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EMIL BJÖRNSON, DAVID HAMMARWALL,
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Abstract—In the design of narrowband multi-antenna systems,
a limiting factor is the amount of channel state information (CSI)
available at the transmitter. This is especially evident in multi-user
systems, where the spatial user separability determines the multi-
plexing gain, but it is also important for transmission-rate adap-
tation in single-user systems. To limit the feedback load, the un-
known and multi-dimensional channel needs to be represented by
a limited number of bits. When combined with long-term channel
statistics, the norm of the channel matrix has been shown to pro-
vide substantial CSI that permits efficient user selection, linear
precoder design, and rate adaptation. Herein, we consider quan-
tized feedback of the squared Frobenius norm in a Rayleigh fading
environment with arbitrary spatial correlation. The conditional
channel statistics are characterized and their moments are derived
for both identical, distinct, and sets of repeated eigenvalues. These
results are applied for minimum mean square error (MMSE) esti-
mation of signal and interference powers in single- and multi-user
systems, for the purpose of reliable rate adaptation and resource
allocation. The problem of efficient feedback quantization is dis-
cussed and an entropy-maximizing framework is developed where
the post-user-selection distribution can be taken into account in the
design of the quantization levels. The analytic results of this paper
are directly applicable in many widely used communication tech-
niques, such as space-time block codes, linear precoding, space di-
vision multiple access (SDMA), and scheduling.

Index Terms—Channel gain feedback, estimation, MIMO sys-
tems, norm-conditional statistics, quantization, Rayleigh fading,
space division multiple access (SDMA).

I. INTRODUCTION

W
IRELESS communication systems with antenna arrays
at both the transmitter and receiver have the ability of

greatly improving the capacity over single-antenna systems.
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The potential gains have been shown for narrowband chan-
nels in [1] and [2], under the assumption of independent and
identically distributed zero-mean complex Gaussian channel
coefficients between the transmit and receive antennas. Such
channels are often referred to as uncorrelated Rayleigh fading,
since there is no correlation in the spatial dimension and the
envelope of the received signal is Rayleigh distributed. From
a mathematical point of view, uncorrelated Rayleigh fading
channels occur naturally when the antenna separation is large
and the scattering in the propagation channel is sufficiently rich.
However, it has been shown experimentally that the channel
coefficients are often spatially correlated in outdoor scenarios
[3], and correlation frequently occurs in indoor environments
as well [4], [5]. This motivates the analysis of the more general
case of Rayleigh fading where the channel coefficients are
arbitrarily correlated.

Channel variations are normally characterized by small-scale
and large-scale fading [6]. The former describes changes in the
signal paths of the order of the carrier wavelength and is time-
and frequency-dependent. To avoid the frequency dependency
we consider narrowband block-fading channels; that is, the
channel matrix is constant for a block of symbols and then
updated independently from the assumed Gaussian distribution
for the next block. The large-scale fading corresponds to varia-
tions in the channel statistics due to effects like shadowing by
buildings and power decay due to propagation distance. These
effects are typically frequency independent and slowly varying
in time. Hence, the transmitter and receiver can keep track on
the statistics by reverse-link estimation or a negligible feedback
overhead.

In single-user multiple-input multiple-output (MIMO) sys-
tems, the small-scale fading can be mitigated with using orthog-
onal space-time block codes (OSTBCs) [7]–[9]. Using only sta-
tistical channel state information (CSI) at the transmitter, the ca-
pacity can be unexpectedly good if linear precoding takes care
of the spatial correlation [9]–[12]. In practice, a small amount of
channel gain feedback is however necessary for rate adaptation
to achieve this performance. In multi-user MIMO systems the
situation is somewhat different, because the multi-user diversity
gain depends on the amount of instantaneous CSI available at
the transmitter [13], [14]. This CSI can be exploited to schedule
users for transmission on time-frequency slots and spatial direc-
tions in which they experience particularly strong gains. Unfor-
tunately, the amount of feedback needed to achieve full CSI is
prohibitive in many realistic scenarios. Therefore, the design of
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limited feedback systems that capture most of the performance
has been an active research topic.

Many multi-user limited feedback systems are based on linear
precoding. Although this approach is only asymptotically op-
timal in the number of users [15], the loss in performance comes
with a substantial decrease in complexity compared with non-
linear precoding (e.g., optimal dirty-paper coding [16]). One
approach to linear precoding in space division multiple access
(SDMA) is to allocate users to a set of beams based on feedback
of their achieved channel gains. These beams can either be gen-
erated randomly [14] or belong to a fixed grid of beams [17].
Another approach is to design and adapt the precoder matrix to
statistical user information and feedback of instantaneous CSI.
This can be implemented in a zero-forcing fashion [18]–[20],
where the co-user interference is made zero (for full CSI) or
statistically small and manageable (for partial CSI). Although
this strong zero-forcing condition is suboptimal, it provides a
simple design structure and can achieve close-to-optimal per-
formance if the amount of feedback is correctly scaled with the
signal-to-interference-and-noise ratio (SINR) [18]. In general,
the type of approach that is most favorable depends on various
system parameters, such that coherence time, number of users,
spatial correlation, and average SINR.

Feedback of quantized gain information plays an important
role in the design of both user-selection algorithms and linear
precoders. In [21], channel norm based user-selection was
shown to provide close-to-optimal performance asymptoti-
cally in the number of transmit antennas. When considering
zero-forcing precoding and limited feedback, it was proposed
in [18] that each user should feed back its normalized channel
vector using a codebook and calculate a regular zero-forcing
precoder. Additional feedback of the instantaneous channel
norm is however required to estimate the SINR and perform
reliable rate adaptation [22]. In spatially correlated systems,
the long-term statistics provide directional information and
feedback of the channel norm is sufficient to perform efficient
statistical zero-forcing [19] and estimate the instantaneous
SINR that is used for rate adaptation [23]. In neither of these
papers, channel gain quantization or multi-antenna receivers are
considered. With multiple antennas at both sides, more degrees
of freedom are available in the interference cancellation, but
the precoder and receiver combining design problem becomes
considerably more difficult. Some of these problems were
addressed in [20].

Herein, we analyze the impact of channel gain information on
Rayleigh fading MIMO systems with arbitrary spatial correla-
tion. The conditional statistics and minimum mean square error
(MMSE) framework derived in [23] for correlated systems with
single-antenna users are generalized to cover general fading en-
vironments, multi-antenna users, and quantized gain informa-
tion. The contributions to communication are an entropy-maxi-
mizing quantization framework that can be applied to gain feed-
back and the derivations of closed-form estimators of the instan-
taneous SINR in single- and multi-user systems, using such gain
feedback. These results can be applied to handle gain feedback

and rate adaptation in system both with and without additional
feedback of directional channel information.

Notations

For notational convenience we use boldface (lower case)
for column vectors, , and (upper case) for matrices, . With

, , and we denote the transpose, the conjugate
transpose, and the conjugate of , respectively. The Kronecker
product of two matrices and is denoted ,
is the column vector obtained by stacking the columns of ,
and is the -by- diagonal matrix with

at the main diagonal. If the th element of a matrix
is , then . The distribution of circularly

symmetric complex Gaussian vectors is denoted ,
with mean value and covariance matrix .

The notation is used for definitions. The squared 2-norm
of a vector is denoted and the squared Frobenius norm
of a matrix is denoted , and both are defined as the sum
of the squared absolute values of all the elements. The sum of
absolute values of all the elements in is denoted . If is a
set, then the set members are denoted , where

is the cardinality of .
Let . The generalized Heaviside step func-

tion is 1 if for all and , and
0 otherwise. The function is 1 if , for all ,
and , and 0 otherwise. Finally, denotes
Dirac’s delta function.

A. System Model

Consider the downlink of a communication system with
a single base station equipped with an array of antennas
and several mobile users, each with an array of antennas.
The symbol-sampled complex baseband equivalent of the
narrowband flat-fading channel to user is represented by

. The elements of are modeled as Rayleigh
fading with arbitrary correlation, and thus we assume that

. The received vector of
user at symbol slot is modeled as

(1)

where the vector of transmitted signals is denoted
and the power of the system is normalized such that

is white noise with elements that are dis-
tributed as .

The system model in (1) depends on three different time
scales. The variations in the matrix are modeled by
quasi-static block-fading; that is, the channel realization is con-
stant for a block of symbols and then modeled as independent
in the next block. Within a block, only the noise and the
transmitted signal are changing. The statistics change very
slowly, measured in the number of blocks, and it is therefore
assumed that the current correlation matrix is known to
both the base station and user .
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B. Feedback-Based Estimation of Weighted Channel Norms

To achieve reliable rate estimation and exploit the spatial and
multi-user diversity, the transmitter often needs more informa-
tion than just the channel statistics. Such partial and instanta-
neous CSI can be estimated at the receiver side and then fed back
to the transmitter [24]. When the channel conditions change
rapidly with time, the number of feedback symbols spent on
achieving partial CSI not only reduces the time the informa-
tion can be used at the transmitter before it is outdated but also
the number of symbols available for data transmission on the
reverse link. Hence, the feedback needs to represent some lim-
ited amount of information that can be described efficiently by
a small number of bits.

In a block-fading environment, the feedback system can in
principle be described as a cyclical system that estimates and
feeds back partial CSI in the beginning of each block to im-
prove the system performance during the rest of the block. The
results herein are however not limited to this type of fading. For
simplicity, we assume that there exists an error-free feedback
channel from each mobile user to the base station.

The instantaneous CSI can be divided into directional in-
formation and gain information, herein the latter will be con-
sidered. Throughout this paper, we consider the estimation of
weighted squared Frobenius norms of the channel at the trans-
mitter [20], [23], where the weights are known at the transmitter
but not necessarily at the receiver. On the contrary, the channel is
only perfectly known to the receiver and any instantaneous CSI
exploited at the transmitter must be conveyed over the limited
feedback link. The generic estimation problem that we focus on
is

Estimate

given or a quantized version (2)

In this formulation, we have the weighting matrix
and the effective channel , where

and are matrices known to
the receiver. In the area of communication, two interesting
feedback and estimation scenarios can be formulated in terms
of the generic problem.

1) The receive combiner matrix and precoder matrix are
known to the receiver and are used as and , re-
spectively. The squared norm of the effective channel

is fed back to the transmitter. This infor-
mation is used to estimate the weighted squared norm

, which is either the total channel gain
( ) or the gain in a certain spatial subspace.

2) Either the receive combiner matrix, the precoder matrix,
or both matrices are unknown to the receiver at the time
of feedback. In these cases, the effective channel becomes

, , or , respectively, and
the squared norm is fed back. This information is
used to estimate the weighted squared norm ,
where may represent receive combiner and/or precoder
matrices that are known to the transmitter.

The results of this paper are independent of the quantization,
but a quantization framework is proposed in Section III and
adapted to multi-user systems in Section IV-B.

C. Outline

In Section II, we analyze the special case of feedback of
with a diagonal correlation matrix . Closed-form ex-

pressions of the conditional moments of the elements in are
derived for both exact norm feedback and a quantized norm. A
short overview of the applications of these results in renewal
theory is provided. In Section III, the results are generalized for
communication purposes. A general entropy-maximizing quan-
tization framework is presented and the results of Section II
are used to characterize the distribution of the effective squared
channel norm and to derive an MMSE estimator of weighted
squared norms, given quantized norm information. Section IV
shows how these results are applicable on MMSE estimation
of signal/interference powers and rate adaptation in single- and
multi-user systems. Some of the results are illustrated numeri-
cally in Section V and conclusions are drawn in Section VI.

II. ANALYSIS OF ZERO-MEAN COMPLEX GAUSSIAN VECTORS

WITH NORM INFORMATION

In this section, we consider an -dimensional vector
, for , with zero-mean and indepen-

dent complex Gaussian entries—that is, . First,
the distribution of the squared norm will be pre-
sented. Then, expressions of the th order conditional moment
and th order conditional cross-moment are derived for
the cases of either an exactly known norm or a known interval

(representing a quantization of ). These mo-
ments will be used in Section IV to derive a MMSE estimator
of weighted squared norms as formulated in (2), and their cor-
responding mean squared errors (MSEs).

Without loss of generality, we assume that the diagonal ele-
ments, , of the positive definite correlation matrix

are ordered such that elements with identical
distributions have adjacent indices. When analyzing , we
distinguish between three different cases, depending on the dis-
tinctness of the variances (hereafter called eigenvalues):

• identical eigenvalues: , for some ;
• distinct eigenvalues: , for all ;
• one or more sets of repeated eigenvalues among .

While the former two cases are clearly structured and com-
monly treated in literature, the third case needs further speci-
fication [25]. Let the distinct values among the eigenvalues
be ( ), with the strictly positive multi-
plicities ( ). Then, we have the charac-
terization

...

(3)

To simplify the notation, we gather the eigenvalue multiplic-
ities in a vector and define the function

that gives the group index of from
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(i.e., is the integer that satisfies
).

These three cases are directly applicable to systems with
uncorrelated fading (identical eigenvalues), correlated fading
(distinct eigenvalues), and Kronecker-structured systems (see
Section III) with correlation at either the transmitter or receiver
(repeated eigenvalues with either multiplicity or ).

Next, the probability density function (pdf) of the squared
norm will be given for the three cases
described above. Since for all , then

and the squared norm is the sum
of independent exponentially distributed variables (each with
the rate ). In the case of identical eigenvalues, the pdf is
that of a scaled -distribution (i.e., an Erlang distribution):

(4)

where is the Heaviside step function. In the case of dis-
tinct eigenvalues, the pdf of is well-known in the field of
renewal theory [25] and was derived for communications pur-
poses in [23]:

(5)

In the third case, with repeated eigenvalues that satisfy (3), the
pdf was derived in [25] and [26]:

(6)
where

(7)
with from the set of all partitions of
(with ) defined as

(8)
One remark is that the pdf in (6) actually becomes that in (4) if

and that in (5) if . Since the expressions with
identical and distinct eigenvalues are simpler and very useful in
practice, we will distinguish between all three cases throughout
the paper.

A. Conditional Statistics: Known Norm Value or Interval

Next, we will consider the conditional statistics of the el-
ements of when its squared norm is known exactly
or in a quantized way. The absolute value and the phase of a
complex Gaussian variable are independent [16]. Thus,

can be identically expressed as

, where the phase is uniformly dis-
tributed in and for all . Observe that
information regarding will not provide any
knowledge of the phases. The squared magnitudes of the indi-
vidual elements, , will however depend on .

In this section, we will derive closed-form expressions of the
th-order conditional moment of and th order con-

ditional cross-moment of and . This will be done in
two different cases, namely when the squared norm
is either known exactly or when a quantization is known. We
denote the quantized squared norm with and it represents the
information , for some real-valued interval pa-
rameters. This type of quantized information can, for example,
be achieved by feedback. The conditional moments derived in
the section will be used in Section IV for MMSE estimation and
MSE calculation of weighted squared norms in systems with ei-
ther perfect or quantized squared norm feedback.

The following theorem gives closed-form expressions of
the conditional moments in the case of an exactly known
squared norm . Although the expressions are quite simple
in their structure, two elementary functions and

are introduced to achieve a more convenient
presentation. These are defined and discussed in Appendix A.
Observe that the mean value of an element is given by ,
the quadratic mean by , and that gives the
cross-correlation.

Theorem 1 (Conditional Moments With Known Norm): Let
, where

has strictly positive eigenvalues and . Define
. In the case of identical eigenvalues (i.e., for all

), the th order conditional moment of and th order
conditional cross-moment between and ( ) are

,

.
(9)

In the case of distinct eigenvalues, the corresponding mo-
ments are

,

.

(10)

Finally, if the eigenvalues are nondistinct and nonidentical,
let be the eigenvalue multiplicities when the
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elements involved in the moments have been removed. The th
order conditional moment of and th order condi-
tional cross-moment between and ( ) are

(11)

Proof: The proof is given in Appendix C.
Observe that Theorem 1 only handles the case of , but

the solution in the special case of is trivial: .
The theorem generalizes the previous results of [23], where ex-
pressions of the first and second order moment and cross-corre-
lation were derived in the special case of distinct eigenvalues.

Next, we proceed with deriving closed-form expressions of
the same conditional moments and cross-moments as in the pre-
vious theorem but in the case of quantized norm information.
Once again, the expressions contain some functions that are de-
fined in Appendix A.

Theorem 2 (Conditional Moments With Known Norm

Interval): Let , where
has strictly positive eigenvalues and

. Let contain the quantized information
(where ). In the case of identical eigenvalues (i.e.,

for all ), the th order conditional moment of
and th order conditional cross-moment between
and ( ) are

(12)

where

(13)

In the case of distinct eigenvalues, the corresponding mo-
ments are

(14)

where

(15)

Finally, if the eigenvalues are nondistinct and nonidentical,
let be the eigenvalue multiplicities when the
elements involved in the moments have been removed. The th
order conditional moment of and th order condi-
tional cross-moment between and ( ) are

(16)

where

(17)

Proof: The proof is given in Appendix C.
This section will be concluded by Theorem 3 that gives the

MMSE estimator of from the quantized information
. Observe that the theorem completes Theorem 2 for

.
Theorem 3 (Norm Estimation From Known Norm In-

terval): Let , where
has strictly positive eigenvalues

. Let and let contain the quantized information
(where ). The conditional th order

moment of , given , is

(18)

(19)
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and

(20)
when the eigenvalues are identical (i.e., for all ), dis-
tinct, or neither identical nor distinct, respectively. The variables

, , and are given in (13), (15), and (17), respec-
tively.

Proof: The proof is given in Appendix C.
In the remaining sections, the analytic results of Theorem 1, 2,

and 3 will be applied to problems in wireless communications.
The results of this section are however general and have impor-
tant applications in other areas, for example in the analysis of

-out-of- systems with exponential failure rates in renewal
theory [25], [27]. In principle, these systems consist of com-
ponents and the system will keep running until of them have
break down. The time between the th and th component
failure is distributed as (i.e., failures may change the
failure rates of the surviving components). Thus, is the
time to system failure. The results herein can be used for MMSE
estimation of the time between component failures, given the
exact time of system failure or a time interval (e.g., if the func-
tionality is tested only at certain occasions). Similarly, the MSE
and the correlation between component failures can be calcu-
lated, and the time of system failure can be MMSE estimated,
given a time interval.

III. NORM FEEDBACK AND MMSE ESTIMATION OF WEIGHTED

SQUARED CHANNEL NORMS

In this section, we return to the generic estimation problem
in (2) and the system model in (1). Thus, the effective
channel used for norm feedback is , where

and are arbitrary matrices
known at the receiver. In this section, we will first develop a
general entropy-maximizing quantization framework. Then,
the results of Section II will be used to derive the distribution
of the squared norm of the effective channel,
which is necessary to apply the quantization framework to
the problem at hand. Finally, we solve the estimation problem
in (2) by deriving the MMSE estimator, and its MSE, of the
weighted squared norm , conditioned on exact
or quantized feedback of . As described in Section I-B,
the weighting matrix can represent receive combining
and precoding matrices. The applications of this section on
user-selection, link-adaptation, and linear precoding will be
considered in Section IV. The user index will be dropped in
this section for brevity.

The results herein are derived for a general positive semi-
definite correlation matrix , but we will also give the corre-
sponding expressions in the special case of Kronecker-struc-
tured correlation. In this widely used model, the transmit and
receive side correlation are separable as ,
where and are the positive

semi-definite transmit and receive correlation matrices, respec-
tively. As a result, the matrix can in this case be decomposed
as

(21)

where the elements of are independent and identically dis-
tributed (i.i.d.) as . The eigenvalues of become the
products of any two eigenvalues of and , respectively.
Depending on the amount of spatial correlation at the trans-
mitter and receiver, the eigenvalues of are either identical
(e.g., if ), distinct (e.g., if distinct eigenvalues
at both sides), or consist repeated eigenvalues (e.g., when one
of the sides is spatially uncorrelated with either or

). Eigenvalues that are measured in practice are natu-
rally distinct, but clustering of those that are close-to-equal may
be necessary to achieve numerical stability. Recall that these
three cases correspond to those in Section II.

A. General Entropy-Maximizing Quantization Framework

Next, we will present a general framework for quantization
of a stochastic variable , with the cumulative distri-
bution function (cdf) , for the purpose of finite rate feed-
back. This variable may represent the weighted squared norm of
a communication system, but the results are valid for any con-
tinuous cdf that fulfills , for , and , for

.
With quantization, we mean the process of dividing a

continuous range of values into a finite number of intervals.
Herein, we consider -bits quantization of the range
of , which means that the range is divided into disjoint
intervals , . In our context, the purpose
of the quantization is feedback and storage of the variable
using bits. Note that each interval, , should be seen as a
representative for all values of the original variable that lies in
the interval. The actual value in the interval that best represents
the quantized information, , will change depending on the
application (e.g., estimation of or some function of it). When
designing the quantization, we need to choose the decision
boundaries , for , so that some design criteria
is fulfilled. There is no over-all optimal criteria, but from an
information-theoretical perspective it makes sense to maximize
the entropy of the quantization and thereby the average amount
of channel information that is fed back.

Lemma 1 (Entropy-Maximizing Quantization): Let be
a stochastic variable with a continuous cdf , that fulfills

, for , and , for . Assume that
the sample space, , of is quantized into disjoint
intervals ( ), where the th interval is with

and . The interval boundaries that maximizes
the entropy of are given by

(22)

This quantization will make the outcome of equally probable
in all the quantization intervals.

Let denote the index such that the out-
come . The quantization maximizes the mutual
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information between and , for any invertible function
.

Proof: The lemma follows from a division of the cdf of
into disjoint intervals of equal probability, and from the

observation that and contain the same information.
The inverses of cdfs can in general not be given in closed

form, but since the function is bijective and nondecreasing the
quantization boundaries in the lemma can be calculated effi-
ciently using line search.

An important result of Lemma 1 is that even if we are inter-
ested in some function of (e.g., the capacity if represents
the SNR), the entropy-maximizing quantization is still that of
(22). Next, we will derive the distribution of the squared norm
and apply this quantization framework.

B. Distribution and Feedback of the Squared Channel Norm

Consider feedback of the squared norm of the
effective channel. Although we have assumed full CSI at the
receiver [24], it is unreasonable to feedback the positive real-
valued squared norm with unlimited accuracy in a fading en-
vironment (if it still should provide information on the current
channel conditions at the time of reception). Hence, we will
quantize the squared norm so it can be described by a finite
bit sequence. In order to apply the entropy-maximizing quan-
tization framework in Lemma 1 we need to derive the cdf of ,
which is given by the following corollary.

Corollary 1 (Distribution of the General Squared

Norm): Let the channel be distributed as
. Let and

be arbitrary matrices such that the effective channel
has the distribution , where

. If the nonzero eigenvalues
of are denoted (for ), then the pdf
of is given by (4), (5), or (6), in the cases
of identical, distinct, or nonidentical nondistinct eigenvalues,
respectively. The corresponding cdf, , is given by (13),
(15), and (17), respectively, using and .

Proof: The proof is given in Appendix C.
In the Kronecker-structured case, , the ef-

fective channel inherits this property: , where
and . The nonzero

eigenvalues of are given as the product of any two nonzero
eigenvalues of and , respectively.

To summarize, the distribution of the squared norm, , of the
effective channel is given by Corollary 1. Using Lemma 1, this
distribution can be used to calculate the entropy-maximizing
quantization of .

C. MMSE Estimation of Weighted Squared Channel Norms

Next, we assume that the receiver has fed back informa-
tion regarding the squared norm of the effective
channel and the transmitter wants to estimate the weighted
squared norm . This corresponds to the generic
estimation problem in (2). Using the conditional moments
and cross-moments derived in Theorem 1 and 2, we will
solve this problem by deriving the MMSE estimator of

and its corresponding MSE. The following
corollary extends results of [20], [23] by deriving the first

two conditional moments of the weighted squared norm for
arbitrary eigenvalue structure of the effective channel. Observe
that the first moment, , is the MMSE es-
timator, while the corresponding MSE can be calculated as

.
Corollary 2 (MMSE Estimation of Weighted Squared

Norms): Let the effective channel be dis-
tributed as . Let be the
eigenvalue decomposition of the correlation matrix, where

is positive semi-definite. If the
weighting matrix is independent of and if

contains information regarding the squared norm , then

(23)

where , , ,
, , and

.
(24)

For all such that , we have that
. If represents the

exact value of or the quantized information
, then the remaining conditional moments of

(24) are given by Theorem 1 and 2 (by removing all zero-valued
eigenvalues), respectively.

Proof: The proof is given in Appendix C.
In the Kronecker-structured case, , let

and be the eigen-
value decompositions of the effective transmit and receive cor-
relation, respectively. Then, we have and

. Thus, the nonzero eigenvalues of are the
products of any two nonzero eigenvalues of and , re-
spectively. If the weighting matrix is also Kronecker-structured,

, then the weighted squared norm can be ex-
pressed as .

To summarize the section, the entropy-maximizing quantiza-
tion of an arbitrary nonnegative random variable was given in
Lemma 1. The distribution of the squared norm
of the efficient channel was derived in Corollary 1 and this dis-
tribution is sufficient to calculate the entropy-maximizing quan-
tization of . Finally, the MMSE estimator of weighted squared
norms with the structure , and their corresponding
MSEs, was derived in Corollary 2 when feedback of either the
exact value or a quantization of is available.

IV. APPLICATIONS IN SINGLE- AND MULTI-USER SYSTEMS

In both single-user and multi-user systems, there is a need of
feeding back a limited number of bits to shape the transmission
to the spatial properties of the multi-antenna channel, adapt the
symbol constellations to current conditions, and to perform ef-
ficient user-selection (in the multi-user case). There is a tight
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connection between these goals and the SINR; we want to se-
lect users for transmission in spatial directions that permit high
transmissions rates and the Shannon capacity, which gives an
upper bound on the achievable rate, is a function of the SINR
[2]. Hence, it is important to choose a feedback parameter that
provides a reliable way of estimating the SINR, and to quantize
this parameter efficiently by maximizing the amount of infor-
mation per bit.

In this section, we consider norm based feedback for the pur-
pose of rate adaptation and MMSE estimation of signal/inter-
ference powers. It will be shown that the results of Section III
fit naturally into both single-user systems with OSTBCs and
multi-user SDMA systems with beamforming.

A. Orthogonal Space-Time Block Codes With Precoding

We consider linear precoded OSTBCs, which should be re-
garded as the general type of OSTBCs that can exploit the spatial
properties of the channel to improve the performance [9]–[12].
Recall the system model in (1) and assume that there is only
one active user, so the user index can be dropped. Assume that
a OSTBC is used to transmit symbols over symbols slots
(i.e., the coding rate is ). Let
be the vector of data symbols, where we have normalized such
that for all . These symbols are coded in a
matrix that fulfills the orthogonality property

[8]. In addition, we use an arbitrary pre-
coding matrix that projects the code into spatial
directions and is known to both the transmitter and the receiver
[9]. The transmitted signals over consecutive symbol slots is
thus and the corresponding
system model is

(25)

where ,
contains i.i.d. noise samples with , and the data sym-
bols are present in the entries of . From [11], [28], it is
known that OSTBCs provide the possibility of decomposing
(25) into independent and virtual single-antenna systems as

(26)

where . The corresponding SNR and maximum
rate per source symbol are

(27)
The exact SNR and rate values are known at the receiver, while
the transmitter only knows the statistics. The SNR can be es-
timated at the transmitter as the average , but the
estimation error will typically be large if no instantaneous CSI
feedback is available. More robust performance is achieved by
simply feeding back a quantized version of to improve
the estimation.

The effective channel is . The entropy-maximizing
quantization of is given by Lemma 1, with the cdf
of given by Corollary 1 (with and ). The quan-
tization boundaries are functions of the precoder and the channel
statistics, and need only to be updated at the relatively slow rate

that these are changing. Given the quantized feedback informa-
tion of , the MMSE estimator (and the corresponding
MSE) of the SNR is given by Corollary 2 (with ).

When estimation is used to choose an appropriate transmis-
sion rate, it might be necessary to include a fade-margin to
achieve a target frame error rate, denoted . Observe that
packages sent in outage should not be considered lost since the
information in them can still be utilized using, for example, hy-
brid ARQ. To control the error rate, we propose to include a
fade-margin parameter that is designed such that

, where the SNR estimate is deter-
mined as

(28)
where
and contains the quantized information
. Hence, the SNR estimate can be calculated directly, using

Corollary 2. MMSE estimation of the maximum rate
can be treated in a similar manner [29].

To summarize, the framework in Lemma 1 can be used for en-
tropy-maximizing quantization of the channel gain with linear
precoded OSTBCs. Using Corollary 1, the SNR can be esti-
mated either in the MMSE sense or in an outage-robust way as
proposed in (28).

B. Beamforming for SDMA

Next, we consider a downlink multi-user SDMA system with
beamforming transmission. The problem of efficient precoding
and receive combining will be discussed, but the main focus will
be on adapting the quantization framework of Section III-A to
systems with user-selection and on developing a robust SINR
estimation framework with feedback of norm based channel in-
formation.

Assume that users have been scheduled for transmission
and let the transmit beamforming vector and the data symbol in-
tended for user be denoted and , respectively.
Without loss of generality, we assume that .
Using the system model in (1), the transmitted signal is

(29)

where is the precoding matrix and
is the vector of all transmitted sym-

bols. Linear combining is assumed at the receiver side; that is,
each user uses a receive beamforming vector , with

, to achieve a scalar received signal .
In principle, the purpose of the precoding matrix

is to transmit simultaneous data streams with an ac-
ceptably low co-user interference, while the linear com-
bining at each receiver is used to further reduce both
the inter- and intra-cell interference. With the notation

, the SINR (when
averaging over the noise and transmitted symbols) of user is

(30)



BJÖRNSON et al.: EXPLOITING QUANTIZED CHANNEL NORM FEEDBACK 4035

In order to optimize the system performance, we want to choose
the beamforming vectors to maximize the sum rate of the se-
lected users, possibly under some fairness condition. The op-
timal user-selection and beamforming scheme is very difficult
to obtain in practice since base stations and users have asym-
metric information; herein, the base station knows the channel
statistics and some quantized feedback from each user, while
each user knows its own channel perfectly but has limited infor-
mation regarding the co-users. The main difficulty lies in the de-
sign of the limited feedback; it should reflect the channel prop-
erties when an SINR maximizing receive beamformer has been
applied. Such a receive beamformer can in general not be de-
signed until the user-selection and precoder design is finished,
which is a stage when the transmitter truly needs instantaneous
channel information. To resolve the receive beamformer ambi-
guity, for the sake of feedback design, we propose a two-step
approach.

• Stage 1, Feedback and Transmitter Design: A rea-
sonable, but suboptimal, virtual receive beamformer is
assumed which is derived such that the efficient channel

has statistical properties which may be
derived at both the receiver and the transmitter (changes on
a slow basis). The squared norm is quantized
and fed back. Using this feedback information the trans-
mitter selects users and design its precoder, assuming that
all receivers uses their as receive beamformers.
Additional directional feedback might be necessary if the
spatial correlation is weak.

• Stage 2, Data Transmission and Receiver Design: The
base station transmits data using the selected precoding.
The receivers are free to select more beneficial receive
beamformers if they desire, which could potentially in-
crease their SINRs. These receive beamformers may for
example be functions of the own channel matrix, , and
some overhead or measurement of the interference. The
SINRs estimated by the transmitter will then act as slightly
pessimistic estimates.

Next, we will describe the first stage in greater detail. User se-
lection and precoding design was thoroughly analyzed in [19]
with similar prerequisites. Hence, our focus will be on feedback
design and estimation of the SINR for a given precoder ma-
trix and set of users. First, the entropy-maximizing framework
of Section III-A will be adapted to multi-user systems. Then,
the design of virtual receive beamformers will be discussed. Fi-
nally, observe that the signal and interference powers in (30) are
weighted squared norms and therefore we will show how Corol-
lary 2 can be used to estimate these from quantized feedback of

. The user indexes will be dropped
for brevity.

1) Post-User-Selection Quantization: The entropy-maxi-
mizing quantization framework in Lemma 1 can be used to
calculate an efficient quantization of the squared norm .
In multi-user systems, user-selection can however change the
statistics of the norm. If the scheduler takes its decisions based
on, for example, the instantaneous sum rate, then users that
experience strong channel norms are more likely to be selected.

Hence, the post-user-selection cdf of the squared norm will
be the result of a transformation from the pre-scheduling cdf,

, that shifts the probability mass towards larger values.
The feedback information can be used both in the process of

selecting users and in subsequent precoding design for the se-
lected users. As discussed in [30], less CSI is required to choose
appropriate users than to design a precoder that guarantees high
and robust throughput. Thus, it makes more sense to maximize
the post-user-selection entropy, than the pre-user-selection en-
tropy as was done in Lemma 1.

The post-user-selection distribution depends strongly on the
type of selection criterion, and is often difficult to derive an-
alytically. In [31], the distribution was derived in a single-an-
tenna system with known co-channel statistics, but the latter
assumption is unreasonable in most multi-user scenarios. Ob-
serve that the post-user-selection cdf can be written as ,
for some transformation function . Using this notation, the
following theorem gives the entropy-maximizing post-user-se-
lection quantization.

Theorem 4 (Entropy-Maximizing Post-User-Selection Quan-

tization): Let have the continuous pre-user-selection cdf
, which fulfills the properties in Lemma 1. Let the

post-user-selection cdf be denoted for some contin-
uous transformation function , which
will be increasing and bijective on if the probability of
selecting a user increases with its value .

If the sample space, , of is quantized into disjoint
intervals ( ), where the th interval is with

and , then the entropy-maximizing post-user-
selection quantization is given by

(31)

Proof: The theorem follows directly from Lemma 1.
To illustrate the usefulness of the notation with a transfor-

mation function , we consider the following scheduler for
which can be derived in closed form.

Definition 1 (Greatest Quality Probability Scheduler): Con-
sider a scheduler that selects users out of . Let the channel
quality of user be measured by and let its cdf be

, for all users . Then, the Greatest Quality
Probability (GQP) scheduler selects those users that have the
largest cdf values of their current realization of .

The proposed scheduler selects users based on the cdf values
of their current channel quality (i.e., the percentage of realiza-
tions with worse performance). The quality, , may represent
the squared norm, or some other suitable measure. An important
property of the proposed scheduler is that it provides fairness
in terms of selecting users with identical probability, because

for all users . The spatial separability be-
tween users is however ignored, but this is of minor importance
when the number of transmit antennas grows [21]. When the
users have identical statistics and represents the SNR, then
the GQP scheduler coincides with maximum throughput sched-
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uling [13] (i.e., the users with the highest rates are selected). For
the proposed scheduler, the transformation function becomes

(32)

This is shown by observing that the cdf values, , are
identically distributed among all users and that a selected user
has any of the th largest with equal probability. It is
worth noting that the selection scheme in Definition 1 becomes
idealized when quantization is introduced; the exact values of

are unknown and have to be estimated based on the
available feedback information. The point is however that the
transformation function can be determined explicitly for
certain schedulers. In general, the function depends on all users
and will therefore be unavailable at the receivers. It can how-
ever be approximated in various ways. In Section V, it will be
illustrated numerically that even a simple parametrization as

, for some parameter , can signifi-
cantly improve the performance. Thus, the gain of post-user-se-
lection quantization can be exploited by simple means.

2) Design of Virtual Receive Beamformers: The virtual
receive beamformer should be designed such that
the statistics of the effective channel can be
derived deterministically at both the receiver and transmitter.
At first sight, this assumption seems to lead to the conclusion
that needs be independent of the realization . This
requirement can however be relaxed, since the effective channel
will be deterministic in eigendirections with eigenvalues that
become zero. Thus, the system can be designed such that
the transmitter knows that always will cancel out the
channel in some predefined eigendirections (e.g., such that are
expected to contain much interference).

As an example, the following virtual receive beamformer was
proposed in [20] for Kronecker-structured systems with
, but can be generalized for arbitrary receiver side correlation.

Let the eigenvalue decomposition of the transmit side correla-
tion matrix be partitioned as

(33)

where and contain eigen-
vectors, and the eigenvalues are ordered in some (predefined)
arbitrary way. If , then there exist a receive beam-
former that will completely cancel out the power in
the eigensubspace such that the experienced channel

has the distribution , with

. To achieve this, the re-
ceive beamformer should be chosen arbitrarily in the null space
of (i.e., ). Using this virtual receive
beamformer, the transmitter knows that the experienced channel
will have the correlation matrix .

In practice, the virtual receive beamformer can be designed
in various ways depending on the environment. The design can
also be relaxed such that the effective channel only becomes
approximately Gaussian; the important thing is that the first and
second order statistics are approximately known at the trans-
mitter.

3) Estimation of the SINR: Finally, we consider estimation
of the SINR in (30) at the transmitter (e.g., for the purpose of
user-selection and rate adaptation). Apart from the channel sta-
tistics, the transmitter has received quantized feedback of ,
the squared norm of the effective channel with the virtual receive
beamformer. The unknown quantities in the SINR expression
are the signal and interference powers, which both are weighted
squared norms: ,
where the weighting matrix contains one or several transmit
beamformers. These beamformers are either directly known to
transmitter or they should be selected in the precoder design to
maximize the (weighted) sum rate. In any way, the SINR can
be estimated as a function of the transmit beamformers.

Similar to [19], [20], [23], we propose to use the pessimistic
SINR estimator in (34), at the bottom of the page. In this esti-
mator, and . The MSEs
are calculated as

and represents either exact norm information or
the quantized feedback information . The design
parameter in (34) can be used to achieve a target frame error
rate, . This adaptive fade-margin is similar to the one in
Section IV-A and is an essential control-feature in most systems,
including those with advanced error control.

If the virtual receive beamformer, , is designed as
described in the previous section, the signal and interference
powers (and their MSEs) in (34) can be MMSE estimated using
Corollary 2. If only approximately fulfills the require-
ments and/or an improved receive beamformer is used in the
actual data transmission, then the SINR estimate in (34) will
not be the ideal one. The performance loss is however limited in
many practical systems, as illustrated in [23]. The explanation
is that small estimation errors have limited consequences since
the adaptive fade-margin in (34) is used to adapt the SINR
estimate to control the error rate.

(34)
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To summarize the section, we have considered a multi-user
system with beamforming at both the base station and the re-
ceiving users. The entropy-maximizing quantization framework
in Lemma 1 has been extended to take the effect of user-selec-
tion into account. A virtual receive beamformer was proposed
to overcome the receive beamformer ambiguity in the feedback
design. Finally, it was shown how Corollary 2 can be used to per-
form robust SINR estimation in systems with norm feedback.

V. NUMERICAL EXAMPLES

This section will illustrate how the analytic results of the
paper can be used to improve the performance of MIMO com-
munication systems. Two numerical examples will be given,
corresponding to the single-user case in Section IV-A and the
multi-user case Section IV-B, respectively. In the single-user
case, we consider transmission from a four-antenna transmitter
to a two-antenna receiver, using OSTBCs ( ) and the
linear precoder in [10] that adapts the coding to the channel
statistics. The average SNR (defined as ) is 10 dB
and we assume the Kronecker channel model in (21) with un-
correlated receive antennas ( ). The transmit correlation
follows the exponential model of [32], which models a uniform
linear array (ULA) with the correlation between adjacent an-
tennas as a parameter. The instantaneous SNR of this system is

and is quantized and fed back using the entropy-max-
imizing framework in Lemma 1.

The average throughput over realizations for different
numbers of feedback bits is shown in Fig. 1 with varying antenna
correlation (absolute value of the coefficient in [32]) and with
an outage probability of 5%. Observe that a logarithmic scale
has been used on the -axis. The corresponding throughputs
with half a wavelength antenna separation and different angular
spreads (standard deviation of Gaussian distributed scatterers,
as seen from the transmitter) are given as a reference to show
that many measured systems in fact have antenna correlations
around 0.9 (cf. [3]). From Fig. 1, it is clear that just a few bits
of norm feedback are sufficient to achieve performance close to
that of full CSI; 52% of the feedback gain is achieved with one
bit of feedback, while three bits gives 84% and five bits 95%.
The amount of correlation has little impact on the percentage of
feedback gain. Finally, observe that the performance of this pre-
coded system increases with the transmit antenna correlation, as
expected from [12].

In the multi-user case, we consider downlink zero-forcing
SDMA communication from a transmitter with an eight-antenna
uniform circular array (UCA) to 20 users, each equipped with
four uncorrelated receive antennas. The angular spread is 10 de-
grees and the transmit antenna separation is half a wavelength.
The users are uniformly distributed in the area
of a circular cell of radius . The average SNR is 10 dB at the
cell boundary and the power decay is proportional to . The
scheduling is performed using the greedy user selection [19],
[33] and with proportional fairness as scheduling criterion [34].
The performance is measured in terms of the cdf of the average
cell throughput over different scenarios. Each of the consid-
ered scenarios represent a unique random constellation of mo-
biles with fixed statistics, while the average cell throughput is
calculated over 150 scheduling decisions.

Fig. 1. The average throughput as a function of the absolute value of the cor-
relation between adjacent antennas at the transmitter. The performance is given
for the cases with exact SNR/norm feedback, with quantized feedback using 1,
3, or 5 bits (increasing performance), and without feedback. The performance
with different amounts of angular spread is marked with circles as a reference.
Observe the logarithmic scale of the �-axis.

Fig. 2. The cumulative distribution functions (cdfs) of the average cell
throughput over scenarios with 20 uniformly distributed users in a circular cell.
The performance of zero-forcing with full CSI is compared with generalized
zero-forcing with gain feedback [19], directional-quantized zero-forcing [18],
and multi-user opportunistic beamforming [14]. The GZF uses 3 bits of gain
feedback, while the latter two schemes uses 3 bits of directional feedback and
perfect gain feedback.

In Fig. 2, the performance of zero-forcing (ZF) precoding
with full CSI is compared with 1) directional-quantized ZF [18]
with a Grassmannian codebook [35]; 2) multi-user opportunistic
beamforming [14]; and 3) the generalized zero-forcing (GZF)
scheme in [19]. The GZF uses the receive antennas to suppress
the interference sensitive subspace of [19] and uses 3 bits of
norm feedback (with post-user-selection quantization and the
transformation function in Theorem 4 approximated as

). The outage probability is 5%. The quan-
tized ZF and opportunistic beamforming schemes are based on
3 bits directional information and perfect gain feedback. It is
however seen in Fig. 2 that the GZF scheme outperforms the
other partial CSI schemes, although it is based on a consider-
ably smaller feedback load. Observe that the framework derived
herein can be applied to handle quantized gain feedback in the
two competing schemes.

Finally, in Fig. 3 the performance of the GZF scheme is
shown for different numbers of feedback bits and with both pre-
and post-user-selection quantization. With one bit of feedback,
71–73% of the feedback gain is achieved, depending on the
type of quantization. The corresponding interval is 90–92%
for three bits and 97–98% for five bits. It is clear that a few
bits of feedback are sufficient to achieve most of the feedback
gain, and that the benefit of considering the post-scheduling
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Fig. 3. The cumulative distribution functions (cdfs) of the average cell
throughput over scenarios with 20 uniformly distributed users in a circular
cell. The performance of the generalized zero-forcing scheme [19] is shown
for different types of norm feedback: no feedback, pre- or post-scheduling
quantization with 1, 3, or 5 bits, and perfect feedback (increasing performance).
Zero-forcing precoding with full CSI is given as a reference.

distribution in the quantization is nonnegligible. The lack of
instantaneous directional information will however make the
scheme suboptimal, even for perfect norm feedback.

VI. CONCLUSION

For arbitrarily correlated zero-mean complex Gaussian ma-
trices, closed-form expressions for the conditional matrix dis-
tribution and moments of individual elements have been de-
rived when the squared Frobenius norm of the matrix is either
known exactly or known to lie in a specific quantization in-
terval. In addition, MMSE estimators (and their resulting MSEs)
of weighted squared norms have been derived, given quantized
norm information. This mathematical contribution has clear ap-
plications in renewal theory, but herein the main focus has been
on the applications in wireless communication systems with sta-
tistical CSI and limited feedback. In these systems, the signal
and interference powers are weighted squared norms. An en-
tropy-maximizing framework was proposed for feedback quan-
tization and it has been shown how feedback of quantized norm
information enables robust estimation of the SINR in an MMSE
based framework. The usefulness of the results were exempli-
fied in single-user systems with linearly precoded OSTBCs and
in multi-user SDMA systems with beamforming and quantiza-
tion that takes the post-user-selection distribution into account.

APPENDIX A
SOME USEFUL ELEMENTARY FUNCTIONS

Throughout the paper, a few nonstandard elementary func-
tions have been used extensively. Specifically, they appear in
the derivation of Theorem 1, 2, 3, and Lemma 4. This appendix
will first define the functions and then provide integral expres-
sions that have these functions as solutions.

Definition 2: For nonnegative integers we
define the five functions in (35)–(39). These are shown at the
bottom of the next page.

The next two lemmas show how the functions in Definition 2
appear as the solutions to certain integrals.

Lemma 2: Let and be two nonnegative integers and
let be a nonzero real-valued scalar. Then,

(40)

(41)

where is a real-valued constant and is some arbitrary con-
stant.

Proof: First, assume that and observe that (40)
holds for , since . Then by
the principle of induction, we have that

where we integrated by parts and used (40) for and
. Then, for , the expression in (40) follows by the Bi-

nomial series expansion .
The expression in (41) follows by the same kind of Binomial
series expansion and pure integration.

Lemma 3: Let be strictly positive scalars. The
functions introduced in Definition 2 satisfy

Proof: The results for and
follow from Lemma 2, when the lower and upper bound are 0
and , respectively. Similarly, the results for ,

, and are achieved from the
lemma when the lower and upper bounds are and , respec-
tively.

APPENDIX B
JOINT CONDITIONAL DISTRIBUTIONS

Consider ,
as defined in Section II. Joint conditional pdfs of sets of
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(with known ) are used in the proofs of several the-
orems. Since for any choice of , note
that the joint conditional pdf of can be factorized as

(42)

where and .
While the joint conditional pdf is a function of
complex-valued variables, the expression in (42) has separated
it into an -dimensional uniform phase distribution and the

-dimensional conditional distribution .
The following lemma derives closed-form expressions for this
pdf in the three cases of identical, distinct, and neither identical
nor distinct eigenvalues.

Lemma 4: Let , where
has strictly positive eigenvalues , and

define . Let be a nonempty set with distinct indexes
from and with cardinality . If the
eigenvalues are identical (i.e., for all ), then the
joint conditional pdf of , when

is known, is

(43)
where . If the eigenvalues are dis-
tinct, then the joint conditional pdf is

(44)

Finally, if the eigenvalues are nondistinct and nonidentical,
then assume that they are ordered such that the characterization

(35)

(36)

(37)

,

(38)

(39)
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in (3) is fulfilled. Let be the eigenvalue mul-
tiplicities when the elements in have been removed. Then,
the joint conditional pdf is

(45)

Proof: The expression for the joint conditional distribution
was proved in [23], in the case of distinct eigen-

values, using induction. Herein, all three cases will be proved
using a somewhat shorter approach based on the law of total
probability. Let be the vector with all elements that remain
when those with indexes in have been removed. By using the
law of total probability to condition on and then Bayes’
formula and that , we
have that

(46)

Then, the theorem follows from observing that
, and that and

are given in (4), (5), and (6) for the three different cases.

APPENDIX C
COLLECTION OF PROOFS

Proof of Theorem 1: By definition, the conditional th
order moment is

where the conditional distribution is given in Lemma 4. In all
three eigenvalue cases, the integral can be solved using Lemma
3, by observing that the terms that depend on form an inte-
gral that equals the function , from Definition 2, for
different values of , , , and .

The th order cross-moment is defined as

The joint conditional distribution is
given by Lemma 4 for . In this case, the double integral
can be determined (using Lemma 3) by observing that the terms
that depend on and form a double integral that equals the

function for different values of , , , ,
, and . In the special case of , the joint conditional

distribution becomes degenerate, since . Using

the second equality in (42), the cross-moment can be expressed
as

which is solved by a similar identification.
Proof of Theorem 2: Using the law of total probability, the

conditional moment can be expressed as

(47)

where represents the exact value of . Observe that the
conditional moment is given by Theorem 1, and
that the pdf of the norm is given in (4), (5), and (6) for the three
different cases of eigenvalue structure. The integral in the nu-
merator of (47) can be solved directly (using Lemma 3), while
the integral in the denominator can be solved by straightforward
integration using Lemma 2. The conditional cross-moments can
be derived by the same approach.

Proof of Theorem 3: The theorem follows from observing
that

(48)

The numerator is given by Lemma 3 and the denominator was
calculated in the proof of Theorem 2.

Proof of Corollary 1: The expression
is obtained by using the rule
, for general matrices , , and . The

distribution of the squared norm of the effective channel is
achieved by using that the Frobenius norm and that the distri-
bution of a complex Gaussian vector is invariant under unitary
matrix transformations. Since zero-valued eigenvalues have no
impact on the norm, the distribution of is equivalent to that of

, where and is a diagonal matrix with all
nonzero (i.e., strictly positive) eigenvalues of .

Proof of Corollary 2: Let and observe
that . The corollary follows from straightfor-
ward and tedious expansion of

and . The expecta-
tion is evaluated using Theorem 1 and 2.
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