
Cluster Comput (2006) 9:433–447

DOI 10.1007/s10586-006-0011-6

Exploiting redundancy to boost performance in a RAID-10 style
cluster-based file system
Yifeng Zhu · Hong Jiang · Xiao Qin · Dan Feng ·
David R. Swanson

Received: 16 August 2004 / Revised: 4 December 2004 / Accepted: 8 February 2005
C© Springer Science + Business Media, LLC 2006

Abstract While aggregating the throughput of existing disks

on cluster nodes is a cost-effective approach to alleviate the

I/O bottleneck in cluster computing, this approach suffers

from potential performance degradations due to contentions

for shared resources on the same node between storage data

processing and user task computation. This paper proposes

to judiciously utilize the storage redundancy in the form of

mirroring existed in a RAID-10 style file system to alleviate

this performance degradation. More specifically, a heuristic

scheduling algorithm is developed, motivated from the obser-

vations of a simple cluster configuration, to spatially schedule

write operations on the nodes with less load among each mir-

roring pair. The duplication of modified data to the mirroring

nodes is performed asynchronously in the background. The

read performance is improved by two techniques: doubling

the degree of parallelism and hot-spot skipping. A synthetic

Y. Zhu (�)
Electrical and Computer Engineering, University of Maine,
Orono, ME 04469, USA
e-mail: zhu@eece.maine.edu

H. Jiang . D. R. Swanson
Department of Computer Science and Engineering, University
of Nebraska – Lincoln, NE 68588, USA
e-mail: jiang@cse.unl.edu

D. R. Swanson
e-mail: dswanson@cse.unl.edu

X. Qin
Department of Computer Science, New Mexico Institute
of Mining and Technology, Mexico 87801, USA
e-mail: xqin@cs.nmt.edu

D. Feng
Department of Computer Science, Huazhong University
of Science and Technology, Wuhan, China
e-mail: dfeng@hust.edu.cn

benchmark is used to evaluate these algorithms in a real clus-

ter environment and the proposed algorithms are shown to

be very effective in performance enhancement.

Keywords CEFT . PVFS . Cluster computing . Data

storage . Cluster file systems . Redundancy . RAID

1 Introduction

A reliable and high-performance storage system is critical

to I/O-intensive applications in clusters. Due to the steadily

widening gap in speed between processors and disks, I/O op-

erations have emerged to be the source of the most severe bot-

tleneck for data intensive applications. Rapid performance

advances in general-purpose communication networks used

in clusters motivated the deployment of existing inexpen-

sive commodity components to alleviate the I/O bottleneck

[1–3]. Without compromising the cost-effectiveness of clus-

ters, this approach utilizes the existing disks on all cluster

nodes to build a parallel file system that not only provides a

large-scale storage capacity (e.g., TBs in a cluster with one

hundred nodes), but also taps into the aggregate bandwidth

of these disks to deliver a high-performance and scalable

storage service. Meanwhile, reliability is another important

issue that must be addressed to make this approach more

practical. Most clusters are error-prone due to the fact that

the number of nodes involved is large and can reach tens

of thousands. Thus using the existing disks on cluster nodes

to provide cluster-wide shared storage service requires some

form of data redundancy across nodes since all disks attached

on failed nodes become inaccessible.

Previous research work on cluster-based storage sys-

tems mainly focused on integrating these distributed disks

into a single disk volume and incorporating fault tolerance

Springer

434 Cluster Comput (2006) 9:433–447

[1, 4, 6, 7, 9, 10, 12, 17, 24, 25]. These systems do not

consider the impact of the likely dual-role characteristics of

cluster nodes, serving both as a compute node and also as

a data server. While striping balances the I/O workload on

all data servers, the disk, memory, network and CPU re-

sources on these data servers can be heavily loaded by ap-

plications issued by cluster end-users and the overall work-

load on these cluster nodes can be highly imbalanced. As

the slowest data server determines the performance of par-

allel I/O services, this workload imbalance can seriously

hamper the aggregate throughput delivered out of these

nodes.

This paper aims to minimize the performance degradation

of parallel I/Os in the presence of workload imbalance among

cluster nodes by exploiting the data redundancy to spatially

and judiciously schedule I/O requests. Scheduling usually

takes two steps in cluster-based storage. The first step, spatial

scheduling, is responsible for assigning the I/O requests to

data servers. The second step, temporal scheduling, consists

of determining the execution order of various I/O requests

arriving on a single data server to optimize the throughput of

this server. Temporal scheduling is a classic problem that has

been extensively studied in the past two decades and we will

not delve into this problem in this paper. Assuming that a

suitable or standard temporal scheduler is properly installed

on each node, the spatial scheduling then becomes critical

for a cluster-based storage system, since it aims to balance

the workload of all cluster nodes and maximize the overall

throughput of this cluster.

In our previous study, we designed and implemented

a Cost-Effective, Fault-Tolerant parallel virtual file system

(CEFT), which is a RAID-10 style system and combines

striping with mirroring by first striping among a group of

storage nodes and then duplicating all the data onto another

group to meet both the performance and reliability require-

ments [12, 15]. This paper extends our previous studies pre-

sented in [13, 14, 16] and incorporates more experiments to

evaluate our proposed approach. Based on the experimen-

tal results collected from a real cluster in production mode,

this paper helps shed light on the following important design

and performance issues: (1) What is the impact of resource

contention on the aggregate storage throughput? (2) How to

alleviate the negative impact of the load imbalance within

each mirroring pair on the read and write performance? (3)

How to exploit the data redundancy to improve the read per-

formance?

The rest of this paper is organized as follows. The next

section discusses the architectural assumptions of this pa-

per. Then an overview of CEFT is presented in Section 3.

Section 4 presents the cluster environment and the perfor-

mance benchmark used in this paper. Sections 5 and 6 address

the issues of write and read performance enhancements by

exploiting the data redundancy and hot-spot skipping. The

related work is discussed in Section 7. Finally, Section 8

concludes the paper.

2 Architectural assumptions

This paper considers generic clusters where a number of

commercial, off-the-shelf personal computers are linked by a

high-speed switched network with bandwidths ranging from

100 Mb/s to multiple Gb/s (Ethernet, Myrinet, Giganet, etc.).

At least one storage device is attached locally on each node in

the cluster. The cluster-based storage architecture considered

in this paper assumes the following architectural character-

istics.� Shared-nothing architecture. All storage devices attached

on a cluster node are only accessible through that node.

This architecture is adapted in PVFS [1], xFS [6], Google

File System [7], etc. It differs from shared-disk architecture

adapted in Storage Area Network (SAN), such as GPFS [5],

where each storage device allows direct and equal accesses

by a group of nodes. The shared-disk architecture requires

special hardware to support direct access protocols, thus

compromising the cost-effectiveness of generic clusters.� Dual-role cluster nodes. Each node in a cluster can per-

form dual roles, serving both as a compute node to run

users’ applications and as a data server to deliver I/O ser-

vices. Accordingly, no cluster nodes are dedicated to a

specific role and they are all available for end-users. This

dual-role design not only provides the flexibility of clus-

ter management, but also achieves better overall system

utilization since computation tasks mainly consume CPU

cycles while storage tasks mostly stress I/O resources.� Data and metadata decomposition. Two models, i.e., de-
composition model and uniform model, are widely de-

ployed in distributed file systems to achieve high scalabil-

ity by avoiding any single centralized component along the

I/O data path. In the decomposition model, the functions

of data and metadata managements are decomposed and

all metadata is stored separately on different nodes away

from the actual user data. While these nodes, called meta-

data servers, provide centralized metadata management,

large volumes of actual user data are diverted to bypass

these metadata servers. PVFS [1], Slice [8] and Google

File System [7] use the decomposition model. In the uni-

form model, the metadata and user data are not separated

but stored systematically on all nodes. All storage devices

are virtualized into a single block address space and a file

system is directly built upon this block space in a way sim-

ilar to a conventional file system on a single disk device.

Distributed locking is required in this model to synchro-

nize concurrent accesses. Systems based on the uniform

model include GPFS [5], Petal [9] and RAIDx [10]. This

Springer

Cluster Comput (2006) 9:433–447 435

paper adapts the decomposition model to simplify the de-

sign and enable the metadata servers to make sophisticated

scheduling of I/O requests.� Switched or crossbar network connections. All cluster

nodes are linked through switched or crossbar connections,

such as 10 Gigabit Ethernet and Myrinet, which provide

aggregate bandwidth that scales with the number of ma-

chines on the network. If multiple nodes communicate with

a single server simultaneously in clusters using such inter-

connects, the communication bottleneck is likely to shift

from the network switch or crossbar to the local network

interface card or the communication stack of the native

operating systems on the server.

3 An overview of CEFT

CEFT extends PVFS [1] from a RAID-0 style parallel stor-

age system to a RAID-10 style one that mirrors the striped

data between two logical groups of storage nodes, one pri-

mary storage group and one backup storage group, as shown

in Fig. 1. Files in CEFT are divided into fix-sized chunks and

these chunks are placed within one group of data servers in

a round robin fashion. On each data server, all chunks that

are stripped on the same server and belong to the same file

are stored as a regular file in the local file system of that data

server. In each group, there is one metadata server that main-

tains two metadata structures, the system metadata and the

file metadata. The system metadata includes the byte-ranged

lease information that is similar to the data consistency mech-

anism in [11] and the configuration information that indicates

the dead or live status of the data servers. When one data

server is down, all I/O accesses addressed to the failed server

Myrinet Switch

. . .Client
node

Primary group

.. ..
.. ..

.. ..

Data

Server 1
D 1

Data

Server 2
D 2

Data

Server N
D N

Backup group

..
.. ..

Data

Server 1' D1'

Data

Server 2'
D2'

Data

Server N'
DN'

Meta data

Server
Meta

Client
node

Client
node

Metadata

Server' Meta'

Fig. 1 Block diagram of CEFT

will be redirected to its mirror server. Currently, a data server

is simply thought to be down if the metadata server does

not receive the periodic “heartbeat” message from this data

server within a certain amount of time. The file metadata

describes the mapping from files to storage chunks, the ac-

cess control information, and the current mirroring status of

each chunk. To access a file, a client needs to retrieve the

desired metadata from the metadata servers and then directly

communicates with the data servers. Thus, the bulk of file

Content does not go through the metadata.

Another important task of the metadata servers is to spa-

tially schedule I/O requests. All data servers monitor the uti-

lizations of their own CPU, memory and network and piggy-

back this information on the periodic “heartbeat” messages

to the metadata servers. For each I/O request, the metadata

server makes a decision to choose one node from each mir-

roring pair by considering the workload disparities among

all mirroring pairs or to skip a mirroring pair during striping

if both nodes are heavily loaded.

For write accesses in CEFT, we have designed and imple-

mented four novel mirroring protocols, each with distinctive

operational and performance characteristics depending on

whether the mirroring operations are server-driven or client-

driven, and whether they are asynchronous or synchronous.

In the server-driven protocols the data servers duplicate the

new data to the mirroring groups, while the clients simul-

taneously write the data to both groups in the client-driven

ones. The I/O completion is signaled only when the written

data has taken residence on both groups in the synchronous

protocols, while in the asynchronous ones residence of writ-

ten data in the primary group alone signals such completion.

These protocols strike different tradeoffs between the reli-

ability and performance. Protocols with higher peak write

performances are less reliable than those with lower peak

write performances, and vice versa. However, only the asyn-

chronous server-driven mirroring protocol can benefit from

the I/O scheduling, as indicated in our study [7, 16]. Thus in

the rest of this paper, all write operations are performed un-

der the control of the asynchronous server-driven mirroring

protocol.

4 Experiment environments and evaluation
benchmarks

All performance results presented in this paper are measured

on the PrairieFire cluster [28] at the University of Nebraska-

Lincoln. At the time of our experiments, the cluster had 128

compute nodes, each with two AMD Athlon MP 1600 proces-

sors, 1 GB of RAM, a 2 gigabits/s full-duplex Myrinet card,

and a 20 GB IDE (ATA100) hard drive. The memory had a

read and write throughput of 464 and 592 MB/s, respectively,

measured by using the lmbench benchmark [26], and the PCI

Springer

436 Cluster Comput (2006) 9:433–447

For all clients:
 1. synchronize all clients using MPI barrier;
 2. t1 = current time;
 3. open a file;
 4. synchronize all clients using MPI barrier;
 5. loop to read or write data;
 6. close the file;
 7. t = t1 - t2; /* overall completion time */
 8. send t to client 0;

For client 0:
 1. find maximum of t; /* find the slowest client */
 2. calculate aggregate throughput using maximum t;

Fig. 2 Pseudocode of the benchmark

bus had a read and write throughput of 236 and 209 MB/s, re-

spectively, measured by the gm debug benchmark [27]. The

Netperf [31] benchmark reported a TCP bandwidth of 126.51

MBs/s with 47% CPU utilization. To measure the disk per-

formance, we used the Bonnie benchmark [32] to read and

write a large file of size 2GB in order to significantly reduce

the impact of caching. Our measurements showed that the

disk read and write bandwidth were 26 MB/s and 32 MB/s,

respectively.

In our experiments, our metadata servers are dedicated and

there are no other applications running on these nodes. Since

our targeted clusters typically have over one hundred nodes,

using two dedicated metadata servers will not significantly

compromise the system’s cost-effectiveness.

A micro-benchmark, similar to the one used in [1, 18–23],

was used to measure the aggregate read and write perfor-

mance. In this benchmark, each client concurrently opens a

common file, then reads or writes disjoint portions of this file,

and finally closes it. The response time of the slowest client

is considered as the overall response time. Figure 2 shows

the pseudo-code of this benchmark. The performances were

examined with two simple orthogonal approaches: (1) all the

clients read or write the same amount of data but the total

number of client nodes changes; (2) the total number of client

nodes is fixed while the amount of data that each client read

or write changes. All the performances reported in this paper

were based on the average of 20 measurements.

The read and write operations are studied separately in this

paper since they exhibit different characteristics in modern

hierarchical storage architectures. Commodity PCs currently

have a RAM with a capacity of multiple GB or even TB and

hence almost all the data in write operations can be easily

buffered in the RAM by the local file systems. Accordingly,

the performance of write operations is largely influenced by

the memory and network utilizations. On the other hand,

the performance of read operations mainly depends on the

data locality of applications and on the cache and prefetch

functionalities of storage systems.

5 Write performance improvement

In the clusters considered in this paper, each cluster node

played double roles: serving both as a compute node and as

a storage server. All the users’ applications running in these

clusters have different requirements for system resources,

primarily CPU, disk, memory and network, and accordingly,

the utilizations of these system resources on different nodes

can be significantly different. To improve the response times

of write requests, usually half of the server nodes with rel-

atively small workload are assigned to the primary group

and writes are considered completed when the data has been

stored in the primary group. The duplications from the pri-

mary group to the backup one proceed in the background in

a pipelined fashion.

The challenge here is to determine what kind of node is

considered less loaded. To address this issue, we will study

the impact of different workload conditions of CPU, disk,

memory, and network on the write performance in the fol-

lowing section. Then a scheduling algorithm that judiciously

selects nodes with lighter workload in each mirroring pair to

optimize write performance is proposed and evaluated.

5.1 Impact of system resources on write performance in a

simple configuration

Since CEFT, a RAID-10 style system, strides the files among

the data server nodes in a round-robin fashion and the write

performance is largely determined by the slowest data server

in one storage group, it is essential to understand the char-

acteristics and behaviors of individual data servers under a

variety of system resource utilizations, in order to be able

to make load-balancing decisions dynamically. To make this

problem tractable, we measure the performance of CEFT

in its simplest configuration, in which either group contains

only one data server and one metadata server, and in its sim-

plest I/O access pattern, in which only one client writes a

new file to the data server. While we artificially put different

stresses on one of the resources of the data server and keep

the other resources idle, we measure the write performance

with increasing I/O load, i.e., increasing the file size.

5.1.1 Impact of CPU workload on write performance

While CPUs in general are not the bottleneck for I/O opera-

tions, they may be heavily loaded by scientific applications,

especially computation-intensive programs, thus potentially

increasing the I/O response time. The metrics of CPU work-

load are average CPU usage and load. The CPU usage is ex-

pressed as a percentage of total CPU time spent on active jobs

since the last update and the CPU load, a parameter reported

by Linux kernel, is defined as the exponentially-damped

moving average of the sum of the number of processes

Springer

Cluster Comput (2006) 9:433–447 437

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

data size (MBytes)

w
ri
te

 p
e
rf

o
rm

a
n
c
e
 (

M
B

y
te

s
/s

e
c
)

Load = 0
Load = 1 and Usage of one CPU > 99%
Load = 2 and Usage of both CPUs > 99%
Load = 3 and Usage of both CPUs > 99%
Load = 4 and Usage of both CPUs > 99%

Fig. 3 Impact of CPU load on write performance when the client writes
different amounts of data. There is only one data server and one client
node in these experiments

1 2 3 4 5 6 7 8
0

20

40

60

80

100

120

140

160

Total number of Netperf client nodes

T
C

P
/I
P

 p
e
rf

o
rm

a
n
c
e
 (

M
B

y
te

s
/s

e
c
)

Aggregate throughput of the server
Average throughput of each client

Fig. 4 TCP/IP performance when different Netperf clients concur-
rently communicate to one Netperf server

waiting in the run-queue and the number currently executing

during the last minutes [30]. To artificially make the load of

an idle CPU a specific number, such as three, we can fork

three processes and let each process execute an infinite busy

loop. We found that the impact of CPU load on the I/O perfor-

mance was insignificant when the usages of both the CPUs on

a data server node were below 99%. Figure 3 shows the write

performance as a function of CPU load while both CPUs on

the data server node are 99% utilized and the memory, disk

and network are nearly 100% idle. The experiments indicate

that the write performance can be reduced by approximately

31%, 60%, 70%, and 73% on average if the CPU is busy and

the average load is 1, 2, 3, and 4, respectively.

5.1.2 Impact of network traffic load on write performance

CEFT uses the TCP/IP to transfer data between the client and

server nodes. The TCP/IP performance over the 2 gigabits/s

full-duplex Myrinet of PrairieFire was measured using Net-

perf [31]. Based on the basic client-server model, Netperf

measured the performance by sending bulk data between the

server and the clients. Figure 4 shows the TCP/IP perfor-

mance as a function of different numbers of Netperf clients

simultaneously communicating with one Netperf server. All

the Netperf clients and server were located on different nodes

in the cluster. We measured that the server had an average

of 126.51 MB/s TCP/IP throughput, which was shared by all

the clients. Our tests based on the gm debug facilities [27]

indicated that the PCI bus had a read and write throughput of

236 MB/sec and 209 MB/sec, respectively. While the average

CPU usage of the Netperf server was only 47% during the

measurement, the bottleneck of the TCP/IP performance was

likely located at the TCP/IP stack on the server side, which

required an integrated memory copy and thus generated an

extra, potentially large latency.

Another important observation from Fig. 4 was that when

more than five nodes concurrently communicated with the

same node, the average throughput of an individual node

was less than the maximum disk throughput, implying that

when there are communication-intensive applications run-

ning on the server nodes, the bottleneck of I/O operations

could potentially shift from disks to their TCP/IP stacks.

The write performance under different numbers of Netperf

clients is shown in Fig. 5 where Netperf server and the CEFT

data server were deliberately placed on the same node. When

the size of I/O request was not large, the Netperf client nodes

and the CEFT client nodes shared the TCP/IP bandwidth

0 100 200 300 400 500 600 700 800 900 1000
20

30

40

50

60

70

80

90

100

110

120

data size (MBytes)

W
ri
te

 p
e
rf

o
rm

a
n
c
e
 (

M
B

y
te

s
/s

e
c
)

Without network load
1 Netperf client
2 Netperf clients

Fig. 5 Write performance under different network traffic disturbances.
There is only one CEFT data server and one CEFT client node in these
experiments.

Springer

438 Cluster Comput (2006) 9:433–447

1. M = allocate(10 Mbytes);
2. create a file named F;
3. while (1) {
4. if (size(F) > 5 GB)
5. truncate F to zero byte;
6. else
7. synchronously append data in M to F.
8. }

Fig. 6 Program to stress the memory and disk on a CEFT data server

nearly evenly. With the increase in I/O requests, the per-

formance further degraded due to the compounded negative

impact of memory shortage.

5.1.3 Impact of memory and disk load on write
performance

Memory and disk are closely coupled in almost all mod-

ern operating systems since most Linux systems employ the

virtual memory technology and disks are part of the vir-

tual memory. Data might be paged out from the memory

into the disk when necessary. On the other hand, memory

serves as buffer cache for disk drives. Reading and writing

data on disks will influence the usage of memory. Thus we

only analyze the overall impact of disk and memory in this

paper.

A simple program is developed to stress the disk and mem-

ory on data server nodes. In this program, the synchronous

write always guarantees a disk access, but the operating sys-

tem usually places the most recently used data in the cache

buffer in an effort to avoid some disk accesses. Although

this caching buffer can be automatically reclaimed by the

operating system, the competition for memory between this

program and CEFT on the server node will certainly reduce

the write performance. When only this program is stressing

the disk and memory, both CPUs are nearly 95% idle and

therefore CPUs have negligible impact on the write perfor-

mance during this set of measurements. Another observation

from our experiments is that, like the network characteris-

tics shown in Fig. 3, the disk bandwidth is nearly equally

shared by all the I/O-intensive processes running on the same

node. For example, if there are five processes concurrently

writing a large amount of data into the same disk, the I/O

performance of each process would be around 8 MB/s when

the maximum write throughput of the disk is 40 MB/s. This

can be understood from the following aspects. (1) For large

writes, the seek time is amortized by the large data transfer

time. (2) Data locality in workloads reduce the seek time. It

is discovered that the actual average seek time and rotational

latency are, respectively, only about 35% and 60% of the

specified values in a wide range of workloads [29]. (3) Since

we are writing the data in the file system level, the number

of disk seek operations is reduced by the cache and buffer

management module in operating systems since I/O requests

are aggregated, delayed and reordered in buffer so that many

seek operations are saved. In this way, several small writes

can be combined into a large write.

In the paper, we did not consider the memory bandwidth

loading for the following reasons and difficulties. (1) There

are no efficient facilities available in the Linux kernel or other

application tools to monitor the memory throughput. (2) The

memory traffic is very bursty due to the fact that the memory

capacity is limited and the memory bandwidth is much faster

than other I/O components, such as disks, PCI bus, TCP/IP

stacks. (3) It is challenging to predict the memory activities.

Since the memory operations are too bursty, it is difficulty

to find a good time period to predict future available band-

widths. A short observation period might introduce a large

CPU overhead. A long observation period makes the pre-

diction inaccurate since the memory activities have evolved

significantly. (4) Memory is not a performance bottleneck

for many applications. For example, the memory bandwidth

is seldom saturated by disk I/O and network I/O intensive

applications. For memory write intensive applications, this

saturation will only last for a short period of time since mem-

ory is used up soon and paging out data into disk slows down

the memory operations.

As shown in Fig. 7, when the disk and memory are stressed

by the program described above, the write performance in

CEFT drops nearly 64% even when the data size is only

a small fraction of the total available memory. Under this

heavy disk and memory stress, write performance approxi-

mates the disk maximum throughput even when the file size

is small enough to be buffered. When data size is large, the

write performance drops to around half of the maximum disk

throughput since the data cannot fit in the memory and the

writes in CEFT have to compete for the disk bandwidth with

the stressing program. We conclude that when the CPU load

is not high, the disk-memory “compound” plays a more sig-

nificant role than the network.

5.2 To skip or not to skip a busy node while striping?

When the system resources on one mirroring pair are heavily

loaded, it might be beneficial to skip these nodes while strip-

ing, in order to balance the write load among the designated

group of mirroring pairs. Can skipping the busy nodes com-

pensate for the reduced parallelism? To answer this question,

we need to exam how the performance scales with the total

number of data server nodes when all the server nodes are

lightly and equally loaded.

Figures 8 and 9 show the aggregate performances cor-

responding to two cases: constant-sized files being writ-

ten by a variable number of client nodes, and variable-

sized files being written by a constant number of client

Springer

Cluster Comput (2006) 9:433–447 439

0 100 200 300 400 500 600 700 800 900 1000
20

30

40

50

60

70

80

90

100

110

120

data size (MBytes)

W
ri
te

 p
e

rf
o

rm
a

n
c
e

 (
M

B
y
te

s
/s

e
c
)

without stressing disk
stressing disk

Fig. 7 Write performance when the memory and disk are stressed.
There is only one CEFT data server and one CEFT client node in these
experiments

0 10 20 30 40 50 60
0

500

1000

1500

Total number of client nodes

A
g

g
re

g
a

te
 w

ri
te

 p
e

rf
o

rm
a

n
c
e

(M
B

y
te

s
/s

e
c
)

 8 mirroring 8 data servers
16 mirroring 16 data servers
32 mirroring 32 data servers

Fig. 8 Aggregate write performance of CEFT when each client writes
16 MB data to the servers. There are 8 data servers in each group.

0.5 1 2 4 8 16 32 64 128 256
100

150

200

250

300

350

400

450

500

550

600

A
g

g
re

g
a

te
 w

ri
te

 p
e

rf
o

rm
a

n
c
e

 (
M

B
y
te

s
/s

e
c
)

Data size that each client node writes(MBytes)

8 mirroring 8 server nodes
7 mirroring 7 server nodes
6 mirroring 7 server nodes
5 mirroring 5 server nodes
4 mirroring 4 server nodes

Fig. 9 Aggregate write performance of CEFT when the total number
of client nodes is 16

Fig. 10 Scheduling algorithms for write I/O operations

2 4 8 16 32 64 128 256
150

200

250

300

350

400

450

500

550

A
g
g
re

g
a
te

 w
ri
te

 p
e
rf

o
rm

a
n
c
e
 (

M
B

y
te

s
/s

e
c
)

Data size that each client node writes (MBytes)

With scheduling
Without scheduling, CPU load 1
Without scheduling, CPU load 2
Without scheduling, CPU load 3

Fig. 11 Aggregate write performance when the CPUs on one data
server is stressed

nodes, given that all the nodes are not heavily loaded. The

average peak performances in the saturated region in Fig-

ure 8 of the three different CEFT configurations are 492,

796 and 1386 MB/s respectively, which are nearly propor-

tional to the total number of data servers, thus indicating

a good scalability of CEFT. This scalability, however, does

Springer

440 Cluster Comput (2006) 9:433–447

not necessarily hold in the unsaturated regions in both Figs.

8 and 9, implying that a larger number of server nodes do

not necessarily result in a proportionally higher write perfor-

mance. In fact, the opposite is true when the file size falls

in the range of 0.5 to 8 MB. In other words, for some file

sizes a larger number of server nodes result in lower per-

formance, and vise versa. It is this counter-intuitive prop-

erty, shown in both figures, that necessitates skipping some

data servers to improve the overall performance. In fact,

such skipping is necessary even when all the server nodes

are well balanced. However, judiciously skipping server

nodes, or, equivalently, resizing the striping group, in a well-

balanced system to improve write performance, while nec-

essary, is beyond the scope of this paper, and thus will not be

addressed.

In a realistic setting of cluster computing, the workload

on all the data servers could be significantly different since

parallel scientific applications usually are scheduled to run

on only a portion of the nodes, instead of every node. It is

possible, in fact, rather likely, that one mirroring pair are

both heavily loaded, thus degrading the overall performance

substantially. In such cases, skipping the busy pair helps al-

leviate the negative impact of the pair due in part to their

dual roles in the cluster as a CEFT server node and as a

compute node. Experiment results show that if a mirror-

ing pair is heavily loaded and the maximum I/O through-

put that they can provide is only about half of the disk

bandwidth, skipping this mirroring pair usually improves

the overall performance. This observation is helpful in de-

veloping the heuristic scheduling algorithm, to be described

next.

5.3 A dynamic scheduling algorithm for write operations

Previous sections presented quantitatively the impact of re-

source availability of various kinds on the behaviors of writes

in a simple configuration and under a simple workload pat-

tern. In addition, experimental results suggest that judiciously

skipping some server nodes while striping can be potentially

beneficial to performance enhancement, especially for write-

once applications. While such simplistic but quantitative re-

sults about performance impact of resource availability may

not be directly extended to a CEFT with multiple data servers

and more complex I/O workload, the relative sensitivities

of resource availability of different kinds and the scalabil-

ity information implied can give useful heuristic hints to the

development of a dynamic scheduling algorithm for load bal-

ancing.

Since the metadata server is responsible for all the schedul-

ing work, which can potentially form a bottleneck, we try to

keep the scheduling algorithm as simple as possible to re-

duce the scheduling overhead. A straightforward algorithm

is developed in this paper for write operations. In this algo-

rithm, we only consider skipping at most one data server in a

striping group to reduce the intrinsic scheduling complexity.

Based on our experiences, skipping one node that can provide

at most half of the maximum disk throughput significantly

boosts the overall performance. Thus the value of one half

of the maximum disk throughput is used as the threshold to

decide on skipping.

The basic idea of this algorithm is that for each mirroring

pair, if it is not heavily loaded, one node that could potentially

deliver a higher I/O throughput from each mirroring pair is

chosen to construct the primary storage group. In addition,

according to the skipping criteria, all these pairs are sorted

into four groups, each in non-increasing order of the utiliza-

tions of CPU, memory, disk, and network, respectively. If

none of the utilizations of a particular resource, say memory,

of the pairs is over 50%, then the sorted group based on mem-

ory utilizations will be empty. While each group is assigned

a different priority and the priorities from the highest to the

lowest are memory, network, disk and CPU, a pair in the

non-empty group with the highest priority will be randomly

chosen to be skipped.

In this dynamic scheduling algorithm, the available disk

throughput Di on node i is estimated as min(Dmax −
Dused, Dmax/(n + 1)), where Dmax, Dused and n are the maxi-

mum disk throughput, the disk throughput of the last interval,

and the total number of processes that are carrying out I/O

operations, respectively. The available network throughput

is estimated in a similar way. The size of the free memory

space on a node is obtained from the memory management

system of the operating system kernel. All these parameters

are stored on the metadata server. The data server nodes col-

lect this information and send it to the metadata server every

one-second.

5.4 Write performance evaluation

In this section, we evaluate our dynamic heuristic scheduling

algorithm in a configuration of eight data servers in each strip-

ing group. To fairly compare the performance with schedul-

ing and without scheduling, the benchmark programs need to

be executed in the same environment with identical workload.

In a real cluster in production mode, such as the PrairieFire

in which CEFT is installed, unfortunately, it is nearly im-

possible to obtain such a repeatable environment since the

workload on each node is constantly changing with the pro-

gression of applications running in the cluster. Therefore,

instead of doing comparisons in a real environment, we com-

pared performances in an artificially created environment in

which the load of a specific kind of resource on a server node

was kept approximately constant by using the programs de-

scribed in the previous sections, although interferences from

other computation programs running on the cluster could not

be avoided.

Springer

Cluster Comput (2006) 9:433–447 441

To make sure that the bottleneck of the I/O operation was

located on the server side rather than the client side, 16 client

nodes were used to simultaneously write to the server and

the aggregate performance was measured. Two sets of exper-

iments were conducted. In the first set, the workload stress

was applied only on one node while its mirroring node is

kept almost idle so that skipping will not be necessary. In

the second set, the workload stress was put on both nodes

of a mirroring pair so that it will become necessary to skip.

In each set of experiments, the CPU, network, and the disk-

memory compound were each stressed in turn, and the re-

sults are presented in the following figures. In each figure,

the average write performance of the scheduling algorithm

is shown, since under different stress conditions of the same

resource, the performances of the scheduling algorithm were

very close.

Figures 11 and 12 show results of experiments in which

the CPU and network of one primary node were stressed, re-

spectively. In experiments reported in Fig. 13, both the disk

and memory were stressed on one node or on two nodes in the

same striping group. In Figs. 14 and 15, the CPU and network

of one mirroring pair were stressed respectively. Figure 16

presents the comparison when both the disk and memory on

one mirroring pair were stressed. The performance of the dy-

namic scheduling is significantly better than the performance

of non-scheduling in the vast majority of the test cases.

In the cases of skipping, shown in Figs. 14 and 16, the

aggregate performance of the scheduling algorithm starts to

decrease sharply when the data size of each client is larger

than 64 MB. This sharp decrease is due to the fact that, as

data size from each client node increases, the total file size

allocated on each individual server node becomes so signif-

icantly larger that the negative impact of load redistribution

(as a result of skipping) onto the remaining 7 server nodes

quickly offsets the positive gain from skipping. These fig-

ures show that when one of the resources on a server node

is heavily loaded, our scheduling algorithm derived from the

heuristic observations, can significantly improve the write

performance.

Figure 17 shows the comparison of our scheduling algo-

rithm with two other algorithms, one solely based on the

availability of disk and memory, and the other solely based

on the availability of network bandwidth. This figure clearly

shows that two simplistic algorithms are inferior to ours since

both of them are limited by the amount of information on

which their decisions are based while our algorithm bases its

decision on a more comprehensive piece of system workload

information. The performance in Fig. 17 is a little higher than

the performance in the other figures because Fig. 17 is mea-

sured immediately after the reboot of our cluster and there

is almost no computation application except our load stress

program.

2 4 8 16 32 64 128 256 512
150

200

250

300

350

400

450

500

550

A
g

g
re

g
a

te
 w

ri
te

 p
e

rf
o

rm
a

n
c
e

 (
M

B
y
te

s
/s

e
c
)

Data size on each I/O server node (MBytes)

With scheduling
Without scheduling, 1 Netperf client
Without scheduling, 2 Netperf clients

Fig. 12 Aggregate write performance when the network is stressed

2 4 8 16 32 64 128 256
150

200

250

300

350

400

450

500

550

A
g

g
re

g
a

te
 w

ri
te

 p
e

rf
o

rm
a

n
c
e

 (
M

B
y
te

s
/s

e
c
)

Data size that each client node writes (MBytes)

With scheduling
Without scheduling, 1 disk is busy
Withour scheduling, 2 disks are busy

Fig. 13 Aggregate write performance when the disk and memory on
one data server is stressed

2 4 8 16 32 64 128 256
150

200

250

300

350

400

450

500

A
g
g
re

g
a
te

 w
ri
te

 p
e
rf

o
rm

a
n
c
e
 (

M
B

y
te

s
/s

e
c
)

Data size that each client node writes(MBytes)

Skipping one busy mirroring pair
Without skipping, CPU average load 2
Without skipping, CPU average load 3
Without skipping, CPU average load 4

Fig. 14 Aggregate write performance when the CPUs on one mirroring
pair of data servers are stressed

Springer

442 Cluster Comput (2006) 9:433–447

2 4 8 16 32 64 128 256
100

150

200

250

300

350

400

450

500

a
g
g
re

g
a
te

 w
ri
te

 p
e
rf

o
rm

a
n
c
e
 (

M
B

y
te

s
/s

e
c
)

data size that each client node writes (MBytes)

Write performance when skipping one busy mirroring pair

Skipping one busy mirroring pair
Without skipping, heaving network traffic on both nodes

Fig. 15 Aggregate write performance when the network of one mir-
roring pair of data servers is stressed

2 4 8 16 32 64 128 256
150

200

250

300

350

400

450

A
g
g
re

g
a
te

 w
ri
te

 p
e
rf

o
rm

a
n
c
e
 (

M
B

y
te

s
/s

e
c
)

Data size that each client node writes(MBytes)

Skipping one busy mirroring pair
Without skipping, the disk and memory on both nodes are busy

Fig. 16 Aggregate write performance when the disk and memory on
one mirroring pair of data servers are stressed

6 Improving large read performance

The read operations exhibit different behaviors from write

operations in modern clusters with RAMs of very large ca-

pacity (≥GBs/node). While the write performance is sen-

sitive to the size of available buffer, the read performance

highly depends on the data temporal locality of user’s appli-

cations. In the following sections, we examine two extreme

cases: hot read and cold read. In the case of hot read, all data

is most likely to be cached by the memory on the servers

and thus the number of disk accesses is kept minimal. The

hot read performance is measured by reading the same data

repeatedly. In cold read, all data has to be read from the

disks. To clear the cache buffer and guarantee that real disk

accesses take place, each data server reads a dummy file of 2

GB, twice as much as the total memory size of a data server

2 4 8 16 32 64 128 256
150

200

250

300

350

400

450

500

550

600

650

700

A
g
g
re

g
a
te

 w
ri
te

 p
e
rf

o
rm

a
n
c
e
 (

M
B

y
te

s
/s

e
c
)

Data size that each client node writes(MBytes)

Schedule using our algorithms
Schedule according to disk and memory information
Schedule according to network information

Fig. 17 Aggregate write performance when the disk and memory of
one data server is stressed and the network of this mirroring server node
is stressed

Fig. 18 An example of reading interleaved data from both groups, half
from the primary group, and half from the backup group

node on the CEFT-installed cluster (the PrairieFire cluster)

at the time of the test, before each measurement, thus dis-

placing any cached data. All the read performances reported

below were obtained in a configuration of 18 server nodes,

including 8 data servers and 1 metadata server in each group.

6.1 Increasing parallelism of read operations

Any data stored in CEFT will eventually have two copies,

one in the primary group and the other in the backup group.

The storage space overhead for mirroring can be viewed as

trading not only for the significantly increased reliability, but

also for the increased read parallelism. Instead of reading the

whole data from one storage group, the reading operations

can divide their load between the two storage groups. More

specifically, the desired data is split into two halves and the

client can simultaneously read interleaved blocks, one half

from the primary nodes and the other half from their mirror-

ing nodes. Splitting the read loads on both groups is espe-

cially effective for large read operations, which are common

Springer

Cluster Comput (2006) 9:433–447 443

0 5 10 15 20 25 30 35 40
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Number of client nodes

A
g
g
re

g
a
te

 r
e
a
d
 p

e
rf

o
rm

a
n
c
e
 (

M
B

y
te

s
/s

e
c
)

 Hot read from both groups
 Hot read from one group
Cold read from both groups
Cold read from one group

Fig. 19 Aggregate cold read and hot read performance, as a function
of the number of client nodes. There are 8 data servers in one group and
each client reads 16 MB

in scientific computations. In cases of small reads, this ap-

proach may not benefit much since the I/O completion time

of small reads is dominated by the network and disk latency,

instead of the data transferring time. Figure 18 shows an ex-

ample in which each storage group is composed of two server

nodes and the client node reads the target data from the four

servers concurrently.

6.2 Read performance evaluations

Figure 19 shows the performance of the first approach when

all servers are lightly loaded by the other applications and

each client reads 16 MB data from the servers simultaneously.

Table 1 summarizes the aggregate peak read performance and

peak performance per server node. As the table indicates,

the aggregate performance of hot read reaches its maximum

value when all the network bandwidths from the data servers

are fully utilized. The performance of cold read enters its

saturation region when the throughput of each disk is close to

their maximum value of 26 MB/s. These measurements show

that the increased parallelism due to mirroring improves the

performance nearly 100% for both the hot read and the cold

read.

Figure 20 plots the performances measured by the second

approach, when there are a total of 16 clients and each of them

reads different sizes of data from the servers. The aggregate

peak performance and peak performance per server node are

summarized in Table 2. In the case of cold read, the perfor-

mance begins to drop after an initial rise while this drop is not

apparent in the hot read. The performance drop is potentially

due to the fact that when the file size is too large, these files

may not be stored contiguously on the disks so that more disk

seeks are performed, causing the total disk access time to in-

crease. In hot read, the peak performances are a little lower

Table 1 Aggregate peak read performance and peak read per-
formance per server node when each client reads 16 MB

Peak read performance (MB/s)

Aggregate Per server node

Hot read from both groups 1964.4 122.8

Hot read from one group 998.5 124.8

Cold read from both groups 313.7 19.6

Cold read from one group 164.3 20.5

Table 2 Aggregate peak read performance and peak read per-
formance per server node when 16 clients read different sizes
of data

Peak read performance (MB/s)

Aggregate Per server node

Hot read from both groups 1326.3 82.9

Hot read from one group 897.9 112.2

Cold read from both groups 316.8 19.8

Cold read from one group 160.8 20.1

than the values given in Table 1 since the number of clients

is not large enough to saturate the network bandwidth on

the server side. The aggregate peak performance of hot read

from both groups can be increased if more clients are added

since the network bandwidth utilization on the server side

is only 66%. Within the range of data sizes tested, our pro-

posed method improves the cold read performance 76–100%,

with an average of 91%, and boosts the hot read performance

22–59%, with an average of 49%, even when our proposed

method has not achieved its maximum throughput in these

measurements due to an insufficient number of clients.

6.3 Improving read performance in the presence of

hot-spot nodes

As an integral part of a cluster, all the data server nodes are not

dedicated and they also serve as compute nodes. Their work-

load can be highly imbalanced, thus potentially degrading the

overall I/O performance. Since all data is eventually stored

on two different nodes in CEFT, this redundancy in CEFT

provides an opportunity for the clients to skip the hot-spot

node that is heavily loaded (or down due to failure) and read

the target data from its mirroring node. More specifically,

the server nodes periodically send their load information, in-

cluding the load of CPU, the average throughput of disks

and networks within each period, to the metadata server. The

metadata server schedules the I/O requests and informs the

clients of their reading schemes. Figure 21 shows an exam-

ple, in which Node 2 is skipped and all data is read from its

mirror Node 2’.

Springer

444 Cluster Comput (2006) 9:433–447

0.5 1 2 4 8 16 32 64 128 256
0

200

400

600

800

1000

1200

1400

A
g

g
re

g
a

te
 r

e
a

d
 p

e
rf

o
rm

a
n

c
e

 (
M

B
y
te

s
/s

e
c
)

Data size that each client reads (MBytes)

 Hot read from both groups
 Hot read from one group
Cold read from both groups
Cold read from one group

Fig. 20 Performance of cold read and hot read as a function of data
size that each client reads. There are 8 data servers in one group and 16
clients

Fig. 21 An example of skipping the heavily loaded data server nodes
and reading the data from their mirroring server nodes

0.5 1 2 4 8 16 32 64 128 256
0

20

40

60

80

100

120

140

160

180

A
g
g
re

g
a
te

 r
e
a
d
 p

e
rf

o
rm

a
n
c
e
 (

M
B

y
te

s
/s

e
c
)

Data size that each client reads (MBytes)

Cold read from both groups with skipping
Cold read from both groups without skipping
Cold read from one group without skipping

Fig. 22 Cold read performance improvement by skipping one server
with heavy disk load and reading the data from its mirror. There are 16
clients and the data size that each client reads changes

0 5 10 15 20 25 30 35 40
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Number of client nodes

A
g
g
re

g
a
te

 r
e
a
d
 p

e
rf

o
rm

a
n
c
e
 (

M
B

y
te

s
/s

e
c
)

without stressing network
with network stressing and skipping
with network stressing but without skipping

Fig. 23 Hot read performance improvement by skipping the server with
heavy network load and reading the data from its mirror. Each client
reads a total of 16 MB from both groups simultaneously

6.4 Improving cold read performance

In cold read, the data needs to be read from disks, which gen-

erate the largest latency on the critical path of I/O operations,

due to the relatively large seek time and small bandwidth of

disks. To compare the performance of skipping the hot-spot

nodes, we artificially stress the disk on one server node in

the primary group by allocating a memory space with 10 MB

garbage data and then repeatedly storing these garbage data

synchronously onto the disk. Three different methods are

used to measure the read performance: (1) from all servers

in the primary group without skipping the busy node; (2)

from all servers in both groups without skipping the busy

node; (3) from both groups while skipping the busy node.

Figure 22 shows the performance curves of those methods

measured under the same file access pattern, where 16 client

nodes read different sizes of data from these servers. When

the file size is small, skipping the busy node improves the

cold read performance nearly 10 times over reading the data

from one group or both groups without skipping. As the data

size increases, the benefits from skipping decrease since the

total data size from the mirroring node of the skipped node

increases at a doubled speed, causing the total disk seek time

to increase.

6.5 Improving hot read performance

Contrary to cold read, hot read can most likely find the data

in the cache due to the aggressive design of the Linux op-

erating system, which tends to use all the free memory as

the cache buffer for the sake of minimizing disk accesses.

This local optimization exploits the data locality exhibited

in most applications to alleviate the I/O bottleneck. CEFT

servers utilize their local file systems to store or retrieve all

Springer

Cluster Comput (2006) 9:433–447 445

data and cache the most recently visited data in their mem-

ory. As discussed in Section 4, the memory has a read and

write throughput of 464 and 592 MB/s, and the PCI bus has

a read and write throughput of 236 and 209 MB/s and the

TCP bandwidth is only 126.5 MB/s. Thus the network on the

server side becomes the bottleneck in the case of hot read.

Figure 23 plots the hot read performance from both

groups, under three approaches: (1) without stressing the

network; (2) with the network interface of one data server

stressed but without skipping this server; (3) with the network

interface of one data server stressed and skipping this data

server. In all measurements, each client reads a total of 16 MB

data. When the total number of client nodes is small, the hot

read performance does not show much difference among the

three approaches since the bottleneck is on the clients’ net-

work interfaces. As the client number increases, the bottle-

neck gradually shifts from the clients’ network interfaces to

the servers’ network interfaces. Stressing the network of one

server node reduces the peak hot read performance from 2

GB/s to 1.25 GB/s. By skipping that network stressed node,

the hot read performance is improved to 1.53GB/s, with an

enhancement of 22.4%.

7 Related work

Our work is primarily related to I/O scheduling in clusters.

Previous research work on scheduling I/O operations in a

cluster environment can be classified into two categories,

namely, spatial scheduling and temporal scheduling. The

temporal scheduling algorithms essentially determine the ex-

ecution order of the requests at each cluster nodes. For exam-

ple, Ref. [33] proposes a bipartite graph edge-coloring algo-

rithm to partition all pending I/O requests into subsets such

that the requests in each subset do not compete for resource

with each other and thus can be executed simultaneously.

Ref. [34] designs an approximate algorithm of edge coloring

to schedule I/O transfers for systems that only allow a lim-

ited number of transfers at a time. The efficiencies of those

scheduling algorithms are evaluated based on simulation or

theoretical analysis and are not examined in a real dynamic

cluster environment.

The spatial scheduling algorithms basically make deci-

sions about which nodes a request should be assigned to. For

example, Ref. [35] uses the graph theory of the network max-

imum flow to evenly schedule I/O requests on all replicas,

but it only evaluates their algorithm via theoretical analysis.

To improve the scalability of cluster-based storage, Ref. [36]

decomposes the storage nodes into three functional groups

that serve metadata I/O, small file I/O and bulk data I/O re-

spectively and develops a request routing scheme that sched-

ule I/O requests to their corresponding storage nodes. This

scheduling is based on static function of decomposition and

does not incorporate data redundancy into the scheduling.

Both Ref. [35] and [36] assume that all servers are dedicated

and thus not oriented to generic clusters. Ref. [37] presents

two heuristic algorithms to dynamically assign data servers in

a heterogeneous cluster with both slow and fast disks. While

Ref. [37] studies the placement of data servers that are not

dedicated, it puts more focus on handling heterogeneity, in-

stead of dealing with resource contention. Ref. [35] also con-

siders the non-dedication characteristics of a generic cluster

node and proposes a weighted bipartite matching algorithm

with a goal to balance the workload of data servers. However

their algorithm is based on the assumption that the data trans-

fer time between different nodes is known before schedul-

ing. In practice, it is challenging to satisfy this assumption

due to the unpredictability of the workload on each cluster

node.

This paper delves into spatial scheduling in a RAID-10

style parallel I/O system. Our research work distinguishes

itself from the above in that we target the dual-role clus-

ter nodes in a generic cluster, fully consider the memory,

network, disk and CPU utilizations and incorporate the re-

dundancy based on heuristics motivated from extensive ex-

periments in a real cluster environment.

8 Conclusions

This paper investigates the I/O performance improvement

in a generic cluster where each data server is not dedicated

but time-shared with compute tasks. Thus nodes in such a

cluster usually serve as compute nodes and as data servers

simultaneously to preserve the cost-effectiveness of clusters.

This paper studies the performance optimizations of a RAID-

10 style file system running in such generic clusters. A new

heuristic scheduling algorithm is proposed to schedule write

operations on the nodes judiciously chosen from all mirror-

ing pairs by considering the workload disparity between the

nodes in a mirroring pair. If the nodes in a mirroring pair

have already been heavily loaded, skipping this pair during

striping is used to avoid these hot spots. The read perfor-

mance is boosted by scheduling requests on both mirroring

groups in order to double the degree of parallelism. In the

case that a node becomes a hot spot, this node is skipped

and all the data is read from its mirror node. Extensive ex-

periments in a real cluster show that these performance op-

timization techniques significantly Improve the overall I/O

performance in a generic cluster when the system workload is

imbalanced.

While we designed and implemented the prototype of the

dynamic scheduling algorithms, many important challenges

remain. Our future work is to provide a more generic and

platform-independent algorithm. We also plan to use more

realistic Benchmarks to measure the I/O performance.

Springer

446 Cluster Comput (2006) 9:433–447

Acknowledgments This work is supported by NSF-HEC0621493, NSF-
HEC0621526, an UMaine startup fund, an NSF Grant (EPS-0091900), a
Nebraska University Foundation Grant (26-0511-0019) and a Chinese NSF
973 Project Grant (2004cb318201). Work was completed using the Re-
search Computing Facility at UNL. Special thanks to the Argonne National
Labs and Clemson University for making the source code of PVFS publicly
available.

References

1. P.H. Carns, W.B. Ligon III, R.B. Ross, and R. Thakur, PVFS: a
parallel file system for Linux clusters, in: Proceedings of the 4th
Annual Linux Showcase and Conference, Atlanta, GA (October
2000) pp. 317–327.

2. Y. Saito, S. Frolund, A.Veitch, A. Merchant, and S. Spence, FAB:
building distributed enterprise disk arrays from commodity com-
ponents, in: Eleventh International Conference on Architectural
Support for Programming Languages and Operating Systems (AS-
PLOS 2004) Boston, MA (October 2004).

3. D. Anderson, J. Chase, and A. Vahdat, Interposed request routing
for scalable network storage, in: Fourth Symposium on Operating
System Design and Implementation (OSDI2000) 2000.

4. P.J. Braam, Lustre white paper, http://www.lustre.org/docs/
whitepaper.pdf (Dec. 2003).

5. F. Schmuck and R. Haskin, GPFS: a shared-disk file system for
large computing clusters, in: Proceedings of the First Conference
on File and Storage Technologies (FAST), Monterey, CA (January
2002).

6. T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli, and R.
Wang, Serverless network file systems, in: Proceedings of the 15th
Symposium on Operating System Principles (SOSP), Colorado,
USA (December 1995) pp. 109–126.

7. S. Ghemawat, H. Gobioff, and S. T. Leung, The Google file system,
in: Proceedings of the 19th ACM Symposium on Operating Systems
Principles (SOSP) (2003) pp. 29–43.

8. D. C. Anderson, J. S. Chase, and A. M. Vahdat, Interposed request
routing for scalable network storage, ACM Transactions on Com-
puter Systems 20(1) (February 2002) pp. 25–48.

9. E. K. Lee and C. A. Thekkath, Petal: distributed virtual disks, in:
Proceedings of the Seventh International Conference on Architec-
tural Support for Programming Languages and Operating Systems
(ASPLOS) (1996) pp. 84–92.

10. K. Hwang, H. Jin, and R. S. Ho, Orthogonal striping and mirroring in
distributed raid for I/O-centric cluster computing, IEEE Transaction
on Parallel Distributed System 13(1) (2002) 26–44.

11. A. Adya, W. J. Bolosky, M. Castro, R. Chaiken, G. Cermak, J. R.
Douceur, J. Howell, J. R. Lorch, M. Theimer, and R.P. Wattenhofer,
FARSITE: federated, available, and reliable storage for an incom-
pletely trusted environment, in: Proceedings of 5th Symposium on
Operating Systems Design and Implementation (OSDI) (December
2002).

12. Y. Zhu, H. Jiang, X. Qin, D. Feng, and D. Swanson, Design, im-
plementation, and performance evaluation of a cost-effective fault-
tolerant parallel virtual file system, in: Proceedings of International
Workshop on Storage Network Architecture and Parallel I/Os, in
conjunctions with 12th International Conference on Parallel Ar-
chitectures and Compilation Techniques (PACT), New Orleans, LA
(September 2003).

13. Y. Zhu, H. Jiang, X. Qin, D. Feng, and D. Swanson, Improved
read performance in a cost-effective, fault-tolerant parallel virtual
file system, in: Proceedings of the 3rd IEEE/ACM International
Symposium on Cluster Computing and the Grid (CCGRID), Paral-
lel I/O in Cluster Computing and Computational Grids Workshop
(May 2003) pp. 730–735.

14. Y. Zhu, H. Jiang, X. Qin, D. Feng, and D. Swanson, Scheduling
for improved write performance in a cost-effective, fault-tolerant
parallel virtual file system, in: Proceedings of the 4th LCI Inter-
national Conference on Linux Clusters: the HPC Revolution 2003,
San Jose, California (June 2003).

15. Y. Zhu, H. Jiang, and J. Wang, Hierarchical Bloom Filter Arrays
(HBA): a novel, scalable metadata management system for large
cluster-based storage, in: Proceedings of 6th IEEE International
Conference on Cluster Computing, San Diego, California (2004).

16. Y. Zhu, H. Jiang, X. Qin, and D. Swanson, A case study of parallel
I/O for biological sequence analysis on Linux clusters, in: Proceed-
ings of 5th IEEE International Conference on Cluster Computing,
Hong Kong (December 2003) pp. 308–315.

17. H. Tang and T. Yang, An efficient data location protocol for self-
organizing storage clusters, in: Proceedings of the International
Conference for Supercomputing (SC) (2003).

18. H. Taki and G. Utard, MPI-IO on a parallel file system for cluster
of workstations, in: Proceedings of the IEEE Computer Society In-
ternational Workshop on Cluster Computing, Melbourne, Australia
(1999) pp. 150–157.

19. R. Cristaldi, G. Iannello, and F. Delfino, The cluster file system:
integration of high performance communication and I/O in clusters,
in: Proceeding of the 2nd IEEE/ACM International Symposium on
Cluster Computing and the Grid (CCGRID), Berlin, Germany (May
2002).

20. S.A. Moyer and V.S. Sunderam, PIOUS: a scalable parallel I/O
system for distributed computing environments, in: Proceedings of
the Scalable High-Performance Computing Conference (1994) pp.
71–78.

21. F. Isaila and W.F. Tichy, Clusterfile: a flexible physical layout par-
allel file system, in: Proceedings of IEEE International Conference
on Cluster Computing (2001) pp. 37–44.

22. S. Garg and J. Mache, Performance evaluation of parallel file sys-
tems for PC clusters and ASCI red, in: Proceedings of IEEE Inter-
national Conference on Cluster Computing (2001) pp. 172–177.

23. M. Vilayannur, M. Kandemir, and A. Sivasubramaniam, Kernel-
level caching for optimizing I/O by exploiting inter-application
data sharing, in: Proceedings of IEEE International Conference
on Cluster Computing (2002) pp. 425–432.

24. S.A. Moyer and V.S. Sunderam, PIOUS: a scalable parallel I/O
system for distributed computing environments, in: Proceedings of
the Scalable High-Performance Computing Conference (1994) pp.
71–78.

25. E.K. Lee and C.A. Thekkath, Petal: distributed virtual disks, in:
Proceedings of the 7th International Conference on Architectural
Support for Programming Languages and Operating Systems (AS-
PLOS) (1996) pp. 84–92.

26. L. McVoy and C. Staelin, lmbench: portable tools for perfor-
mance analysis, in: USENIX Technical Conference, San Diego, CA
(January 1996) pp. 279–284.

27. gm debug, http://www.myrinet.com, (2002).
28. Prairiefire Cluster at University of Nebraska - Lincoln,

http://rcf.unl.edu (2003).
29. W. Hsu and A.J. Smith, The performance impact of I/O optimiza-

tions and disk improvements, IBM Journal of Research and Devel-
opment 48(2) (2004) 255–289.

30. D.P. Bovet and M. Cesati, Understanding the Linux kernel, O’Reilly
& Assoc. Inc., Sebastopol, California (2001).

31. Netperf benchmark, http://www.netperf.org (2003).
32. Bonnie benchmark, http://www.textuality.com (2003).
33. D. Durand, R. Jain, and D. Tsytlin, Parallel I/O scheduling using

randomized, distributed edge coloring algorithm, Journal of Parallel
and Distributed Computing 53 (2003) 611–618.

34. R. Jain, K. Somalwar, J. Werth, and J.C. Browne, Heuristics for
scheduling I/O operations, IEEE Transactions on Parallel and Dis-
tributed Systems 8(3) (March 1997) pp. 310–320.

Springer

Cluster Comput (2006) 9:433–447 447

35. P. Liu, D. Wang, and J. Wu, Efficient parallel I/O scheduling in the
presence of data duplication, in: Proceedings of the International
Conference on Parallel Proceeding (ICPP) (2003).

36. D.C. Anderson, J.S. Chase, and A.M. Vahdat, Interposed request
routing for scalable network storage, ACM Transactions on Com-
puter Systems 20(1) (2002) 25–48.

37. Y.E. Cho, M. Winslett, S. Kuo, J. Lee, and Y. Chen, Parallel I/O
for scientific applications on heterogeneous clusters: a resource-
utilization approach, in: Proceedings of the 13th International Con-
ference on Supercomputing (SC), Rhodes, Greece (1999) pp. 253–
259.

38. J. Wu, D. Wang, and Y. Lin, Placement of I/O servers to improve
parallel I/O performance on switch-based clusters, in: Proceedings
of the 17th annual International Conference on Supercomputing
(SC), San Francisco (2003) pp. 244–251.

Yifeng Zhu received his B.Sc. degree in Electrical Engineering in 1998
from Huazhong University of Science and Technology, Wuhan, China;
the M.S. and Ph.D. degree in Computer Science from University of
Nebraska – Lincoln in 2002 and 2005 respectively. He is an assistant
professor in the Electrical and Computer Engineering department at
University of Maine. His main research interests are cluster comput-
ing, grid computing, computer architecture and systems, and parallel
I/O storage systems. Dr. Zhu is a Member of ACM, IEEE, the IEEE
Computer Society, and the Francis Crowe Society.

Hong Jiang received the B.Sc. degree in Computer Engineering in 1982
from Huazhong University of Science and Technology, Wuhan, China;
the M.A.Sc. degree in Computer Engineering in 1987 from the Univer-
sity of Toronto, Toronto, Canada; and the PhD degree in Computer Sci-
ence in 1991 from the Texas A&M University, College Station, Texas,
USA. Since August 1991 he has been at the University of Nebraska-
Lincoln, Lincoln, Nebraska, USA, where he is Professor and Vice Chair
in the Department of Computer Science and Engineering. His present
research interests are computer architecture, parallel/distributed com-
puting, cluster and Grid computing, computer storage systems and par-
allel I/O, performance evaluation, real-time systems, middleware, and
distributed systems for distance education. He has over 100 publications
in major journals and international Conferences in these areas and his
research has been supported by NSF, DOD and the State of Nebraska.

Dr. Jiang is a Member of ACM, the IEEE Computer Society, and the
ACM SIGARCH.

Xiao Qin received the BS and MS degrees in computer science from
Huazhong University of Science and Technology in 1992 and 1999,
respectively. He received the PhD degree in computer science from the
University of Nebraska-Lincoln in 2004. Currently, he is an assistant
professor in the department of computer science at the New Mexico
Institute of Mining and Technology. He had served as a subject area
editor of IEEE Distributed System Online (2000–2001). His research
interests are in parallel and distributed systems, storage systems, real-
time computing, performance evaluation, and fault-tolerance. He is a
member of the IEEE.

Dan Feng received the Ph.D degree from Huazhong University of Sci-
ence and Technology, Wuhan, China, in 1997. She is currently a pro-
fessor of School of Computer, Huazhong University of Science and
Technology, Wuhan, China. She is the principal scientist of the the Na-
tional Grand Fundamental Research 973 Program of China “Research
on the organization and key technologies of the Storage System on the
next generation Internet.” Her research interests include computer archi-
tecture, storage system, parallel I/O, massive storage and performance
evaluation.

David Swanson received a Ph.D. in physical (computational) chem-
istry at the University of Nebraska-Lincoln (UNL) in 1995, after which
he worked as an NSF-NATO postdoctoral fellow at the Technical Uni-
versity of Wroclaw, Poland, in 1996, and subsequently as a National
Research Council Research Associate at the Naval Research Labora-
tory in Washington, DC, from 1997–1998. In 1999 he returned to UNL
where he directs the Research Computing Facility and currently serves
as an Assistant Research Professor in the Department of Computer
Science and Engineering. The Office of Naval Research, the National
Science Foundation, and the State of Nebraska have supported his re-
search in areas such as large-scale scientific simulation and distributed
systems.

Springer

