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Abstract—The Internet of Things (IoT) is a new concept that
refers to an Internet connecting not just computer systems but
a plethora of systems, devices, and objects, collectively referred
to as ”Things”, and encompasses technologies for identification
and tracking, sensing and actuation, both wired and wireless
communications, and also, intelligence and cognition. Wireless
communications, which is an integral part of IoT, suffers from
radio irregularity – a phenomenon referring to radio waves being
selectively absorbed, reflected or scattered by objects in their
paths, e.g., human bodies that comprises liquid, bone and flesh.
Radio irregularity is often regarded as a problem in wireless
communications but, with the envisioned pervasiveness of IoT,
we aim to exploit radio irregularity as a means to detect people.
We demonstrate how radio signal fluctuations arising from radio
irregularity can be used to provide a low-cost alternative to
dedicated sensing systems for indoor automated people counting.

I. INTRODUCTION

The Internet has grown beyond connecting computer sys-
tems and platforms that run applications to meet endusers’
computing and communication needs to connecting a plethora
of systems, appliances, devices, objects, etc., collectively re-
ferred to as ”Things”, giving rise to a new paradigm known as
the Internet of Things (IoT) [1]. Likewise, the technologies that
the IoT encompasses extend beyond computation and commu-
nication, to identifcation and tracking, sensing and actuation,
and even intelligence and cognition. Wireless communication
will play a major role in providing connectivity in the IoT.

When a radio frequency (RF) signal propagates within
a medium, it may be reflected, diffracted, and scattered.
Each effect occurs to a different extent in various media,
depending on factors such as wavelength and intensity of the
wave, thickness and physical composition (permittivity and
permeability) of the medium. The human body comprises
liquid, bone and flesh, which selectively absorb, reflect or
scatter RF signals, leading to the phenomenon known as radio
irregularity. Consequently, in the presence of human activity
within a network, the radio irregularity phenomenon is seen
as signal strength fluctuations at the receiver, and the degree
of signal fluctuation exhibits a significant level of correlation
to the level of human activity in the network [2].

Applications like automated people counting cannot tolerate
false positives that result in overcounting, giving inaccurate
data that are used for forecasting and resource allocation.
People counting is extensively used in different industries,

including retail (stores, malls and shopping centres), colleges
and universities, government facilities, government non-profits
organizations, visitor centres, libraries, museums and art gal-
leries. In the retail industry, it is a form of intelligence-
gathering that helps a retailer determine the percentage of vis-
itors who actually make purchases. This is a key performance
indicator of a store’s performance as compared to just looking
at the sales data. It also helps the management to optimize the
usage of staff resources, e.g. deploy more staff during peak
periods and cutting down during lull periods in order to save
wages. For building management purposes, people counting is
used to ensure that the safe level of occupancy is maintained.

With the emergence of IoT leading to pervasive wireless
communication devices, radio irregularity which has often
been viewed as a problem can instead be exploited for auto-
mated people counting with minimal additional hardware and
installation costs. In the next section, we examine the related
research on automated people counting with a focus on indoor
use cases. We then present our approach to indoor automated
people counting based on the signal fluctuations arising from
radio irregularity. This is followed by the discussion of the
experimental study and results obtained from tests carried out
indoors within a building before concluding the paper.

II. RELATED WORK

The GreenSpace organization provides a guide to com-
mercially available automated people counting technology [3]
among which infrared beam counters, thermal counters and
video/CCTV cameras are the commonly used indoor people
counting technologies.

A. People Counting Methods

The simplest and possibly cheapest approach is a single-
beam infrared (IR) counter placed across an entrance. How-
ever, such a counter suffers from numerous drawbacks and is
only suitable detecting someone passing, e.g. entering/leaving
a shop. When multiple (IR) beams are deployed with careful
placements strategies and coupled with wireless communica-
tions for transferring the acquired data to a base station com-
puter that uses artificial intelligence techniques for processing,
a more accurate and versatile people counting system can be
realized [4].



People counters that use thermal imaging are typically
mounted overhead and have the ability to simultaneously
maintain separate counts for multiple people moving in two
directions (in and/or out). The IR images captured by the
heat detectors are then processed to determine the number
of people [5]. Video-based people counters work on video
streams obtained through video/CCTV camera which are then
run through intelligent video-processing techniques to identify
and count the people in the video. The accuracy of such
approaches can vary according to the level of ambient lighting
and background colour contrasts [6]. Hybrid approaches com-
bining IR and video cameras, together with neural networks,
have been proposed to improve the accuracy of visual-based
automated people counting [7].

B. Radio-based Detection and Counting Methods

It was first reported in [8] that the shadowing effect caused
by an object moving between two communicating wireless
devices can be used for detection purposes. In particular, a
human body comprises liquid, bone and flesh, that selectively
absorb, reflect or scatter RF signals, leading to the phe-
nomenon known as radio irregularity. The approach adopted
by [8] and extended in [9] for outdoor people counting relies
on the Received Signal Strength (RSS) level measured at the
receiver. The reliance on (absolute) RSS values, however, has
a drawback during deployment, which is the need to take into
consideration other environmental factors like the impact of
path loss and fading.

It has been observed in [10] that human movement through
the path of the radio signal causes the histogram of the absolute
RSS values to become more spread; this is manifested quan-
titatively as higher standard deviation. However, the standard
deviation varies significantly across environments, making it
difficult to define a universal threshold to detect movement
in terms of these first order statistics. While also exploiting
the RSS spread caused by human movement, the approach
adopted in [10] focused on the fluctuation in signal strength
instead, in order to reduce the impact of other environmental
factors. However, there are false positives reported in their
results which are deemed to be acceptable in the intrusion
detection application considered in that work.

III. DETECTION USING RSSI FLUCTUATIONS

A. RSSI fluctuations caused by human activity

In our approach, we extend the method of using RSSI
fluctuations proposed in [10]. Two consistent patterns of RSSI
fluctuations can be observed for two key scenarios of interest
to us, namely, without human movement and with human
movement across the signal transmission path, as shown in
Fig. 1. The histogram of RSSI readings shows narrower
distribution when there is no human movement across the
signal path, i.e., there is less fluctuation across RSSI readings
(Fig. 1a). On the other hand, the wireless signals fluctuate in
the presence of human movement resulting in the spread out
distribution of RSSI fluctuation shown in Fig. 1b.

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7
0

20

40

60

80

100
a) RSSI fluctuation without movement

RSSI fluctuation (dB)

Fr
eq

ue
nc

y 
(%

)

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7
0

20

40

60

80

100
b) RSSI fluctuation with movement

RSSI fluctuation (dB)

Fr
eq

ue
nc

y 
(%

)

Fig. 1. RSSI Fluctuation Patterns [10]

B. Human Detection

Our proposed algorithms computes the fluctuation between
the RSSI of packets received at a receiver. The absolute RSSI
readings for packets recorded at the receiver over a period of
time is shown in Fig. 2. From the absolute RSSI readings, the
fluctuation of RSSI readings is calculated, as shown in Fig. 3.
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Fig. 2. Absolute RSSI reading
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Fig. 3. RSSI Fluctuation

We then define a sliding window of n samples, where
n is a parameter that can be tuned to achieve the desired
accuracy for the target environment. In our example, a sliding
window of size n = 10 is used to observe the behaviour of
RSSI fluctuation. Therefore, a window of RSSI fluctuations
at sample 200 is shown in Fig. 4. At sample 200, using
the window of 10 previous readings, the mean and standard
deviation are computed as 0.2727 and 4.6280 respectively. We
then map the RSSI fluctuations into the normal distribution
with the mean and standard deviation for that window, i.e.
µ = 0.2727 and σ = 4.6280, as shown in Fig. 5a representing
the case where the signal has been subjected to interference
by human movement across its path. Similarly, the normal
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Fig. 4. RSSI fluctuations over a window size of 10

−15 −10 −5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

Probability Between Limits = 0.17078

RSSI fluctuation

(a) Sample 200 (movement)

−2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

Probability Between Limits = 0.84303

RSSI fluctuation

(b) Sample 600 (no movement)

Fig. 5. Normal distribution showing probability in fluctuation range [-1,1]

distribution of RSSI fluctuation at sample 600, where there is
no movement, is shown for comparison in Fig. 5b. From the
graphs, we compute the probability of the RSSI fluctuation
falling within the range [-1,1] (i.e. area under the curve from
-1 to 1) to be 0.17078 for the case where there is movement
across the signal path (i.e. sample 200) and 0.84303 for the
case where there is no movement (sample 600). For the dataset
shown in Fig. 2, we compute the probability of falling with the
fluctuate range [-1,1] and plot the results as shown in Fig. 6.
As shown, the probability of fluctuations falling in the range
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Fig. 6. Probability of fluctuation within [-1,1] for RSSI readings in Fig.2

of [-1, 1] is below 0.3 in the presence of human movement.
Hence, a probability value that is higher than 0.3 implies no
human movement. Based on this threshold, we then infer from
the results whether or not there has been human movement
across the signal path, and the results are shown in Fig. 7.

The approach used in [10] has resulted in false positives
as shown in Fig. 8a. We applied our approach to the dataset
used by the detection algorithm [10] that produced the results
shown in Fig. 8a, and confirmed that our algorithm is able to
achieve better accuracy in eliminating false positives, as shown
in Fig. 8b.
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Fig. 7. Inferred presence of human movement using RSSI Fluctuations
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Fig. 8. Detection results using dataset of [10]

IV. PEDESTRIAN TRAFFIC MONITORING

Accurate detection of human movement is just the initial
step to achieving the goal of automated people counting. The
next step is the ability to infer that more than one person has
crossed the area of interest.

A. Single transmitter-single receiver configuration

First, a series of experiments were conducted to observe the
precision of the detection algorithm in a realistic indoor envi-
ronment, namely, a corridor in a university building, as shown
in Fig. 9, where the two red dots indicated by the arrows refer
to the transmitter/receiver pair using IEEE802.15.4 technology.
The devices are spaced 1.5m apart (width of corridor) and
placed at a height of 1.1m, on a ledge. Each data collection
duration was 300 seconds with inter-packet interval time of
0.15 seconds, during which the number of people who have
walked past the devices were recorded and tagged with the
time. Fig. 10 shows the results for one data collection period,
during which nine persons walked through individually and
two pairs of people past while walking close to each other,
at the sample index of 473 and 915. In the detection results,
shown in Fig. 10, 11 movements were detected. It is clear that



Fig. 9. Deployment along corridor of building in university
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Fig. 10. Detection of pedestrian traffic along corridor

detecting two people walking side by side is a major challenge
as the fluctuations between one and two persons passing are
quite indistinguishable.

B. Single-transmitter multiple-receiver configuration

In a pervasive network environment like IoT, it is not in-
conceivable to have numerous small wireless devices present.
A conceptual deployment scenario like that shown in Fig. 11
can be assumed, and we look at a subset configuration of
one-transmitter and two-receivers as shown in Fig. 12. Using
the one-transmitter two-receiver configuration, the transmitter
broadcasts packets at a rate of one packet every 0.15 seconds.
Receiver R1 is 1.5m from transmitter T and R2 is 1.5m from
R1. As two persons walk along the path between T and the

Fig. 11. Conceptual Configuration

Fig. 12. One-Transmitter Two-Receiver Configuration
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Fig. 13. One person walking in the direction of R2 to R1

two receivers in the direction shown in Fig. 12, they first cross
the T-R2 signal transmission path, followed by the T-R1 signal
path. A key point to note is the different signal interference
zones that result from the movement of the two persons.

First, we collected data for one person walking across the
signal transmission path, passing first R2 then R1 to be used
as the reference case. The detection results correctly show
that one person passed at around the time of sample 100 and
another at around sample 200, as shown in Fig. 13. Intuitively,
the detection result at sample 100 is more logical since the
person passed R2 first, then R1. However, as the two receivers
at very close to each other, having the two receivers showing
signal fluctuations at almost the same instant is also likely
especially when the person is walking fast.

Next, we collected data for the case of two persons walking
side-by-side in the direction of R2 to R1 as shown in Fig. 12.
We expect that the detection duration of T-R2 should be
longer than T-R1. This is because the T-R2 signal experienced
a longer duration of interference than the T-R1 signal. The
detection result of two people walking from R2 to R1 shown
in Fig. 14 confirms our hypothesis. However, we also observed
a false positive detection at sample 64. As the two receivers
are placed closed to each other, 1.5m apart, we can assume
that it is unlikely for a moving object to be detected by
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Fig. 14. Two people walking in the direction of R2 to R1
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Fig. 15. Optimised Result of multiple receivers

one receiver but not the other. Therefore, by comparing and
matching the data from both receivers, we can perform a
simple optimization process to remove such false positive
detections, to achieve the desired results as shown in Fig. 15.

V. CONCLUSION

The use of radio irregularity resulting from the movement
of human objects crossing the path of a radio signal to detect
human presence has been demonstrated previously and applied
to intrusion detection [10]. We have improved the accuracy
by eliminating the occurrence of false positives but noted that
the ability to detect more than one person remains a challenge
if we rely on the charateristics of one signal’s fluctuations.
However, with pervasive networking brought about by the
Internet of Things, the presence of numerous wireless commu-
nication devices allow us to study the fluctuations of multiple
signals in close proximity of one another as a result of human
interference and deduce the number of human objects that have
crossed the paths of these signals.

In this paper, we have demonstrated the ability to detect
two persons walking side-by-side along a typical 1.5m wide
corridor using the fluctuations of two signals as the two human
subjects pass. While the scheme in its current form requires
further work to enhance its capabilities for detecting more than
two human objects simultaneously, it presents an exciting op-
portunity to turn an existing indoor wireless communications
network into a sensing system for automated people counting.
From this study, we aim to show that the Internet of Things can
be exploited for applications like automated people counting
without the need for specialized hardware, like those already in
use. However, our method is not aimed to completely replace
the specialized hardware for automated people counting but
more as a complement to improve the accuracy and extend
the coverage with minimal costs.
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