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ABSTRACT Multimodal medical image fusion (MMIF) plays critical roles in image-guided clinical

diagnostics and treatment. Pulse coupled neural network (PCNN) has been applied in image fusion for several

years. In the schemes of image fusion based on PCNN, the authors have adjusted variables manually, so that it

is difficult to get satisfying effects which limit in dealing with medical images with different modalities. This

paper presents a quality-guided adaptive optimizationmethod forMMIF, which is based on PCNN optimized

by multi-swarm fruit fly optimization algorithm (MFOA). To reduce the implementation cost and improve

the performance of theMFOA, quality assessment for multimodal medical image fusion was chosen to be the

hybrid fitness function. Guided by such quality measurement, the adaptive PCNN using the MFOA (PCNN-

MFOA) is proposed, which could automatically fit the optimal variables to the source images and enhance

the fusion effect. The experimental results visually and quantitatively show that the proposed fusion strategy

is more effective than the state-of-the-art methods and it is more effective in processing medical images with

different modalities.

INDEX TERMS Quality guided, pulse coupled neural network, multi-swarm fruit fly optimization algo-

rithm, multimodal medical image fusion.

I. INTRODUCTION

Image fusion integrates different sensory information into a

visual enhanced representational format [1]–[3]. Fusion of

multimodal medical images attracts much attention due to

its critical role in clinical diagnostics and treatment. There

are various modalities of medical images, which can be

classified into anatomical and functional. Anatomical imag-

ing modalities include x-ray computed tomography (CT),

magnetic resonance imaging (MRI). For instance, CT image

denote dense structures, but it is limited in soft tissue con-

trast. MRI can detect soft tissue. However, it cannot be

used to provide bones and implants information [4]. Func-

tional imaging modalities include single photon emission

CT (SPECT) and positron emission CT (PET), which provide

metabolic information without anatomical context like blood

flow and flood activity with low spatial resolution. Single

modality medical images may not enough to provide clinical
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needs to radiologists [5]. Multimodal medical image fusion

(MMIF) provides a promising solution approach by integrat-

ing information of different modality images into a visual

enhanced fused images, it aids radiologists in significant

clinical diagnosis [6], [7].

Up to now, many medical image fusion approaches have

been presented. The most fusion methods are based on mul-

tiscale transform (MST) framework. The MST approaches

can be divided into three steps. Firstly, source images

are transformed to MST domain. Then, the MST coef-

ficients are merged by designed fusion rulers. Finally,

the fused image is obtained by the inverse transform.

Classical MST-based fusion methods commonly include

gradient pyramid [8], discrete wavelet transform [9],

and contourlet transform [10], non-subsampled contourlet

transform (NSCT) [11], non-subsampled shearlet trans-

form (NSST) [12], and so on. To pursue encouraging fusion

results, pulse coupled neural network (PCNN) are intro-

duced under MST-based framework [13]–[16]. Such as,

Huang et al. [14] used NSCT and PCNN for the fusion of
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SPECT and CT images to improve the quality of fused

brain images. However, authors did not consider other

types of medical images. Jin et al. [15] proposed sim-

plified PCNN based on non-subsampled shearlet trans-

form (NSST-SPCNN) for multimodal sensor medical image

fusion. Image pixel value is employed to stimulate the PCNN

for processing high frequency coefficients. The coefficients

with larger absolute values are fused into new low frequency

coefficients. These methods were exploited on the basis of

complementary strategies and thus achieve fairly high per-

formance. However, in most cases, the PCNN parameters are

set to constant based on adjusted manually through a great

quantity of training, which hinders the performance of medi-

cal image fusion [16]. In simplified PCNN model, there are a

few important parameters need to be set. A natural question

is how to select the best parameters to conduct fusion. This is

not an easy task, since defined parameters may produce the

best quality on one pair input images, but it may be appro-

priate to the new input images not any longer. So, in most

cases, researchers must try a great many times to find a

suitable set of parameters based on different input images by

empirical or experimental results. To a great extent, it may

limit the robustness of algorithm performance. The adaptive

optimization process of finding suitable parameters is similar

to the optimization process of the intelligent optimization

algorithm. MFOA is a global optimization approach, aiming

to find the optimal solution search space by iteration. This

motivates us to exploit a quality-guided adaptive optimization

to automatically determine the optimal parameters for fusing

multimodal medical images.

This paper proposes a quality-guided adaptive optimiza-

tion method based on PCNN-MFOA. The main contributions

of this paper are as follows.

1) We introduce a quality evaluation metric for MMIF

(QMMIF ) [17] as the quality-guided fitness function.

In the process of search iteration, the design of the

fitness function is the key. The fitness function needs

to be used to evaluate the merits of the current posi-

tion. The image objective evaluation index can mea-

sure the quality of the image and can be used as the

basis for the fitness function selection. In addition,

the QMMIF is experimentally proved to have more

accurately than existing evaluation strategies in eval-

uating the MMIF image [17]. To the best of our knowl-

edge, this is the first time that theQMMIF model is used

as quality-guided adaptive optimization in the field of

medical image fusion.

2) We first time propose an adaptive PCNN using the

MFOA (PCNN-MFOA) model in the field of mul-

timodal medical image fusion. The PCNN-MFOA

model can overcome the difficulty of setting parameter-

adaptive in the conventional PCNN models. The

dynamic optimization of parameters is adjusted

through the evaluation results, and the optimal vari-

ables can be automatically matched with the source

image to obtain the optimal parameter combination.

3) We propose a new quality-guided adaptive optimiza-

tion method for MMIF by applying the PCNN-MFOA

mentioned earlier. Experiments are implemented

to verify the effectiveness of proposed method

on different imaging modalities of medical image.

Representative MMIF algorithms are used as compar-

ison experiments. Experimental results visually and

quantitatively show that the proposed fusion strategy

is more effective than state-of-the-art methods in pro-

cessing medical images with different modalities.

The rest of this paper is organized as follows. In Section II,

the theories of PCNN and MFOA are briefly introduced.

Section III presents quality-guided PCNN-MFOAmodel and

detailed fusion scheme. Experimental results and analysis are

presented in Section IV. Finally, Section V gives conclusion.

II. RELATED WORKS

A. PULSE COUPLED NEURAL NETWORK

The schematic diagram of the simplified PCNN model is

shown in FIGURE 1. There are three modules: the dendritic

(feeding inputEu,v and linking input Iu,v(n)), the linkingmod-

ulation Mu,v(n) and the pulse generator Fu,v(n) [18], which

are denoted by:

Eu,v(n) = Su,v (1)

Iu,v(n) = e−αL Iu,v(n) + VL
∑

k,l

Wu,v,k,lFu,v(n− 1) (2)

Mu,v(n) = Eu,v(n)
[

1 + βIu,v(n)
]

(3)

Tu,v(n) = e−αθTu,v(n− 1) + VθFu,v(n− 1) (4)

Fu,v(n) =

{

1, Mu,v(n) > Tu,v(n)

0, Mu,v(n) ≤ Tu,v(n)
(5)

FIGURE 1. Schematic diagram of simplified PCNN.

where W is the synaptic weight matrices, u, v represent the

pixel locations, k , l represent the dislocation in a symmetric

neighbourhood surrounding a pixel. Su,v(n) is the external

stimulus. In this paper, gray value of the pixel instead of

external stimulus of PCNN. VL and αL represent normalizing

constants. β is the linking parameter, which the weight of

linking field. αθ and Vθ denote attenuation coefficient and

threshold magnitude coefficient, respectively.

VOLUME 7, 2019 96049



L. Tang et al.: Exploiting Quality-Guided Adaptive Optimization for Fusing Multimodal Medical Images

B. MULTI-SWARM FRUIT FLY OPTIMIZATION ALGORITHM

Pan et al. [19] presented fruit fly optimization algo-

rithm (FOA), aiming to hunt for global optimization auto-

matically. It is as a simulation of intelligent foraging action

of fruit flies hunting for food. The FOA metric affords us

a useful design principle, and the program code is sim-

ple and easy to understand. However, this method tends to

cause limiting in searching space. Furthermore, it is hard

to get out of the local extremes [20]. Hence, the multi-

swarm fruit fly optimization algorithm (MFOA) was pre-

sented by Yuan et al. [21]. It is a FOA-based approach,

which employs multi-swarm action to significantly improve

the performance. In the MFOA approach, the sub swarms

divide by a huge swarmmove independently searching space.

Meantime, to searching global optimization at once, local

search is done by cooperative sub-swarms, which is so far

the complementation of MFOA close to the best values. The

nonlinear equations with boundary conditions optimization

question is depicted as follows:

max f (Y ) = f (y1, y2, · · · , yn) , yj ∈
[

aj, bj
]

(6)

where j ∈ {1, 2, 3, · · · n}, n is the number of decision variable.

The detail of the MFOA is epitomized as following steps.

Firstly, fruit fly swarm location is initialized, which is

denoted by Init Y_axis. The max iteration times are set kmax ,

population scale of fruit flies is Popsize, and sub swarms

number is T . The individual fruit fly can use the smell to

feed back its distance and direction to the food. The detailed

implementation on each swarm is as follows:

Yi,t = Y_axist + R(k) × Random (7)

where i ∈ {1, 2, 3, · · ·Popsize} denotes each fruit flies

population, t ∈ {1, 2, 3, · · · T } denotes each sub swarm.

φ ∈ [2, 6],R(k) is denoted by

R(k) =

(

bj − aj

2

)

×

(

kmax − k

kmax

)φ

(8)

Secondly, in order to find fitness function value of the

individual location of fruit fly, fitness function value (Smelli)

is substituted and denoted by decision variable value (Yi).

Best fitness function value among each sub-swarm is denoted

by max (smell). They are listed as follows:

Smelli = Function(Yi)

[bestSmellt bestIndext ] = max(Smell) (9)

When the fitness of each sub swarm is better than the prior

iteration fitness, the optimum fitness is updated, meantime,

each sub swarm will fly to that location on one’s own with

sense of sight, which are listed as follows:

Smellbestt = bestSmellt

Y_axist = Y (bestIndext ) (10)

Next, the global fitness and best position are updated,

which are denoted by Smellbest and Y_axis, respectively.

If the Smellbestt> Smellbest, the Smellbest = Smellbestt ,

Y_axis = Y_axist . Cooperative local search is conducted by

Y−new =
1

T

T
∑

t=1

X−axist (11)

whenFunction(Ynew) > Smellbest , the global fitness and best

position are updated and denoted by

Smellbest = Function(Y_new)

Y_axis = Y_new (12)

Finally, if k ≥ kmax , then, iteration stops.

III. MULTIMODAL MEDICAL IMAGES FUSION STRATEGY

A. THE QUALITY-GUIDED FITNESS FUNCTION

In order to solve the optimal parameters of the PCNN,

the intelligent optimization algorithm MFOA was used to

optimize the parameters of the PCNN. In the process of search

iteration, the fitness function needs to be used to evaluate

the merits of the current position. Therefore, the design of

the fitness function is the key. A natural problem is how

to select the appropriate evaluation criteria to construct the

fitness function. The fitness function is an important factor

affecting the search performance of the MFOA. The image

objective evaluation index can measure the quality of the

image and can be used as the basis for the fitness function

selection. Many image quality assessment approaches have

been presented [22]–[24], however these existing evaluation

criterias are not designed forMMIF, which limit in evaluating

multimodal fused images, and little has been done to com-

pare them with subjective data that contains a wide variety

of image modalities and fusion algorithms. In our previous

work [17], a MMIF image database is built, 20 radiologists

participated in the subjective test, the proposed quality eval-

uation metric for MMIF (QMMIF ) can maintain good consis-

tency with the subjective experimental results, and can more

accurately evaluate theMMIF image. In this paper, the fitness

function is constructed by the QMMIF evaluation criterion,

which advances fruit flies to fly from the original location to

the best location with higher effectiveness. Guided the quality

assessment, adaptive PCNNmodel using the MFOA (PCNN-

MFOA) are constructed, which is determined according to the

fitness function. The dynamic optimization of the parameters

is adjusted through the evaluation results, and the optimal

variables can be automaticallymatchedwith the source image

to obtain the optimal parameter combination. Hence, a eval-

uation criterion for MMIF fitness function is computed and

denoted by

Smellbest = QMMIF (13)

B. PCNN-MFOA

In simplified PCNN model, several parameters are very

important in affecting the performance of PCNN model.

Attenuation time constant αL determines the attenuation

speeds of the L-channel. Decay time constant αθ regulates
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FIGURE 2. Schematic diagram of PCNN-MFOA fusion strategy.

FIGURE 3. Schematic of the grayscale and color image fusion strategy.

the decline rate of the threshold value, and the threshold

decreases slower and themore times the PCNN employs if the

value is smaller. The threshold amplitude coefficient Vθ regu-

lates the neuron firing cycle, once a neuron fires, its amplitude

exceeds the threshold and will be promoted. The link strength

coefficient β adjusts the extent to which neighboring neu-

rons affect central neurons. The large β causes widespread

pulse synchronization. Iteration number n can not only reduce

the computational complexity, but also increase the comput-

ing speed of the PCNN.

Considering the above reasons, these five important param-

eters (αL,β, Vθ,αθ,n) need to be determined. The sub-swarms

number of the fruit flies represents the number of parameters,

so the sub-swarms number is 5, the size of population is
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Algorithm 1 Procedures of PCNN-MFOA

Input: kmax , Popsize, T , n, image IA, image IB

For t = 1:T

For j =1: n

Initialization Y_axist
End for

End for

For k = 1: kmax

For i = 1: Popsize

For t = 1:T

Yit = Y_axist +R(k)× Random

End for

Fi = fused (image IA, image IB, Yi)

Smell i = Function(Yi) = QMMIF (Fi)

End for

[bestSmellt bestIndext] = max(Smell)

Smellbest t = bestSmell t
Y_axist = Y (bestIndext )

If Smellbestt> Smellbest

Smellbest = Smellbestt
Y_axis = Y _axist

End If

Y−new = 1
T

T
∑

t=1

Y−axist

F = fused (image IA, image IB,Y _new)

Smell _new = Function(Y _new)

If Function(Y _new) > Smellbest

Smellbest = Function(Y _new)

Y_axis = Y_new

End If

End for

Output: Smellbest, Y _ axis ((αL , β,Vθ , αθ , n)

Output, Y_axis
(

αL , β,Vθ , αθ , n
)

set to 20, and the terminal condition exceeding the maximal

iterations number will be not executed. The detailed of the

proposed PCNN-MFOA are shown as Algorithm 1.

C. FUSION STRATEGY BASED ON PCNN-MFOA

Schematic diagram of the fusion strategy based on

PCNN-MFOA is shown in FIGURE 2. Uniformly, medical

image IA and medical image IB denote two source images

with different modalities, let IF denote the fused image. The

detailed fusion scheme is summarized as following steps.

Firstly, image IA and image IB are conducted based on

PCNN-MFOA, the optimal parameters are calculated accord-

ing to Algorithm 1.

(αL , β,Vθ , αθ , n) = PCNN −MFOA
(

IA
)

(αL , β,Vθ , αθ , n) = PCNN −MFOA
(

IB
)

(14)

where PCNN-MFOA(·) denotes the PCNN-MFOA functions,

which was described in section III. B.

FIGURE 4. Source multimodal medical images.

Secondly, the IA (u,v) and IB (u,v) are used as the stimulus

of the PCNN for processing IA and IB, respectively.

T I
A

= PCNN
(

IA(u, v)
)

T I
B

= PCNN
(

IB(u, v)
)

(15)
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FIGURE 5. Four experimental results for CT and MR image fusion with eight methods (a) CSR. (b) NSCT-PCNN-SF. (c) GFF. (d) LP-SR. (e) ULAP-MF. (f) NF.
(g) NSST-PAPCNN. (h) Proposed.

FIGURE 6. Four experimental results for MR-T1 and MR-T2 image fusion with eight methods (a) CSR. (b) NSCT-PCNN-SF. (c) GFF. (d) LP-SR. (e) ULAP-MF.
(f) NF. (g) NSST-PAPCNN. (h) Proposed.

where PCNN(·) denotes the best parameters (αL,β, Vθ,αθ,n)

by Eqs. (1)-(5). The firing times matrix T I
A

and T I
B

denote the total fired times motivated by IA (u,v) and

IB (u,v), respectively. When the iteration number n =

kmax , kmax is the max iteration times, then iteration

stops.
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FIGURE 7. Four experimental results for MR and PET image fusion with eight methods. (a) CSR. (b) NSCT-PCNN-SF. (c) ULAP-MF. (d) NF.
(e) NSST-PAPCNN. (f) LLF-II. (g)PSF. (h) Proposed.

Finally, IF is computed and denoted as follows:

IF =











max
(

IA(u, v), IB(u, v)
)

T I
A

= T I
B

IA(u, v) T I
A

> T I
B

IB(u, v) T I
A

< T I
B

(16)

D. EXTENSION TO ANATOMICAL AND

FUNCTIONAL IMAGE FUSION

In this subsection, the proposed method is extended to fuse

anatomical images and functional images. In medical imag-

ing modalities, functional images (e.g., PET and SPECT)

are pseudocolor images. The color space transform can

divide color image into luminance or brightness component,

especially, the YUV color space transform method have

proved a very effective way for anatomical and functional

image fusion [13], [16], [25]. This paper apply YUV color

space transform to separate a color image into one lumi-

nance component (Y) and two chrominance components

(U and V). Schematic diagram of the anatomical and func-

tional image fusion strategy is shown in FIGURE 3. Specifi-

cally, the fusion scheme is outlined as following:

Firstly, the RGB image is transformed into YUV color

space with three channels of Y, U, and V. The RGB to YUV

color space conversion can be denoted by




Y

U

V



 =





0.299 0.587 0.114

−0.169 −0.331 0.5

0.5 −0.419 −0.081









R

G

B



 (17)

Then, fused Y channel (new Y channel) is obtained

by the grayscale image and the Y channel fusion

based on the proposed fusion strategy, which described

in section III. C.

Next, the new YUV are obtained by combining fused Y

channel, the original U channel, and the original V

channel.

Finally, the fused color image is contructed by inverse

YUV transform. YUV to RGB space is computered by the

following inverse operations:




R

G

B



 =





1 0 1.14

1 −0.39 0.58

1 2.03 0









Y

U

V



 . (18)

IV. EXPERIMENTAL RESULTS

A. EXPERIMENTAL SETTINGS

In this subsection, four groups of medical images with size

256 × 256 are performed as shown in FIGURE 4. They are

CT and MRI, MRI-T1 and MRI-T2, MRI and PET, MRI and

SPECT. For each group, four sets of images are employed

in the experiments, and the two source images should be

preregistered.

To evaluate the effectiveness of the PCNN-MFOA

strategy, the following fusion algorithms are used as

comparison experiments, including convolutional sparse

representation (CSR) [26], NSCT and PCNN with modi-

fied spatial frequency (NSCT-PCNN-SF) [13], guided filter-

ing (GFF) [27], laplace transform and sparse representation

(LP-SR) [28], union laplacian pyramid with multiple features

(ULP-MF) [29], neuro-fuzzy (NF) [30], parameter-adaptive

PCNN in NSST (NSST-PAPCNN) [16], local laplacian
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FIGURE 8. Four experimental results for MR and SPECT image fusion with eight methods. (a) CSR. (b) NSCT-PCNN-SF. (c) ULAP-MF. (d) NF.
(e) NSST-PAPCNN. (f) LLF-II. (g)PSF. (h) Proposed.

TABLE 1. Objective assessment of the proposed methods with different fitness function.

filtering and information of interest (LLF-II) [31], parallel

saliency features (PSF) [32], where GFF, LP-SR are gen-

erally used to fuse anatomical- anatomical image, LLF-II,

PSF are specifically for anatomical-functional image, CSR,

NSCT-PCNN-SF, ULP-MF, NF, NSST-PAPCNN are used

not only to fuse anatomical-anatomical image, but also to

fuse anatomical-functional image. Among the nine compared

methods, all the parameters are default values in imple-

mentation. The choice of fitness function is determined by

experiments. In implementation, the fitness function is con-

structed by the standard deviation (SD) [28], the normal-

ized mutual information (MI) [33], Xydeas et al.’s gradient

based metric QG [34], Yang et al.’s metric (QY ) [35], and

QMMIF [17], respectively, in MMIF image database [17].

We find the results of QMMIF in objective evaluation metrics

are best. As shown in the TABLE 1, each value is the average

result of all the source images, and the highest values are

labeled in bold, which denote the best performance. In the

experiment, we calculate the total running time of fusing

all 16 pairs of source images, and then divide it by 16 to

get the average running time, and repeated 10 times. The

average running time is 136.56 seconds, iteration times are

20, and the optimized iteration time is 6.83 seconds. An expe-

rienced radiologist participated in subjective visual quality

evaluation in terms of the proposed method. For each image

set, the radiologist was asked to give results to each fused

image within a continuous range, which can obtain more

accurate subjective evaluation. He believed that the images

fused by our proposed method preserve more edge, details

and texture information, and have higher contrast and sharp-

ness than source images, which is useful in diagnoses for

doctors.

B. VISUAL QUALITY ANALYSIS

FIGURE 5 shows four experimental results for CT and

MR image fusion with eight methods. It can be seen

that images fused by CSR, GFF, LP-SR, ULAP-MF, NF,

NSST-PAPCNN methods lose bone information. Among

the CSR, GFF, ULAP-MF, NSST-PAPCNN methods,

bone information are invisible [see the bone regions in

FIGURE 5(a), (c), (e) and (g)]. The LP-SR and NF methods

obtain part of skeleton information [see the bone regions in

FIGURE 5(d), (f)]. NSCT-PCNN-SF method conserve better
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TABLE 2. Objective assessment for CT and MRI.

TABLE 3. Objective assessment for MRI-T1 and MRI-T2.

effect on this issue, but still lead to some edge skeleton

structures blurring, and some details lose and the contrast

of the focal lesions decrease [see the bone regions and

focal regions in FIGURE 5(b)]. Our method achieves better

results on bone information preservation and detail extraction

[see FIGURE 5(h)].

FIGURE 6 shows four experimental results for MR-T1

and MR-T2 image fusion. The CSR, GFF, ULAP-MF, NF,

NSST-PAPCNN methods are not successful in extracting

the detail structure from the MR-T2 image. The CSR, GFF

methods lead to the details of MR-T2 image almost invisible

[see FIGURE 6(a), (c)], the ULAP-MF, NF, NSST-PAPCNN

methods obtain part MR-T2 details, but some details are still

serious loss [see the focal regions and cerebrospinal fluid

region in FIGURE 6(e), (f) and (g)]. The NSCT-PCNN-SF

and LP-SR methods perform well, some regions cause inten-

sity and contrast decrease, leading to a significant structure

blur in gray and white matter region [FIGURE 6(b), (d)].

The proposed method achieve well in all these four

examples.

FIGURE 7 shows four experimental results for MR and

PET image fusion with eight methods. The LLF-II method

introduces serious noise like artifacts in fused image [see

FIGURE 7(f)]. The PSF method leads to whole image blur
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TABLE 4. Objective assessment for MRI and PET.

TABLE 5. Objective assessment for MRI and SPECT.

[see FIGURE 7(g)]. The NSCT-PCNN-SF method suffers

from important anatomical information of MR source image

lost [see FIGURE 7(b)]. The CSR, ULAP-MF methods

cause severe color distortion [cerebral metabolism regions in

see FIGURE 7(a), (c)]. The NF, NSST-PAPCNN methods

perform better on this issue, but fails in preserving color

fidelity. In addition, unclosure or incontinuity effects exist

more or less in the fused images, which lead to some impor-

tant functional information of PET image lost [see cerebral

metabolism regions in FIGURE 7(d), (e)]. Compared with

the above methods, our method achieves the best visual

performance [see FIGURE 7(h)].

FIGURE 8 shows four experimental results for MR and

SPECT image fusion with eight methods. It can be clearly

seen that the image fused by LLF-II suffers from serious noise

like artifacts [see FIGURE 8(f)]. The PSF method fails in

preserving image sharpness [see the serious visual blur in

whole image regions in FIGURE 8(g)]. The main defect of

CSR, NSCT-PCNN-SF, ULAP-MF method is not successful

in preserving intensity and contrast, leading to important

anatomical information in MR source image lost [see the

gray and white matter regions in FIGURE 8(a), (b), (c).]

In addition, color information blur or even lost exists more

or less in the fused images [see hypermetabolism regions in
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FIGURE 8(a), (b), (c)]. The NF, NSST-PAPCNN methods

obtain better fusion results, but fails in obtaining important

functional information of SPECT source image, because it

over enhances the anatomical details in theMR source images

[see abnormal metabolites regions in FIGURE 8 (d), (e)]. The

proposed strategy preserves edge, details, texture informa-

tion, and metabolic information [see FIGURE 8 (h)].

C. OBJECTIVE QUALITY ASSESSMENT

Objective quality assessment plays an important role in image

fusion filed. Recently, many fusion metrics have been pro-

posed, one question to how to select the best criteria to

measure the fused image quality. This is not an easy task,

since perfect reference images (ground truth) are usually

unavailable in the real world medical imaging. So far, a few

of approaches have been presented for the quality measure-

ment of the fused images. In this work, four fusion quality

metrics are adopted, which are SD [28], MI [33], QG [34],

QY [35]. SD measures the contrast in the fused image. MI

measures the amount of information transferred to the fused

image from the source images. QG evaluates the success of

edge information or gradient information from source images

is injected in to the fused image from the source images.

QY utilizes the structure similarity to measure the structural

information between the fused image and each source image.

In general, the larger the values of SD,MI,QG, andQY denote

better fusion quality. TABLE 2-5 summarizes the objective

assessment performance of our method and existing methods

employing the above four metrics, where the highest score

values are marked boldfaced in each row, which denote the

best results. From the TABLE 2-5, it is clear that our method

achieves the significant superiority.

V. CONCLUSION

In this paper, we have presented a quality-guided adaptive

optimization method for fusing multimodal medical images.

Guided by quality measurement, PCNN-MFOA is proposed,

which could automatically determine the optimal parame-

ters for source images, and deal with medical images with

different modalities. Extensive experimental results demon-

strate that the proposed fusion strategy has much higher

performance than the state-of-the-art methods. Furthermore,

the proposed method is very helpful for the radiologists in

clinical application.
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