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ABSTRACT

Cartographic databases can be kept up to date through
aerial image analysis. Such analysis is optimized when one
knows what parts of an aerial image are roads and when one
knows locations of complex road structures, such as over-
passes and intersections. This paper proposes self-supervised
computer vision algorithms that analyze a publicly avail-
able cartographic resource (i.e., screenshots of road vectors)
to, without human intervention, identify road image-regions
and detects overpasses.

Our algorithm segments a given input image into two
parts: road- and non-road image regions. It does so not
by learning a global appearance model of roads from hand-
labeled data, but rather by approximating a locally consis-
tent model of the roads’ appearance from self-obtained data.
In particular, the learned local model is used to execute a
binary classification. We then apply an MRF to smooth
potentially inconsistent binary classification outputs.

To detect overpasses, our method scrutinizes screenshots
of road vector images to approximate the geometry of the
underlying road vector and use the estimated geometry to
localize overpasses.

Our methods, based on experiments using inter-city high-
way ortho-images, show promising results. Segmentation re-
sults showed on average over 90% recall; overpass detection
results showed 94% accuracy.

Categories and Subject Descriptors

1.4 [Image Processing and Computer Vision]: Seg-
mentation—Partitioning; 1.4.8 [Scene Analysis]: [Objec
Recognition]

General Terms
Algorithms
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Ortho-Image Analysis, Road Image Region Segmentation,
Overpass Detection

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ACM SIGSPATIAL GIS’12, November 6-9, 2012. Redondo Beach, CA,
USA, Copyright (c) 2012 ACM ISBN 978-1-4503-1691-0/12/11...$15.00

Chris Urmson
Google
1600 Amphitheatre Parkway
Mountain View
CA 94043
curmson@google.com

David Wettergreen
The Robotics Institute
Carnegie Mellon University
5000 Forbes Ave
Pittsburgh, PA 15213

dsw@ri.cmu.edu

1. INTRODUCTION

In the GIS community, an essential part of maintaining ex-
isting cartographic databases is extracting relevant objects
and spatial patterns from aerial images [1, 3, 4, 6, 9]. De-
spite being potentially out of date, the topological relations
among spatial objects (e.g., two road segments are connected
through an intersection) appearing on aerial images do not
vary over a long period of time, even after natural disasters
[25]. Overhead views of interesting areas from aerial images
provide better vantage points, for delineating the geometry
of the underlying road network, than those of sensor mea-
surements, from perspective vision sensors, or range finders
installed on a ground survey vehicle. In addition, main-
taining road-vectors through aerial image analysis is more
attractive and cheaper than doing so with manual surveys
because aerial images with high resolution have become pub-
licly available.

An important goal of aerial image analysis is to iden-
tify image sub-regions where vehicles can virtually drive on.
This is because knowledge of road image regions enables
aerial image analysis tasks to scrutinize only sub-regions of
an image, instead of searching for relevant objects over the
entire image. For example, by defining where to look, the
information about road image regions facilitates the aerial
image analysis tasks of localizing intersections [4] and over-
passes [21, 22], of detecting vehicles [8, 13, 11], of summa-
rizing the geometry of a road network [7, 24], of improving
the road network geometry extraction using in-vehicle data
such as GPS signal logs or wheel-turning-speed [2, 26].

Knowing what parts of an aerial image are roads is ob-
viously helpful in executing various aerial image analysis
tasks. However, it is challenging to precisely identify road
image-regions appearing on aerial images because their ap-
pearances vary due to the different conditions of image ac-
quisition processes and road surface materials. For exam-
ple, the line of sight between an acquisition vehicle and the
ground can perceptually and computationally change the
photometric characteristics of road image-regions. Even in
a given aerial image, road surfaces may be covered with dif-
ferent materials, such as asphalt or concrete. Such variation
in road surfaces cause an inconsistency in color and texture
of road images-regions.

The most dominant approach to recognizing spatial ob-
jects appearing on aerial images is to learn the global pho-
tometric and geometric properties of interesting objects from
hand-labeled images and then to apply the learned pat-
terns to images unseen during the training [7, 8, 11, 12,

! Aerial imagery with a foot resolution about US and its ter-
ritories are publicly available from United States Geological
Survey (USGS), http://www.usgs.org



17]. Despite impressive results from such methods trained
with manually labeled data and some inventions of making
manual data acquisition cheap, manual annotations are still
labor-intensive and error-prone.

In this paper, instead of relying on hand-labeled data, we
exploit a publicly available cartographic resource to learn,
without human intervention, an appearance model of road
image-regions. Particularly, we make use of screenshots of
existing road-vectors to acquire a local appearance model
of road image-regions and use the learned model to identify
road image regions. An analysis of road vectors’ screenshots
also provides us with a geometric understanding of the un-
derlying road network. We use the reconstructed geometry
to detect overpasses appearing on aerial images.

Our main contribution is to demonstrate a good use of
publicly available cartographic resources to obtain impor-
tant pieces of cartographic information from aerial image
analysis. To this end, we developed self-supervised com-
puter vision algorithms to identify road image-regions and a
geometry analysis algorithm to detect overpasses appearing
on aerial images.

2. RELATED WORK

By analyzing a screenshot of a road vector, our algorithms
automatically learn an appearance model of road image-
regions and obtain a geometric model of the underlying road
network for identifying road image-regions and for detecting
overpasses. In this regard, we first review some of previous
work on aerial image segmentation and overpass detection
using road vector information. We also investigate some
of the self-supervised learning methods for computer vision
tasks that minimize the amount of manual effort for training
classifiers.

Our method partitions a given aerial image into two groups:

road and non-road regions. This method builds upon previ-
ous superpixel based image segmentation methods [11, 12].
Representing an image with a set of pixel-groups is attractive
for aerial image analysis, because such a representation en-
ables algorithms to treat homogeneous pixels together e.g.,
pixels belonging to road lane [5, 7, 8, 11, 12, 17]. Such
image representations with a set of pixel-groups are also
computationally efficient because they reduce the complex-
ity of images from hundreds of thousands of pixels to only a
few hundred pixel-groups. We utilize the oversegmentation
method introduced in [11, 12] to convert an aerial image into
a superpixel image.

Results of aerial imagery segmentation have been exten-
sively utilized to facilitate the GIS-related tasks in achiev-
ing their goals: intersection [4] and overpass detection [21,
22], vehicle detection [8, 13, 11], road network geometry
understanding [2, 7, 26], and building contour extraction
[20]. Our approach is different from these methods in that
our methods do not use any hand-labeled data to execute
classification-based aerial image segmentation.

We detect interesting road structures, such as intersec-
tions and overpasses, to identify potentially complex road
geometry. In particular, information about the location and
boundary of an overpass sheds light on the hierarchical or-
der of road-lanes passing through the overpass. Researchers
have, to recover such 3-dimensional road structures, directly
accessed a road vector or utilized 3D data such as air-borne
point clouds [21, 22]. By contrast, our method, without
using any of these specialized data, detects overpasses by
using screenshots of road-vectors. Particularly, we analyze
screenshots of road-vectors depicted on map images to ap-
proximate a geometry of the underlying road network. The
recovered geometry is used to detect overpasses and analyze

extracted lines to identify the boundaries of the detected
overpasses.

In a common setting, pattern recognizers require hand-
labeled data to learn latent patterns embedded in the data.
However, manual labeling is expensive and error-prone. To
minimize use of hand-labeled data, there have been efforts
to utilize a data source, the contents of which are less un-
certain, to assign class labels to other data sources [18, 24].
Nair and Clark exploited motion information in video to
automatically collect training examples for the task of de-
tecting people from a video of an office corridor scene [18].
Seo and his colleagues analyzed the spatial arrangements
between extracted lines to produce a set of nominal parking
spot images that are used as training examples for existing
machine learning techniques [24]. In this paper, we analyze
a screenshot of a road-vector to learn an appearance model
of road image-regions and to obtain a geometric skeleton of
a road network.

3. EXPLOITING PUBLICLY AVAILABLE CAR-

TOGRAPHIC RESOURCES

3.1 Harvesting | mage Cuesthrough Bootstr ap-
ping

Our algorithms take two images as the input: a highway
ortho-image and the input image’s road-vector screenshot.
Figure 1(a) shows an example of a road-vector screenshot
image and Figure 1(b) shows an example of a highway ortho-
image with some other information.

A road-vector screenshot is a screencapture image that
depicts, with distinctive colors (i.e., yellow), the underly-
ing road-network of the highway scene. When a road-vector
image is overlaid with an ortho-image, road-regions in the
ortho-image are labeled with real-world cartographic infor-
mation. One might think that the road-vector screenshot
image would trivialize our task of identifying road image-
regions. Such is not the case. First, the sketches (or draw-
ings) of road-vectors are just parts of images, meaning they
do not possess any information about road-vectors, which
are directly accessible in a computational form. Second, the
road-vector sketches are not entirely overlapped with images
of road-regions, resulting in cases where some road-regions
remain uncovered. From a pattern recognition perspective,
this is a very confusing signal. Some image regions of true
road-lanes are marked as “road,” while others right next to
them are labeled as “non-road.” For example, Figure 1(b)
shows green blobs about yellowish road-vector paintings ap-
pearing on Figure 1(a). These are extracted after identifying
yellowish image regions on Figure 1(a), removing map sym-
bols, and overlaid onto a superpixel representation of the
input image. Most of the superpixels belonging to the true
road regions are not covered by extracted road vector frag-
ments. This holds for the opposite case as well — indicating
non-road regions as road regions, e.g., a road-vector paint-
ing over trees or buildings. Thus, when a screenshot of a
road-vector is used, extra care must be taken.

To handle such a noisy class assignment, we employ prob-
abilistic methods to reduce ambiguity and to minimize in-
consistency in classification outputs. We first describe how
we obtain low-level image features such as a superpixel im-
age and then explain how we perform an aerial image seg-
mentation based on a binary classification in the following
section.

To obtain a superpixel image, we first, as a preprocessing
step, applied a histogram equalization to normalize inten-
sity and a bilateral filter [27] to preserve natural edges, and



(a) A screenshot of the road-vector of the input image.
This image depicts the geometry of underlying road-
network with other cartographic information such as
names of highways.

(b) A superpixel image. The elongated green poly-
gons (or blobs) are fragments of a road-vector screen-
shot. Superpixels’ boundaries are delineated by (blue)
lines and their centroids are marked with (blue) dots.

Red circles indicate superpixels whose areas are sig-
nificantly overlapped by road-vector fragments.

Figure 1: A screenshot image of road-vector is analyzed to produce two image features: a super-pixel image and fragments

of road-vectors. This figure is best viewed in color.

then compute image gradients. We apply the watershed seg-
mentation algorithm to the image of gradient magnitude to
obtain a coarse segmentation. We then reiterate this coarse
segmentation process until the dimensions (or areas) of indi-
vidual superpixels are large enough [12]. We terminate this
iteration when the current number of superpixels is smaller
or equal to the predefined proportion (e.g., 15%) of the ini-
tial number of segments produced by the watershed algo-
rithm. Figure 1(b) shows an example of a superpixel image.
For line extraction, we first run Canny edge detector on
image gradients, link those pixels based on their gradient
orientations, and fit a line using eigendecomposition [10].

3.2 Road Image-Region Segmentation

Acquiring knowledge of road image-regions is carried out
through an image segmentation task that divides an input
image into two image sub-regions: road- (R) and non-road
region (N R). Suppose that X is an input ortho-image and is
represented by n superpixels, X = {X1, X2, ..., X, }, where
X is ith superpixel. A true segmentation function, f*(X;),
unknown a priori, which assigns a given superpixel, X;, with
the true class label, Y;* € {R, NR}. Our task is then to
learn a segmentation function, f(X;), which minimizes an
empirical error, e = Y, [f*(X:) # f(X:)]. In a common
setting, one manually assigns a part of superpixels with their
class labels to prepare training data and learns a classifier
to obtain a function f(X;) by using the training data [5, 8,
11, 17]. The number of training examples may vary, but can
be roughly determined based on the dimensionality of data
and the complexity of the problem.

In this paper, we take a different approach to executing
this binary classification. Instead of relying on numerous
human-labeled examples, we utilize a road-vector screenshot
image, to automatically prepare a training data. In particu-
lar, we treat a superpixel as a positive example (i.e., a road-
region superpixel) if its area is significantly overlapped, e.g.,
more than 90%, overlapped with road-vector paintings (or
fragments); otherwise we treat it as a negative example (i.e.,
non road-region superpixel). Note that such a weak classifi-
cation assignment is noisy — some superpixels belonging to
true roads are initially labeled as non-road regions and vice
versa.

To execute the superpixel segmentation, we first represent

each superpixel as a feature vector. A feature vector con-
sists of color and texture information. We use a histogram
to represent color values in a superpixel and a dictionary of
textons [14, 15] to represent texture value. In particular, for
color representation, we used four different representation:
RGB, HSV, Lab, and gray intensity. For texture representa-
tion, we utilize a dictionary of textons. To produce a texton
dictionary, we applied Leung and Malik’s filter bank [14]? to
23 highway ortho-images collected separately from test im-
ages, to obtain the initial filter responses and then clustered
these filter responses into the predefined number of groups
(i-e., 64). A superpixel’s texture is represented by a texton
if the Euclidean distance between the filter response of the
superpixel and the texton is smallest [15].

For each test image, X, we first obtain superpixels and
analyze a screenshot of a road-vector to assign superpixels
with weak class-labels by thresholding overlapping areas be-
tween superpixels and road-vector fragments. This results
in X = Xw4 UXy, where Xy is a set of weakly labeled
positive superpixels, and Xy is a set of unlabeled super-
pixels. Note that Xwy # Xpg, where Xpg is a set of true
road-region superpixels. Our problem is then to assign an
unlabeled (or a weakly-labeled) superpixel with a class label,
f(Xu,;) = Yu; € {R, NR}. We developed three different
approaches to solve this image classification problem: use of
area-overlap, superpixel clustering and superpixel classifica-
tion.

3.2.1 Use of Area-Overlap for Road Region Segmen-
tation

An image segmentation based on area-overlap is to use
the initial class-label assignments as a segmentation result.
Figure 2(b) shows an example of this result. Qualitatively
speaking, the outputs mostly cover road image-regions and
reveal the skeleton of the underlying road network as well.
However, a large part of the true road image-regions are
missed, meaning that most of the superpixels belonging to
the true road-regions are not recovered. To quantitatively
evaluate such a classification output, we compute the area of
overlap between segmentation output and the ground truth.

2A Matlab implementation of LM filter bank is pub-
licly available from http://www.robots.ox.ac.uk/"vgg/
research/texclass/filters.html



(a) Ground truth segmentation. (b) Results by a plain-area-overlap method. (p =
0.979,r = 0.594, F'1 = 0.739)

(c) Results of a plain-area-overlap w/ 1st order neigh- (d) Results of plain area overlap w/ 2nd order neigh-
bor expansion. (p = 0.924,r = 0.830, F'1 = 0.874) bor expansion. (p = 0.817,r = 0.951, F'1 = 0.879)

(e) Results by a spectral clustering. (p = 0.849,r = (f) Results of GMM with MRF. (p = 0.894,r =
945, F'1 = 0.895) 0.969, F'1 = 0.930)

Figure 2: Results of road image region segmentation. The blue regions represent identified road image regions and the red
regions represent non-road image-regions. Three numbers in parenthesis show quantitative evaluation of results, i.e., p stands
for precision, r for recall, F'1 for F1 score. Viewed best in color.



Figure 2(a) shows the ground truth of the input image. A
segmentation output, 7,, is overlaid with ground truth an-
Area(ronrg)
Area(roUrg) "
The overlapped areas are further analyzed by measuring the
Area(roNrg)
Area(roy)

notation, 74, to measure the area of the overlap,

following performance matrices: precision= and
Area(roNry)
Area(rg)
how accurate a segmentation output is and the recall mea-
sures how much the true road image-regions are correctly
recovered. The precision and recall values can be summa-

rized by computing F-score (F1), F1 = 2Xprecisionxrecall

precision+recall

The outputs of area-overlap method are highly accurate
in terms of precision, but it recovers only 60% of the true
road image regions. Such under-estimation of the true road
image regions can cause problems like excluding relevant
spatial objects, such as vehicles, from further investigation.

An obvious way of improving this result is to expand the
segmentation output area by including superpixels neigh-
boring the weakly labeled positive superpixels. A first-order
neighboring superpixel to an input superpixel is one that
directly attaches to a target superpixel, partially sharing its
boundaries with the target superpixel. Similarly, a second-
order superpixel is the first-order superpixel to the first-
order superpixel of the input superpixel. Figure 2(c) and
Figure 2(d) show results of expanding the initial area overlap
results by including the first and second-order of neighboring
superpixels. The recall rate of the simple overlap method is
in fact improved as increasing the initial overlapped areas,
from 0.839 to 0.963. However, at the same time, the accu-
racy of the outputs dropped, meaning that the number of
incorrectly classified superpixels increased as well.

recall= In particular, the precision measures

3.2.2  Spectral Method for Superpixel Clustering

Another intuitive way of obtaining road image-region iden-
tification is to group input superpixels into two groups based
on their similarities. To this end, we use a spectral cluster-
ing that partitions input superpixels using eigenvectors of
a superpixel feature matrix [19, 28]. We chose a spectral
method for our segmentation problem over conventional it-
erative clustering methods such as k-means and EM (Ex-
pectation and Maximization) for two reasons 1) an iterative
method only guarantees a suboptimal partitioning result,
which is sensitive to the starting point, and 2) the com-
putational time of these iterative methods to generate an
output is linearly proportional to the dimension of the data.
By contrast, instead of directly dealing with input feature
vectors, a spectral method for clustering is to use an eigen-
vector (e.g., the second largest eigenvector® for our case) of
a graph’s Laplacian to define an optimal cut of a given data
[19, 28]. In particular, we first compute an affinity matrix
to measure the similarity between superpixels:

W (i, j) = ¢~ XX 20

where d(X;, X;) = ||X; — X;||? defines a Euclidean distance
between two superpixels, X; and X, and o defines a range
of effective affinity between two superpixels. One can think
of this affinity matrix as a graph, where each superpixel is
a node and two superpixels, if W (4, j) is greater than zero,
are linked over an edge. We derive two more matrices from
this affinity matrix: the degree matrix of the affinity ma-
trix, D(4,7) = Zj W (i,j) and the Laplacian of the graph
(i-e., the affinity matrix), L = D — W. Then we do an
eigen decomposition of the graph Laplacian, L, to obtain

3The second largest eigenvector is the eigenvector which the
magnitude of its corresponding eigenvalue is second largest.

its eigenvectors, e, es, ..., €|, and corresponding eigenval-
ues, A1 > A2 >,...,> A. We treat each component in
the second largest eigenvector, ez, as newly generated data
points converted from superpixels and apply k-means to this
eigenvector to segment superpixels into two groups. The sec-
ond largest eigenvector is an indicator function that outputs
1 for a given superpixel belonging to a dominant cluster
and zero for otherwise, resulting in superpixels in a newly
created one-dimension sample space forming tight clusters
based on their initial affinities [28]. Note that clustering an
eigenvector is different from clustering superpixels in that
each superpixel is represented in a one-dimensional space
X; € R' rather than in an m-dimensional original feature
space. Figure 2(e) shows the results of spectral clustering.
The segmentation results are improved both in accuracy and
coverage.

3.2.3  Superpixel Classification with Markov Random
Fields

The last method for road image-region segmentation is a
combination of a probabilistic binary classifier and a spatial
smoothing method. To minimize the effect of superpixels’ in-
correct class assignments, we learn a probabilistic classifier,
a Gaussian Mixture Model (GMM), and assign individual
superpixels with probabilities for being a part of road image
regions, f(X;) = P(X;|Yi), where Y; € {R, NR}. Regard-
less of the initial weak class assignment, we then re-assign
superpixels with class labels based on a log likelihood value,

log {%}. Since our GMM is only trained by local

examples, its outputs may be sub-optimal in terms of clas-
sification accuracy. To improve the outputs of the GMM,
we run a pairwise Markov Random Fields (MRF) and infer
the most probable segmentation of the input image using
loopy belief propagation. In particular, we model a super-
pixel image by a pairwise Markov Random Fields. It is an
undirected graphical model that factorizes the underlying
joint probability distribution P(X,Y’) by a set of pairwise
cliques. In such a graphical representation, a superpixel is
a node and the first-order neighboring superpixels are con-
sidered to be directly linked. A link (or an edge) between
superpixels represents dependence (or homogeneity of their
class labels) between them. The joint probability distribu-
tion is factorized as

1
Zi

=

P(X,Y) = (X, v)) [[ w(vi, vy

JEN(4)

Il
-

where ®(X;,Y;) is a node potential, ¥(Y;,Y;) is an edge po-
tential, Z is the partition function that ensures a probability
density of this model, N(%) is the set of neighboring super-
pixels. The node potentials are GMM’s outputs. The edge
potential is computed by Potts model.

V(Y3 Y;) = exp {~B(Yi - ¥;)*}

where ( is a penalty factor for class label assignment dis-
agreement between nodes. For inferencing the most likely
class labels of individual superpixels in a given highway
ortho-image, we use loopy belief propagation because it is
easy to implement. Figure 2(f) shows the results of this
method. This method outperforms all other methods in
terms of highest accuracy and largest coverage of the true
road image-regions. We further investigate the performance
of these methods later and discuss in detail the findings in
Section 4.

3.3 Overpass Detection



To accurately delineate the geometry of the underlying
road network, it is necessary to recognize road structures
such as overpasses and intersections, which indicate complex
road geometries. For example, the presence of an overpass
suggests the fact that multiple roads pass each other in the
same image region.

An input of the overpass detection algorithm is the road-
vector screenshot. To extract the useful geometric informa-
tion of the underlying roads from a road-vector screenshot,
we first extract image regions of road-vector sketches (e.g.,
yellow or yellowish paintings in Figure 1(a)) and produce a
binary image. This contains only these fragments of road-
vector without any map symbols and road markings. We
then further analyze each of the road-vector fragments, to
obtain their geometric properties, such as extremity and bi-
furcation (or merging) points. Because a road-vector frag-
ment is an elongated polygon bounded by a closed path,
the skeleton of a fragment is useful in acquiring these pieces
of information. A skeleton of a polygon is a series of lin-
ear lines linking ridge points which are local extrema sitting
in the middle of a polygonal shape. We apply a distance
transform to each of the road-vector fragments and identify
these ridge points. Figure 3(a) shows a result of such analy-
sis. Each (green) polygon represents road-vector fragments
where “+” indicates a ridge point, “+” with a triangle is an
extremity point, and “+” with a circle is a bifurcation point.

For each of the road-vector fragments, we extend both ex-
tremity points in the direction of the fragment and identify
any intersection with other fragments if their intersection
angle is greater than a given threshold (e.g., 7/3) to lo-
calize potential overpasses. Figure 3(b) shows a result of
overpass localization where a multiple of two (red) inter-
section lines indicate potential overpass regions. The final
process of detecting overpasses is to identify the boundary
of a detected overpass. To this end, we search for any of
the closest extracted lines that intersect with any of the two
lines from the overpass localization and are greater than the
same threshold used earlier. Figure 3(c) shows the final re-
sult of overpass detection. The bounding box of a detected
overpass lets other sub-tasks of extracting lane-level high-
way information know of the existence of an overpass and
that the road geometry around this bounding box has more
than one direction. Our method of detecting an overpass
is much simpler than those relying on 3-dimensional data
of road vector databases [21, 22]. Our method require no
3-dimensional geometry-related computation.

4. EXPERIMENTS

This section details experiments conducted to investigate
the robustness and the accuracy of our methods of segment-
ing road image-regions and of detecting overpasses appear-
ing on test ortho-images. In what follows, we first explain
the experimental setup and evaluation methods, then show
experimental results, and finally discuss the findings.

From Google’s map service®, we collected 50 inter-city
highway ortho-images that are sampled from the route be-
tween the Squirrel Hill Tunnel to the Pittsburgh Interna-
tional Airport. We also saved corresponding road-vector
screenshots of the ortho-images and manually drew bound-
aries of road image-regions in each of the collected images for
the ground truth. While we were manually generating the
ground truth images, we ensured that our annotations cor-
rectly and reasonably separated drivable image-regions from
non-drivable image-regions. Drivable image-regions include
road-lanes, their shoulders, parking spaces directly attached

‘http://maps.google.com

(a) An analysis of road-vector fragments is performed
to obtain their geometric properties.

l.:_

(b) Results of overpass localization. Every intersec-
tion of two red lines indicates a potential location of
an overpass. A blue line is a line extended from a
road-vector fragment.

(c) Results of overpass detection. A red parallelogram
represents the boundary of the detected overpass, and
two (blue and cyan) lines inside the polygon depict
two principal axes.

Figure 3: These figures show the sequence of overpass de-
tection. Viewed best in color.



to any of road-lanes, and emergency pull-overs. Due to shad-
ows and occlusions, it was often necessary to interpolate or
extrapolate the boundaries of drivable regions. We did this
when the areas of occlusions and shadows were not signifi-
cantly large. Figure 2(a) shows an example of ground truth
annotation.

We have a list of methods that require optimal parameters
for producing desirable results. While extracting lines, we
remove any lines the lengths of which are greater than half of
the input image width (e.g., 600 pixels), because such long
lines usually fail to align with any highway contours. In ex-
ecuting road-region segmentation, we apply Leung-Malik’s
filter bank [14], a multi-scale and multi-orientation filter
bank consisting of 48 filters, and thereby obtain 64 differ-
ent textons to represent each superpixel. For the spectral
clustering, we found the method produced the best results
when o is % of the maximum distance in an affinity matrix.
For GMM with MRF, we found our road-region segmenta-
tion method produced the best results when S is set to 0.2.
For overpass detection, we set the angle threshold at /3 so
as to detect greater intersection angles between road-vector
fragments.

1 T
005l [l Precision 4
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HFL
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Figure 4: A comparison of the segmentation results. bar
graph shows micro-averaged performances.

4.1 Experimental Results

We compared the performance of five methods’ segmen-
tation outputs. Although there are many well-defined and
complex evaluation methods for comparing performance of
multiway-segmentation results [16], to measure the accuracy
of our binary segmentation results, we chose an overlap score
between the area of a segmentation output and the area
of the ground truth. We chose such because it is straight-
forward to compute and provides an objective comparison
among methods.

Figure 4 shows the macro-averaged performance measures
of the segmentation outputs. This macro-averaged perfor-
mance is obtained by computing per image performance
measures first, and then averaging the corresponding mea-
sures.

The “plain-area-overlap” method outputs highly accurate
segmentation results (i.e., its average precision value was
greater than 0.95), meaning that, for most of time, the
road-vector sketches correctly indicated road image-regions.
However, because they do not completely cover the true
road image-regions, its recall values are the lowest. This
confirms our initial assumption that we cannot directly use
a road-vector screenshot to precisely define a road image-
region. As we expanded the initial image regions of the road-
vector sketches by including neighboring superpixels, its re-
call value was drastically increased and its coverages of the
true road image-regions were increased as well. At the same

time, however, their accuracies are inversely proportional to
increasing recall rates, indicating that a simple expanding
of the initial overlapped image-regions does not correctly re-
cover the true road-image. Over 90% of the true road-image
regions are covered by the outputs of “spectral clustering.”
This is encouraging in that our spectral clustering imple-
mentation consumed the least computational time and mem-
ory of our five segmentation methods. However, its outputs
were not the most desirable. Due to similarities between su-
perpixel features, the spectral clustering grouped vegetation
near highway lanes and tops of buildings when road-vector
fragments included parts of such objects. This resulted in
including some non-drivable image-regions and producing
many false positives. By contrast, the accuracies of those
methods about area-overlap with neighbor-expansion did
not drop drastically because their area expansion were al-
ways centered in the initial road-vector sketches. The com-
bination of GMM and MRF (GMM w/ MRF) worked best
in terms of the accuracy and coverage of segmentation out-
puts. Although our GMM learned the appearance model
of drivable image-regions from noisy signals, it was capable
of identifying most of the drivable region’s superpixels. Our
MRF implementation did a reasonable job of smoothing spa-
tial label inconsistencies. Similar to those of spectral clus-
tering, GMM misclassified some of the non drivable-regions
based on similarities in superpixels’ appearances. Some im-
age regions were in fact drivable regions (one could visually
identify that their surfaces were covered by the same or sim-
ilar materials, e.g., asphalts). However, due to the rules of
our ground truth annotation, those image regions are not
annotated as drivable regions. Figure 5 shows some of the
segmentation results by GMM w/ MRF.”

Figure 6 shows some of the overpass detection results.
Eighteen out of 50 test ortho-images contained a total of 33
overpasses. Our algorithm successfully detected the loca-
tions and boundaries of 31 of these. Figure 6(b) shows an
example of overpass detection in which our algorithm was
able to detect an intersection as well. Figure 6(h) shows
an overpass detection result that overestimated the bound-
ary of the overpass. We believe that an overestimated of
overpass boundary should be permissible, but an underes-
timation would be problematic in terms of understanding
the geometry of the underlying road network. Figure 6(i)
and 6(j) show two failure cases of our overpass detection.
In particular, the complex true road geometry and the im-
age distortion in Figure 6(i) made it challenging to correctly
identify the boundaries of overpasses. Our method was able
to correctly localize overpasses, but failed to precisely detect
their boundaries. The boundaries of the detected overpasses
in Figure 6(j) are underestimated, resulting in some overpass
image-regions were left undiscovered.

5. CONCLUSIONS

This paper presents algorithms that analyze a publicly
available cartographic resource, i.e., screenshots of a road
vector, to identify road image regions and detect overpasses.
From experiments using inter-city highway ortho-images,
our method showed a promising result: Segmentation re-
sults showed on average over 90% recall; overpass detection
results showed 94% accuracy.

For future work, we would like to investigate whether it
is possible to generalize a global appearance model of road
regions from those locally learned models. Although we be-
lieve our test data poses sufficient challenges for road image

5The complete experimental results of these 50 test images
are available from [23].



region segmentation and overpass detection, we would like
to test our algorithms with more aerial images.

6.

ACKNOWLEDGMENTS

This work is funded by the General Motors-Carnegie Mel-
lon University Autonomous Driving Collaborative Research
Laboratory (AD-CRL).

7.
(1]

2]

3]

(4]

[5

(6]

[7]

(8]

9]

[10]

(1]

(12]

[13]

(14]

REFERENCES

E. Baltsavias and C. Zhang. Automated updating of
road databases from aerial imagery. International
Journal of Applied Earth Observation and
Geoinformation, 6:199-213, 2005.

L. Cao and J. Krumm. From gps traces to a routable
road map. In Proceedings of the ACM SIGSPATIAL
International Conference on Advances in Geographic
Information Systems, pages 3—12, 2009.

C.-C. Chen, C. A. Knoblock, and C. Shahabi.
Automatically conflating road vector data with
orthoimagery. Geolnformation, 10:495-530, 2006.
Y.-Y. Chiang and C. A. Knoblock. Automatic
extraction of road intersection position, connectivity
and orientations from raster maps. In Proceedings of
the ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, 2008.
P. Dollar, Z. Tu, and S. Belongie. Supervised learning
of edges and object boundaries. In Proceedings of
Computer Vision and Pattern Recognition, pages
1964-1971, 2006.

M. flavie Auclair Fortier, D. Ziou, C. Armenakis, and
S. Wang. Automated updating of road information
from aerial images. In Proceedings of American Sociely
Photogrammetry and Remote Sensing, pages 16-23,
2000.

T. Geraud and J.-B. Mouret. Fast road network
extractioin in satellite images using mathematical
morphology and markov random fields. Journal on
Applied Signal Processing, 16:2503-2514, 2004.

G. Heitz and D. Koller. Learning spatial context:
Using stuff to find things. In Proceedings of Furopean
Conference on Computer Vision, 2008.

J. Hu, A. Razdan, J. C. Femiani, M. Cui, and

P. Wonka. Road network extraction and intersection
detection from aerial images by tracking road
footprints. IEEE Transactions on Geoscience and
Remote Sensing, 45(12):4144-4157, 2007.

P. Kahn, L. Kitchen, and E. Riseman. A fast line
finder for vision-guided robot navigation. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 12(11):1098-1102, 1990.

S. Kluckner, M. Donoser, and H. Bischof. Super-pixel
class segmentation in large-scale aerial imagery. In
Proceedings of Annual Workshop of the Austrian
Association for Pattern Recognition, 2010.

J.-F. Lalonde, A. A. Efros, and S. G. Narasimhan.
Detecting ground shadows in outdoor consumer
photographs. In Proceedings of European Conference
on Computer Vision, pages 322-335, 2010.

F. Leberl, H. Bischof, H. Grabner, and S. Kluckner.
Recognizing cars in aerial imagery to improve
orthophotos. In Proceedings of International
Symposiums on Advances in Geographic Information
Systems, 2007.

T. Leung and J. Malik. Representing and recognizing
the visual appearance of materials using

[15]

[16]

(17]

(18]

[19]

[20]

21]

22]

23]

[24]

[25]

[26]

[27]

28]

three-dimensional textons. International Journal of
Computer Vision, 43(1):29-44, 2001.

J. Malik, S. Belongie, T. Leung, and J. Shi. Contour
and texture analysis for image segmentation.
International Journal of Computer Vision, 43(1):7-27,
2001.

D. R. Martin, C. C. Fowlkes, and J. Malik. Learning
to detect natural image boundaries using local
brightness, color, and texture cues. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 26(1),
2004.

V. Mnih and G. E. Hinton. Learning to detect roads
in high-resolution aerial images. In Proceedings of
European Conference on Computer Vision, pages
210-223, 2010.

V. Nair and J. J. Clark. An unsupervised, online
learning framework for moving object detection. In
Proceedings of Computer Vision and Pattern
Recognition, pages 317-324, 2004.

A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral
clusterings: Analysis and an algorithm. In Proceedings
of Neural Information Processing Systems, pages
849-856, 2001.

M. Ortner, X. Descombes, and J. Zerubia. Building
outline extraction from digital elevation models using
marked point processes. International Journal of
Computer Vision, 72(2):107-132, 2007.

C. Qian, B. Gale, and J. Bach. Earth documentation:
Overpass detection using mobile lidar. In Proceedings
of IEEE International Conference on Image
Processing, pages 3901-3904, 2010.

J. Schpok. Geometric overpass extraction from vector
road data and dsms. In Proceedings of ACM
SIGSPATIAL International Conference on Advances
in Geographic Information Systems, pages 3-8, 2011.
Y.-W. Seo. Augmenting Cartographic Resources and
Assessing Roadway State for Vehicle Navigation. PhD
thesis, The Robotics Institute, Carnegie Mellon
University, April 2012. tech. report
CMU-RI-TR-12-13.

Y.-W. Seo, C. Urmson, D. Wettergreen, and J.-W.
Lee. Augmenting cartographic resources for
autonomous driving. In Proceedings of ACM
SIGSPATIAL International Conference on Advances
in Geographic Information Systems, pages 13-22, 2009.
B. Soleimani, M.-H. Z. Ashtiani, B. H. Soleimani, and
H. Moradi. A disaster invariant feature for
localization. In Proceedings of IEEE/RSJ
International Conference on Intelligent Robots and
Systems, pages 1096-1101, 2010.

A. Tabibiazar and O. Basir. Kernel-based modeling
and optimization for density estimation in
transportation systems using floating car data. In
Proceedings of International IEEE Conference on
Intelligent Transportation Systems, pages 576-581,
2011.

C. Tomasi and R. Manduchi. Bilateral filtering for
gray and color images. In Proceedings of International
Conference on Computer Vision, pages 839-846, 1998.
Y. Weiss. Segmentation using eigenvectors: A unifying
view. In Proceedings of International Conference on
Computer Vision, pages 975-982, 1999.



(a) p=0.944,r = 0.907, F'1 = 0.925. (b) p=10.754,r = 0.945, F'1 = 0.839.

(c) p = 0.844,r = 0.941, F1 = 0.890. (d) p = 0.894,r = 0.969, F1 = 0.930.

(e) p=0.940,r = 0.848, F'1 = 0.892. (f) p=10.910,7 = 0.799, F'1 = 0.851.

(g) p = 0.850,r = 0.961, F'1 = 0.902. (h) p=0.747,7 = 0.947, F1 = 0.835.

(i) p = 0.853,r = 0.968, F'1 = 0.907. (j) p=0.975,7 = 0.985, F'1 = 0.980.

Figure 5: Some of the road image-region segmentation results by GMM w/ MRF are shown. Viewed best in color.



Figure 6: Some of the overpass detection results are shown. Rectangles with dashed (red) lines indicate the boundaries of
the detected overpasses and two solid (blue and cyan) lines represent two axes of the boundary rectangles. Note that our
algorithm intentionally drew some of the boundary lines at outside of image bounds for the completeness. These figures are
best viewed in color.



