θ}
i = 1θ(i) for i = 1, . . . , N ,

where 1θ(·) denotes the indicator function of θ, and note that p(θ) = p
(

S{θ}
)

. We pro-

pose to use the probability distribution over visible units p(v) of restricted Boltzmann

machines (RBMs) and deep belief networks (DBNs) to model the prior distribution

p
(

S{θ}
)

, or equivalently, p(θ).

6.3.1.2 Prior distribution

In a RBM, the probability distribution over visible units is obtained by marginal-

izing (6.1) over the hidden units

p(v) =

∫

p(v, h)dh = − 1

Z
exp (−E(v)) , (6.15)

where

E(v) = −
∑

j

log
(

1 + eW
T
·j v+bhj

)

− bTv v. (6.16)

A DBN can be seen as a probabilistic generative model. To calculate the prob-

ability distribution of the visible units of a DBN, we start with a random configuration
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at the top hidden layer hL and let the top–level RBM converge to a stationary distri-

bution using alternating Gibbs sampling. Alternating Gibbs sampling iterates between

updating the hidden units in parallel using (6.3) and updating the visible units in par-

allel using (6.4). Next, it performs a top–down pass in which the state of each variable

in a layer is chosen from a Bernoulli distribution whith the probability that a variable

has a value of one depending on the states of the layer above. That is,

p(hli = 1|hl+1) = σ((bhl)i +W l+1
i· hl+1), (6.17)

where as before, v = h0.

Repeated top–down passes generates a full set of data vectors at each layer

of the DBN. Let H be the total number of top–down passes. The sequence of data

vectors for the hidden layers is denoted as hl
(1)
, . . . , hl

(H)
, l = 1, ..., L and v(1), . . . , v(H)

for the visible layer. Such sequence of data vectors assigned to the visible layer can be

employed to give a rough approximation of the marginal distribution p(v). However,

the conditional density function p(v|h1) contains more information about the shape

of the distribution p(v) than the sequence of the individual realizations since p(v) =

Eh1 [p(v|h1)], where E[·] denotes the expected value of a random variable. Therefore,

the marginal density is approximated by p̂(v) = 1
H

∑H
k=1 p

(

v|h1(k)
)

. Since the visible

units are conditionally independent given the hidden states h1, the approximation of

p(v) takes the form

p̂(v) =
1

H

H
∑

k=1

N
∏

i=1

p
(

vi|h1(k)
)

. (6.18)

Using the probability distribution (6.15) to model p(θ) in (6.11), leads to the

following MAP estimator of θ:

θ̂ = argmax
θ

(

1

2
yTΣ−1

η ΞθP
−1ΞT

θ Σ
−1
η y − 1

2
log (det(PΣθ))

+
∑

j

log
(

1 + eW
T
·j v+bhj

)

+ bTv S
{θ}

)

. (6.19)
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Similarly, when using (6.18) to model p(θ) in (6.11), the MAP estimator of θ

becomes

θ̂ = argmax
θ

(

1

2
yTΣ−1

η ΞθP
−1ΞT

θ Σ
−1
η y − 1

2
log (det(PΣθ))

+log

(

H
∑

k=1

N
∏

i=1

p
(

S
{θ}
i |h1

(k)
)

))

(6.20)

6.3.1.3 MAP estimator via a greedy approach

Peleg et al. [65] proposed a greedy pursuit algorithm based on OMP to approx-

imate the MAP estimator of a sparse representation. The same algorithm is employed

for reconstructing the sparse representation s, although using a different posterior dis-

tribution than that in [65]. The support is initialized to the empty set. At each

iteration, the algorithm searches for the element ī that can be added to the support in

order to maximize p(θ|y). The algorithm stops when the number of iterations exceeds

the pre–defined sparsity level. Once the support is recovered, the sparse representation

s is calculated using (6.14). A summary of the algorithm is presented in Algorithm 5.

The functions gRBN(·) and gDBN(·) refer to the objective functions in (6.19) and (6.20),

respectively. If a RBM is employed to model the prior distribution p(θ), the function

gRBN(·) is used and the algorithm is referred to as the RBM–OM-P-like algorithm. If

a DBN is employed instead, the function gDBN(·) is used and the algorithm is referred

to as the DBN–OMP–like algorithm.
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Algorithm 5 RBM-OMP-like/DBN-OMP-like algorithm

Require: Matrix Ξ = ΦD, measurements y, model parameters defining the probability
distribution p(θ|y).

1: Initialize t = 0, θ(0) = ∅.
2: while halting criterion false do

3: t← t+ 1
4: for i /∈ θ(t−1) do

5: θ̄(t) ← θ(t−1) ∪ i
6: f(i)← gRBN(θ̄

(t)) or f(i)← gDBN(θ̄
(t))

7: end for

8: ī← argmax
i

f(i)

9: θ(t) ← θ(t−1) ∪ ī
10: end while

11: θ̂ ← θ(t)

12: return ŝθ̂ ← Σθ̂Ξ
T
θ̂
(Ξθ̂Σθ̂Ξ

T
θ̂
+ Ση)

−1y.

6.3.2 Training Stage using Overcomplete Learned Dictionaries

In this section, the sparsifying transform D from (6.6) is assumed to be an

overcomplete dictionary. We learn D from a set of ECG training data. The resulting

sparse codes and the representation error are employed to estimate the model param-

eters defining p(θ|y).

6.3.2.1 Traditional dictionary learning

First, the dictionary learning problem is described. Let G = [g1 . . . gB] ∈ R
N×B

denotes the set of N -dimensional training samples, which is referred to as training data

set I. One methodology for building the overcomplete dictionaryD = [d1 . . . dJ ] ∈ R
N×J

(J > N) is to solve the following optimization problem

{D̂, Â} = argmin
D,A

‖G−DA‖2F s. t. ‖aj‖0 < K, ∀j (6.21)

with A = [a1 . . . aB] ∈ R
J×B denoting the sparse codes of G, and K the pre-specified

sparsity level. The representation error is defined as E = G− D̂Â. Several algorithms

have been proposed to solve (6.21). Here, the K–SVD algorithm proposed by Aharon
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et al. [1] is employed.

6.3.2.2 Estimation of model parameters

This section addresses the parameter estimation of p(θ|y), which comprises the

parameter estimation of p(θ), the estimation of the variances σ2
si
, ∀i, and the estimation

of the covariance Ση. Let uj denote the sparsity pattern of the sparse code âj , j =

1, . . . , B. The ith element of uj is defined as uji = 1supp(âj)(i), where supp(âj) denotes

the support of âj . The set of vectors U = [u1 . . . uB] can be employed to model a

prior distribution for the sparsity pattern of signals belonging to the same class as the

training data. Since the signal to be reconstructed, x, also belongs to the class of ECG

signals, the set of column vectors of U , which are referred to as training data set II,

are used to learn the parameters of p(θ). As mentioned in Section 6.3.1.1, RBMs and

DBNs are used for modeling such a prior distribution.

In the case of the RBM model, the probability distribution parameters that

need to be estimated are the weight matrix W and the bias terms bv and bh. They

can be optimized by performing stochastic gradient ascent on the log–likelihood of the

training data set II. However, computing the exact gradient of the log–likelihood is

intractable. Here, we use contrastive divergence, which approximates the gradient of

the log–likelihood by using a Markov chain. For more details on contrastive divergence,

the reader is referred to [43].

When the prior distribution of the sparsity pattern is modeled with a DBN,

the parameters that need to be estimated are the weights and bias terms of each

layer. Hinton recently presented a powerful greedy layer–wise method to learn these

parameters [42]. The weight matrix W 1, the bias terms of the visible layer bv, and

the bias terms of the lowest hidden layer bh1 are learned by training a RBM with the

training data set II as input. Then, the inferred hidden values of h1 can be used as

input for training another RBM that learns the parameters of the layer above. This

bottom–up process is repeated at the next layers until all the parameters of the network

are learned.

99



Additionally, the set of sparse codes Â can be employed to estimate the variance

σ2
si
of each ith element of the sparse representation s of signal x (see [65]):

σ̂2
si
=

∑B
j=1

(

âji
)2

∑B
j=1 1supp(âj )(i)

. (6.22)

For the estimation of the covariance matrix Σr, independence is assumed be-

tween the representation error coefficients ri and rj for i 6= j. Therefore, the covariance

matrix Σr is a diagonal matrix, whose diagonal is formed by the variances of the rep-

resentation error coefficients σ2
ri
, for i = 1, . . . , N . For the estimate of Σr, denoted as

Σ̂r, the representation error of the learned dictionary E = [e1 . . . eB] is employed. More

precisely, each ith diagonal element of Σr is estimated as

σ̂2
ri
=

1

B

B
∑

j=1

(

eji
)2
. (6.23)

The estimate of Ση is directly calculated as Σ̂η = ΦΣ̂rΦ
T + σ2

nI.

6.3.3 Training Stage using Orthonormal Bases

As in Section 6.3.2.1, let G = [g1 . . . gB] ∈ R
N×B denote the set ofN -dimensional

training ECG samples. In this section, D does not denote an overcomplete dictionary,

but instead, it denotes an orthonormal basis. Each vector gj can be expressed as

gj = Dāj , where āj is the representation of the signal gj in the D domain. Let aj

denote the best K-term approximation of āj , which is obtained by keeping only the K

largest (in magnitude) coefficients in āj and setting the others to zero. Therefore, the

signal gj can be modeled as gj = Daj + ej, where ej is the representation error. Let

uj denote the sparsity pattern of the sparse code aj , uji = 1supp(aj)(i). As in the case

of overcomplete dictionaries, the sparse codes A = [a1 . . . aB], U = [u1 . . . uB], and the

representation error E = [e1 . . . eB] are used to learn the model parameters defining

p(θ|y). That is, the set of vectors U is used to train either the RBM or the DBN that

100



models p(θ), the sparse codes A are used to estimate the variances σ2
si
, ∀i, using (6.22),

and E is used to estimate σ2
ri
, ∀i, using (6.23).

Unlike the case of overcomplete dictionaries, the training stage does not require

optimization of the sensing matrix. For the case of orthonormal bases, the entries of

the sampling matrix Φ ∈ R
M×N are independently sampled from a normal distribution

with mean zero and variance 1/M .

6.4 Experimental Results

To validate the potential of the proposed algorithms to improve the performance

of CS ECG systems, experiments are performed on records from the MIT-BIH Arrhyth-

mia Database [39]. Single leads from records 100, 101, 102, 107, 109, 111, 115, 117,

118 and 119 are employed for the experiments. This data set consists of a variety of

signals with different morphologies, rhythms and abnormal heartbeats.

The entries of the sampling matrix Φ are independently sampled from a sym-

metric Bernoulli distribution (P(Φi,j = ±1/
√
M = 1/2)) in order to build an efficient

hardware implementation. The use of Bernoulli matrices, as compared to other sub-

Gaussian matrices, results in simpler circuit complexity, data storage, and computation

requirements [21]. Presented results correspond to averages of 50 repetitions of each

experiment, with a different realization of the random measurement matrix at each

time. Both the wavelet transform and overcomplete learned dictionaries are employed

as sparsifying transforms in the experiments. Specifically, the Daubechies-4 wavelet

transform, using a decomposition level L = 4, is employed. The reconstruction SNR,

the PRD, and the CR are used as performance measures for our experiments.

6.4.1 Performance Evaluation

The first experiment compares the ECG reconstruction performance of the

RBM/DBN-OMP-like algorithms with the traditional OMP algorithm. The train-

ing and testing data sets for this experiment consist of 92800 and 5000 segments of size

N = 128, extracted from the selected ECG records, respectively. The same number of
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Figure 6.3: Comparison of the reconstruction of ECG signals using the OMP, the
RBM-OMP-like algorithm, and the DBN-OMP-like algorithm for both
wavelets and overcomplete learned dictionaries.

segments is extracted from each record. A RBM with the same number of hidden units

as of visible units and a 2-layer DBN are employed to model the probability distribution

of the sparsity pattern. The number of hidden units per layer of the DBN is set half

the number of visible units. Compressed measurements are artificially contaminated

with Gaussian noise of variance σ2
n = 0.25. The number of dictionary atoms is set to

3N . The sparsity level is set to K = 0.08N and K = 0.1N for overcomplete dictio-

naries and wavelets, respectively. The results of the comparison in Fig. 6.3 indicate

that the proposed algorithms have superior reconstruction performance than OMP and

require significantly less number of measurements to achieve accurate reconstruction.

The performance gain is larger in the case of overcomplete dictionaries than in the case

of wavelets. Even though the DBN uses only half the number of hidden units per layer

of the RBM, and therefore requires less number of parameters to be learned, the per-

formance of the DBN-OMP-like algorithm is slightly superior to that of the RBM-like
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Figure 6.4: Visual evaluation of the RBM-OMP-like algorithm. Record 119,
M = 0.35N . First row: (a) Original signal. Second and third rows:
(b-e) Reconstructed signals using wavelets (b-c) OMP reconstruction
and error, R-SNR=18.32, (d-e) RBM-OMP-like reconstruction and er-
ror, R-SNR=25. Fourth and fifth rows: (f-i) Reconstructed signals
using an overcomplete dictionary (f-g) OMP reconstruction and er-
ror, R-SNR=24.59, (h-i) RBM-OMP-like reconstruction and error, R-
SNR=31.67.

algorithm due to the multi-layer structure of the DBN. As the reconstruction perfor-

mance is related to the representational power of the model, the results in Fig. 6.3 are

consistent with the recent work by Le Roux et al. [51], which shows that, even though

a DBN and a RBM can have the same representational power, a DBN offers a more

compact representation in terms of number of parameters. The error bars in Fig. 6.3

indicate plus and minus one standard deviation across ECG records.

Fig. 6.4 visually illustrates the reconstruction of an ECG signal using the RBM-

OMP-like algorithm. Fig. 6.4(a) corresponds to a 4-second duration segment from

103



record 119, which contains ventricular ectopic beats. The signal is divided into seg-

ments of 128 samples. Each segment is sampled and reconstructed separately. Then,

the segments are concatenated to reconstruct the original signal. For this experiment,

the number of measurements is set to M = 0.35N. Figs. 6.4(b-e) and Figs. 6.4(f-i)

are obtained when wavelets and learned overcomplete dictionaries are employed as the

sparsifying transform, respectively. Figs. 6.4(b-c) and Figs. 6.4(f-g) show the obtained

reconstructed (left) and error (right) signals when using the OMP-like algorithm. Sim-

ilarly, Figs. 6.4(d-e) and Figs. 6.4(h-i) show the obtained reconstructed (left) and error

(right) signals when using the RBM-OMP-like algorithm. The recovered signals using

the RBM-OMP-like algorithm are better estimates of the original signals than those

obtained with the traditional OMP algorithm. It should be noted that using overcom-

plete dictionaries leads to preservation of detailed information for clinical diagnosis and

less number of artifacts in the reconstruction.

The second experiment aims at comparing the performance of the RBM/DBN-

OMP-like algorithms with previously applied CS algorithms to the problem of ECG

reconstruction, such as BPDN [26,56], model-based CoSaMP, denoted as MB-CoSaMP,

model-based Iterative Hard Thresholding, denoted as MB-IHT [75], and the BO-BSBL

algorithm [93]. For this experiment, a quantization stage and Huffman coding are added

to the scheme presented in Section 6.3. An 8-bit optimal scalar quantizer designed with

the Lloyd-Max algorithm is utilized. Results of the obtained PRD values as a function

of the compression ratio are shown in Fig. 6.5. Wavelets are employed as the sparsifying

transform in all the reconstruction algorithms. The RBM/DBN-OMP-like algorithms

are the only algorithms that use both wavelets and overcomplete dictionaries in this

experiment. The second experiment uses the same training and testing datasets of the

first experiment. For CR> 6, the proposed algorithms using wavelets outperform MB-

CoSaMP, MB-IHT, and the BPDN algorithms. The RBM/DBN-OMP-like algorithms

using an overcomplete dictionary exhibit the best performance for CR> 5. It is only

outperformed by the BO-BSBL algorithm for low CR values (CR< 5), which is not

the case of interest for WBAN-enabled ECG monitors.
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Figure 6.5: Comparison of the reconstruction of ECG signals using the RBM-OMP-
like algorithm, the DBN-OMP-like algorithm, MB-CoSaMP, MB-IHT,
and the BO-BSBL algorithm. PRD as a function of the compression
ratio.

6.4.2 Qualitative Observations

This section presents a qualitative assessment of the trained RBM models.

Fig. 6.6(a) illustrates the visible layer bias terms of the RBM using learned over-

complete dictionaries. Note that the bias terms are negative since the elements of the

sparse representation are zero most of the time. Fig. 6.6(b) illustrates the dictionary

atom sharing the same index as the largest bias term. Note the resemblance of the

dictionary atom with the QRS complex of an ECG cycle.

Fig. 6.7(a) illustrates the visible layer bias terms of the RBM using wavelets.

Most of the bias terms are negative, with the exception of 6 elements. Fig. 6.7(b)

illustrates the magnitude of the wavelet representation of a segment from record 117,

where the dashed lines separate each wavelet subband. Sparse representation coeffi-

cients sharing the same indexes as the largest bias terms of the visible layer are likely
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Figure 6.6: (a) Visible layer bias terms of the RBM model using learned overcomplete
dictionaries. (b) Dictionary atom sharing the same index as the largest
bias term.

to belong to the best K-term sparse approximation. This is consistent with the result

in Fig. 6.7(a) showing that the largest bias term indexes correspond to the indexes of

the scaling wavelet coefficients (8 first indexes of the wavelet representation), which

accumulate most of the ECG signal energy [70], and therefore, are likely to belong

to the best K-term sparse approximation. Note that the magnitude of the wavelet

coefficients tends to decay across scales. A similar behavior is observed for the bias

terms of the visible layer (Fig. 6.7(a)).

The weight matrix of the RBM model reveals coefficient dependencies. Let h⋆

denote the hidden unit with the largest bias term of the RBM model using the learned

overcomplete dictionary. Fig. 6.8(a) shows the weights associated with h⋆. This hidden

unit is connected to a group of visible units via large positive weights, which tend to
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Figure 6.7: (a) Visible layer bias terms of the RBMmodel using wavelets. (b) Wavelet
representation of an ECG segment of 128 samples.

be active simultaneously with h⋆, in order to lower the system energy. Figs. 6.8(b) and

(c) show the dictionary atoms sharing the same indexes as the 2 visible units with the

most positive connections to h⋆. Contrarily, Fig. 6.8(d) corresponds to the dictionary

atom that shares the same index as the visible unit connected to h⋆ via the most

negative weight. Note that both the patterns in Figs. 6.8(b) and (d) resemble the QRS

complex, and therefore, are unlikely to happen simultaneously in an ECG segment of

128 samples (sampling frequency of 360 Hz).
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Figure 6.8: (a) Weights associated with the hidden unit with the largest bias term.
(b-c) Dictionary atoms sharing the same indexes as the visible units with
the 2 most positive weights. (d) Dictionary atom sharing the same index
as the visible unit with the most negative weight.
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6.4.3 Robustness to Noise

The third experiment evaluates the robustness of the RBM-OMP-like algorithm

to measurement noise. Results are shown in Fig. 6.9. All the other parameters are

set the same as in the first experiment. The Gaussian sensing matrix is kept fixed

while the sampling noise variance is varied in the range [0.25, 1600]. When using

wavelets as the sparsifying transform, the R-SNR as a function of the noise variance

decays at a lower rate for the RBM-OMP-like algorithm than for OMP. In the case of

overcomplete dictionaries, the decay rate of the RBM-OMP-like algorithm and OMP

is comparable. The successful performance of the RBM-OMP-like algorithm in the

presence of sampling noise is expected as the noise variance is explicitly taking into

account in the algorithm.

6.4.4 Parameter Evaluation

We evaluate the sensitivity of the RBM-OMP-like algorithm using overcomplete

dictionaries to major parameters, such as the dictionary size and the sparsity threshold.

In each experiment, only one parameter is changed and the others are kept fixed. The

default values are set the same as in the first experiment. Fig. 6.10 illustrates the

performance of the RBM-OMP-like algorithm for dictionaries of size 2N, 3N and 4N.

The increase in the number of atoms improves the capability of capturing details, and

thus leads to better representations. Even though the number of atoms is bounded by

the amount of training segments, it is seen that the R-SNR change from 3N to 4N is

rather small.

Fig. 6.11 illustrates how the sparsity threshold affects the performance of the

RBM-OMP-like algorithm when overcomplete dictionaries are employed as the sparsi-

fying transform. ForM > 0.3N , the R-SNR decreases rapidly as the sparsity threshold

decreases from 0.2N to 0.05N. The reason is that useful information is lost when the

sparsity level decreases.

These results demonstrate that the RBM-OMP-like algorithm is not extremely

sensitive to variations of the selected parameters. Even though we are aware that
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Figure 6.9: Performance of the RBM-OMP-like and OMP algorithms in the presence
of measurement noise

optimizing the parameters may lead to reconstruction improvement, how to perform

the optimization is still an open problem that is beyond the scope of this thesis.
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Figure 6.10: Reconstruction performance of the RBM-OMP-like algorithm using an
overcomplete dictionary as a function of the dictionary size.

6.5 Conclusions

The potential of CS to lower energy consumption in WBAN-enabled ECG mon-

itors lies in its ability to reduce the number of samples at the sensor node. With the

goal of further reducing the number of samples, we propose to exploit the represen-

tational power of restricted Boltzmann machines and deep learning architectures to

model the sparsity pattern of ECG signals. This scheme fully exploits signal structure

in a statistical fashion, and subsequently, leads to stable reconstruction with low num-

ber of measurements. Even though other CS algorithms that exploit signal structure

have been applied to ECG reconstruction, they all assume a specific type of structure,

e.g., tree-structured sparsity model and block-sparsity model, which is also tied to a

specific sparsifying transform. Instead, the RBM/DBN-OMP like algorithms use a

general model that accounts for a large set of structures and sparsifying transforms. It

was shown that significant performance gains in the low-measurement regime can be

obtained by using the proposed algorithms relative to state-of-the-art algorithms for

CS ECG. Simulations using real ECG data from the MIT-BIH Arrythmia database re-

vealed that the performance of the algorithm is better when using overcomplete learned
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Figure 6.11: Reconstruction performance of the RBM-OMP-like algorithm using an
overcomplete dictionary as a function of the sparsity threshold.

dictionaries than when using wavelets.

The proposed algorithms operate over signals belonging to a certain signal class.

In this thesis, the signal class of ECG signals was selected, but the scheme can also be

applied to other signal classes; e.g. radar, natural images, speech signals, etc.
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Chapter 7

SUMMARY AND FUTURE WORK

7.1 Summary

The potential of CS to lower energy consumption in WBAN-enabled ECG lies

in its ability to reduce the number of necessary measurements to attain faithful recon-

struction. In this thesis, we proposed and studied a group of sparsity and compress-

ibility models to further reduce the number of necessary measurements to reconstruct

ECG signals using the CS framework. In addition, we also proposed an algorithm to

introduce knowledge of the ECG real noise sources in the reconstruction.

In Chapter 2, the tree-structured sparsity model was employed. The largest (in

magnitude) ECG wavelet coefficients form a connected tree structure caused by the

piecewise smooth nature of ECG signals. Such structure was introduced in Chapter

2 to constrain the selection of the ECG signal support. Two iterative algorithms,

based on CoSaMP and IHT, were developed to fully exploit the structured sparsity

model. The algorithms also account for the quasi-periodicity property of ECG signals

by exploiting the common support between consecutive ECG segments.

In Chapter 3, a novel approach to reconstruct ECG signals was presented. The

main idea was to combine multi-scale wavelet representations and overcomplete learned

dictionaries to exploit the magnitude correlation within each wavelet subband. In

Chapter 3, the ℓ1 minimization algorithm with quadratic constraints was employed for

the reconstruction.

The ECG reconstruction algorithm presented in Chapter 4 stemmed from the

need of improving the recovery of the detail wavelet coefficients, which provide critical

information for medical diagnosis. Specifically, a weighted ℓ1 minimization algorithm
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that accounts for the magnitude decay of the ECG wavelet coefficients across scales

was presented in Chapter 4.

Traditional CS reconstruction algorithms assume a Gaussian noise model. How-

ever, real EMG noise is better modeled by the symmetric α-stable distribution than

by the Gaussian distribution. In Chapter 5, an IHT-based algorithm, that accounts

for the impulsiveness of the EMG noise by using the ℓp norm, was developed.

In Chapter 6, a sparsity model that does not focus on a specific type of structure,

but allows for a wide set of structures, was presented. The amplitude of the nonzero

sparse representation coefficients was modeled with a joint Gaussian distribution and

the support was modeled with a RBM and a DBN to exploit higher-order coefficient

dependencies. The ECG reconstruction problem was formulated as a particular max-

imum a posteriori problem on the support of the sparse vector. The problem was

solved via a greedy algorithm that shares some structural similarities with OMP. It

was shown via simulations that the huge representational power of RBMs and DBNs

leads to a significant reduction in the number of necessary measurements to achieve

stable reconstruction.

7.2 Future Work

Some of the algorithms developed in this thesis for ECG can be extended to

other type of signals. For example, the wavelet coefficient exponential decay property,

exploited by the weighted ℓ1 minimization algorithm presented in Chapter 4, is inherent

to piecewise smooth signals. Therefore, the developed algorithm could be successfully

applied to other type of piecewise smooth signals, such as natural images. Even though

the RBM/DBN-OMP-like algorithm, presented in Chapter 6, was proposed for ECG

reconstruction, it can be applied to a far richer class of signals since it is based on

a generic sparsity model that is neither tied to a specific structure, nor to a specific

sparsifying transform.

Regarding the area of CS ECG, there are many avenues for future work. For
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example, real ECG noise sources should be taking into consideration in the reconstruc-

tion algorithms. In this work, we only considered EMG noise. As future work, it

remains to consider other noise sources, such as baseline wander and electrode motion

artifacts. The CS ECG framework presented in this thesis assumes that the sampling

matrix is fixed and in particular, it is non-adaptive to the ECG signal structure. The

benefit of such approach is that it leads to simple implementations, which is favorable

in terms of computational cost and hardware design [21, 56]. However, adaptive mea-

surement schemes may lead to significant reconstruction performance gains. Therefore,

future work on CS ECG also relates to exploring novel sensing matrices that exploit

the structural models presented in this dissertation.

Three different redundancy sources can be distinguished in the sparse repre-

sentation of ECG signals: correlation between the sparse coefficients of a single beat,

beat-to-beat quasi-periodic behavior, and inter-lead correlation. The first two types of

correlation have been exploited in this thesis. As future work, it remains to exploit

inter-lead correlation as we have only focused on single-lead ECG. For multi-lead ECG,

the waveform morphology and the signal level of each channel is different. However,

there is correlation among various channels because they record the same heart activity

simultaneously.

In this dissertation, most of the proposed CS reconstruction algorithms that

leverage structure in the sparsity pattern fall into the category of iterative greedy

algorithms. There is an unexplored line of research regarding structured sparse reg-

ularization problems. Penalized loss function minimizations, such as the ℓ1-penalized

squared error minimization, have shown to be effective for extracting useful informa-

tion from high-dimensional data [22, 80]. However, the ℓ1 penalty only deals with the

signal sparsity. It would be desirable to design intelligent penalties in order to add

structure information to the fitting of a regression model so as to allow groupings and

hierarchical relationships between the sparsity basis coefficients. This idea would be

beneficial for ill-posed estimation problems where sparsity alone may not be sufficient

to obtain stable estimates.
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In Chapter 7, it was shown via simulations that overcomplete learned dictio-

naries lead to better performance of CS ECG reconstruction algorithms compared to

orthonormal bases. It was also shown that exploiting structured sparsity models leads

to significant performance gains in the reconstruction. A future avenue of research

refers to designing dictionaries that generate structured sparse representations. In

that case, the structure would be known a priori and could be easily incorporated into

the reconstruction algorithm for optimal performance.
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