
Exploiting relationships for domain-independent data cleaning. SIAM SDM 2005 (ext. ver.)

Exploiting relationships for domain-independent data cleaning∗

Dmitri V. Kalashnikov Sharad Mehrotra

Computer Science Department
University of California, Irvine

http://www.ics.uci.edu/~dvk/RelDC

Accepted to SIAM International Conference on Data Mining (SIAM SDM) 2005

Categories and Subject Descriptors:
H.2.m [Database Management]: Miscellaneous – Data cleaning;
H.2.8 [Database Management]: Database Applications – Data mining;
H.2.5 [Information Systems]: Heterogeneous Databases;
H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval

Additional Key Words and Phrases: relationship-based data cleaning, record linkage, data mining

Contents

1 Introduction 3

2 Motivation for analyzing relationships 4

3 Notation and problem definition 6
3.1 References . 7
3.2 The entity-relationship graph . 7
3.3 The objective of reference disambiguation . 8
3.4 Connection Strength and Context Attraction Principle . 9

4 The RelDC approach 9
4.1 Computing connection strength . 9

4.1.1 First phase of WM: discovering connections . 11
4.1.2 Second phase of WM: measuring connection strength 11

4.2 Determining equations for option-edge weights . 13
∗Portions of this work are supported by the NSF under Grants 0331707 and 0331690.

1 Tuesday 4th January, 2005 22:14

Exploiting relationships for domain-independent data cleaning. SIAM SDM 2005 (ext. ver.)

4.3 Determining all weights by solving equations. 13
4.4 Resolving references by interpreting weights. 15

5 Implementations of RelDC 15
5.1 Iterative and solver implementations of RelDC . 15

5.1.1 Solver . 15
5.1.2 Iterative . 15
5.1.3 Bottleneck of RelDC . 16

5.2 Constraining the problem . 17
5.3 Depth-first and greedy implementation of AllPaths. 17

5.3.1 Depth-first and greedy algorithms . 17
5.3.2 Paths storage . 18
5.3.3 Comparing complexity of greedy and depth-first implementations 19

5.4 NBH optimization: utilizing neighborhoods for path pruning. 19
5.5 Storing discovered paths explicitly. 21
5.6 Compatibility of implementations . 21
5.7 Computational complexity of RelDC. 21

6 Experimental Results 22
6.1 Case Study 1: the publications dataset . 22

6.1.1 Datasets . 22
6.1.2 Accuracy experiments . 25
6.1.3 Other experiments . 27

6.2 Case Study 2: the movies dataset . 30
6.2.1 Dataset . 30
6.2.2 Accuracy experiments . 32

7 Related Work 34

8 Conclusion 34

A Probabilistic model for computing connection strength 37
A.1 Preliminaries . 38
A.2 Independent edge existence . 40

A.2.1 General formulae . 40
A.2.2 Computing path connection strength in practice . 41

A.3 Dependent edge existence . 43
A.3.1 Choice nodes on the path . 43
A.3.2 Options of the same choice node on the path . 44

A.4 Computing the total connection strength. 46

B Solving the NLP problem by bounding option weights 47

C Alternative WM formulae 48
C.1 Addressing drawbacks of Equation (4) . 48

Abstract

2 Tuesday 4th January, 2005 22:14

Exploiting relationships for domain-independent data cleaning. SIAM SDM 2005 (ext. ver.)

In this paper we address the problem of reference disambiguation. Specifically, we consider a situation
where entities in the database are referred to using descriptions (e.g., a set of instantiated attributes).
The objective of reference disambiguation is to identify the unique entity to which each description
corresponds. The key difference between the approach we propose (called RelDC) and the traditional
techniques is that RelDC analyzes not only object features but also inter-object relationships to improve
the disambiguation quality. Our extensive experiments over two real data sets and also over synthetic
datasets show that analysis of relationships significantly improves quality of the result.

1 Introduction

Recent surveys [4] show that more than 80% of researchers working on data mining projects spend more
than 40% of their project time on cleaning and preparation of data. The data cleaning problem often
arises when information from heterogeneous sources is merged to create a single database. Many distinct
data cleaning challenges have been identified in the literature: dealing with missing data [34], handling
erroneous data [35], record linkage [6, 27, 8], and so on. In this paper we address one such challenge which
we refer to as reference disambiguation1.

The reference disambiguation problem arises when entities in a database contain references to other
entities. If entities were referred to using unique identifiers then disambiguating those references would
be straightforward. Instead, frequently, entities are represented using properties/descriptions that may
not uniquely identify them leading to ambiguity. For instance, a database may store information about
two distinct individuals ‘Donald L. White’ and ‘Donald E. White’, both of whom are referred to as ‘D.
White’ in another database. References may also be ambiguous due to differences in the representations
of the same entity and errors in data entries (e.g., ‘Don White’ misspelled as ‘Don Whitex’). The goal of
reference disambiguation is for each reference to correctly identify the unique entity it refers to.

The reference disambiguation problem is related to the problem of record deduplication or record linkage
[27, 8, 6] that often arise when multiple tables (from different data sources) are merged to create a single
table. The causes of record linkage and reference disambiguation problems are similar; viz., differences in
representations of objects across different data sets, data entry errors, etc. The differences between the
two can be intuitively viewed using the relational terminology as follows: while the record linkage problem
consists of determining when two records are the same, reference disambiguation corresponds to ensuring
that references (i.e., “foreign keys”2) in a database point to the correct entities.

Given the tight relationship between the two data cleaning tasks and the similarity of their causes,
existing approaches to record linkage can be adapted for reference disambiguation. In particular, feature-
based similarity (FBS) methods that analyze similarity of record attribute values (to determine whether
or not two records are the same) can be used to determine if a particular reference corresponds to a given
entity or not. This paper argues that quality of disambiguation can be significantly improved by exploring
additional semantic information. In particular, we observe that references occur within a context and
define relationships/connections between entities. For instance, ‘D. White’ might be used to refer to an
author in the context of a particular publication. This publication might also refer to different authors,
which can be linked to their affiliated organizations etc, forming chains of relationships among entities.
Such knowledge can be exploited alongside attribute-based similarity resulting in improved accuracy of
disambiguation.

In this paper, we propose a domain-independent data cleaning approach for reference disambiguation,
referred to as Relationship-based Data Cleaning (RelDC), that systematically exploits not only features

1The reference disambiguation problem has been previously identified in [32] where it was referred to as cleaning spurious
links.

2We are using the term foreign key loosely. Usually, foreign key refers to a unique identifier of an entity in another table.
Instead, foreign key above means the set of properties that serve as a reference to an entity.

3 Tuesday 4th January, 2005 22:14

Exploiting relationships for domain-independent data cleaning. SIAM SDM 2005 (ext. ver.)

but also relationships among entities for the purpose of disambiguation. RelDC views the database as a
graph of entities that are linked to each other via relationships. It first utilizes a feature based method to
identify a set of candidate entities (choices) for a reference to be disambiguated. Graph theoretic techniques
are then used to discover and analyze relationships that exist between the entity containing the reference
and the set of candidates.

The primary contributions of this paper are:

1. developing a systematic approach to exploiting both attributes as well as relationships among entities
for reference disambiguation,

2. developing a set of optimizations to achieve an efficient and scalable (to large graphs) implementation
of the approach,

3. establishing that exploiting relationships can significantly improve the quality of reference disam-
biguation by testing the developed approach over 2 real-world data sets as well as synthetic data
sets.

The rest of this paper is organized as follows. Section 2 presents a motivational example. In Section 3,
we precisely formulate the problem of reference disambiguation and introduce notation that will help
explain the RelDC approach. Section 4 describes the RelDC approach. The empirical results of RelDC
are presented in Section 6. Section 7 contains the related work, and Section 8 concludes the paper.

2 Motivation for analyzing relationships

In this section we will use an instance of the “author matching” problem to illustrate that exploiting
relationships among entities can improve the quality of reference disambiguation. We will also schematically
describe one approach that analyzes relationships in a systematic domain-independent fashion.

w
2 = ?

w1 = ?

P1

P2

P3

Dave White

Don White

Susan Grey

John Black

Intel

CMU

MIT

1

Joe BrownP4

Liz Pink

P5

P62

w3 = ?

w 4
=

?

Figure 1: Graph for the publications example

Consider a database about authors and publications. Authors are represented in the database using
the attributes 〈id, authorName, affiliation〉 and information about papers is stored in the form 〈id,
title, authorRef1, authorRef2,. . . , authorRefN〉. Consider a toy database consisting of the author and
publication records shown in Figures 2 and 3.

〈A1, ‘Dave White’, ‘Intel’〉
〈A2, ‘Don White’, ‘CMU’〉
〈A3, ‘Susan Grey’, ‘MIT’〉
〈A4, ‘John Black’, ‘MIT’〉
〈A5, ‘Joe Brown’, unknown〉
〈A6, ‘Liz Pink’, unknown〉

Figure 2: author records

〈P1, ‘Databases . . . ’, ‘John Black’, ‘Don White’〉
〈P2, ‘Multimedia . . . ’, ‘Sue Grey’, ‘D. White’〉
〈P3, ‘Title3 . . . ’, ‘Dave White’〉
〈P4, ‘Title5 . . . ’, ‘Don White’, ‘Joe Brown’〉
〈P5, ‘Title6 . . . ’, ‘Joe Brown’, ‘Liz Pink’〉
〈P6, ‘Title7 . . . ’, ‘Liz Pink’, ‘D. White’〉

Figure 3: publication records

The goal of the author matching problem is to identify for each authorRef in each paper the correct
author it refers to.

4 Tuesday 4th January, 2005 22:14

Exploiting relationships for domain-independent data cleaning. SIAM SDM 2005 (ext. ver.)

We can use existing feature-based similarity (FBS) techniques to compare the description contained in
each authorRef in papers with values in authorName attribute in authors. This would allow us to resolve
almost every authorRef references in the above example. For instance, such methods would identify that
‘Sue Grey’ reference in P2 refers to A3 (‘Susan Grey’). The only exception will be ‘D. White’ references in
P2 and P6: ‘D. White’ could match either A1 (‘Dave White’) or A2 (‘Don White’).

Perhaps, we could disambiguate the reference ‘D. White’ in P2 and P6 by exploiting additional at-
tributes. For instance, the titles of papers P1 and P2 might be similar while titles of P2 and P3 might not,
suggesting that ‘D. White’ of P2 is indeed ‘Don White’ of paper P1. We next show that it may still be
possible to disambiguate the references ‘D. White’ in P2 and P6 by analyzing relationships among entities
even if we are unable to disambiguate the references using title (or other attributes).

First, we observe that author ‘Don White’ has co-authored a paper (P1) with ‘John Black’ who is at
MIT, while the author ‘Dave White’ does not have any co-authored papers with authors at MIT. We can
use this observation to disambiguate between the two authors. In particular, since the co-author of ‘D.
White’ in P2 is ‘Susan Grey’ of MIT, there is a higher likelihood that the author ‘D. White’ in P2 is ‘Don
White’. The reason is that the data suggests a connection between author ‘Don White’ with MIT and an
absence of it between ‘Dave White’ and MIT.

Second, we observe that author ‘Don White’ has co-authored a paper (P4) with ‘Joe Brown’ who in
turn has co-authored a paper with ‘Liz Pink’. In contrast, author ‘Dave White’ has not co-authored any
papers with either ‘Liz Pink’ or ‘Joe Brown’. Since ‘Liz Pink’ is a co-author of P6, there is a higher
likelihood that ‘D. White’ in P6 refers to author ‘Don White’ compared to author ‘Dave White’. The
reason is that often co-author networks form groups/clusters of authors that do related research and may
publish with each other. The data suggests that ‘Don White’, ‘Joe Brown’ and ‘Liz Pink’ are part of the
cluster, while ‘Dave White’ is not.

At first glance, the analysis above (used to disambiguate references that could not be resolved using
conventional feature-based techniques) may seem domain specific. A general principle emerges if we view
the database as a graph of inter-connected entities (modeled as nodes) linked to each other via relationships
(modeled as edges). Figure 1 illustrates the entity-relationship graph corresponding to the toy database
consisting of authors and papers records. In the graph, entities containing references are linked to the
entities they refer to. For instance, since the reference ‘Sue Grey’ in P2 is unambiguously resolved to
author ‘Susan Grey’, paper P2 is connected by an edge to author A3. Similarly, paper P5 is connected to
authors A5 (‘Joe Brown’) and A6 (‘Liz Pink’). The ambiguity of the references ‘D. White’ in P2 and P6
is captured by linking papers P2 and P6 to both ‘Dave White’ and ‘Don White’ via two “choice nodes”
(labeled ‘1’ and ‘2’ in the figure). These “choice nodes” represent the fact that the reference ‘D. White’
refers to either one of the entities linked to the choice nodes.

Given the graph view of the toy database, the analysis we used to disambiguate ‘D. White’ in P2 and
P6 can be viewed as an application of the following general principle:

Context Attraction Principle (CAP): If reference r made in the context of entity x refers to
an entity yj whereas the description provided by r matches multiple entities y1, y2, . . . , yj , . . . , yN , then x
and yj are likely to be more strongly connected to each other via chains of relationships than x and yl
(l = 1, 2, . . . , N ; l �= j).

Let us now get back to the toy database. The first observation we made, regarding disambiguation of
‘D. White’ in P2, corresponds to the presence of the following path (i.e., relationship chain or connection)
between the nodes ‘Don White’ and P2 in the graph: P2 � ‘Susan Grey’ � ‘MIT’ � ‘John Black’ � P1 �

‘Don White’. Similarly, the second observation, regarding disambiguation of ‘D. White’ in P6 as ‘Don
White’, was based on the presence of the following path: P6 � ‘Liz Pink’ � P5 � ‘Joe Brown’ � P4 �

‘Don White’. There were no paths between P2 and ‘Dave White’ or between P6 and ‘Dave White’ (if we
ignore ‘1’ and ‘2’ nodes). So, after applying the CAP principle, we concluded that the reference ‘D. White’

5 Tuesday 4th January, 2005 22:14

Exploiting relationships for domain-independent data cleaning. SIAM SDM 2005 (ext. ver.)

in both cases probably corresponded to the author ‘Don White’. In general, there could have been paths
not only between P2 (P6) and ‘Don White’ but also between P2 (P6) and ‘Dave White’. In that case, to
determine if ‘D. White’ is ‘Don White’ or ‘Dave White’ we should have been able to measure whether ‘Don
White’ or ‘Dave White’ is more strongly connected to P2 (P6).

The generic approach therefore first discovers connections between the entity, in the context of which
the reference appears, and the matching candidates for that reference. It then measures the connection
strength of the discovered connections in order to give preference to one of the matching candidates. The
above discussion naturally leads to two questions:

1. Does the context attraction principle hold over real data sets. That is, if we disambiguate references
based on the principle, will the references be correctly disambiguated?

2. Can we design a generic solution to exploiting relationships for disambiguation?

Of course, the second question is only important if the answer to the first is yes. However, we cannot really
answer the first unless we develop a general strategy to exploiting relationships for disambiguation and
testing it over real data. We will develop one such general, domain-independent strategy for exploiting
relationships for disambiguation which we refer to as RelDC in Section 4. We perform extensive testing of
RelDC over both real data from two different domains as well as synthetic data to establish that exploiting
relationships (as is done by RelDC) significantly improves the data quality. Before we develop RelDC, we
first develop notation and concepts needed to explain our approach in Section 3.

3 Notation and problem definition

In this section we first develop notation and then formally define the problem of reference disambiguation.
The notation is summarized in Table 1.

Notation Meaning
D the database

X = {xi} the set of all entities in D
Xu the set of entities that contain uncertain references
rik the k-th reference of entity xi

r∗ik the to-be-found entity that rik refers to
Sik the choice set for rik

y1, y2, . . . , yN the N elements of choice set Sik; yj = yikj

G = (V,E) the entity-relationship graph for D
vi the vertex in G that corresponds to entity xi; vi = vxi

vyj the vertex in G that corresponds to entity yj

v∗ik the choice node for reference rik

ej the edge ej = eikj = (v∗ik, vyj) (j = 1, 2, . . . , N)
wj the weight of edge ej (j = 1, 2, . . . , N); wj = wikj

L the path length limit parameter
PL(u, v) the set of all L-short simple paths between nodes u and v in G
c(u, v) the connection strength between nodes u and v in G
Nr(v) the neighborhood of node v of radius r in graph G

Table 1: Notation

6 Tuesday 4th January, 2005 22:14

Exploiting relationships for domain-independent data cleaning. SIAM SDM 2005 (ext. ver.)

3.1 References

Let D be the database which contains references that are to be resolved. Let X be the set of all entities3

in D:
X = {x1, x2, . . . , x|X|}.

Each entity xi consists of a set of mxi properties xi.a1, xi.a2, . . . , xi.amxi
and of a set of nxi (nxi ≥ 0)

references ri1, ri2, . . . , rinxi
. Each reference rik is essentially a description and may itself consist of one

or more attributes. For instance, in the example from Section 2, paper entities contain one-attribute
authorRef references in the form 〈author name〉. If, besides author names, author affiliation were also
stored in the paper records, then authorRef references would have consisted of two attributes – 〈author
name, author affiliation〉.

Choice set. Each reference rik semantically refers to a single specific entity in X which we denote by r∗ik.
The description provided by rik may, however, match a set of one or more entities in X. We refer to this
set as the choice set of reference rik and denote it by Sik. The choice set consists of all the entities that rik
could potentially refer to. We assume Sik is given for each rik. If it is not given, we assume a feature-based
similarity approach is used to construct Sik by choosing all of the candidates such that FBS similarity
between them and rik exceed a given threshold. Set Sik consists of |Sik| elements yik1, yik2, . . . , yik|Sik|:

Sik = {yik1, yik2, . . . , yik|Sik|}.

To avoid using three indexes all the time, such as ik2 in yik2, we will simplify notation. We will present
most of the material in the context of rik reference, and will use N to denote |Sik| and yj to denote yikj.
That is, we always assume Sik has N (i.e., N = |Sik|) elements y1, y2, . . . , yN :

Sik = {y1, y2, . . . , yN}.

Let Xu denote the set of all entities xi from X that contain at least one uncertain reference:

Xu = {xi ∈ X : ∃k such that |Sik| > 1}.

Let us rename elements in X such that first |Xu| elements x1, x2, . . . , x|Xu| belong to Xu and, consequently,
the other (|X| − |Xu|) elements x|Xu|+1, x|Xu|+2, . . . , x|X| do not belong to Xu.

3.2 The entity-relationship graph

RelDC views the resulting database D as an undirected entity-relationship graph4 G = (V,E), where V
is the set of nodes and E is the set of edges. The set of nodes V is comprised of two sets V = V r ∪ V c:
the set of regular nodes V r and the set of choice nodes V c. Each regular node in V r corresponds to an
entity and each edge in E to a relationship.5 Choice nodes will be defined later. Notation vxi or vi denotes
the vertex in G that corresponds to entity xi ∈ X. Note that if entity u contains a reference to entity v,
then the nodes in the graph corresponding to u and v are linked since a reference establishes a relationship
between the two entities. For instance, authorRef reference from paper P to author A corresponds to “A
writes P” relationship.

3Entities here have essentially the same meaning as in the standard E/R model.
4A standard entity-relationship graph can be visualized as an E/R schema of the database that has been instantiated with

the actual data.
5We will concentrate primarily on binary relationships. Multiway relationships are rare and most of them can be converted

to binary relationships [20]. Most of the design models/tools only deal with binary relationships, for instance ODL (Object
Definition Language) supports only binary relationships.

7 Tuesday 4th January, 2005 22:14

Exploiting relationships for domain-independent data cleaning. SIAM SDM 2005 (ext. ver.)

In the graph G, edges have weights, nodes do not have weights. Each edge weight is a real number
in [0, 1], which reflects the degree of confidence the relationship, corresponding to the edge, exists. For
instance, in the context of our author matching example, if we are 100% confident ‘John Black’ is affiliated
with MIT, then we assign weight of 1 to the corresponding edge. But if we are only 80% confident, we
assign the weight of 0.80 to that edge. By default all weights are equal to 1. Notation “edge label” means
the same as “edge weight”.

References and linking. If Sik has only one element, then rik is resolved to y1, and graph G contains
an edge between vi and vy1 . This edge is assigned a weight of 1 to denote that we are 100% confident that
r∗ik is y1.

If Sik has more than 1 elements, then graph G contains

vi v*1

...

w1=?

wN=?

w2=?
N nodes for

yj Sik

e1

eN

e2

vy1

vy2

vyN

ik

Figure 4: A choice node

a choice node v∗ik, as shown in Figure 4, to reflect the fact
that r∗ik can be one of y1, y2, . . . , yN . Node v∗ik is linked with
node vi via edge (vi, v∗ik). Node v∗ik is also linked with N nodes
vy1 , vy2 , . . . , vyN

, for each yj in Sik, via edges eikj = (v∗ik, vyj)
(j = 1, 2, . . . , N). To simplify notation, we will use ej to de-
note eikj, that is ej = eikj . Nodes vy1 , vy2 , . . . , vyN

are called
the options of choice v∗ik. Edges e1, e2, . . . , eN are called the
option-edges of choice v∗ik. The weights of option-edges are called
option-edge weights or simply option weights. The weight of edge (vi, v∗ik) is 1. Each weight wikj of edge
eikj (j = 1, 2, . . . , N) is undefined initially. We will use wj as a notation for wikj: wj = wikj. Since
option-edges e1, e2, . . . , eN represent mutually exclusive alternatives, the sum of their weights should be 1:
w1 + w2 + · · · +wN = 1.

3.3 The objective of reference disambiguation

To resolve reference rik means to choose one entity yj from Sik in order to determine r∗ik. If entity yj is
chosen as the outcome of such a disambiguation, then rik is said to be resolved to yj or simply resolved.
Reference rik is said to be resolved correctly if this yj is r∗ik. Notice, if Sik has just one element y1 (i.e.,
N = 1), then reference rik is automatically resolved to y1. Thus reference rik is said to be unresolved or
uncertain if it is not resolved yet to any yj and also N > 1.

From the graph theoretic perspective, to resolve rik means to assign weights of 1 to one edge ej
(1 ≤ j ≤ N) and assign weights of 0 to the other (N − 1) edges e1, e2, . . . , ej−1, ej+1, . . . , eN . This will
indicate that the algorithm chooses yj as r∗ik.

The goal of reference disambiguation is to resolve all references as correctly as possible, that is, for each
reference rik to correctly identify r∗ik. We will use notation Resolve(rik) to refer to the procedure which
resolves rik. The goal is thus to construct such Resolve(.) which should be as accurate as possible. The
accuracy of reference disambiguation is the fraction of references being resolved that are resolved correctly.

The alternative goal is for each yj ∈ Sik to associate weight wj that reflects the degree of confidence
that yj is r∗ik. For this alternative goal, Resolve(rik) should label each edge ej with such a weight. Those
weights can be interpreted later to achieve the main goal: for each rik try to identify only one yj as r∗ik
correctly. We emphasize this alternative goal since most of the discussion of RelDC approach is devoted to
one approach for computing those weights. An interpretation of those weights (in order to try to identify
r∗ik) is a small final step of RelDC. Namely, we achieve this by picking yj such that wj is the largest among
w1, w2, . . . , wN . That is, the outcome of Resolve(rik) is yj : wj = maxl=1,2,...,N wl.

8 Tuesday 4th January, 2005 22:14

Exploiting relationships for domain-independent data cleaning. SIAM SDM 2005 (ext. ver.)

3.4 Connection Strength and Context Attraction Principle

As mentioned before, RelDC resolves references based on the context attraction principle that was discussed
in Section 2. We now state the principle more formally. Crucial to the principle is the notion of connection
strength between two entities xi and yj (denoted c(xi, yj) which captures how strongly xi and yj are
connected to each other through relationships. Many different approaches can be used to measure c(xi, yj)
and will be discussed in Section 4. Given the concept of c(xi, yj), we can restate the context attraction
principle as follows:

Context Attraction Principle: Let rik be a reference and y1, y2, . . . , yN be elements of its choice
set Sik with corresponding option weights w1, w2, . . . , wN (recall that w1 + w2 + · · · + wN = 1). The
context attraction principle states that for all l, j ∈ [1, N], if cl ≥ cj then wl ≥ wj, where cl = c(xi, yl) and
cj = c(xi, yj).

4 The RelDC approach

We now have developed all the concepts and notation needed to explain RelDC approach for reference
disambiguation. Input to RelDC is the entity-relationship graph G discussed in Section 3 in which nodes
correspond to entities and edges to relationships. We assume that feature-based similarity approaches
have been used in constructing the graph G. The choice nodes are created only for those references that
could not be disambiguated using only attribute similarity. RelDC will exploit relationships for further
disambiguation and will output a resolved graph G in which each entity is fully resolved.

RelDC disambiguates references using the following four steps:

1. Compute connection strengths. For each reference rik compute the connection strength c(xi, yj)
for each yj ∈ Sik. The result is a set of equations that relate c(xi, yj) with the option weights:
c(xi, yj) = gij(w). Here, w = {wikj : i = 1, 2, . . . , |Xu|; k = 1, 2, . . . , nxi ; j = 1, 2, . . . , |Sik|} is the set
of all option weights in the graph G.

2. Determine equations for option weights. Using the equations from Step 1 and the CAP deter-
mine a set of equations that relate option weights to each other.

3. Compute weights. Solve the set of equations from Step 2.
4. Resolve References. Utilize/interpret the weights computed in Step 3 as well as attribute-based

similarity to resolve references.

We now discuss the above steps in more detail in the following subsections.

4.1 Computing connection strength

The connection strength c(u, v) between nodes u and v should reflect how strongly nodes u and v are
related to each other via relationships in the graph G. Many existing measures such as the length of the
shortest path or the value of the maximum network flow between nodes u and v could potentially be used
for this purpose. Such measures, however, have some drawbacks in our context. For instance, consider the
example subgraph shown in Figure 5 that contains two paths between nodes u and v: pa = u � a � v
and pb = u � b � v. Note that in the figure, node b “connects” multiple nodes, not just u and v, whereas
node a “connects” only u and v. If Figure 5 were a subgraph of the author-publication graph discussed in
Section 2, nodes u and v may correspond to two authors, node a to a specific publication, and node b to a
university which connects numerous authors. Intuitively, we expect that the connection strength between
u and v via a is stronger than the connection strength between u and v via b: since b connects many nodes
it is not surprising we can also connect u and v via b, whereas the connection via a is unique to u and
v. We require measure of connection strength to be such that of the two distinct paths (or connections)

9 Tuesday 4th January, 2005 22:14

Exploiting relationships for domain-independent data cleaning. SIAM SDM 2005 (ext. ver.)

between nodes u and v: pa = u � a � v and pb = u � b � v, the strength via pa be more than that via pb.
Measures such as path length, network flow do not capture the fact that c(pa) > c(pb).

u va

N-2
...

b

Figure 5: Motivating connection strength formula

A natural way to compute the connection strength c(u, v) between node u and v (which does not
suffer from the above described drawback) is to compute it as the probability to reach node v from node
u via random walks in graph G. Each step of the random walk is done according to certain probability
which is derived from edge labels. Such problems have been studied for graphs in the previous work under
Markovian assumptions. For example, White et al. in [46] study the related problem of computing the
relative importance of given nodes with respect to the set of “root” nodes by generalizing the PageRank
algorithm [7]. They view such a graph as a Markov chain where nodes represent states of the Markov chain
and probabilities are determined by edge labels.

A C DB E

F

G

1

Source DestinationPath: A,B,C,D,E

1 1 1

0.8

0.2

1

Figure 6: Sample graph.

However, there are several reasons why the existing approaches cannot be applied directly to the
problem at hand. The main reason is that the Markovian assumptions do not hold for our graphs. For
example, consider paths G � F and D � F in Figure 6. In that figure F is a choice node and BF and
FD are its mutually exclusive option edges. In general, we can continue G � F path by following F � B
link, however we cannot continue D � F path by following the same F � B link. So, the decision of
whether we can or cannot follow F � B link is determined by the past links on the path. This violates the
Markovian assumption, since a Markov chain is a random process which has the property that, conditional
on its present value, the future is independent of the past.

In Appendix A we have developed a model called the probabilistic model (PM) which treats edge
weights as probabilities of existence of the edges and correctly computes the probability of reaching a node
u starting from a given node v. Since the probabilistic model is somewhat complex (and will be a significant
diversion from our main objective of explaining RelDC), in this section we present a weight-based model
(WM) which is a simplification of PM. WM computes c(u, v) as the sum of the connection strengths of each
simple path between nodes u and v. The connection strength c(p) of path p from u to v is the probability
to follow path p in graph G.

Before we formally describe WM formulae, let us show how it works for the small example in Figure 5.
To capture the fact that c(pa) > c(pb), WM measures c(pa) and c(pb) as the probabilities to follow paths
pa and pb respectively. WM computes those probabilities as follows. For path pb we start from u. Next we
have a choice to go to a or b with probabilities of 12 , and we choose to follow (u, b) edge. From node b we
can go to any of the N − 1 nodes (cannot go back to u) but we go specifically to v. So the probability to

10 Tuesday 4th January, 2005 22:14

Exploiting relationships for domain-independent data cleaning. SIAM SDM 2005 (ext. ver.)

reach v via path pb is 1
2(N−1) . For path pa we start from u, we go to a with probability 1

2 at which point
we have no choice but to go to v, so the probability to follow pa is 1

2 .
In WM, computation of c(xi, yj) consists of two phases. The first phase discovers connections between

xi and yj. The second phase computes/measures the strength in connections discovered by the first phase.

4.1.1 First phase of WM: discovering connections

In general there can be many connections between vi and vyj in G. Intuitively, many of those (e.g., very
long ones) are not very important. To capture most important connections while still being efficient,
instead of discovering all paths, the algorithm discovers only the set of all L-short simple paths PL(xi, yj)
between nodes vi and vyj in graph G. A path is L-short if its length is no greater than parameter L. A
path is simple if it does not contain duplicate nodes.

Illegal paths. Not all of the discovered paths are considered when computing c(xi, yj) (to resolve refer-
ence rik). Let e1, e2, . . . , eN be the option-edges associated with the reference rik.

When resolving rik, RelDC tries do determine weights
?

?

Graph

?

vi

vy1

vy2

vyN

...

v*ik

Figure 7: Graph

of these edges via connections that exist in the remain-
der of the graph not including those edges. To achieve
this, RelDC actually discovers paths not in graph G, but
in G̃ = G − v∗ik, see Figure 7. That is, G̃ is graph G
with node v∗ik removed. Also, in general, paths consid-
ered when computing c(xi, yj) may contain option-edges
of some choice nodes. If a path contains an option-edge of
a choice node, it should not contain another option-edge of
the same choice node because these edges are mutually exclusive. More formally, for any path p if eikj ∈ p,
then eikl �∈ p (1 ≤ i ≤ |Xu|; 1 ≤ k ≤ nxi ; 1 ≤ l ≤ |Sik|, l �= j).

4.1.2 Second phase of WM: measuring connection strength

vm
a(m-1)0

a (
m

-1
)j

a 1
j

a 2
j

v1 vm-1
a10

a1
n1 a 11

n1

... ...

a(m-2)0. . .
a(m

-1)
n(m

-1)

a (m
-1)

1

nm-1

... ...

edge E10

v2
a20

a2
n2 a 21

n2

... ...

Figure 8: Computing c(p) of path p = v1 �

v2 � · · · � vm. Only “possible-to-follow”
edges are shown.

vm
1

a'
(m

-1
)j

a'
1j

a'
2j

v1 vm-1
1

a'1
n1 a' 11

n1

... ...

1. . .
a'(

m-1)
n(m

-1)

a' (m
-1)

1

nm-1

... ...

edge E10

v2
1

a'2
n2 a' 21

n2

... ...

Figure 9: Computing c(p): new labels un-
der assumption that p exists.

In general, each L-short simple path p can be viewed as a sequence of m (m ≤ L + 1) nodes
〈v1, v2, . . . , vm〉 as shown in Figure 8. Figure 8 shows that from node vi (i = 1, 2, . . . ,m− 1) it is possible
to follow6 ni + 1 edges labeled ai0, ai1, . . . , aini . WM computes the connection strength of path p as the
probability Pr to follow path p: c(p) = Pr. Probability Pr is computed as the product of two probabilities:
Pr = Pr1Pr2, where Pr1 is the probability that path p exists and Pr2 is the probability “to follow path
p given that p exists”.

6It is not possible to follow edges following which would make path not simple.

11 Tuesday 4th January, 2005 22:14

Exploiting relationships for domain-independent data cleaning. SIAM SDM 2005 (ext. ver.)

First of all, path p should exist and thus each edge on this path should exist. WM computes the
probability Pr1 that p exist as the product of probabilities that each edge on path p exists: Pr1 =
a10a20× · · · × a(m−1)0. That is, WM assumes that each edge Ei0 (i = 1, 2, . . . ,m− 1) exists independently
from other edges El0 (l = 1, 2, . . . ,m − 1, l �= i). Recall that WM is a simplification of PM presented in
Appendix A. In Appendix A we show that such an assumption of independence is reasonable.

Next WM computes probability Pr2 to follow path p given that p exists. If we assume that p exists,
then situation will look like that illustrated in Figure 9. In that figure all edges are labeled with weights
a′ij which reflect how weights aij change if we add the assumption that path p exists. For example, a′i0 = 1
(i = 1, 2, . . . ,m−1) because each edge Ei0 exists if path p exists. For each a′ij, where j �= 0, either a′ij = aij ,
or a′ij = 0. To understand why a′ij can be zero, consider path p1 = ‘Don White’ � P4 � Joe � P5 � Liz �

P6 � ‘2’ � ‘Dave White’ in Figure 1 as an example. If we assume p1 exists, then edge (‘2’, ‘Dave White’)
must exist and consequently edge (‘2’, ‘Don White’) does not exist. So, if path p1 exists, the weight of edge
(‘2’, ‘Don White’) is zero. That is why in general either a′ij = aij , or, if the corresponding edge Eij cannot
exist under assumption that path p exists, then a′ij = 0.

WM computes probability Pr2 “to follow path p given that p exists” as the product of probabilities to
follow each edge on p. In WM, the probability to follow an edge is proportional to the weight of the edge.
For example, the probability to follow edge E10 in Figure 9 is: 1

1+a′11+a
′
12+···+a′1n1

. The connection strength

of path p is computed as c(p) = Pr1Pr2. The final formula for c(p) is:

c(p) =
m−1∏
i=1

a′i0
1 + a′i1 + a′i2 + · · · + a′ini

. (1)

The total connection strength between nodes u and v is computed as the sum of connection strengths of
paths in PL(u, v):

c(u, v) =
∑

p∈PL(u,v)

c(p). (2)

Measure c(u, v) is the probability to reach v from u by following only L-short simple paths, such that the
probability to follow an edge is proportional to the weight of the edge.

Connection strengths in toy database. Let us compute connection strengths c1, c2, c3, and c4
for the toy database illustrated in Figure 1. Those connection strength are defined as follows: c1 =
c(P2, ‘Dave White’), c2 = c(P2, ‘Don White’), c3 = c(P6, ‘Dave White’), and c4 = c(P6, ‘Don White’).
Later, those connection strengths will be used to compute option weights w1, w2, w3, and w4.

c1 = ?

P1

P2

P3

Dave White

Don White

Susan Grey

John Black

Intel

CMU

MIT

Joe BrownP4

Liz Pink

P5

P62

w3

w 4

Figure 10: Computing c1 = c(P2,Dave): G̃ =
G− ‘1’.

c1 = ?

P1

P2

P3

Dave White

Don White

Susan Grey

John Black

Intel

CMU

MIT

Joe BrownP4

Liz Pink

P5

P62

0
(z

er
o)

1

Figure 11: Computing c1 = c(P2,Dave): under
assumption that path (P2 � ‘Dave White’) ex-
ists. Edge ‘2’ � ‘Dave’ exists, therefore edge
‘2’ � ‘Don’ does not exist.

Consider first computing c1 = c(P2, ‘Dave White’) in the context of disambiguating ‘D. White’ reference
in P2. Recall, for that reference choice node ‘1’ has been created. The first step is to remove choice ‘1’ from

12 Tuesday 4th January, 2005 22:14

Exploiting relationships for domain-independent data cleaning. SIAM SDM 2005 (ext. ver.)

consideration. The resulting graph G̃ = G− ‘1’ is shown in Figure 10. The next step is to discover all L-
short simple paths in graph G̃ between P2 and ‘Dave White’. Let us set L =∞, then there is only one such
path: p1 = P2 � Susan � MIT � John � P1 � Don � P4 � Joe � P5 � Liz � P6 � ‘2’ � Dave White.
The discovered connection is too long to be meaningful in practice, but we will consider it for pedagogical
reasons. To compute c(p1) we first compute the probability Pr1 that path p1 exists. Path p1 exists if and
only if edge between ‘2’ and ‘Dave White’ exists, so Pr1 = w3. Now we assume that p1 exists and compute
the probability Pr2 to follow p1 given that p1 exists on the graph shown in Figure 11. That probability is
Pr2 = 1

2 . Thus c(p1) = Pr1Pr2 = w3
2 . The same result can be obtained by directly applying Equation (1).

After computing c2, c3, and c4 in a similar fashion we have:
c1 = c(P2, ‘Dave White’) = w3

2 = c(p1)
c2 = c(P2, ‘Don White’) = 1 = c(P2 � Susan � MIT � John � P1 � ‘Don White’)
c3 = c(P6, ‘Dave White’) = w1

2

c4 = c(P6, ‘Don White’) = 1

(3)

Notice, the toy database is small and ‘MIT’ connects only two authors. In more realistic examples,
‘MIT’ will connect many authors, so connections via ‘MIT’ will be weak.

4.2 Determining equations for option-edge weights

Given the connection strength measures c(xi, yj) for each unresolved reference rik and its options y1, y2, . . . , yN ,
we can use the context attraction principle to determine the relationships between the weights associated
with the option-edges in the graph G. Note that the context attraction principle does not contain any
specific strategy on how to relate weights to connection strengths. Any strategy that assigns weight such
that if cl ≥ cj then wl ≥ wj is appropriate, where cl = c(xi, yl) and cj = c(xi, yj). In particular, we
use the strategy where weights w1, w2, . . . , wN are proportional to the corresponding connection strengths:
wjcl = wlcj . Using this strategy and considering that w1 +w2 + · · ·+wN = 1, weight wj (j = 1, 2, . . . , N)
is computed as:

wj =
{ cj

c1+c2+···+cN
if (c1 + c2 + · · ·+ cN) > 0;

1
N if (c1 + c2 + · · ·+ cN) = 0.

(4)

For instance, for the toy database we have:
w1 = c1/(c1 + c2) = w3

2 /(1 + w3
2)

w2 = c2/(c1 + c2) = 1/(1 + w3
2)

w3 = c3/(c3 + c4) = w1
2 /(1 + w1

2)
w4 = c4/(c3 + c4) = 1/(1 + w1

2)

(5)

4.3 Determining all weights by solving equations.

Given a system of equations relating option-edge weights as derived in Section 4.2, our goal next is to
determine values for the option-edge weights that satisfy the equations.

Solving equations for toy database. Before we discuss how such equations can be solved in general,
let us first solve Equations (5) for the toy example. Those equations, given an additional constraint that
w1, w2, w3, and w4 should be in [0, 1], have a unique solution w1 = 0, w2 = 1, w3 = 0, and w4 = 1. Once
we have computed the weights, RelDC will interpret these weights to resolve the references. In the toy
example, weights w1 = 0, w2 = 1, w3 = 0, and w4 = 1 will lead RelDC to resolve ‘D. White’ in both P2
and P6 to ‘Don White’.

13 Tuesday 4th January, 2005 22:14

Exploiting relationships for domain-independent data cleaning. SIAM SDM 2005 (ext. ver.)

General case. In general case, Equations (1), (2), and (4), define each option weight as a function of
other option weights: wikj = fikj(w). The exact function for wikj is determined by Equations (1), (2), and
(4), and by the paths that exists between vi and vyikj

in G. In practice, often fikj(w) is constant leading
to the equation of the form wikj = const.{

wikj = fikj(w) (i = 1, 2, . . . , |Xu|; k = 1, 2, . . . , nxi ; j = 1, 2, . . . , |Sik|)
0 ≤ wikj ≤ 1 (i = 1, 2, . . . , |Xu|; k = 1, 2, . . . , nxi ; j = 1, 2, . . . , |Sik|) (6)

The goal is to find such a combination of weights wikj that best “satisfies” System (6). Since System (6),
might not have an exact solution, we transform wikj = fikj(w) equations into the form fikj(w) − δikj ≤
wikj ≤ fikj(w) + δikj. Here variable δikj , called tolerance, can take on any real nonnegative value. The
problem transforms into solving the nonlinear programming problem (NLP) where the constraints are
specified by the inequalities above and the objective is to minimize the sum of all δikj:



Constraints:
fikj(w)− δikj ≤ wikj ≤ fikj(w) + δikj (i = 1, 2, . . . , |Xu|; k = 1, 2, . . . , nxi ; j = 1, 2, . . . , |Sik|)
0 ≤ wikj ≤ 1 (i = 1, 2, . . . , |Xu|; k = 1, 2, . . . , nxi ; j = 1, 2, . . . , |Sik|)
0 ≤ δikj (i = 1, 2, . . . , |Xu|; k = 1, 2, . . . , nxi ; j = 1, 2, . . . , |Sik|)

Objective: Minimize
∑

i,k,j δikj

(7)

System (7) always has a solution. To show that, it is sufficient to prove that there is at least one
solution that satisfied the constraints of System (7). Let us prove that by constructing such a solution.
Notice, functions fikj(w) (for all i, k, and j) are such that 0 ≤ fikj(w) ≤ 1, if 0 ≤ wikj ≤ 1 (for all i, k,
j). Thus the following combination: wikj = 0 and δikj = 1 (for all i, k, and j) is a solution that satisfies
the constraints of System (7), though it does not satisfy the objective in general. The goal, of course, is to
find a better solution by requiring that

∑
i,k,j δikj is minimized. The pseudo code for the above procedure

will be discussed in Section 5.1.1.

Iterative solution. The straightforward approach to solving the resulting NLP problem (7) is to use
one of the off-the-shelf math solver such as SNOPT. Such solvers, however, do not scale to large problem
sizes that we encounter in data cleaning as will be discussed in Section 6. We therefore exploit a simple
iterative approach, which is outlined below. Note, however, other methods can be devised to solve (7) as
well, e.g. in [29] we sketch another approximate algorithm for solving (7) which first computes bounding
intervals for all option weights wikj’s and then employs techniques from [10, 9, 11]. That method is more
involved than the iterative solution, which we will present next. The pseudo code for the iterative method
is given in Figure 13 in Section 5.1.2.

The iterative method first iterates over each reference rik (i = 1, 2, . . . , |Xu|; k = 1, 2, . . . , nxi) and
assigns weight of 1

|Sik| to each wikj (j = 1, 2, . . . , |Sij |). It then starts its major iterations in which it
first computes c(xi, yikj) (for all i, k, and j) using Equation (2). After c(xi, yikj) (for all i, k, and j) are
computed, they are used to compute wikj (for all i, k, and j) using Equation (4). Note that the values
of wikj (for all i, k, and j) will change from 1

|Sik| to new values. The algorithm performs several major
iterations until the weights converge (the resulting changes across iterations are negligible) or the algorithm
is explicitly stopped.

Let us perform one iteration of the iterative method for the example above. First w1 = w2 = 1
2 and

w3 = w4 = 1
2 . Next c1 = 1

4 , c2 = 1, c3 = 1
4 , and c4 = 1. Finally, w1 = 1

5 , w2 =
4
5 , w3 =

1
5 , and w4 = 4

5 . If
we stop the algorithm at this point and interpret wj ’s, then the RelDC’s answer is identical to that of the
exact solution: ‘D. White’ is ‘Don White’.

14 Tuesday 4th January, 2005 22:14

Exploiting relationships for domain-independent data cleaning. SIAM SDM 2005 (ext. ver.)

Note that the above described iterative procedure computes only an approximate solution for the system
whereas the solver finds the exact solution. Let us refer to iterative implementation of RelDC as Iter-RelDC
and denote the implementation that uses a solver as Solv-RelDC. For both Iter-RelDC and Solv-RelDC,
after the weights are computed, those weights are interpreted to produce the final result, as discussed
in Section 4. It turned out that the accuracy of Iter-RelDC (with a small number of iterations, such as
10–20) and of Solv-RelDC is practically identical. This is because even though the iterative method does
not find the exact weights, those weights are close enough to those computed using a solver. Thus, when
the weights are interpreted, both methods obtain similar results.

4.4 Resolving references by interpreting weights.

When resolving references rik and deciding which entity among y1, y2, . . . , yN from Sik is r∗ik, RelDC chooses
such yj that wj is the largest among w1, w2, . . . , wN . Notice, to resolve rik we could have also combined
wj weights with feature-based similarities FBS(xi, yj) (e.g., as a weighted sum), but we do not study that
approach in this paper.

5 Implementations of RelDC

In this section we discuss several implementations of RelDC and present key optimizations. The complete
list of optimizations, their taxonomy and analysis are presented in [29]. We will conclude this section with
the computational analysis of RelDC.

5.1 Iterative and solver implementations of RelDC

The NLP problem in Equation (7) can be solved iteratively or using a solver. In this section we shall
present pseudo code for näıve implementations of Solv-RelDC and Iter-RelDC. In the subsequent sections
we shall discuss how to optimize these näıve implementations.

5.1.1 Solver

Figure 12 shows an outline of Solv-RelDC which we have discussed in Section 4. In lines 1–2, if greedy
implementation of All-Paths is used (see Section 5.3), the algorithm initializes weights. Initial values of
option weights w1, w2, . . . , wN of each choice node v∗ik are assigned such that w1 = w2 = · · · = wN = 1

N
and w1+w2+ · · ·+wN = 1. Lines 3–9 correspond to creating equations for connection strengths c(xi, yikj)
(for all i, k, j) described in Section 4.1: each c(xi, yikj) is derived based on the simple paths that exist
between nodes for xi and yikj in the graph. Lines 10–13 correspond to the procedure from Section 4.2
that construct the equations for option weighs wikj (for all i, k, j). Then, in Line 14, the algorithm takes
the NLP problem shown in Equation (7) and creates its representation S suitable for the solver. Next the
solver takes the input S, solves the problem, and outputs the resulting weights. As the final steps, all the
references are resolved by interpreting those weights.

5.1.2 Iterative

The pseudo code in Figure 13 formalizes the Iter-RelDC procedure described in Section 4.3. Iter-RelDC
first initializes weights. Then it iterates recomputing new values for c(xi, yikj) and wikj (for all i, k, j).
Finally, all the references are resolved by interpreting the weights.

15 Tuesday 4th January, 2005 22:14

Exploiting relationships for domain-independent data cleaning. SIAM SDM 2005 (ext. ver.)

Näıve-Solv-RelDC()
1 if GRD-RelDC then
2 Initialize(w)
3 for i← 1 to |Xu| do
4 for k ← 1 to nxi do
5 G̃← G− v∗ik
6 for j ← 1 to |Sik| do
7 PL(xi, yikj)← All-Paths(G̃, xi, yikj , L)
8 EQ[c(xi, yikj)]← EQ-Con-Strength(w,PL(xi, yikj))
9 delete PL(xi, yikj) //free storage
10 for i← 1 to |Xu| do
11 for k ← 1 to nxi do
12 for j ← 1 to |Sik| do
13 EQ[wikj]← EQ-Assign-Weight(j, c(xi, yik1), c(xi, yik2), c(xi, yik|Sik|))
14 S ← Prepare-For-Solver(all EQ[wikj])
15 w ← Solve-Using-Solver(S)
16 Interpret(w)

Initialize(w)
1 for i← 1 to |Xu| do
2 for k ← 1 to nxi do
3 for j ← 1 to |Sik| do
4 wikj ← 1

|Sik|

Figure 12: Näıve-Solv-RelDC

Näıve-Iter-RelDC(Niter)
1 Initialize(w)
2 Main-Loop(w, Niter)
3 Interpret(w)

Main-Loop(w, Niter)
1 for l ← 1 to Niter do
2 for i← 1 to |Xu| do
3 for k ← 1 to nxi do
4 G̃← G− v∗ik
5 for j ← 1 to |Sik| do
6 PL(xi, yikj)← All-Paths(G̃, xi, yikj , L)
7 c(xi, yikj)← Con-Strength(w,PL(xi, yikj))
8 delete PL(xi, yikj) //free storage
9 for i← 1 to |Xu| do
10 for k ← 1 to nxi do
11 for j ← 1 to |Sik| do
12 wikj ← Assign-Weight(j, c(xi, yik1), c(xi, yik2), c(xi, yik|Sik|))

Figure 13: Näıve-Iter-RelDC

5.1.3 Bottleneck of RelDC

To optimize RelDC for performance we need to understand where it spend most of its computation time.
The most computationally expensive part of both Iter-RelDC and Solv-RelDC is All-Paths procedure
which discovers connections between two nodes in the graph. For certain combinations of parameters,
Solve-Using-Solver procedure, which invokes the solver to solve the NLP problem, can be expensive

16 Tuesday 4th January, 2005 22:14

Exploiting relationships for domain-independent data cleaning. SIAM SDM 2005 (ext. ver.)

as well. However, that procedure is performed by a third party solver and there is little possibility of
optimizing it. Therefore, all of the optimizations presented in this section target All-Paths procedure.

5.2 Constraining the problem

This section lists several optimizations that improve the efficiency of RelDC by constraining/simplifying
the problem.

Limiting paths length. AllPaths algorithm can be specified to look only for paths of length no greater
than a parameter L. This optimization is based on the premise that longer paths tend to have smaller
connection strengths while RelDC will need to spend more time to discover those paths.

Weight cut-off threshold. This optimization can be applied after a few iterations of Iter-RelDC. When
resolving reference rik, see Figure 4, Iter-RelDC can use a threshold to prune several yj’s from Sik. If the
current weight wj is too small with respect to the rest of weights w1, w2, . . . , wj−1, wj+1, . . . , wN , then
RelDC will assume yj cannot be r∗ik and will remove yj from Sik.

The threshold is computed per choice basis. For v∗ik it is computed as T = α · 1N , where α (0 ≤ α < 1)
is a real number (a fixed parameter).7 This optimization improves the efficiency since if yj is removed from
Sik, then Iter-RelDC will not recompute PL(xi, yj), c(xi, yj), and wj any longer.

Restricting path types. The analyst can specify path types of interest (or for exclusion) explicitly.8

For example, the analyst can specify that only paths of type node type1 � node type2 � node type4 �

node type1 are of interest. Some of such rules are easy to specify, however it is clear that for a generic
framework there should be some method (e.g., a language) for an analyst to specify more complex rules.
Our ongoing work addresses the problem of such a language [43].

5.3 Depth-first and greedy implementation of AllPaths.

RelDC utilizes AllPaths procedure to discover all L-short simple paths between two nodes. We have
considered two approaches for implementing AllPaths algorithm: the depth-first (DF-AllPaths) and greedy
(GRD-AllPaths) shown in Figures 14 and 15 respectively.9

The reason for having those two implementations is as follows. The DF-AllPaths is a good choice if
skipping of paths is not allowed: we shall show that in this case DF-AllPaths is better in terms of time
and space complexity than its greedy counterpart. However GRD-AllPaths is a better option if one is
interested in fine-tuning the accuracy vs. performance trade-off by restricting the running time of the
AllPaths algorithm. The reason for this is as follows. If DF-AllPaths is stopped abruptly at some point
in the middle of its execution, then certain important paths can still be not discovered. To address this
drawback, GRD-AllPaths discovers the most important paths first and least important last.

5.3.1 Depth-first and greedy algorithms

As can be seen from Figures 14 and 15 the depth-first and greedy algorithms are quite similar. The
difference between those two is that DF-AllPaths utilizes a stack to account for intermediate paths while
GRD-AllPaths utilizes a priority queue. The key in this queue is the connection strengths of intermediate

7The typical choices for α in our experiments were 0.0 (i.e., the optimization is not used), 0.2 and 0.3.
8This optimization has not been used in our experiments.
9All of the optimizations mentioned in this paper can be applied to both of these approaches.

17 Tuesday 4th January, 2005 22:14

Exploiting relationships for domain-independent data cleaning. SIAM SDM 2005 (ext. ver.)

DF-All-Paths(G, u, v, L)
1 R← ∅
2 Push(S, u)
3 while NotEmpty(S) do
4 p← Pop(S)
5 if LastNode(p) = v then
6 R = R ∪ p
7 else if Length(p) < L then
8 DF-Expand-Path(p, S)
9 return R

DF-Expand-Path(p, S)
1 x← LastNode(p)
2 for each z ∈ V : (x, z) ∈ E do
3 if IsLegal(p � z) then
4 Push(S, p � z)

Figure 14: DF-AllPaths

GRD-All-Paths(G, u, v, L)
1 R← ∅
2 Insert(Q, u, 1)
3 while NotEmpty(Q) and StopCondition(.) = false do
4 p← Get(Q)
5 if LastNode(p) = v then
6 R = R ∪ p
7 else if Length(p) < L then
8 GRD-Expand-Path(p,Q)
9 return R

GRD-Expand-Path(p,Q)
1 x← LastNode(p)
2 for each z ∈ V : (x, z) ∈ E do
3 if IsLegal(p � z) then
4 Insert(Q, p � z, c(p � z))

Figure 15: GRD-AllPaths

paths. Also, GRD-AllPaths stops if the stop conditions are met (Line 3 in Figure 15) even if not all paths
have been examined yet, whereas DF-AllPaths discovers all paths without skipping any paths.

Both algorithms look for u � v paths and start with intermediate path consisting of just the source
node u (Line 2). They iterate until no intermediate paths are left under consideration (Line 3). The
algorithms extract the next intermediate path p to consider (from the stack or queue) (Line 4). If p is
a u � v path, then p is added to the result set R and algorithm proceeds to Line 3 (Lines 5–6). If p is
not a u � v path and the length of p is less than L, then the Expand-Path procedure is called for path
p (Lines 7–8). The Expand-Path procedure first determines the last node x of the intermediate path
p = u � x. It then analyzes each direct neighbor z of node x and if path p � z is a legal paths, then it
inserts this path into the stack (or queue) for further consideration.

The StopCondition() procedure in Line 3 of GRD-AllPaths algorithm allows to fine-tune when to
stop the greedy algorithm. Using this procedure it is possible to restrict the execution time and space
required by GRD-All-Paths. For example, thresholds can be used to limit such parameters as the total
number of times Line 4 is executed (the number of intermediate paths examined), the total number of
times Line 8 is executed, the maximum number of paths in R and so on.

Thus GRD-AllPaths discovers most important paths first and least important paths last and can be
stopped at a certain point whereas DF-Paths discovers all paths.

5.3.2 Paths storage

When looking for all L-short simple paths of type u � v, AllPaths maintains several intermediate paths.
To store paths compactly and efficiently it uses a data structure called a paths storage. DF-All-Paths
and GRD-All-Paths procedures actually operates with pointers to paths while the paths themselves are
stored in the paths storage.

Each path is stored as a list, in reverse order. The paths storage is organized as a set of overlapping
lists as follows. Since all of the paths start from u, many of the paths share common prefix which gives an
opportunity to save space. For example, to store paths shown in Figure 16 it is not necessary to keep four
separate lists shown in Figure 17 of lengths 2, 3, 4, and 4 respectively. It is more efficient to store them as
shown in Figure 18 where the combined length of the lists is just 8 nodes (versus 13 nodes when keeping
separate lists). This storage is also efficient because the algorithm always knows where to find the right
prefix in the storage – it does not need to scan the paths storage to find the right prefix. This is because

18 Tuesday 4th January, 2005 22:14

Exploiting relationships for domain-independent data cleaning. SIAM SDM 2005 (ext. ver.)

p1 = u � 1
p2 = u � 1 � 2
p3 = u � 1 � 2 � 3
p4 = u � 1 � 2 � 4

Figure 16: Example of paths.

l1 = 1 � u
l2 = 2 � 1 � u
l3 = 3 � 2 � 1 � u
l4 = 4 � 2 � 1 � u

Figure 17: Separate lists for paths

l1 = 1 � u
l2 = 2 � l1
l3 = 3 � l2
l4 = 4 � l2

Figure 18: The paths storage

when the algorithm creates a new intermediate path p � z, the following holds:

1. p is the prefix of p � z
2. p is already stored in the path storage
3. the algorithm knows the pointer to p at this point

5.3.3 Comparing complexity of greedy and depth-first implementations

Let us analyze complexity of the depth-first and greedy implementations of AllPaths procedure. The DF-
AllPaths and GRD-AllPaths procedures in Figures 14 and 15 are conceptually different only in Lines 2,3
of All-Paths and in Line 4 of Expand-Paths. The StopCondition() procedure in Line 3 allows to
fine-tune when to stop the greedy algorithm and determines the complexity of GRD-RelDC. But we will
analyze only the differences in complexity which arise due to DF-RelDC using a stack and GRD-RelDC
using a priority queue. That is, we will assume StopCondition() always returns false.

For a stack, Push() and Pop() procedure take O(1) time. If n is the size of a priority queue, each Get()
and Insert() procedures take O(lg n) time [17].

Therefore it takes O(1) time to process Lines 4–8 of DF-All-Paths and it takes O(lg n) to process
the same Lines 4–8 of DF-All-Paths where n is the current size of the priority queue. Also it take
O(degree(x)) time to execute DF-Expand-Path procedure and it takes O(degree(x) · lg (n+ degree(x))
to execute GRD-Expand-Path procedure.

Thus, if the goal is to discover all L-short simple paths without skipping any paths, then the DF-AllPaths
is expected to show better results than GRD-AllPaths. However, since the greedy version discovers the
most important path first, it is a better choice in terms of the accuracy vs. performance trade-off than its
depth-first counterpart. That is, the greedy version is expected to be better if the execution time of the
algorithm needs to be restricted.

5.4 NBH optimization: utilizing neighborhoods for path pruning.

The NBH optimization is the most important performance optimization presented in this paper. It con-
sistently achieves 1–2 orders of magnitude performance improvement under variety of conditions.

The neighborhood Nr(u) of node u of radius r is the set of all the nodes that are reachable from u via
at most r edges. Each member of the set is tagged with “the minimum distance to u” information. The
intuitive definition presented above can be rephrased formally: for graph G = (V,E), the neighborhood of
node u of radius r is defined as the following set of pairs: Nr(u) = {(v, d) : v ∈ V, d = MinDist(v, u), d ≤
r}.

Recall, when resolving reference rik, the algorithm will need to invoke AllPaths for N pairs – to
compute PL(xi, yj) (j = 1, 2, . . . , N) see Figure 4. This computation can be optimized by (a) computing
neighborhood Nr(vi); (b) discovering paths not from vi to vyj but in reverse order: from vyj to vi; and (c)
exploiting Nr(vi) to prune certain intermediate paths as explained below, see Figure 21.

19 Tuesday 4th January, 2005 22:14

Exploiting relationships for domain-independent data cleaning. SIAM SDM 2005 (ext. ver.)

When resolving references of entity xi, the algorithm first computes the neighborhood Nr(vi) of vi of
radius r, where r ≤ L. The neighborhood is computed once per each xi ∈ Xu and discarded after xi is
processed. Figure 19 shows an outline of the modified Main-Loop procedure of Iter-RelDC that reflects
the changes needed for using the NBH optimization. The new and modified lines are marked in the figure.

Main-Loop(w, Niter)
...
2 for i← 1 to |Xu| do

32.5 Nr(vi)← Compute-NBH(vi, r)
3 for k ← 1 to nxi do
4 G̃← G− v∗ik
5 for j ← 1 to |Sik| do

36 PL(xi, yikj)← All-Paths(G̃, xi, yikj , L,Nr(vi))
7 c(xi, yikj)← Con-Strength(w,PL(xi, yikj))
8 delete PL(xi, yikj) //free storage

38.5 delete Nr(vi)
...

Figure 19: NBH: Modified Main-Loop

Prune-Path-NBH(p,Nr(vi))
1 m← Length(p)
2 if (m+ r) < L and ract = r then
3 return false // do not prune
4 x← LastNode(p)
5 if x �∈ Nr(vi) then
6 return true // prune
7 d← Get-Min-Dist(x,Nr(vi))
8 if (m+ d) ≤ L then
9 return false // do not prune
10 return true // prune

Figure 20: Prune-Path-NBH()

AllPaths procedure shown in Figures 14 and 15 should be modified as well to be used with NBH. First
it should be able to accept an additional parameter Nr(vi)) Second, Line 7 should be changed from

7 else if Length(p) < L then
to

7 else if Length(p) < L and Prune-Path-NBH(p,Nr(vi)) = false then

This will allow to prune certain paths using the NBH optimization.
The Prune-Path-NBH procedure is provided in Figure 20. It takes

0
r

1

2
1

3
2

m

1

2

...

x
src

dst

m
 -

1
Figure 21: Neighborhood

advantage of Nr(vi) to identify if a given intermediate path p = vyj � x
can be pruned or not. First it determines the length m of path p. If m
is such that (m + r) < L, then it cannot prune p, so it returns false.
However, if (m + r) ≥ L, then x must be inside Nr(vi). If it is not
inside, then path p is pruned, because there cannot be an L-short path
vyj

p� x
p1� vi for any path p1 : x

p1� vi. If x is inside Nr(vi), then the
procedure retrieves from Nr(vi) the minimum distance d from x to vi.
This distance d should be such that (m + d) ≤ L: otherwise path p is
pruned.

The NBH optimization can be improved further. Let us introduce a new term – the actual radius of
neighborhoodNr(u): ract = maxv:(v,d)∈Nr(u)(MinDist(u, v)). While usually ract = r, sometimes10 ract < r.
The latter happens when nodes from the neighborhood of u and their incident edges form a cluster which is
not connected to the rest of the graph (or this cluster is the whole graph). In this situation Nract(u) = Nl(u)
for all l (ract ≤ l < ∞). In other words, we know the neighborhood of u of radius r = ∞. Regarding
searching all simple paths as described above, this means that all intermediate nodes must always be inside
the according neighborhood. This further improvement is reflected in Line 2 of the Prune-Path-NBH
procedure in Figure 20.

10Naturally, the greater the r the more frequently this is likely to occur.

20 Tuesday 4th January, 2005 22:14

Exploiting relationships for domain-independent data cleaning. SIAM SDM 2005 (ext. ver.)

5.5 Storing discovered paths explicitly.

Once the paths are discovered on the first iteration of Iter-RelDC, they can be exploited for speeding up
the subsequent iterations when those paths need to be rediscovered again. One solution would be to store
such paths explicitly. After paths are stored, the subsequent iterations do not rediscover them, but rather
work with the stored paths. Next we present several techniques that reduce the storage overhead of storing
paths explicitly.

Path compression. We store paths because we need to recompute the connection strengths of those
paths (on subsequent iterations), which can change as weights of option-edges change. One way of com-
pressing path information is to find fixed-weight paths. Fixed-weight paths are paths the connection
strength of which will not change because it does not depend on any other system variables that can
change. Rather than storing a path itself, it is more efficient to store the (fixed) connection strength of
that path, which, in turn, can be aggregated with other fixed connection strengths. For WM model, a
path connection strength is guaranteed to be fixed if none of the intermediate or source nodes on the path
are incident to an option-edge (the weight of which might change).

Storing graph instead of paths. Instead of storing paths one by one, it is more space efficient to store
the connection subgraphs. The set of all L-short simple paths PL(u, v) between nodes u and v defines the
connection subgraph G(u, v) between u and v. Storing G(u, v) is more efficient because in PL(u, v) some of
the nodes can be repeated several times, whereas in G(u, v) each node occurs only once. Notice, when we
store PL(u, v) or G(u, v), we store only nodes: edges need not be stored since they can be restored from
the original graph G. There is a price to pay for storing only G(u, v): the paths need to be rediscovered.
However this rediscovering happens in a small subgraph G(u, v) instead of the whole graph G.

5.6 Compatibility of implementations

In general, it is possible to combine various implementations and optimizations of RelDC. For example,
there can be an implementation of RelDC that combines Iter-RelDC, DF-AllPaths, NBH, and the opti-
mization that stores paths. However, certain implementations and optimizations are mutually exclusive.
They are as follows:

1. Iter-RelDC vs. Solv-RelDC
2. DF-RelDC vs. GRD-RelDC
3. Solv-RelDC and Storing Paths

Also, there are some compatibility issues of GRD-RelDC with Solv-RelDC. Notice, GRD-RelDC com-
putes the connection strengths of intermediate paths. Consequently, it must know weights of certain edges
and, in general, it must know weights of option-edges. That is why Lines 1–2 of the Näıve-Solv-RelDC
procedure assign to option-edge weights some initial values.

5.7 Computational complexity of RelDC.

Let us analyze the computational complexity of non-optimized Iter-RelDC with GRD-AllPaths procedure.
GRD-AllPaths procedure, provided in Section 5.3, discovers L-short simple u� v paths such that it finds
paths with the highest connection strength first and with the lowest last. It achieves that by maintaining
the current connection strength for intermediate paths and by using a priority queue to retrieve the best
(in terms of connection strength) intermediate path to expand next. GRD-AllPaths(u, v) maintains the
connection strength of intermediate paths, so a straightforward modification of this procedure can return
not only the desired set of paths but also the value of c(u, v).

21 Tuesday 4th January, 2005 22:14

Exploiting relationships for domain-independent data cleaning. SIAM SDM 2005 (ext. ver.)

GRD-AllPaths has several thresholds that limit the number of nodes it can expand, the total number
of edges it can examine, the length of each path, the total number of u� v paths it can discover, and the
total number of all paths it can examine. Those thresholds can be specified as constants, or as functions
of |V |, |E|, and L. If they are constants, then the time and space complexity needed to compute c(u, v) is
limited by constants Ctime and Cspace.

Assume there are Nref references that need to be disambiguated, typically Nref = O(|V |). The average
cardinality of their choice sets is typically a constant, or O(|V |). Thus, Iter-RelDC will need to compute
c(xi, yj) for at most O(|V |2) pairs of (xi, yj) per iteration. Therefore the time complexity of an iteration
of Iter-RelDC is O(|V |2) multiplied by the complexity of the GRD-AllPaths procedure, plus the cost to
construct all choice sets using an FBS approach, which is at most O(|V |2). The space complexity is
O(|V |+ |E|) to store the graph plus the space complexity of one GRD-All-Paths procedure.

6 Experimental Results

In this section we experimentally study RelDC using two real (publications and movies) and synthetic
datasets. RelDC was implemented using C++ and SNOPT solver [2]. The system runs on a 1.7GHz
Pentium machine. We test and compare the following implementations of RelDC:

1. Iter-RelDC vs. Solv-RelDC. The prefixes indicate whether the corresponding NLP problem dis-
cussed in Section 4.3 is solved iteratively or using a solver. If none of those prefixes is specified,
Iter-RelDC is assumed by default. Solv-RelDC is applicable only to more restricted problems (e.g.,
smaller graphs and smaller values of L) than Iter-RelDC. Solv-RelDC is also slower than Iter-RelDC.

2. WM-RelDC vs. PM-RelDC. The prefixes indicate whether the weight-based model (WM), de-
scribed in Section 4.1.2, or probabilistic model (PM), described in Appendix A in appendix, has been
used for computing connection strengths. By default WM-RelDC is assumed.

3. DF-RelDC vs. GRD-RelDC. The prefixes specify whether the depth-first (DF) or greedy (GRD)
implementation of AllPaths is used. By default DF-RelDC is assumed.

4. Various optimizations of RelDC can be turned on or off. By default, optimizations from Section 5
are on.

In each of the RelDC implementations, the value of L used in computing the L-short simple paths
is set to 7 by default. In this section we will demonstrate that WM-DF-Iter-RelDC is on of the best
implementations of RelDC in terms of both accuracy and efficiency. That is why the bulk of our experiments
use that implementation.

6.1 Case Study 1: the publications dataset

6.1.1 Datasets

In this section we will introduce RealPub and SynPub datasets. Our experiments will solve author matching
(AM) problem, defined in Section 2, on these datasets.

RealPub dataset. RealPub is a real data set constructed from two public-domain sources: CiteSeer[1]
and HPSearch[3]. CiteSeer is a collection of information about research publication created by crawling
the Web. HPSearch is a collection of information about authors. HPSearch can be viewed as a set of 〈id,
authorName, department, organization〉 tuples. That is, the affiliation consists of not just organization

22 Tuesday 4th January, 2005 22:14

Exploiting relationships for domain-independent data cleaning. SIAM SDM 2005 (ext. ver.)

like in Section 2, but also of department. Information stored in CiteSeer is in the same form as specified
in Section 2, that is 〈id, title, authorRef1, authorRef2,. . . , authorRefN〉 per each paper, where each
authorRef reference is a one-attribute 〈author name〉 reference.

CiteSeer Paper ID Author Name
51470 Hector Garcia-Molina
51470 Anthony Tomasic
351993 Hector Garcia-Molina
351993 Anthony Tomasic
351993 Luis Gravano
641294 Luis Gravano
641294 Surajit Chaudhuri
641294 Venkatesh Ganti
273193 Venkatesh Ganti
273193 Johannes Gehrke
273193 Raghu Ramakrishnan
273193 Wei-Yin Loh

Table 2: Sample content of the publication table derived from CiteSeer.

Author ID Author Name Organization Department
1001 Hector Garcia-Molina Stanford cs.stanford
1002 Anthony Tomasic Stanford cs.stanford
1003 Luis Gravano Columbia Univ. cs.columbia
1004 Surajit Chaudhuri Microsoft research.ms
1005 Venkatesh Ganti Microsoft research.ms
1006 Johannes Gehrke Cornell cs.cornell
1007 Raghu Ramakrishnan Univ. of Wisconsin cs.wisc
1008 Wei-Yin Loh Univ. of Wisconsin stat.wisc

Table 3: Sample content of the author table derived from HPSearch. Author from CiteSeer not found in
HPSearch are also added.

Johannes Gehrke
paper_id: 273193

cs.wisc
Univ. of Wisconsin

stat.wisc

Venkatesh Ganti

Raghu Ramakrishnan

Wei-Yin Loh

Luis Gravano cs.columbia Columbia Univ.

paper_id: 641294

paper_id: 351993

Hector Garcia-Molina

Anthony Tomasic

cs.stanford
paper_id: 51470

cs.cornell Cornell

Microsoftresearch
Surajit Chaudhuri

paper-author author-department department-organization

papers authors organizationsdepartments

Stanford

Figure 22: Sample entity-relationship
graph for Publications dataset. A pa-
per with paper id of, say 51470 can
be retrieved from CiteSeer via URL:
http://citeseer.ist.psu.edu/51470.html

Writes

Authors

Papers

Affiliated Departments

Part of

Organizations

id name id name

id nameid title

Figure 23: E/R diagram for RealPub

Tables 2 and 3 show sample content of two tables derived from CiteSeer and HPSearch based on
which the corresponding entity-relationship graph is constructed for RelDC. Figure 22 shows a sample
entity-relationship graph that corresponds to the information in those two tables.

23 Tuesday 4th January, 2005 22:14

Exploiting relationships for domain-independent data cleaning. SIAM SDM 2005 (ext. ver.)

paper_id: int
authorRef1: string
...
authorRefN: string

auth_id: int
authorName: string
deptRef: int

dept_id: int
deptName: string
orgRef: int

org_id: int
orgName: string

paper author author department department organization

#1

[1]

#2 #3 #4

[2] [3]

paper entity author entity department entity organization entity

Figure 24: No affiliation in paper entities, thus FBS cannot use affiliations.

The various types of entities and relationships present in RealPub are shown in Figure 24. RealPub
data consists of 4 types of entities: papers (255K), authors (176K), organizations (13K), and departments
(25K). To avoid confusion we use “authorRef” for author names in paper entities and “authorName” for
author names in author entities. There are 573K authorRef’s in total. Our experiments on RealPub will
explore the efficiency of RelDC in resolving these references.

To test RelDC, we first constructed an entity-relationship graph G for the RealPub database. Each
regular node in the graph corresponds to an entity of one of these types. If author A is affiliated with
department D, then there is (vA, vD) edge in the graph. If department D is a part of organization U , then
there is (vD, vU) edge. If paper P is written by author A, then there is (vA, vP) edge. For each of the 573K
authorRef references, feature-based similarity (FBS) was used to construct its choice set.

In the RealPub data set, the paper entities refer to authors using only their names (and not
affiliations). This is because the paper entities are derived from the data available from CiteSeer which
did not directly contain information about the author’s affiliation. As a result, only similarity of author
names was used to initially construct the graph G.

This similarity has been used to construct choice sets for all authorRef references. As the result, 86.9%
(498K) of all authorRef references had choice set of size one and the corresponding papers and authors
were linked directly. For the remaining 13.1% (75K) references, 75K choice nodes were created in the graph
G. RelDC was used to resolve these remaining references. The specific experiments conducted and results
will be discussed later in the section. Notice that the RealPub data set allowed us to test RelDC only
under the condition that a majority of the references are already correctly resolved. To test robustness
of the technique we tested RelDC over synthetic data sets where we could vary the uncertainty in the
references from 0 to 100%.

SynPub dataset. We have created two synthetic datasets SynPub1 and SynPub2, that emulate Re-
alPub. The synthetic data sets were created since, for the RealPub dataset, we do not have the true
mapping between papers and the authors of those papers. Without such a mapping, as will become clear
when we describe experiments, testing for accuracy of reference disambiguation algorithm requires a man-
ual effort (and hence experiments can only validate the accuracy over small samples). In contrast, since
in the synthetic data sets, the paper-author mapping is known in advance, accuracy of the approach can
be tested over the entire data set. Another advantage of the SynPub dataset is that by varying certain
parameters we can manually control the nature of this dataset allowing for the evaluation of all aspects of
RelDC under various conditions (e.g., varying level of ambiguity/uncertainty in the data set).

Both the SynPub1 and SynPub2 datasets contain 5000 papers, 1000 authors, 25 organizations and 125
departments. The average number of choice nodes that will be created to disambiguate the authorRef’s
is 15K (notice, the whole RealPub dataset has 75K choice nodes). The difference between SynPub1 and
SynPub2 is that author names are constructed differently as will be explained shortly.

24 Tuesday 4th January, 2005 22:14

Exploiting relationships for domain-independent data cleaning. SIAM SDM 2005 (ext. ver.)

6.1.2 Accuracy experiments

In our context, accuracy is the fraction of all authorRef references that are resolved correctly. This
definition includes references that have choice sets of cardinality 1.

Experiment 1 (RealPub: manually checking samples for accuracy). Since the correct paper-
author mapping is not available for RealPub, it is infeasible to test the accuracy on this dataset. However
it is possible to find a portion of this paper-author mapping manually for a sample of RealPub by going to
authors web pages and examining their publications.

We have applied RelDC to RealPub in order to test the effectiveness of analyzing relationships. To
analyze the accuracy of the result, we concentrated only on the 13.1% of uncertain authorRef references.
Recall, the cardinality of the choice set of each such reference is at least two. For 8% of those references
there were no xi � yj paths for all j’s, thus RelDC used only FBS and not relationships. Since we
want to test the effectiveness of analyzing relationships, we remove those 8% of references from further
consideration as well. We then chose a random sample of 50 uncertain references that were still left under
consideration. For this sample we compared the reference disambiguation result produced by RelDC with
the true matches. The true matches for authorRef references in those papers were computed manually.
In this experiment, RelDC was able to resolve all of the 50 sample references correctly! This outcome is in
reality not very surprising since in the RealPub data sets, the number of references that were ambiguous
was only 13.1%. Our experiments over the synthetic data sets will show that RelDC reaches very high
disambiguation accuracy when the number of uncertain references is not very high.

Ideally, we would have liked to have performed further accuracy tests over RealPub by testing on larger
samples: around 1, 000 references should be tested to get an estimation of the accuracy within 3% error
interval and 95% confidence. However, due to the time-consuming manual nature of this experiments, this
was infeasible. Instead we next present another experiment that studies accuracy of RelDC on the whole
RealPub.

Experiment 2 (RealPub: accuracy of identifying author first names). We conducted another
experiment over the RealPub data set to test the accuracy of RelDC in disambiguating references which
we describe below.

We first remove from RealPub all the paper entities which have an authorRef

0

20

40

60

80

100

1 2 3

P
er

ce
nt

ag
e

of
 fi

rs
t n

am
es

 id
en

tif
ie

d
co

rr
ec

tly
1: FBS
2: Solver-RelDC, L=4
3: Iterative-RelDC, L=8

35
.9

%

55
.6

% 63
.2

%

Figure 25: RealPub:
Identifying first names

in format “first initial + last name”. This leaves only papers with authorRef’s
in format “full first name + last name”. Then we pretend we only know “first
initial + last name” for those authorRef’s. Next we run FBS and RelDC and see
whether or not they would disambiguate those authorRef’s to authors whose full
first names coincide with the original full first names. In this experiment, for 82%
of the authorRef’s the cardinality of their choice sets is 1 and there is nothing
to resolve. For the rest 18% the problem is more interesting: the cardinality of
their choice sets is at least 2. Figure 25 shows the outcome for those 18%.

Notice that the reference disambiguation problem tested in the above experi-
ment is of a limited nature – the tasks of identifying the correct first name of the
author and the correct author are not the same in general.11 Nevertheless, the
experiment allows us to test the accuracy of RelDC over the entire database and
does show the strength of the approach.

Let us compare Experiment 1 and Experiment 2. Experiment 1 addresses the lack of the paper-author
mapping by requiring laborious manual work and allows only testing on a sample of authors. Experiment 2
does not suffer from those drawbacks. However, Experiment 2 introduces substantial uncertainty to data by
assuming that only the first initial instead of the full first name is available for each authorRef. Knowing

11That is, it is not enough to correctly identify that ‘J.’ in ‘J. Smith’ corresponds to ‘John’ if there are multiple ‘John
Smith”s in the dataset.

25 Tuesday 4th January, 2005 22:14

Exploiting relationships for domain-independent data cleaning. SIAM SDM 2005 (ext. ver.)

the full first name in an authorRef, instead of just the first initial, would have allowed to significantly
narrow down the choice set for this authorRef and, thus, improve the accuracy of disambiguating this
and, potentially, other references. To address the drawbacks of Experiments 1 and 2 mentioned above, we
next study the approach on synthetic datasets.

Accuracy on SynPub. The next set of experiments tests accuracy of RelDC and FBS approaches on
SynPub dataset. “RelDC 100%” (“RelDC 80%”) means for 100% (80%) of author entities the affiliation
information is available. Once again, paper entities do not have author affiliation attributes, so FBS cannot
use affiliation, see Figure 24. Thus those 100% and 80% have no effect on the outcome of FBS. Notation
“L=4” means RelDC explores paths of length no greater than 4.

Experiment 3 (Accuracy on SynPub1). SynPub1 uses uncertainty of type 1 defined as follows.
There are Nauth = 1000 unique authors in SynPub1, but there are only Nname (1 ≤ Nname ≤ Nauth)

0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3

ac
cu

ra
cy

unc1

RelDC 100%, Iterative, L=8
RelDC 80%, Iterative, L=8

FBS
RelDC 100%, Iterative, L=4
RelDC 80%, Iterative, L=4

Figure 26: SynPub1: Accuracy vs. unc1

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 1.5 2 2.5 3

ac
cu

ra
cy

unc1

WM, RelDC 100%, Iterative, L=4
WM, RelDC 80%, Iterative, L=4

PM, RelDC 100%, Iterative, L=4
PM, RelDC 80%, Iterative, L=4
WM, RelDC 100%, Solver, L=4
WM, RelDC 80%, Solver, L=4

Figure 27: SynPub1: The accuracy results for
Solv-RelDC, Iter-RelDC, and Iter-RelDC with
PM model are comparable.

unique authorName’s. We construct the authorName of the author with id = k (k = 0, 1, . . . , 999) as ‘name’
concatenated with (k mod Nname). Each authorRef specifies one of those authorName’s. Parameter unc1
is unc1 = Nauth

Nname
ratio. For instance, if Nname = 750, then the authors with id = 1 and id = 751 have

the same authorName = ‘name1’, and unc1 = 1000
750 = 113 . In SynPub1 for each author whose name is

not unique, one can never identify with 100% confidence any paper this author has written. Thus the
uncertainty for such authors is very high.

Figure 26 studies the effect of unc1 on accuracy of RelDC and FBS. If unc1 = 1.0, then there is no
uncertainty and all methods have accuracy of 1.0. As expected, the accuracy of all methods monotonically
decreases as uncertainty increases. If unc1 = 2.0, the uncertainty is very large: for any given author there
is exactly one another author with the identical authorName. For this case, any FBS have no choice but to
guess one of the two authors. Therefore, the accuracy of any FBS, as shown in Figures 26, is 0.5. However,
the accuracy of RelDC 100% (RelDC 80%) when unc1 = 2.0 is 94%(82%). The gap between RelDC 100%
and RelDC 80% curves shows that in SynPub1 RelDC relies substantially on author affiliations for the
disambiguation.

Comparing the RelDC implementations. Figure 27 shows that the accuracy results of WM-Iter-RelDC,
PM-Iter-RelDC, WM-Solv-RelDC implementations are comparable. Figure 28 shows that Iter-RelDC is
the fastest implementation among them. The same trend has been observed for all other tested cases.

26 Tuesday 4th January, 2005 22:14

Exploiting relationships for domain-independent data cleaning. SIAM SDM 2005 (ext. ver.)

Experiment 4 (Accuracy on SynPub2). SynPub2 uses uncertainty of type 2. In SynPub2, authorName’s

0

10

20

30

40

50

1 1.5 2 2.5 3

tim
e(

se
cs

)

unc1

WM, RelDC 100%, Iterative, L=4
WM, RelDC 80%, Iterative, L=4

PM, RelDC 100%, Iterative, L=4
PM, RelDC 80%, Iterative, L=4
WM, RelDC 100%, Solver, L=4

WM, RelDC 80%, Solver, L=4

Figure 28: SynPub1: Iter-RelDC is more ef-
ficient than (i)Solv-RelDC and (ii)Iter-RelDC
with PM model.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.2 0.4 0.6 0.8 1

ac
cu

ra
cy

unc2

RelDC 100%
RelDC 80%
RelDC 50%
RelDC 25%
RelDC 0%

FBS

Figure 29: SynPub2: Accuracy vs. unc2

(in author entities) are constructed such that the following holds, see Figure 24. If an authorRef reference
(in a paper entity) is in the format “first name + last name” then it matches only one (correct) author.
But if it is in the format “first initial + last name” it matches exactly two authors. Parameter unc2 is the
fraction of authorRef’s specified as “first initial + last name”. If unc2 = 0, then there is no uncertainty
and the accuracy of all methods is 1. Also notice that the case when unc2 = 1.0 is equivalent to unc1 = 2.0.

There is less uncertainty in Experiment 4 then in Experiment 3. This is because for each author there is
a chance that he is referenced to by his full name in some of his papers, so for these cases the paper-author
associations are known with 100% confidence.

Figure 29 shows the effect of unc2 on the accuracy of RelDC. As in Figure 26, in Figure 29 the accuracy
decreases as uncertainty increases. However this time the accuracy of RelDC is much higher. The fact
that curves for RelDC 100% and RelDC 80% are almost indiscernible until unc2 reaches 0.5, shows that
RelDC relies less heavily on weak author affiliation relationships but rather on stronger connections via
papers.

6.1.3 Other experiments

Experiment 5 (Importance of relationships). Figure 30 studies what effect the number of relation-
ships and the number of relationship types have on the accuracy of RelDC. When resolving authorRef’s,
RelDC uses three types of relationships: (1) paper-author, (2) author-department, (3) department-organization.12

The affiliation relationships (i.e., (2) and (3)) are derived from the affiliation information in author entities.
The affiliation information is not always available for each author entity in RealPub. In our synthetic

datasets we can manually vary the amount of available affiliation information. The x-axis shows the
fraction ρ of author entities for which their affiliation is known. If ρ = 0, then the affiliation relationships
are eliminated completely and RelDC has to rely solely on connections via paper-author relationships. If
ρ = 1, then the complete knowledge of author affiliations is available. Figure 30 studies the effect of ρ
on accuracy. The curves in this figure are for both SynPub1 and SynPub2: unc1 = 1.75, unc1 = 2.00,

12Note, there is a difference between a type of relationship and a chain of relationships: e.g. RelDC can discover paths like:
paper1-author1-dept1-org1-dept2-author2.

27 Tuesday 4th January, 2005 22:14

Exploiting relationships for domain-independent data cleaning. SIAM SDM 2005 (ext. ver.)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

ac
cu

ra
cy

frac avail. affiliation

RelDC, unc1=1.75
FBS, unc1=1.75

RelDC, unc1=2.00
FBS, unc1=2.00

RelDC, unc2=0.95
FBS, unc2=0.95

Figure 30: SynPub: Accuracy vs. fraction of available affiliation.

and unc2 = 0.95. The accuracy increases as ρ increases showing that RelDC deals with newly available
relationships well.

Experiment 6 (Longer paths). Figure 31 examines the effect of path limit parameter L on the accu-
racy. For all the curves in the figure, the accuracy monotonically increases as L increases with the only

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

3 4 5 6 7 8 9

ac
cu

ra
cy

L

RelDC 100%, unc1=2.00
RelDC 100%, unc1=3.00
RelDC 100%, unc2=0.50
RelDC 100%, unc2=0.75

Figure 31: SynPub: Accuracy vs. path length
limit

1e-05

0.0001

0.001

0.01

0.1

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e(

ho
ur

s)

frac. of CiteSeer’s papers

RelDC, L=4
RelDC, L=5
RelDC, L=6
RelDC, L=8

Figure 32: RealPub: Time vs. frac of RealPub’s
papers

one exception for “RelDC 100%, unc1=2” and L = 8. The usefulness of longer paths depends on the
combination of other parameters. For SynPub, L of 7 is a reasonable compromise between accuracy and
efficiency.

Experiment 7 (The neighborhood optimization). We have developed several optimizations which
make RelDC 1–2 orders of magnitude more efficient. Figure 33 shows the effect of one of those optimiza-
tions, called NBH (see Section 5.4), for subsets of 11K and 22K papers of CiteSeer. In this figure, the
radius of neighborhood is varied from 0 to 8. The radius of zero corresponds to the case where NBH is not
used. Figure 34 shows the speedup achieved by NBH optimization with respect to the case when NBH is
off. The figure shows another positive aspect of NBH optimization: the speed up grows as the size of the
dataset and L increase.

28 Tuesday 4th January, 2005 22:14

Exploiting relationships for domain-independent data cleaning. SIAM SDM 2005 (ext. ver.)

1

10

100

0 1 2 3 4 5 6 7 8

tim
e(

se
cs

)

R - radius parameter of NBH optimization

When R=0, NBH is OFF
When R=5, NBH is ON and optimal

RelDC, L=8, 11K papers
RelDC, L=6, 11K papers
RelDC, L=8, 22K papers
RelDC, L=6, 22K papers

Figure 33: RealPub: Optimizations are crucial.

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8

sp
ee

d-
up

R - radius parameter of NBH optimization

RelDC, L=8, 11K papers
RelDC, L=6, 11K papers
RelDC, L=8, 22K papers
RelDC, L=6, 22K papers

Figure 34: RealPub: speedup achieved by NBH
optimization.

Experiment 8 (Efficiency of RelDC). To show the applicability of RelDC to a large dataset we have
successfully applied it to clean RealPub with L ranging from 2 up to 8. Figure 32 shows the execution
time of RelDC as a function of the fraction of papers from RealPub dataset, e.g. 1.0 corresponds to all
papers in RealPub (the whole CiteSeer) dataset.

Experiment 9 (Greedy vs. Depth-first AllPaths implementations). This experiment compares
accuracy and performance of greedy and depth-first versions of RelDC. As the name suggests, the depth-
first version discovers exhaustively all paths in a depth-first fashion. RelDC has been heavily optimized
and this discovery process is very efficient. The greedy implementation of AllPaths discovers paths with
the best connection strength first and with the worst last. This gives an opportunity to fine-tune in a
meaningful way when to stop the algorithm by using various thresholds. Those thresholds can limit, for
example, not only path length but also the memory that all intermediate paths can occupy, the total
number of paths that can be analyzed and so on.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 10 100 1000

ac
cu

ra
cy

num expand. nodes

GRD-RelDC 100%, L=5
GRD-RelDC 100%, L=7
GRD-RelDC 80%, L=5
DF-RelDC 100%, L=5
DF-RelDC 100%, L=7
DF-RelDC 80%, L=5

Figure 35: SynPub1: unc1 = 2. Accuracy of
GRD-RelDC vs. DF-RelDC.

10

100

1 10 100 1000

tim
e

(s
ec

)

num expand. nodes

GRD-RelDC 100%, L=5
GRD-RelDC 100%, L=7

GRD-RelDC 80%, L=5
DF-RelDC 100%, L=5
DF-RelDC 100%, L=7

DF-RelDC 80%, L=5

Figure 36: SynPub1: unc1 = 2. Time of GRD-
RelDC vs. DF-RelDC.

Figures 35 and 36 study the effect of Nexp parameter on the accuracy and efficiency of GRD-RelDC
and DF-RelDC. Parameter Nexp is the upper bound on the number of paths that can be extracted from

29 Tuesday 4th January, 2005 22:14

Exploiting relationships for domain-independent data cleaning. SIAM SDM 2005 (ext. ver.)

the priority queue for GRD-RelDC. The AllPaths part of GRD-RelDC stops if either Nexp is exceeded or
the priority queue is empty.

The series in the experiment are obtained by varying: (1) DF vs. GRD, (2) path length limit L = 5
and L = 7 and (3) the amount of affiliation information 100% and 80%. Since DF-RelDC does not use
Nexp parameter, all DF-RelDC curves are flat. Let us analyze what behavior is expected from GRD-RelDC
and then see if the figures corroborate it. We will always assume that path length is limited for both
DF-RelDC and GRD-RelDC.

If Nexp is small then GRD-RelDC should discover only a few paths and its accuracy should be close to
that of FBS. If Nexp is sufficiently large, then GRD-RelDC should discover the same paths as DF-RelDC.
That is, we can compute mikj = |PL(xi, yikj)|, where |PL(xi, yikj)| is the number of paths in PL(xi, yikj).
Then if we choose Nexp such that Nexp ≥ m, where m = maxi,k,j(mikj), then the set of all paths that
GRD-RelDC will discover will be identical to that of DF-RelDC. Thus the accuracy of GRD-RelDC is
expected to increase monotonically and then stabilize (and be equal to the accuracy of DF-RelDC) as Nexp

increases. The execution time of GRD-RelDC should increase monotonically and then stabilizes as well
(and be larger than the execution time of DF-RelDC after stabilizing).

The curves in Figures 35 and 36 behave as expected except for one surprise: when L = 5, GRD-RelDC
is actually faster than DF-RelDC. It is explained by the fact that when L = 5, NBH optimization prunes
very effectively many paths.

That keeps the priority queue small. Thus the

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100

ac
cu

ra
cy

time (sec)

17.7 sec

18.6 sec 21 sec 41 sec 76.7 sec

GRD-RelDC 100%, L=5
GRD-RelDC 100%, L=7

DF-RelDC 100%, L=5
DF-RelDC 100%, L=7

Figure 37: SynPub1: unc1 = 2. Choosing the best
among GRD-RelDC L = 5, GRD-RelDC L = 7, DF-
RelDC L = 5, DF-RelDC L = 7 at each moment in
time.

performance of DF-RelDC and GRD-RelDC be-
comes comparable. Notice, in all of the experi-
ments NBH optimization was turned on, because
the efficiency of any implementation of RelDC with
NBH off is substantially worse than the efficiency
of any implementation with NBH on.

Figure 37 combines Figures 35 and 36. It plots
the achieved accuracy by DF- and GRD-RelDC
100% when L = 5 and L = 7 as a function of
time. Using this figure it is possible to perform a
retrospective analysis of which implementation has
shown the best accuracy when allowed to spend
only at most certain amount of time t on the clean-
ing task. For example, in time interval [0, 17.7)
RelDC cannot achieve better accuracy than FBS,
so it is more efficient just to use FBS. In time inter-
val [17.7, 18.6) it is better to use GRD-RelDC with
L = 5. If one is allowed to spend only [18.6, 41)
seconds, it is better to use GRD-RelDC with L = 5 for only 18.6 seconds. If you intend to spend between
41 and 76.7 seconds it is better to use GRD-RelDC with L = 7. If you can spend 76.7 seconds or more, it
is better to run DF-RelDC with L = 7, which will terminate in 76.7 seconds.

6.2 Case Study 2: the movies dataset

6.2.1 Dataset

RealMov is a real public-domain movies dataset described in [47] which has been made popular by the
textbook [20]. Unlike RealPub dataset, in RealMov all the needed correct mappings are known, so it is
possible to test the disambiguation accuracy of various approaches more extensively. However, RealMov

30 Tuesday 4th January, 2005 22:14

Exploiting relationships for domain-independent data cleaning. SIAM SDM 2005 (ext. ver.)

dataset is much smaller compared to the RealPub data set. RealMov contains entities of three types: movies
(11, 453 entities), studios (992 entities), and people (22, 121 entities). There are five types of relationships in
the RealMov dataset: actors, directors, producers, producingStudios, and distributingStudios. Relationships
actors, directors, and producers map entities of type movies to entities of type people. Relationships
producingStudios and distributingStudios map movies to studios.

movies

people

studios

Spellbound

Roman Holiday

Mission Impossible

Paula Wagner

David Selznick

Alfred Hitchcock

William Wyler

Brian De Palma

Eddie Albert

Henry Czerny

Tom Cruise

Ingrid Bergman

Gregory Peck

Audrey Hepburn

movie-producingStudio movie-distributingStudio

A D P

movie-actor movie-director movie-producer

D

D

P

P

A

A

A

A

A

A

A

P

D

P

Paramount

Selznick Pictures United Artists

A

Cinecitta

Figure 38: Sample entity-relationship graph for movies dataset.

Movies PeopleStudios

directs

produces

acts-in

distributes

produces

id

name

id

title

id

name

Figure 39: E/R diagram for RealMov.

Stage name DOW Name at birth Gen DOB Role Orig Notes
Tom Cruise 1981-1989 Thomas Cruise Mapother IV M 1962 Hero Am
B.dePalma 1968-1987 Brian De Palma M
Paula Wagner F Am
Henry Czerny M 1959 Ca
Wyler 1925-1959 William Wyler 1902 Am Or(Ge)
Audrey Hepburn 1951-1981 Audrey Hepburn-Ruston F 1929 pert Be
Eddie Albert 1938-1982 Eddie Albert Heimberger M 1908 honest Joe Am
Gregory Peck 1943-1982 Gregory Peck M 1916 likeable Am
Ingrid Bergman 1934-1978 Ingrid Bergman F 1915 strong beauty Sw
Hitchcock 1925-1976 Alfred Hitchcock 1899 Br Ty(Susp , Nior)
Selznick David O. Selznick 1902 Ru Ww(Hitchcock)

Table 4: The people table. Some of the notation used: DOW (dates of work), Gen (gender), DOB (date of
birth), type (kinds of roles actor played), orig (origin), Am (America).

Figure 38 presents a sample graph for RealMov dataset. Tables 4, 5, 6, and 7 demonstrate sample
content of the people, movies, studios and cast tables derived from the movies dataset. The sample graph
in Figure 38 is constructed from those tables.

31 Tuesday 4th January, 2005 22:14

Exploiting relationships for domain-independent data cleaning. SIAM SDM 2005 (ext. ver.)

ID Title Year Director Producer Studio Color Genre
BdP30 Mission Impossible 1996 B.dePalma Tom Cruise, Paula Wagner Paramount col Action
WW67 Roman Holiday 1953 Wyler Wyler Cinecitta, Paramount bnw Romantic
H42 Spellbound 1945 Hitchcock Selznick Selznick Pictures bnw Suspect

Table 5: The movies table.

Name Full name City Country First Last Founder Successor
Paramount Paramount Corp. Los Angeles USA 1916 1993 W. Hodkinson Paramount, Viacom
Cinecitta Rome Italy 1937
Selznick Selznick Pictures Hollywood USA 1936 1944
U.A. United Artists Hollywood USA 1919 1983 Chaplin, Pickford, etc. MGM-UA

Table 6: The studios table.

Movie ID Actor name
BdP30 Tom Cruise
BdP30 B.dePalma
BdP30 Paula Wagner
BdP30 Henry Czerny
WW67 Wyler
WW67 Audrey Hepburn
WW67 Eddie Albert
WW67 Gregory Peck
H42 Gregory Peck
H42 Ingrid Bergman
H42 Hitchcock
H42 Selznick

Table 7: The cast table.

6.2.2 Accuracy experiments

Experiment 10 (RealMov: Accuracy of disambiguating director references). In this experiment
we study the accuracy of disambiguating references from movies to directors of those movies.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.2 0.4 0.6 0.8 1

ac
cu

ra
cy

frac. of uncertain references

RelDC, L=3
RelDC, L=4
RelDC, L=5

FBS

Figure 40: RealMov: disambiguating director
references. The size of the choice set of each
uncertain reference is 2.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

ac
cu

ra
cy

frac. of uncertain references

RelDC, L=3
RelDC, L=4
RelDC, L=5

FBS

Figure 41: RealMov: disambiguating director
references. The pmf of sizes of choice sets of
uncertain references is given in Figure 42.

Since in RealMov each reference, including each director reference, already points directly to the right
match, we artificially introduce ambiguity in the references manually. Similar approach to testing data
cleaning algorithms have also been used by other researchers, e.g. [8]. Given the specifics of our problem,

32 Tuesday 4th January, 2005 22:14

Exploiting relationships for domain-independent data cleaning. SIAM SDM 2005 (ext. ver.)

0

0.05

0.1

0.15

0.2

0.25

2 4 6 8 10 12 14 16 18 20

va
lu

e

size of choice sets

pmf

Figure 42: PMF of sizes of choice sets.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.2 0.4 0.6 0.8 1

ac
cu

ra
cy

frac. of uncertain references

RelDC, L=3
RelDC, L=4
RelDC, L=5

FBS

Figure 43: RealMov: disambiguating studio ref-
erences. The size of the choice set of each un-
certain reference is 2.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

ac
cu

ra
cy

frac. of uncertain references

RelDC, L=3
RelDC, L=4
RelDC, L=5

FBS

Figure 44: RealMov: disambiguating studio ref-
erences. The pmf of sizes of choice sets of un-
certain references is given in Figure 42.

to study the accuracy of RelDC we will simulate that we used FBS to determine the choice set of each
reference but FBS was uncertain in some of the cases.

To achieve that, we first choose a fraction ρ of director references (that will be uncertain). For each
reference in this fraction we will simulate that FBS part of RelDC has done its best but still was uncertain
as follows. Each director reference from this fraction is assigned a choice set of N people. One of those
people is the true director, the rest (N − 1) are chosen randomly from the set of people entities.

Figure 41 studies the accuracy as ρ is varied from 0 to 1 and where N is distributed according to the
probability mass function (pmf) shown in Figure 42.13

Figure 40 is similar to Figure 41 but N is always 2. The figures show that RelDC achieves better
accuracy than FBS. The accuracy is 1.0 when ρ = 0, since all references are linked directly. The accuracy
decreases almost linearly as ρ increases to 1. When ρ = 1, the cardinality of the choice set of each reference
is at least 2. The larger the value of L, the better the results. The accuracy of RelDC improves significantly
as L increases from 3 to 4. However, the improvement is less significant as L increases from 4 to 5. Thus
the analyst must decide whether to spend more time to obtain higher accuracy with L = 5, or whether
L = 4 is sufficient.

Experiment 11 (RealMov: Accuracy of disambiguating studio references). This experiment is
similar to the previous Experiment 10, but now we disambiguate producingStudio references, instead of
director references. Figure 43 corresponds to Figure 40 and Figure 44 to Figure 41. The RelDC’s accuracy

13The distribution in Figure 42 is computed as taking integer part of the value of a random variable distributed according
to the normal distribution with mean of 3.0 and standard deviation of 3.0. Values are regenerated until they fall inside the
[2, 20] interval.

33 Tuesday 4th January, 2005 22:14

Exploiting relationships for domain-independent data cleaning. SIAM SDM 2005 (ext. ver.)

of disambiguating studio references is even higher.

7 Related Work

Many research challenges have been explored in the context of data cleaning in the literature: dealing with
missing data, handling erroneous data, record linkage, and so on. The closest to the problem of reference
disambiguation addressed in this paper is the problem of record linkage. The importance of record linkage
is underscored by the large number of companies, such as Trillium, Vality, FirstLogic, DataFlux, which
have developed (domain-specific) record linkage solutions.

Researchers have also explored domain-independent techniques, e.g. [39, 19, 24, 5, 36]. Their work
can be viewed as addressing two challenges: (1) improving similarity function, as in [6]; and (2) improving
efficiency of linkage, as in [8]. Typically two-level similarity functions are employed to compare two records.
First, such a function computes attribute-level similarities by comparing values in the same attributes of
two records. Next the function combines the attribute-level similarity measures to compute the overall
similarity of two records. A recent trend has been to employ machine learning techniques, e.g. SVM, to
learn the best similarity function for a given domain [6]. Many techniques have been proposed to address
the efficiency challenge as well: e.g. using specialized indexes [8], sortings, etc.

Those domain-independent techniques deal only with attributes. To the best of our knowledge, RelDC,
which was first publicly released in [28], is the first domain-independent data cleaning framework which
exploits relationships for cleaning. Recently, in parallel to our work, other researchers have also proposed
using relationships for cleaning. In [5] Ananthakrishna et al. employ similarity of directly linked entities,
for the case of hierarchical relationships, to solve the record de-duplication challenge. In [32] Lee et al.
develop an association-rules mining based method to disambiguate references using similarity of the context
attributes: the proposed technique is still an FBS method, but [32] also discusses concept hierarchies which
are related to relationships. Getoor et al. in DKDM04 use similarity of attributes of directly linked objects,
like in [5], for the purpose of object consolidation. However, the challenge of applying that technique in
practice on real-world datasets was identified as future work in that paper. In contrast to the above
described techniques, RelDC utilize the CAP principle to automatically discover and analyze relationship
chains, thereby establishing a framework that employs systematic relationship analysis for the purpose of
cleaning.

8 Conclusion

In this paper we have shown that analysis of inter-object relationships allows to significantly improve the
quality of reference disambiguation. We have developed a domain-independent approach, called RelDC,
that combines traditional feature-based similarity techniques with techniques that analyze relationships
for the purpose of reference disambiguation. To analyze relationships, RelDC views the database as the
corresponding entity-relationship graph and then utilizes graph theoretic techniques to analyze paths that
exists between nodes in the graph which corresponds to analyzing chains of relationships between entities.
Two models have been developed to analyze the connection strength in the discovered paths. Several
optimizations of RelDC have been presented to scale the approach to large dataset. Extensive empirical
analysis on real and synthetic data sets shows that RelDC improves the quality of reference disambiguation
beyond the traditional techniques.

As future work we plan to apply similar techniques of relationship analysis to the problem of record
linkage. Another research direction is to develop an approach which, given a sample resolved graph,
would automatically determine which relationships are irrelevant for a particular disambiguation task [30].
Such an approach would learn the importance of a particular relationship type (and a relationship chain)

34 Tuesday 4th January, 2005 22:14

Exploiting relationships for domain-independent data cleaning. SIAM SDM 2005 (ext. ver.)

directly from the data. Yet another direction is to solve the reference disambiguation problem but in
different settings. For example, in our publications dataset the set of all authors was available. However,
if such a set is not available, the task becomes to not only resolve references but also determine the correct
author set.

References

[1] CiteSeer. http://citeseer.nj.nec.com/cs.

[2] GAMS/SNOPT solver. http://www.gams.com/solvers/.

[3] HomePageSearch. http://hpsearch.uni-trier.de.

[4] Knowledge Discovery. http://www.kdnuggets.com/polls/2003/data preparation.htm.

[5] R. Ananthakrishna, S. Chaudhuri, and V. Ganti. Eliminating fuzzy duplicates in data warehouses. In
Proc. VLDB, 2002.

[6] M. Bilenko and R. Mooney. Adaptive duplicate detection using learnable string similarity measures.
In SIGKDD, 2003.

[7] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine. In Proc of
International World Wide Web Conference, 1998.

[8] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani. Robust and efficient fuzzy match for online
data cleaning. In Proc. of ACM SIGMOD Conf., 2003.

[9] R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Evaluating probabilistic queries over imprecise data.
In Proc. of ACM SIGMOD International Conference on Management of Data (ACM SIGMOD’03),
San Diego, CA, USA, June 9–12 2003.

[10] R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Querying imprecise data in moving object environ-
ments. IEEE Transactions on Knowledge and Data Engineering (IEEE TKDE), 16(9), Sept. 2004.

[11] R. Cheng, S. Prabhakar, and D. V. Kalashnikov. Querying imprecise data in moving object environ-
ments. In Proc. of the 19th IEEE International Conference on Data Engineering (IEEE ICDE’03),
Bangalore, India, March 5–8 2003.

[12] P. Christen, T. Churches, and J. X. Zhu. Probabilistic name and address cleaning and standardization.
The Australasian Data Mining Workshop, 2002.

[13] W. Cohen, H. Kautz, and D. McAllester. Hardening soft information sources. In Proc. of ACM
SIGKDD Conf., 2000.

[14] W. W. Cohen. Integration of heterogeneous databases without common domains using queries based
on textual similarity. In Proc. of ACM SIGMOD Conf., 1998.

[15] W. W. Cohen, P. Ravikumar, and S. E. Fienberg. A comparison of string distance metrics for name-
matching tasks. IIWeb Workshop, 2003.

[16] W. W. Cohen and J. Richman. Learning to match and cluster large high-dimensional data sets for
data integration. In Proc. of ACM SIGKDD Conf., 2002.

35 Tuesday 4th January, 2005 22:14

Exploiting relationships for domain-independent data cleaning. SIAM SDM 2005 (ext. ver.)

[17] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms. MIT Press,
2001.

[18] C. Faloutsos, K. S. McCurley, and A. Tomkins. Fast discovery of connection subgraphs. In Proc. of
SIGKDD, 2004.

[19] I. Fellegi and A. Sunter. A theory for record linkage. Journal of Amer. Statistical Association,
64(328):1183–1210, 1969.

[20] H. Garcia-Molina, J. D. Ullman, and J. Widom. Database systems: the complete book. Prentice Hall,
2002.

[21] L. Getoor. Multi-relational data mining using probabilistic relational models: research summary. In
Proceedings of the First Workshop in Multi-relational Data Mining, 2001.

[22] L. Gravano, P. Ipeirotis, H. Jagadish, N. Koudas, S. Muthukrishnan, and D. Srivastava. Approximate
string joins in a database (almost) for free. In Proc. of VLDB Conf., 2001.

[23] G. Grimmett and D. Stirzaker. Probability and random processes. OXFORD University Press, 2002.

[24] M. Hernandez and S. Stolfo. The merge/purge prob- lem for large databases. In Proc. of SIGMOD,
1995.

[25] M. Jaro. Advances in record-linkage methodology as applied to matching the 1985 census of tampa,
florida. Journal of the American Statistical Association, 84(406), 1989.

[26] M. Jaro. Probabilistic linkage of large public health data files. Statistics in Medicine, 14(5-7), Mar-Apr
1995.

[27] L. Jin, C. Li, and S. Mehrotra. Efficient record linkage in large data sets. In Proc. of DASFAA Conf.,
2003.

[28] D. Kalashnikov and Mehrotra. Exploiting relationships for data cleaning. TR-RESCUE-03-02, Nov.
2003.

[29] D. V. Kalashnikov and S. Mehrotra. Exploiting relationships for domain-independent data cleaning.
SIAM SDM 2005 (extended version), http://www.ics.uci.edu/∼dvk/pub/sdm05.pdf.

[30] D. V. Kalashnikov and S. Mehrotra. Learning importance of relationships for reference disambiguation.
Submitted for Publication, Dec. 2004. http://www.ics.uci.edu/∼dvk/RelDC/TR/TR-RESCUE-04-23.
pdf.

[31] e. a. L. De Raedt. Three companions for data mining in first order logic. In Dzeroski, S. and Lavrac,
N., ed. Relational Data Mining. Springer-Verlag, 2001.

[32] M. Lee, W. Hsu, and V. Kothari. Cleaning the spurious links in data. IEEE Intelligent Systems,
Mar-Apr 2004.

[33] M. Lee, H. Lu, T. Ling, and Y. Ko. Cleansing data for mining and warehouse. In Proc. of DEXA
Conf., 1999.

[34] R. Little and D. Rubin. Statistical Analysis with Missing Data. John Wiley and Sons, 1986.

[35] J. Maletic and A. Marcus. Data cleansing: Beyond integrity checking. In Proc. of Conf. on Information
Quality, 2000.

36 Tuesday 4th January, 2005 22:14

Exploiting relationships for domain-independent data cleaning. SIAM SDM 2005 (ext. ver.)

[36] A. K. McCallum, K. Nigam, and L. Ungar. Efficient clustering of high-dimensional data sets with
application to reference matching. In Proc. of ACM SIGKDD Conf., 2000.

[37] A. E. Monge and C. Elkan. The field matching problem: Algorithms and applications. In Proc. of
SIGKDD Conf., 1996.

[38] A. E. Monge and C. P. Elkan. An efficient domain-independent algorithm for detecting approximately
duplicate database records. In Proc. of SIGMOD Wshp. on Research Issues on Data Mining and
Knowledge Discovery, 1997.

[39] H. Newcombe, J. Kennedy, S. Axford, and A. James. Automatic linkage of vital records. Science,
130:954–959, 1959.

[40] H. Pasula, B. Marthi, B. Milch, S. Russell, and I. Shpitser. Identity uncertainty and citation matching.
In Advances in Neural Processing Systems 15, 2002.

[41] E. Ristad and P. Yianilos. Learning string edit distance. IEEE Trans. Pattern Analysis and Machine
Intelligence, 20(5):522–532, May 1998.

[42] S. Sarawagi and A. Bhamidipaty. Interactive deduplication using active learning. In Proc. of ACM
SIGKDD Conf., 2002.

[43] D. Seid and S. Mehrotra. Complex analytical queries over large attributed graph data. Submitted for
Publication, 2005.

[44] S. Tejada, C. A. Knoblock, and S. Minton. Learning domain-independent string transformation weights
for high accuracy object identification. In Proc. of ACM SIGKDD Conf., 2002.

[45] V. Verykios, G.V.Moustakides, and M. Elfeky. A bayesian decision model for cost optimal record
matching. The VLDB Journal, 12:28–40, 2003.

[46] S. White and P. Smyth. Algorithms for estimating relative importance in networks. In Proc. of ACM
SIGKDD Conf., 2003.

[47] G. Wiederhold. The movies dataset. http://www-db.stanford.edu/pub/movies/doc.html.

[48] W. Winkler. The state of record linkage and current research problems. In U.S. Bureau of Census,
TR99.

[49] W. E. Winkler. Advanced methods for record linkage. In U.S. Bureau of Census, 1994.

Appendix

A Probabilistic model for computing connection strength

In Section 4.1 we have presented the weight based model (WM) for computing connection strength. In
this section we study a different connection strength model, called the probabilistic model (PM). In the
probabilistic model an edge weight is treated not as “weight” but as “probability” that the edge exists.

37 Tuesday 4th January, 2005 22:14

Exploiting relationships for domain-independent data cleaning. SIAM SDM 2005 (ext. ver.)

Notation Meaning
x∃ event “x exists” for (edge,path) x
x�∃ event “x does not exist” for (edge,path) x
x� event corresponding to following (edge,path) x

dep(e1, e2) if events e1 and e2 are independent, then dep(e1, e2) = true, else dep(e1, e2) = false
P(x∃) probability that (edge,path) x exists
P(x�) probability to follow (edge,path) x

P the path being considered
vi i-th node on path P
Ei (vi, vi+1) edge on path P
Eij edge labeled with probability pij

aij aij = 1 if and only if edge Eij exists; otherwise aij = 0
ai0 = 1 dummy variables: ai0 = 1 (for all i)
pi0 = 1 dummy variables: pi0 = 1 (for all i)
opt(E) if edge E is an option-edge, then opt(E) = true, else opt(E) = false
v∗E if edge E is an option-edge, then v∗E denotes the choice node associated with E

a, as a vector a = (a10, a11, . . . , a(k−1)nk−1)
a, as a set a = {aij : i = 1, 2, . . . , k − 1; j = 0, 1, . . . , ni}

a, as a variable at each moment variable a is one instantiation of a as a vector

Table 8: Probabilistic model: Terminology

A.1 Preliminaries

Notation. We will compute probabilities of certain events. Notation P(A) refers to the probability of
event A to occur. We use E∃ to denote event “E exists” for edge E. Similarly, we use E �∃ for event
“E does not exist”. So, P(E∃) refers to the probability that E exists. We will consider situations where
the algorithm computes the probability to follow (or ‘go via’) a specific edge E, usually in the context
of a specific path. This probability is denoted as P(E�). We will use dep(e1, e2) notation as follows:
dep(e1, e2) = true if and only if events e1 and e2 are dependent. Notation P denote the path being
currently considered. Table 8 summarizes the notation.

1

1

1

0.
5 0.5

0.5

A

B

A

B

A

B

(a) (b) (c) (d)

A

B

Figure 45: Probabilistic graph maps to a family of regular graphs.

The challenge. Figure 45 illustrates an interesting property of graphs with probabilistic edges: each
such graph maps on to a family of regular graphs. Figure 45(a) shows a probabilistic graph where three
edges are labeled with probability of 0.5. This probabilistic graph maps on to 23 regular graphs. For
instance, if we assume that none of the three edges is present (the probability of which is 0.53) then the
graph in 45(a) will be instantiated to the regular graph in Figure 45(b). Figures 45(c) and 45(d) show
other two possible instantiations of it, each having the same probability of occurring of 0.53.

The challenge in designing algorithms that compute any measure on such probabilistic graphs, including
the connection strength measure, comes from the following observation. If a probabilistic graph has n
independent edges that are labeled with non-1 probabilities, then this graph maps into the exponential
number (i.e., 2n) of regular graphs, where the probability of each instantiation is determined by the

38 Tuesday 4th January, 2005 22:14

Exploiting relationships for domain-independent data cleaning. SIAM SDM 2005 (ext. ver.)

probability of the corresponding combination of edges to exist. Algorithms that work with probabilistic
graphs should be able to account for the fact that some of the edges exist only with certain probabilities. If
such an algorithm computes a certain measure on a probabilistic graph it should avoid computing it näıvly
by computing it on each of 2n instantiations of this graph separately and then outputting the probabilistic
average as the answer. Instead smart techniques should be designed capable of computing the same answer
by applying more efficient methods.

Toy examples. We will introduce PM by analyzing two examples shown in Figures 46 and 47. Let us
consider how to compute the connection strength when edge weights are treated as probabilities that those
edges exist. Each figure show a part of a small sample graph with path P = A � B � C � D � E which
will be of interest to us.

A C DB E
1

Source DestinationPath: A,B,C,D,E

1 1 1

0.
8 0.2

F G

Figure 46: Toy example: independent case

A C DB E

F

G

1

Source DestinationPath: A,B,C,D,E

1 1 1

0.8

0.2

1

Figure 47: Toy example: dependent case

In Figure 46 we assume the events “edge BF is present” and “edge DG is present” are independent.
The probability of the event “edge BF is present” is 0.8. The probability of the event “edge DG is present”
is 0.2. In Figure 47 node F represents a choice node and BF and DF are its option-edges. Events “edge
BF exists” and “edge DF exists” are mutually exclusive (and hence strongly dependent): if one edge is
present the other edge must be absent due to the semantics of the choice node.

PM computes the connection strength c(P) of path P as the probability to follow path P: c(P) =
P(P�). In PM computing c(P) is a two step process. PM first computes the probability P(P∃) that
path P exists, then it computes the probability P(P�|P∃) to follow P given that P exists. Then PM
computes c(P) as c(P) = P(P�) = P(P�|P∃)P(P∃).

Thus the first step is to compute P(P∃). A path exists if each edge on that path exists. For the path
P in Figures 46 and 47, probability P(P∃) is equal to P(AB∃ ∩ BC∃ ∩ CD∃ ∩DE∃). If the existence of
each edge in the path is independent from the existence of other edges, e.g. like for the cases shown in
Figures 46 and 47, then P(P∃) = P(AB∃ ∩BC∃ ∩CD∃ ∩DE∃) = P(AB∃)P(BC∃)P(CD∃)P(DE∃) = 1.

The second step is to compute the probability P(P�|P∃) to follow path P, given that P exists.
Once this probability is computed, we can compute c(p) as c(P) = P(P�) = P(P∃)P(P�|P∃). The
probability P(P�|P∃) is computed differently for the cases in Figures 46 and 47. This will lead to different
values of c(P).

Example A.1.1 (Independent edge existence). Let us first consider the case where the existence of
each edge is independent from the existence of the other edges. In Figure 46 two events “BF exists” and
“DG exists” are independent. The probability to follow path P is the product of probabilities to follow
each of the edges on the path: P(P�|P∃) = P(AB�|P∃)P(BC�|P∃)P(CD�|P∃)P(DE�|P∃). Given
path P exists, the probability to follow edge AB in path P is one. The probability to follow edge BC
is computed as follows. With probability 0.2 edge BF is absent, in which case the probability to follow
BC is 1. With probability 0.8 edge BF is present, in which case the probability to follow BC is 1

2 –
because there are two links, BF and BC, that can be followed. Thus the total probability to follow BC

39 Tuesday 4th January, 2005 22:14

Exploiting relationships for domain-independent data cleaning. SIAM SDM 2005 (ext. ver.)

is 0.2 · 1 + 0.8 · 12 = 0.6. Similarly, the probability to follow CD is 1 and the probability to follow DE is
0.8 · 1 + 0.2 · 12 = 0.9. The probability to follow path P, given it exists, is the product of probabilities to
follow each edge of the path which is equal to 1 · 0.6 · 1 · 0.9 = 0.54. Since for the case shown in Figure 46
path P exists with probability 1, the final probability to follow P is c(P) = P(P�) = 0.54.

Example A.1.2 (Dependent edge existence). Let us now consider the case where the existence of an
edge can depend on the existence of the other edges. For the case shown in Figure 47 edges BF and DF
cannot exist both at the same time. To compute P(P�|P∃) we will consider two cases separately: BF ∃

and BF �∃. That way we will be able to compute P(P�|P∃) as P(P�|P∃) = P(BF ∃|P∃)P(P�|P∃ ∩
BF ∃) + P(BF �∃|P∃)P(P�|P∃ ∩BF �∃).

Let us first assume BF ∃ (i.e., edge BF is present) and then compute P(BF ∃|P∃)P(P�|P∃ ∩BF ∃).
For the case of Figure 47, if no assumptions about the presence or absence of DF have been made yet,
P(BF ∃|P∃) is simply equal to P(BF ∃) which is equal to 0.8. If BF is present then DF is absent and
the probability to follow P is P(P�|P∃ ∩ BF ∃) = 1 · 12 · 1 · 1 = 1

2 . Now let us consider the second case
BF �∃ (and thus DF ∃). The probability P(BF �∃|P∃) is 0.2. For that case P(P�|P∃ ∩ BF �∃) is equal to
1 · 1 · 1 · 12 = 1

2 . Thus P(P�|P∃) = 0.8 · 12 + 0.2 · 12 = 0.5. So c(P) = P(P�) = 0.50, which is different
from that of the previous experiment.

A.2 Independent edge existence

Let us consider how to compute path connection strength in general case, assuming the existence of each
edge is independent from existence of the other edges.

A.2.1 General formulae

vk
qk-1

p (
k-

1)
i

p 1
i

p 2
i

v1 vk-1
q1

p1
n1 p 11

n1

... ...

qk-2. . .
p(k

-1)
n(k-

1)

p (k-
1)1

nk-1

... ...

edge E1

v2
q2

p2
n2 p 21

n2

... ...

Figure 48: Independent edge existence. Computing
c(v1 � v2 � · · · � vk). All edges shown in the figure
are “possible to follow” edges in the context of the
path. Edges that are not possible to follow are not
shown.

p (
k-

1)
i

p 1
i

p 2
i

v1 vk-1
1

p1
n1 p 11

n1

... ...

1. . .
p(k

-1)
n(k-

1)

p (k-
1)1

nk-1

... ...

edge E1

v2
1

p2
n2 p 21

n2

... ...

vk
1

Figure 49: The case in this figure is similar to that of
Figure 48 with an additional assumption that path
P exists.

In general, any path P can be represented as a sequence of k nodes 〈v1, v2, . . . , vk〉 or as a sequence
of (k − 1) edges 〈E1, E2, . . . , E(k−1)〉, as illustrated in Figure 48, where Ei = (vi, vi+1) and P(E∃

i) = qi
(i = 1, 2, . . . , k − 1). We will refer to edges labeled with probabilities pij (for all i, j) in this figure as Eij .
The goal is to compute the probability to follow path P, which is the measure of the connection strength
of path P:

c(P) = P(P�) = P(P∃)P(P�|P∃). (8)

The probability that P exists is equivalent to the probability that each of its edges exists:

P(P∃) = P(
k−1⋂
i=1

E∃
i). (9)

40 Tuesday 4th January, 2005 22:14

Exploiting relationships for domain-independent data cleaning. SIAM SDM 2005 (ext. ver.)

Given our assumption of the independence, P(P∃) can be computed as

P(P∃) =
k−1∏
i=1

P(E∃
i) =

k−1∏
i=1

qi. (10)

To compute P(P�) we now need to compute P(P�|P∃). In turn, to compute P(P�|P∃) let us
analyze how labels pij and qi (for all i, j) in Figure 48 will change if we assume that P exists. We will
compute the corresponding new labels, p̃ij and q̃i, and reflect the changes in Figure 49. Since qi is defined
as qi = P(E∃

i) and pij is defined as pij = P(E∃
ij), the new labels are computed as q̃i = P(E∃

i |P∃) = 1
and p̃ij = P(E∃

ij |P∃). Given our assumption of independence, p̃ij = pij . The new labeling is shown in
Figure 49.

Let us define a variable aij for each edge Eij (labeled pij) as follows: aij = 1 if and only if edge Eij

exists; otherwise aij = 0. Also, for notational convenience, let us define two sets of dummy variables ai0
and pi0: ai0 = 1 and pi0 = 1 (i = 1, 2, . . . , k − 1).14 Let a denote a vector consisting of all aij’s: a =
(a10, a11, . . . , a(k−1)nk−1

). Let A denote the set of all possible instantiations of a, i.e. |A| = 2n1+n2+···+nk−1 .
Then probability P(P�|P∃) can be computed as

P(P�|P∃) =
∑
a∈A

{
P(P�|a ∩P∃)P(a|P∃)

}
, (11)

where P(a|P∃) is the probability of instantiation a to occur while assuming P∃. Given our assumption
of independence of probabilities, P(a|P∃) = P(a). Probability P(a) can be computed as

P(a|P∃) = P(a) =
∏

i=1,2,...,k−1
j=0,1,...,ni

p
aij

ij (1− pij)1−aij . (12)

Probability P(P�|a∩P∃), which is the probability to go via P given (1) a particular instantiation of a;
and (2) the fact that P exists, can be computed as

P(P�|a ∩P∃) =
k−1∏
i=1

1
1 +

∑ni
j=1 aij

≡
k−1∏
i=1

1∑ni
j=0 aij

. (13)

Thus

P(P�) =

(
k−1∏
i=1

qi

)∑
a∈A


[
k−1∏
i=1

1∑ni
j=0 aij

]∏
ij

p
aij

ij (1− pij)1−aij


 . (14)

A.2.2 Computing path connection strength in practice

Notice, Equation (14) iterates through all possible instantiations of a which is impossible to compute in
practice given |A| = 2n1+n2+···+nk−1 . This equation must be simplified to make the computation feasible.

Computing P(P�|P∃) as
∏k−1

i=1 P(E�

i |P∃). To achieve the simplification, we will use our assumption
of independence of probabilities which allows us to compute P(P�|P∃) as the product of the probabilities
to follow each individual edge in the path:

P(P�|P∃) =
k−1∏
i=1

P(E�

i |P∃). (15)

14Intuitively (1) ai0 = 1 corresponds to the fact that edge Ei exists given path P exists; and (2) pi0 = 1 corresponds to
pi0 = P(E

∃
i |P∃) = 1.

41 Tuesday 4th January, 2005 22:14

Exploiting relationships for domain-independent data cleaning. SIAM SDM 2005 (ext. ver.)

Let ai denote vector (ai0, ai1, . . . , aini), that is a = (a1,a2, . . . ,ak−1). Let Ai denote all possible instanti-
ations of ai. That is, A = A1 ×A2 × · · · × Ak−1 and |Ai| = 2ni . Then

P(E�

i |P∃) =
∑

ai∈Ai


[

1∑ni
j=0 aij

] ni∏
j=0

p
aij

ij (1− pij)1−aij

 . (16)

Combining Equations (8), (15) and (16) we have

P(P�) =

(
k−1∏
i=1

qi

)
k−1∏
i=1

 ∑
ai∈Ai


[

1∑ni
j=0 aij

] ni∏
j=0

p
aij

ij (1− pij)1−aij


 . (17)

The effect of transformation. Notice, using Equation (14) the algorithm will need to perform |A| =
2n1+n2+···+nk−1 iterations – one per each instantiation of a. Using Equation (17) the algorithm will need to
perform |A1|+ |A2|+ · · ·+ |Ak−1| = 2n1 +2n2 + · · ·+2nk−1 iterations. Furthermore, each iteration requires
less computation. These factors lead to a significant improvement.

Handling weight-1 edges. The formula in Equation (16) assumes 2ni iterations will be needed to
compute P(E�

i |P∃).
This formula can be modified further to achieve more efficient computation

vi vi+1
1

pn
i -

m

1
vi-1

p 1p i

ni - m

1 11

m

... ...

... ...

Figure 50: Probability to
follow edge Ei = (vi, vi+1)

as follows. In practice, some of the pij ’s, or even all of them, are often equal
to 1. Figure 50 shows the case where m (0 ≤ m ≤ ni) edges incident to node
vi are labeled with 1. Let ãi denote vector (ai0, ai1, . . . , ai(ni−m)) and let Ãi
be the set of all possible instantiations of this vector. Then Equation (16) can
be simplified to

P(E�

i |P∃) =
∑

ãi∈Ãi


[

1
m+

∑ni−m
j=0 aij

]ni−m∏
j=0

p
aij

ij (1− pij)1−aij


 . (18)

The number of iteration is reduced from 2ni to 2ni−m.

Computing P(E�

i |P∃) as
∑ni

l=0
1
1+lP(si = l). Performing 2ni−m iterations can still be expensive for

the cases when (ni −m) is large. Next we discuss several methods to deal with this issue.

Method 1: Do not simplify further. In general, the value of 2ni−m can be large. But for a particular instance
of a cleaning problem it can be that (a)2ni−m is never large or (b) 2ni−m can be large but bearable and
the cases when it is large are infrequent. In those cases further simplification might not be required.

Method 2: Estimate answer using results from Poisson trials theory. Let us denote the following sum
as si: si =

∑ni
j=1 aij . From a basic probability course we know that the binomial distribution gives the

number of successes in n independent trials where each trial is successful with the same probability p [23].
The binomial distribution can be viewed as a sum of several i.i.d. Bernoulli trials. The Poisson trials
process is similar to the binomial distribution process where trials are still independent but not necessarily
identically distributed, i.e. the probability of success in i-th trial is pi. We can modify Equation (17) to
compute P(E�

i |P∃) as follows:

P(E�

i |P∃) =
ni∑
l=0

1
1 + l

P(si = l). (19)

42 Tuesday 4th January, 2005 22:14

Exploiting relationships for domain-independent data cleaning. SIAM SDM 2005 (ext. ver.)

Notice, for a given i we can treat ai1, ai2, . . . , aini as a sequence of ni Bernoulli trials with probabilities of
success P(aij = 1) = pij. One would want to estimate P(si = l) quickly, rather than compute it exactly
via iterating over all cases when (si = l). That is, we would like to avoid computing P(si = l) as

P(si = l) =
∑

ai∈Ai
si=l

ni∏
j=0

p
aij

ij (1− pij)1−aij .

There are multiple cases when P(si = l) can be computed quickly. For example, in certain cases it can
be possible to utilize the Poisson trials theory to estimate P(si = l). For instance, if each pij is small then
from the probability theory we know that

P(si = l) =
λle−λ

l!

{
1 +O

(
λ max
j=1,2,...,ni

pij +
l2

λ
max

j=1,2,...,ni

pij

)}
, where λ =

ni∑
j=1

pij . (20)

One can also utilize the following “Monte-Carlo like” method to compute P(si = l). The idea is to have
several runs. During run number m, the method decides by generating a random number (“tossing a coin”)
if edge Eij is present (variable aj will be assigned 1) or absent (aj = 0) for this run based on the probability
pij. Then the sum Sm =

∑ni
j=1 pij is computed for that run. After n runs the desired probability P(si = l)

is estimated as the number of Si’s which are equal to l, divided by n.
Method 3: Use linear cost formula. The third approach is to use a cut-off threshold to decide if the

cost of performing 2ni−m iterations is acceptable. If it is acceptable then compute P(E�

i |P∃) precisely,
using iterations. If it is not acceptable (typically, rare case), then try to use Equation (20). If that fails,
use the following (linear cost) approximation formula. First compute the expected number of edges µi
among ni edges Ei1, Ei2, . . . , Eini , where P(E∃

ij) = pij, as follows: µi = m +
∑ni−m

j=1 pij. Then since there
are 1 + µi possible links to follow on average, the probability to follow Ei can be coarsely estimated as

P(E�

i |P∃) ≈ 1
1 + µi

=
1

m+
∑ni−m

j=0 pij
. (21)

A.3 Dependent edge existence

In this section we discuss how to compute connection strength if occurrence of edges is not independent. In
our model, dependence between two edges arises only when those two edges are option-edges of the same
choice node. We next show how to compute P(P�) for those cases.

There are two principal situations we need to address. The first is to handle all choice nodes on the
path. The second step is to handle all choice nodes such that a choice node itself is not on the path but at
least two of its option nodes are on the path. Next we address those two cases.

A.3.1 Choice nodes on the path

The first case of how to deal with choice nodes on the path is a simple one. There are two sub-cases in
this case illustrated in Figures 51 and 53.

Figure 51 shows a choice node C on the path which has options D, G, and F . Recall, we compute
P(P�) = P(P∃)P(P�|P∃). When we compute P(P∃) each edge of path P should exist. Thus edge CD
must exist, which means edges CG and CF do not exist. Notice, this case is equivalent to the case shown
in Figure 52 where (a) edges CG and CF are not there (permanently eliminated from consideration); and
(b) node C is just a regular (not a choice) node connected to D via an edge (in this case the edge is labeled
0.2). If we now consider this equivalent case, then we can simply apply Equation (17) to compute the
connection strength.

43 Tuesday 4th January, 2005 22:14

Exploiting relationships for domain-independent data cleaning. SIAM SDM 2005 (ext. ver.)

A DB E
1

Source DestinationPath: A,B,C,D,E

1 0.2 1

0.5

0.3

F

G

C

Figure 51: Choice node on the path

A DB E
1

Source DestinationPath: A,B,C,D,E

1 0.2 1

F

G

C

Figure 52: Choice node on the path: removing choice

In general, all choice nodes on the path, can be “eliminated” from the path one by one (or, rather,
“replaced with regular nodes”) using the procedure above.

Figure 53 shows a choice node C on the path which have options B, F , and D, such that B � C � D
is a part of the path P. Semantically, edges CB, CF , and CD are mutually exclusive, so path P cannot
exist. Such paths are said to be illegal and they are ignored by the algorithm.

A.3.2 Options of the same choice node on the path

Assume now we have applied the procedure from Section A.3.1 and all choice nodes are “eliminated” from
path P. At this point the probability P(P∃) can be computed as P(P∃) =

∏k−1
i=1 qi. The only case that is

A DB E
1

Source Destination

Path: A,B,C,D,E

1

0.2 10.5

0.3

F

C

Figure 53: Choice node on the path: illegal path

A DB E
1

Source DestinationPath: A,B,C,D,E

1 1 1
0.3G

F

C

0.5

0.1

H

0.1

1

Figure 54: Options of the same choice node on the
path

left to be considered is where a choice node itself is not on the path but at least two of its options are on the
path. An example of such a case is illustrated in Figure 54 where choice node F has four options: G, B, D,
and H, two of which B and D belong to the path being considered. After choice nodes are eliminated from
the path, the goal becomes to create a formula similar to Equation (17), but for the general “dependent”
case.

Let us define two sets f and d – of ‘free’ and ‘dependent’ aij ’s as follows:

f = {aij : ∀r, s (r �= i or s �= j)⇒ dep(E∃
ij , E

∃
rs) = false},

d = {aij : ∃r, s (r �= i or s �= j) : dep(E∃
ij , E

∃
rs) = true}. (22)

Notice, a = f ∪ d and f ∩ d = ∅. If d = ∅, then there is no dependence and the solution is given by
Equation (17), otherwise we proceed as follows. Similarly to ai we can define fi and di as follows:

fi = {aij : aij ∈ f , j = 0, 1, . . . , ni},
di = {aij : aij ∈ d, j = 1, 2, . . . , ni}.

(23)

Notice, ai = fi ∪ di and fi ∩ di = ∅. We define D as the set of all possible instantiations of d, and Fi as

44 Tuesday 4th January, 2005 22:14

Exploiting relationships for domain-independent data cleaning. SIAM SDM 2005 (ext. ver.)

the set of all possible instantiations of fi. Then

P(P�) =

(
k−1∏
i=1

qi

)
︸ ︷︷ ︸
P(P∃)

∑
d∈D

{[
k−1∏
i=1

(∑
fi∈Fi

{[
1∑ni

j=0 aij

][∏
j:aij∈fi

p
aij

ij (1− pij)1−aij

]})]
︸ ︷︷ ︸

Ψ(d)

P(d)

}
. (24)

Equation (24) iterates over all feasible instantiations of d. P(d) is the probability of a specific instance
of d to occur. Equation (24) contains term

∑
d∈D {Ψ(d)P(d)} . What this achieves is that a particular

instantiation of d “fixates” a particular combination of all “dependent” edges, and P(d) corresponds to the
probability of that combination. Notice, Ψ(d) directly corresponds to P(P�|P∃) part of Equation (17).
To compute P(P�) in Equation (24), we only need to specify how to compute P(d).

Computing P(d). Recall, we now consider the cases where aij is in d only because there is (at least one)
another ars ∈ d such that dep(E∃

ij , E
∃
rs) = true and v∗Eij

= v∗Ers
. Figure 47 is an example of such a case.

So, for each aij ∈ d we can identify choice node v∗l = v∗Eij
and compute set Cl = {ars ∈ d : v∗Ers

= v∗l }.
Then, for any two distinct elements aij ∈ Cl and ars the following holds: dep(E∃

ij , E
∃
rs) = true if and only

if ars ∈ Cl.
In other words, we can split set d into non intersecting subsets d = C1 ∪C2 ∪ · · · ∪Cm. The existence

of each edge Eij such that aij is in one of those sets Cl depends only on the existence of those edges Ers’s
whose ars is in Cl as well. Therefore P(d) can be computed as P(d) = P(dC1)P(dC2) × · · · × P(dCm),
where dCl

is a particular instantiation of aij ’s from Cl. Now, to be able to compute Equation (24), we
only need to specify how to compute P (dCl

) (l = 1, 2, . . . ,m).

Computing P (dCl
). Figure 55 shows choice node v∗l with n options u1, u2, . . . , un. Each (v∗l , uj) edge

(j = 1, 2, . . . , n) is labeled with probability pj . As before, to specify which edge is present and which is

p
k+1p 1

pn

1
p k

... ...

first k options on P

path P

last (n-k) options not on P

u1 uk un

v

v*

uk+1

l

Figure 55: Intra choice dependence.

absent, each option edge has variable aj associated with it. Variable aj = 1 if and only if the edge labeled
with pj is present, otherwise aj = 0. That is, P(aj = 1) = pj and p1 + p2 + · · · + pn = 1.

Let us assume, without loss of generality, that the first k (2 ≤ k ≤ n) options u1, u2, . . . , uk of v∗l belong
to path P while the other (n− k) options uk+1, uk+2, . . . , un do not belong to P, as shown in Figure 55.
In the context of Figure 55, computing P (dCl

) is equivalent to computing the probability a particular
instantiation of vector (a1, a2, . . . , ak) to occur.

Notice, only one ai among a1, a2, . . . , ak, ak+1, ak+2, . . . , an can be 1, the rest are zeroes. First let us
compute the probability of instantiation a1 = a2 = · · · = ak = 0. For that case one of ak+1, ak+2, . . . , an
should be equal to 1. Thus P(a1 = a2 = · · · = ak = 0) = pk+1 + pk+2 + · · ·+ pn.

45 Tuesday 4th January, 2005 22:14

Exploiting relationships for domain-independent data cleaning. SIAM SDM 2005 (ext. ver.)

The second case is when one of a1, a2, . . . , ak is 1. Assume aj = 1 (1 ≤ j ≤ k), then P(aj = 1) = pj .
To summarize:

P(a1, a2, . . . , ak) =
{

pj if ∃j (1 ≤ j ≤ k) : aj = 1;
pk+1 + pk+2 + · · ·+ pn otherwise.

Now we know how to compute P (dCl
) (l = 1, 2, . . . ,m), thus we can compute P(d). Therefore we have

specified how to compute path connection strength using Equation (24).

A.4 Computing the total connection strength.

The connection strength between nodes u and v is computed as a sum of connection strengths of all simple
paths between u and v: c(u, v) =

∑
P∈PL(u,v)

c(P). Based on this connection strength the weight of the
corresponding edge will be determined. This weight will be treated as the probability of the edge to exist.

Let us give the motivation of why the summation of individual simple paths is performed. We associate
the connection strength between two nodes u and v with probability of reaching v from u via only L-short
simple paths. Let us name those simple paths P1,P2, . . . ,Pk, Let us call G(u, v) the subgraph comprised
of the union of those paths: G(u, v) = P1∪P2∪ · · · ∪Pk. Subgraph G(u, v) is a subgraph of the complete
graph G = (V,E), where V is the set of vertices V = {vi : i = 1, 2, . . . , |V |} and E is the set of edges
E = {Ei : i = 1, 2, . . . , |E|}. Let us define ai as follows: ai = 1 if and only if edge Ei is present, otherwise
ai = 0. Let a denote vector (a1, a2, . . . , a|E|) and let A be the set of all possible instantiations of a.

We need to compute the probability to reach v from u via subgraph P(G(u, v)�) which we treat as the
measure of the connection strength. We can represent P(G(u, v)�) as

P(G(u, v)�) =
∑
a∈A

P(G(u, v)�|a)P(a). (25)

Notice, when computing P(G(u, v)�|a) we assume a particular instantiation of a. So the complete
knowledge of which edges are present and which are absent is available, as if all the edges were “fixed”.
Assuming one particular instantiation of a, there is no dependence among edge existence events any longer:
each edge is either present with 100% probability or absent with 100% probability. Thus

P(G(u, v)�|a) =
k∑
i=1

P(P�

i |a), (26)

and

P(G(u, v)�) =
∑
a∈A

P(G(u, v)�|a)P(a)

=
∑
a∈A

[(
k∑
i=1

P(P�

i |a)
)
P(a)

]

=
k∑
i=1

[∑
a∈A

(
P(P�

i |a)P(a)
)]

=
k∑
i=1

P(P�

i).

(27)

Equation (27) shows that the total connection strength is the sum of the connection strength of all
L-short simple paths.

46 Tuesday 4th January, 2005 22:14

Exploiting relationships for domain-independent data cleaning. SIAM SDM 2005 (ext. ver.)

B Solving the NLP problem by bounding option weights

The iterative technique for solving (7) from Section 4.3 works well in practice, but it is not the only
approximate method to solve (7). Next we sketch another interesting method of solving it.

Let us motive the technique with the help of an example. Consider Equations (5) for the toy database.
The savvy reader could have noticed that for this particular example it is actually possible to skip the step
of computing the answer to (5) and proceed to interpreting weights as follows. Consider the numerator and
denominator of equation w1 = w3

2 /
(
1 + w3

2

)
. Given that all weights are real numbers from [0, 1] interval,

we can bound the numerator w3
2 : w3

2 ∈
[
0, 12

]
. Similarly, we can bound the denominator

(
1 + w3

2

) ∈ [
1, 112

]
.

Therefore, we can assign to w1 the lower bound w�
1 = 0/

(
112

)
= 0, and the upper bound w�

1 = 1
2/1 = 1

2 .
So, w1 ∈

[
w�
1 , w

�
1

]
=

[
0, 12

]
. Similarly we can compute that w2 ∈

[
2
3 , 1

]
, w3 ∈

[
0, 12

]
, and w4 ∈

[
2
3 , 1

]
. Thus,

knowing these bounds, it is possible to determine even without solving (5) that if (5) has a solution, then
this solution is such that w1 < w2 and w3 < w4. For our toy example the later information is sufficient to
interpret weights: it will lead us to the same conclusion as if the system was solved exactly – that both
‘D. White’ references refer to ‘Don White’.

In general, we can quickly compute the bounding interval
[
w�
ikj , w

�
ikj

]
for each wikj, e.g. by analyzing nu-

merators and denominators.15 The bounding interval of each wikj is, in general, determined by other option
weights, so it might shrink later – for example, if we at some later point determine the exact values of some
of those option weights. Let us consider some reference rik and bounds

[
w�
1 , w

�
1

]
,
[
w�
2 , w

�
2

]
, . . . ,

[
w�
N , w

�
N

]
of weights w1, w2, . . . , wN of its option edges, see Figure 4. Clearly, if there exists w�

j such that w�
j > w�

l

(l = 1, 2, . . . , N, l �= j), then wj is guaranteed to be greater than any wl (l = 1, 2, . . . , N, l �= j) and
consequently the weight-interpreting procedure is guaranteed to pick yj as r∗ik. So, given this fact, we can
compute the following set of (yet unresolved) references

R =
{
rik : ∃wikj such that w�

ikj > w�
ikl (l = 1, 2, . . . , N, l �= j)

}
Notice, we know how to resolve each reference in this set. So, we resolve each reference rik ∈ R to the
corresponding yj and assign weight of 1 to wj and weight of 0 to wl (l = 1, 2, . . . , N, l �= j). This assignment
of values to option weights wikj’s can shrink bounding intervals of the other option weights, so that we
can recompute the set R again and apply the procedure again until either all references are resolved or R
is the empty set.

The above procedure can still leave some of the references unresolved due to overlap of bounding
intervals. The procedure was useful for providing intuition behind the generic method of solving references
using bounding intervals which we will describe next.

Recall that resolving reference rik translates into determining which wj among w1, w2, . . . , wN has the
maximum value. To achieve this goal notice that for each option weight wj we can determine its bounds[
w�
j , w

�
j

]
. We can treat each wj as a random variable with its probability density function (pdf) defined

on
[
w�
j , w

�
j

]
. To be concrete, let us assume that each wj (j = 1, 2, . . . , N) is uniformly distributed on[

w�
j , w

�
j

]
. Now, we can compute the probability pj that given wj (j = 1, 2, . . . , N) has the maximum

value, among w1, w2, . . . , wN , given their bounding intervals and pdfs. Methods for efficient computation
of such probabilities for arbitrary bounding intervals and arbitrary pdfs have been studied extensively
in [10, 9, 11]. Therefore, with each reference rik we can associate two values 〈jik, pik〉 defined as follows:
pik = maxl=1,2,...,N pl, and jik = j : pj = pik. That is, for reference rik, entity yjik has the highest probability
(pik) to be r∗ik, where pik is computed based on the current bounding intervals and pdfs. Notice, for each
reference rik from set R defined above, the value of pik is always 1.0 (e.i., 100%).

15More precise bounds can be computed (quickly as well) by various methods. For instance, many terms of the equations
being considered are in the form of

wj

c+w1+w2+···wn
, where 1 ≤ j ≤ n, and c is a non-negative constant. We can bound those

by noticing that
wj

c+w1+w2+···wn
∈ [
0, 1

c+1

]
, given that 0 ≤ wl ≤ 1 (l = 1, 2, . . . , n).

47 Tuesday 4th January, 2005 22:14

Exploiting relationships for domain-independent data cleaning. SIAM SDM 2005 (ext. ver.)

The generic algorithm can employ those jik’s and pik’s to solve (7) in a variety of ways. For example,
it can always maintain the value pmax of the maximum of all pik. It each step it can resolve each reference
rik for which pik = pmax to the corresponding yikjik and assign weight of 1 to wikjik and weight of 0 to
wikl (l = 1, 2, . . . , |Sik|, l �= jik). Notice, this weight assignment can shrink certain bounding intervals and
therefore change jik’s and pik’s. The algorithm proceeds until no unresolved references are left. Since at
each step the algorithm resolves at least one reference, the algorithm is guaranteed to terminate.

C Alternative WM formulae

C.1 Addressing drawbacks of Equation (4)

One could argue that the formula in Equation (4) does not address properly the situation illustrated in
Figure 56. In the example in Figure 56, when disambiguating references rik the choice set for this reference
Sik has three elements y1, y2, and y3.

In Figure 56(a) the connection strengths cj =

[a] [b]

1
w1=~1/3

w
3=~1/3

w2=~1/3

c1=0

c2=0
c3=small

vi vi

vy1

vy2

vy3

[c]

c1=0

c2=0
c3=large

vi

vy1

vy2

vy3

vy1

vy2

vy3

v*ik

[d]

1
w1=~0

w
3=~1

w2=~0vi

vy1

vy2

vy3

v*ik

Figure 56: Motivation for Normalization method 2

c(xi, yj) (j = 1, 2, 3) are as follows: c1 = 0, c2 = 0,
and c3 is a nonnegative value which is small. That
is, RelDC has not been able to find any evidence
that r∗ik is y1 or y2 and found insubstantial evidence
that r∗ik is y3. However Equation (4) will compute
w1 = 0, w2 = 0, and w3 = 1, one interpretation of
which might be that the algorithm is 100% confi-
dent y3 is r∗ik.

One can argue that in such a situation, since
the evidence that r∗ik is y3 is very weak, w1, w2,
and w3 should be roughly equal. That is, their
values should be close to 1

3 in this case, as shown
in Figure 56(b), and w3 should be slightly greater than w1 and w2.

Figure 56(c) is similar to Figure 56(a), except for c3 is large with respect to other connection strengths
in the system. Following the same logic, weights w1 and w2 should be close to zero. Weight w3 should be
close to 1, as in Figure 56(d).

We can correct those issues with Equation (4) and achieve the desired weight assignment as follows.
We will assume that since y1, y2, and y3 are in the choice set Sik of reference rik (whereas other entities
are not in the choice set), in such situations there is always a very small default connection strength α
between each xi and yj. That is, Equation (4) is modified and the weights are assigned as follows:

wj =
(cj + α)∑N
l=1(cl + α)

. (28)

where α is a small positive weight: α∈R
+. Equation (28) corrects the mentioned drawbacks of Equation (4).

48 Tuesday 4th January, 2005 22:14

