
Exploiting relationships for object consolidation∗†

Zhaoqi Chen Dmitri V. Kalashnikov Sharad Mehrotra

Computer Science Department
University of California, Irvine

Appeared in International ACM SIGMOD Workshop on Information Quality in Information Systems (ACM IQIS), June 2005

ABSTRACT
Data mining practitioners frequently have to spend signifi-
cant portion of their project time on data preprocessing be-
fore they can apply their algorithms on real-world datasets.
Such a preprocessing is required because many real-world
datasets are not perfect, but rather they contain missing, er-
roneous, duplicate data and other data cleaning problems.
It is a well established fact that, in general, if such prob-
lems with data are not corrected, applying data mining al-
gorithm can lead to wrong results. The latter is known as
the “garbage in, garbage out” principle. Given the signif-
icance of the problem, numerous data cleaning techniques
have been designed in the past to address the aforemen-
tioned problems with data.

In this paper, we address one of the data cleaning chal-
lenges, called object consolidation. This important challenge
arises because objects in datasets are frequently represented
via descriptions (a set of instantiated attributes), which
alone might not always uniquely identify the object. The
goal of object consolidation is to correctly consolidate (i.e.,
to group/determine) all the representations of the same ob-
ject, for each object in the dataset. In contrast to traditional
domain-independent data cleaning techniques, our approach
analyzes not only object features, but also additional se-
mantic information: inter-objects relationships, for the pur-
pose of object consolidation. The approach views datasets
as attributed relational graphs (ARGs) of object represen-
tations (nodes), connected via relationships (edges). The
approach then applies graph partitioning techniques to ac-
curately cluster object representations. Our empirical study
over real datasets shows that analyzing relationships signif-
icantly improves the quality of the result.

1. INTRODUCTION
Nowadays data mining techniques are widely used to an-

alyze data for scientific applications and business decision
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making. To build proper models and compute accurate re-
sults it is important that analyzed datasets are accurately
represented and interpreted. Many real-world datasets how-
ever are not perfect, they frequently contain various data
cleaning issues such as incomplete, erroneous and duplicate
data, which need to be addressed before data mining tech-
niques can be applied. As a result, data mining practitioners
frequently spend significant effort on preprocessing of data
to address cleaning issues that exist in their datasets, to
ensure high quality of the results.

In this paper, we address one common data cleaning chal-
lenge known as object consolidation [8, 20, 22, 25]. It arises
most frequently when the dataset being processed is con-
structed by merging various data sources into a single unified
database, such as by crawling the web. In many real-world
datasets objects/entities are not represented by unique iden-
tifiers, instead an object is represented by a description (a
set of instantiated attributes), used in a certain context,
which may lead to ambiguity. An object might have multiple
different representations in the dataset and also an object
representation, in general, might match the description of
multiple objects instead of one. The goal of object consoli-
dation is to correctly group all the representations that refer
to the same object.

For example, consider a database that contains informa-
tion about two people: ‘John A. Smith’ and ‘John B. Smith’.
Firstly, entity ‘John A. Smith’ might have multiple repre-
sentations throughout the dataset: e.g., ‘John Smith’, ‘J.
Smith’ ‘John Smithx’ (a misspelled representation). Sec-
ondly, representation ‘J. Smith’ can refer to both ‘John A.’
and ‘John B.’ Smith, so one representation matches the de-
scriptions of multiple entities. Finally, the fact that there are
only two ‘John Smith”s in the dataset might not be known
in general. Thus, for this example the goal is to determine
that all ‘John Smith’ representations should be clustered
into two groups and then assign them to groups such that
all representations for ‘John A. Smith’ are in one group and
for ‘John B. Smith’ in the other. Sometimes it is possible to
infer more attributes/information from the context in which
representations appear. For example, for ‘J. Smith’ used in
a specific context, it might be known that the mentioned
‘J. Smith’ works at MIT. This context information can be
potentially used to consolidate representations better.

Let us use an example to demonstrate the implication
of applying data analysis techniques on datasets where the
object consolidation problem is not resolved correctly. Con-
sider the task of computing author impact in a citation net-
work using a simple citation-count statistic. That is, the
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task might be to compute the impact of ‘John A. Smith’ by
counting the number of citations of his publications. This
simple task might be more difficult than it seems due to the
problem with representations identified above. Notice, even
though the representations appear in some context, the in-
formation about the object available from the context might
be of a limited nature, which makes the object consolidation
task challenging. For instance, the only direct information
available about the authors, for some of the publications,
might be only their first initials and last names. Because
of such problems with representations, some of the papers
written by ‘John A. Smith’ might be wrongfully assigned
to other authors and some of the papers written by other
authors might be assigned to ‘John A. Smith’. Thus, the
impact of ‘John A. Smith’, computed on such a dataset, can
be very different from the real one.

While the object consolidation problem exists in differ-
ent domains, in this paper we will often use citation net-
works, like in the example above, to illustrate our domain-
independent approach.

The problem of object consolidation is related to the prob-
lem of record deduplication or record linkage [1,10,13,19,23]
that often arises when multiple tables (from different data
sources) are merged to create a single database. The causes
of record linkage are similar, i.e. differences in represen-
tation of objects across different datasets, entry errors, etc.
The difference between the two problems is that while record
linkage deals with records in a table, object consolidation
deals with entities/objects – a semantic concept of a higher
level. In record linkage it is often assumed that many at-
tributes are available in each record, which are very effec-
tively employed for deduplications. In object consolidation,
however, very few attributes can be available, thus making
the problem more challenging.

Another related problem is the problem of reference dis-
ambiguation [14, 18]. In the problem of reference disam-
biguation the goal is to match object representations with
the list of possible objects which is known in advance and
known to be clean. The requirement of having such a clean
list of objects limits the applicability of reference disam-
biguation. As a rule, each instance of the reference disam-
biguation problem can be formulated as an instance of the
object consolidation problem, while the reverse is not true.
That is, the object consolidation problem is more general.

Most of the traditional domain-independent data clean-
ing techniques belong to the class of feature-based similarity
(FBS) methods.1 To determine if two objects/records are
the same they employ a similarity function that compares
values of object/record attributes (features) for the purpose
of deduplication. The values of the attributes of an object
are typically derived from the object representation and the
context in which it is used. In this paper, we study a domain-
independent approach that utilizes not only features but also
additional semantic information present in datasets: inter-
object (chains of) relationships. For instance, ‘J. Smith’

1For example, two strings ‘J. Smith’ and ‘John Smith’, while
not identical, are sufficiently similar to suggest that one can
be the other and FBS techniques can detect that. It can also
be known from the context that the mentioned ‘J. Smith’
works at MIT and ‘John Smith’ works at MIT, then FBS
approaches can use this additional attribute (affiliation) and
suggest that they are now more confident that the two rep-
resentations refer to the same person.

might be used to refer to an author in the context of a par-
ticular publication. This publication might also have more
authors, which can be linked to their affiliated organizations
and so on, forming a web of entities inter-connected via rela-
tionships. The knowledge of relationships can be exploited
alongside attribute-based similarity resulting in improved
accuracy of object consolidation. Our approach is based on
the following hypothesis, which is referred to as the Context
Attraction Principle (CAP):

The CAP hypothesis:
• if two representations refer to the same entity, there

is a high likelihood that they are strongly connected to
each other through multiple relationships, implicit in
the database;

• if two representations refer to different entities, the
connection between them via relationships is weak, com-
pared with that of the representations that refer to the
same entity.

Our approach views the underlying database as an at-
tributed relational graph (ARG), where nodes correspond
to object representations and edges correspond to relation-
ships. Our technique first uses feature-based similarity, to
determine if two representations can refer to the same ob-
jects. If, based on the FBS similarity, two representations
can refer to one object, then the relationships between those
representations are analyzed to measure the connection strength
between them. Graph partitioning techniques are then em-
ployed to consolidate the representations of objects based on
the FBS similarity and connection strength among them.

The primary contributions of this paper are:

• A novel object consolidation approach, which, unlike
traditional techniques, employs not only attribute (fea-
ture) similarity, but also analyzes inter-object rela-
tionships to improve the quality of consolidation (Sec-
tion 4).

• Novel metrics to analyze the quality of the outcome
(Section 4.3).

• An empirical evaluation of the proposed technique,
that establishes that analyzing relationships is impor-
tant for object consolidation (Section 5).

Next, in Section 2, we present a motivational example and
then, in Section 3, we formalize the problem and introduce
the notation necessary to explain the approach.

2. MOTIVATING EXAMPLE
In this section we use an instance of the “author match-

ing” problem to illustrate that exploiting chains of relation-
ships, that exist among entities, can improve the quality of
object consolidation.

Consider a toy database consisting of the author and pub-
lication records shown in Figures 1 and 2 on the facing
page. Assume that the publications are represented in the
database using the attributes 〈id,title,authorRef1, . . . ,
authorRefN〉, where id is the paper identifier, title is the
paper title, and authorRef’s are the names of the authors
of the paper. Suppose that the author information is stored
in the form 〈id,authorName,affiliation〉, where id is the
author identifier, authorName and affiliation are the au-
thor’s name and affiliation.
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〈P1, Title1, ‘John Smith’, ‘Alan White’〉
〈P2, Title2, ‘Alan White’, ‘Mike Black’〉
〈P3, Title3, ‘J. Smith’, ‘Mike Black’〉
〈P4, Title4, ‘Tom Grey’, ‘John Smith’〉
〈P5, Title5, ‘Tom Grey’, ‘Kate Red’〉

Figure 1: Publication records

〈A1, ‘John Smith’, ‘MIT’〉
〈A2, ‘John Z. Smith’, ‘CMU’〉
〈A3, ‘John Smith’, ‘Stanford’〉
〈A4, ‘Alan White’, ‘MIT’〉
〈A5, ‘Mike Black’, ‘NEC’〉
〈A6, ‘Tom Grey’, ‘Intel’〉
〈A7, ‘Kate Red’, ‘Stanford’〉

Figure 2: Author records
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Figure 3: Graph for toy database.
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Figure 4: Adding context info.
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Figure 5: Adding relshp analysis.

We assume that in this database we are only uncertain
about representations of people. For instance, we are uncer-
tain to which author the representation ‘John Smith’ in the
paper P1 refers to: A1, A2, or A3. For that matter, we are
also uncertain, whether A1, A2, or A3 are representations of
different people, or they are just duplicate records. The lat-
ter can be the case, for instance, if ‘John Smith’ was a grad-
uate student at MIT and then became a faculty at CMU,
so A1 and A2 are duplicates in this scenario. However, un-
der our assumptions, we are certain that the representation
‘MIT’ in A1 is the same organization as the ‘MIT’ in A4,
because these two representations are of the type affiliation,
and not of the type people.

Traditional FBS techniques. To solve this problem
using traditional techniques one would first try to dedupli-
cate author records. After that, those records would be as-
sumed to uniquely represent each distinct author and the
goal would be to match authorRef’s in publication records
to the correct authors. For example, existing feature-based
similarity techniques can be used to compare the descrip-
tion in each authorRef in publication records with the val-
ues of the authorName attribute in authors records. Using
this technique we can accurately consolidate most of the
representations for our toy database, except for the ‘John
Smith’ representations. For example, the author represented
as ‘Alan White’ in publications P1 and P2 will be mapped
uniquely to the author record A4 for ‘Alan White’; ‘Mike
Black’ in publications P2 and P3 will be correctly mapped
to A5 and so on. The only difficulty will be with ‘John
Smith’ and ‘J. Smith’ in P1, P3, and P4, since each of
them can correspond to either A1, A2, or A3.

Let us note that we can visualize the resulting dataset
as a graph. In this graph, each entity/object, as well as the
not-yet-consolidated representations, become nodes. The re-
lationships that exist among them are visualized as edges.

The graph for the toy database is illustrated in Figure 3.
For instance, since author A1 is affiliated with ‘MIT’, there is
an edge between them, that corresponds to this relationship.
Since, under our assumptions, ‘MIT’ uniquely identifies the
corresponding entity, only one node is created for all ‘MIT’
representations. However, each ‘John Smith’ has a separate
node in this figure.

Employing context. The most recent data cleaning

techniques, such as [7], are also capable of employing the
context to improve the quality of cleaning. There might
be additional context information (‘context attributes’) that
such algorithms might be able to use.

For instance, if it is also known that the coauthor of P1,
‘Alan White’, is from ‘MIT’, then, given that A1 is from
‘MIT’ as well, we may decide that ‘John Smith’ in P1 refers
to A1 and not to A2 or A3. As another example, if we
already know that A2 has papers with titles similar to that
of P3, then we can infer that ‘J. Smith’ in P3 refers to
A2. The resulting dataset can be visualized as the graph
illustrated in Figure 4, where R1, A1, and R2, A2 are shown
to be merged into two nodes.

Analyzing relationships. Now we will show how addi-
tional semantic information, stored in the relationships that
exist between entities, can help to improve the quality of
cleaning even further.

Observation 1: (‘John Smith’ in P1). First, to handle
author ‘John Smith’ in P1, we observe that his co-author
‘Alan White’ has also written a paper P2 with ‘Mike Black’,
who in turn has a paper P3 with ‘J. Smith’. This gives us
certain evidence that ‘John Smith’ in P1 is the same person
as ‘J. Smith’ in P3. The intuition behind it is that people
in the similar/related research areas tend to cooperate with
each other and form co-authorship networks. Based on this
evidence, we might decide that P1 and P3 are written by
the same author, whose name is ‘John Smith’.

Recall, by using the context, we have determined above
that ‘John Smith’ in P1 refers to A1, and ‘J. Smith’ in P3
to A2. Therefore, the evidence suggests that A1 and A2 are
duplicate records for the same author – the fact that was not
captured by the above feature-based similarity algorithm!

Observation 2: (‘John Smith’ in P4). Consider the task
of deciding whether the representation ‘John Smith’ in P4
refers to A1, A2, or A3. Observe that the coauthor of that
paper, ‘Tom Grey’, has a paper P5 with ‘Kate Red’, who is
at ‘Stanford’. The author A3 is also at ‘Stanford’, and thus
we are able to establish a connection between ‘John Smith’
in P4 and A3. Given that there are no such connections
to A1 an A2 that we can find, we might decide that ‘John
Smith’ in P4 probably refers to A3.

Generic approach. At first glance, the analysis in Ob-
servations 1 and 2 might seem to be domain-specific. How-
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ever, a domain-independent approach emerges if we view the
underlying database as a graph of object representations
(modeled as nodes) linked to each other via relationships
(modeled as edges). The analysis can be viewed as applica-
tion of the CAP hypothesis to the toy database, represented
as the graph in Figure 4.

The first observation we made, regarding R1 and R2 being
two representations for the same author, was based on the
presence of the path (we use ‘path’, ‘relationship chain’, and
‘connection’ interchangeably):

R1 → P1 → A4 → P2 → A5 → P3 → R2.

Via this path, we were able to ‘connect’ R1 and R2.
The second observation we made regarding disambigua-

tion of ‘John Smith’ in P4 was based on the presence of the
path

R3 → P4 → A6 → P5 → A7 → ‘Stanford’ → A3.

Via this path, we ‘connected’ R3 and A3.
Figure 5 shows the resulting graph, which reflects the out-

come of the above analysis. In this figure, R1, R2, A1, and
A2 are grouped together (forming the first group), since,
those representations are likely to refer to the same person.
Similarly, R3 and A3 are grouped as well, forming the sec-
ond group. Let us observe that the graph in Figure 4 can
be split into two connected subgraphs G1 and G2, such that
G1 contains nodes of the first group and G2 of the second
group.

In general, connections between representations can be
more complex than those in this example. Therefore, a simi-
lar analysis may need to measure and compare the “strength”
in the connections that exists between various entities.

Thus, the generic approach for object consolidation may
consist of the following steps. First, the approach identifies
the representations that can refer to the same entity. Then,
it discovers connections between these representations and
measures the connection strength between them to obtain
the evidence to be used in the consolidation process. The
algorithm then employs a graph partitioning algorithms to
group the representations into clusters, such that the con-
nections among the nodes in the same cluster are strong,
and among the nodes across the clusters are weak, to satisfy
the CAP principle.

Naturally, one should demonstrate that the CAP hypoth-
esis holds over real datasets by designing a generic solution
to exploiting relationships for object consolidation. We will
develop one such general domain-independent strategy in
Section 4. We perform an extensive study of the proposed
approach over a real dataset, to establish that exploiting
relationships can further improve the quality of object con-
solidation. Before we develop our solution, we first introduce
the notation and concepts needed to explain the approach,
in Section 3.

3. PROBLEM FORMULATION

3.1 Notation
Let D be the database being processed. We will use

O = {o1, o2, . . . , o|O|} to denote the set of all entities (or,
objects) in D. ‘Entities’ here have the same meaning as in
the E/R model. Various consolidation scenarios are possi-
ble w.r.t. O. In one scenario, the consolidation algorithm
has some information about the objects in O and about the

cardinality of O. A more complicated scenario is when no
information about the number or the nature of the objects
in O is available.

Entities are referred in the database via representations.
Let X = {x1, x2, . . . , x|X|} (where |X| ≥ |O|) be the set of
all representations in D. A representation is a description
of an entity, which may consist of one or more attributes.
For instance, in the toy database in Section 2, authorRef
representations consist of only one attribute 〈author name〉.
If, besides author names, author affiliation were also stored
in the publication records, then authorRef references would
have consisted of two attributes – 〈author name, author
affiliation〉.

Each representation xi semantically refers to a single spe-
cific entity in O, which we denote by d[xi], where d[xi], in
general, is unknown to the consolidation algorithm. The
goal is to group all the representations in X into a set C of
|O| non-empty clusters, C = {C1, C2, . . . , C|O|}, such that
all the representations in one cluster refer to the same en-
tity, and no two representations from two different clusters
refer to the same entity.2 That is, for any two represen-
tations x and y from the cluster Ci it should follow that
d[x] = d[y]. Similarly, for any two representations x and y

from two distinct clusters Ci and Cj , it should follow that
d[x] 6= d[y].

We will use C[xi] to denote the group set of xi – the set of
all the representations from X that refer to the same entity
as xi, and thus should be put into the same group with xi:
C[xi] = {xj ∈ X : d[xj ] = d[xi]}. Similar to d[xi], the
group set C[xi], in general, is unknown to the consolidation
algorithm. Given this notation, the goal can be reformulated
as determining C[xi] for each xi ∈ X. Let S[xi] denote
the consolidation set of xi – the set of all representations
from X such that xi and any representation from S[xi] can
potentially refer to the same entity based on their feature-
based similarity. That is, S[xi] = {xj : sim(xj , xi) > τ},
where sim denote a feature-based similarity function and τ

is some threshold. We assume that C[xi] ⊆ S[xi].
To illustrate these concepts, consider the database in Ta-

ble 1 on the next page. It contains four representations of
people: x, xA, xB , and y. Assume that those representation
are not misspelled, and therefore xA and xB cannot refer to
the same person, i.e. d[xA] 6= d[xB ]. Suppose that x and xA

are representations of one person, xB is of another person,
and y is of a third person. Then the corresponding cluster
sets and consolidation sets are shown in Table 1.
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Figure 6: Similarity edges.

Figure 6 graphically illustrate this example. In this fig-
ure, a node is created per representation and a similarity
edge is created between two nodes only if the corresponding

2Notice, the goal is only to be able to accurately group rep-
resentations, not to infer any information about the entities
they represent, etc.
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Representations C S S∗

x = ‘J. Smith’ C[x] = {x, xA} S[x] = {x, xA, xB} S∗[x] = {x, xA, xB}
xA = ‘J. A. Smith’ C[xA] = {x, xA} S[xA] = {x, xA} S∗[xA] = {x, xA, xB}
xB = ‘J. B. Smith’ C[xB ] = {xB} S[xB ] = {x, xB} S∗[xB ] = {x, xA, xB}

y = ‘Alan White’ C[y] = {y} S[y] = {y} S∗[y] = {y}

Table 1: Example to illustrate the notation.

representations may refer to the same entity, as determined
by their feature-based similarity.

In general, such a virtual similarity graph can be created
for the set X of all the representations in D. Typically, this
graph is composed of multiple virtual connected subgraphs
(VCS). To define the VCS for a representation xi, we first
define the set of all the representations S∗[xi] that belong to
the same VCS as xi. The set S∗[xi], consists of xi and each
representation y ∈ X, such that there exist a path xi ;

y, consisting of only similarity edges. Notice that C[xi] ⊆
S[xi] ⊆ S∗[xi], as illustrated in Table 1. For instance, the
graph in Figure 6 consists of two VCS’s: one with nodes
{x, xA, xB} and the other one with node {y}.

The concept of a VCS is useful because the representations
that belong to different VCS’s cannot refer to the same en-
tity. This allow us to cluster references in a “one VCS at a
time” fashion.

3.2 The Attributed Relational Graph
Our consolidation approach views the database D as an

undirected attributed relational graph (ARG) G = (V, E),
where V is the set of nodes and E is the set of edges. ARGs
are often utilized by various applications to represent the
entities (nodes) in a dataset, connected via relationships
(edges). The graph is called attributed because attributes
can be associated with both the edges and nodes of such
a graph. We use ARGs in a similar manner, as elaborated
below.

Nodes. In real-world datasets all the representations
can be divided into two categories: those for which consoli-
dation is trivial and those for which this task requires extra
processing. For instance, in the toy database all representa-
tions of affiliations can be trivially consolidated by applying
feature-based similarity since this similarity was sufficient to
uniquely identify each distinct entity. However, consolida-
tion of certain author representations required an additional
processing. For those cases where consolidation is trivial,
the representations of the same entity are clustered, and a
node is created per the resulting cluster of representations.
For those cases where consolidation is not trivial, a node is
created per representation. Figure 4 illustrates the result-
ing graph for the toy database from Section 2. Let us note
that the way our approach creates nodes closely resembles
the way they are typically created in ARGs – to represent
distinct entities.

Edges. The approach handles two types of edges: regular
and similarity edges. Regular edges connect representations
of entities if they are related via relationships.3 For instance,

3We will concentrate primarily on binary relationships.
Multiway relationships are rare and most of them can be
converted to binary relationships [11]. Most of the de-
sign models/tools only deal with binary relationships, for
instance ODL (Object Definition Language) supports only
binary relationships.
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Figure 7: Virtual connected subgraph

in the graph in Figure 3 in Section 2, edges connect all the
representations of authors and the papers they have written.
A similarity edge is created for each pair of representation
that can refer to the same entity (based on feature-based
similarity). Each similarity edge has a weight associated
with it (a real number from [0,1] interval) which reflects the
degree of similarity between the two representations based
on their features. Similarity edges for the toy database are
illustrated in Figure 7.

Figure 8: Graph Example

Representing nodes and edges graphically. We will
use solid lines to graphically represent regular edges and
broken lines for similarity edges. Nodes that correspond to
already consolidated clusters of representations will not have
color; representations that are yet to be consolidated are
represented as shaded nodes. So an ARG might look like
the one illustrated in Figure 8. Notice how the similarity
edges define the three distinct VCS’s in this example.

3.3 Connection Strength
In Section 1, we discussed that the approach consolidates

representations based on the CAP hypothesis. To achieve
that, it utilizes the notion of connection strength between
two representations x and y, denoted as c(x, y). This mea-
sure captures how strongly x and y are connected to each
other via relationships. Many different models for comput-
ing c(u, v) have been proposed in the literature, and we will
take up one of them in Section 4.1.

4. THE CONSOLIDATION ALGORITHM
We now have developed all the concepts and notation

needed to explain our approach for object consolidation.
The approach exploits both features and relationships for
the purpose of consolidation, and outputs the resulting clus-
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tering as the outcome. The approach consolidates represen-
tations using the following steps:

1. Construct the ARG and identify all VCS’s. The
first step is to construct the ARG for the dataset. We
assume that feature-based similarity is used in con-
structing such a graph. This step has been explained
in detail in Section 3.2.

2. Choose a VCS and compute c(u, v)’s. Pick a VCS
in the ARG to be partitioned next. Then, compute the
connection strength c(u, v) for each pair of represen-
tations u and v in the VCS that are connected via a
similarity edge.

3. Partition the VCS. Take, from Step 2, the VCS
and the connection strength values. Use a graph par-
titioning algorithm to partition the VCS into clusters.
The partitioning is carried out based on the connec-
tion strengths. After the VCS is partitioned, adjust
the ARG accordingly. If the VCS was the last to be
partitioned, then stop. Otherwise, go to Step 2.

We now discuss the above steps in more detail in the fol-
lowing subsections.

4.1 Computing Connection Strength
The connection strength measure c(u, v) for two objects

u and v computes how strongly they are connected to each
other via relationships.

4.1.1 Existing models.
Recently, there has been a spike of interest by various

research communities in the measures directly related to the
c(u, v) measure. Since the c(u, v) measure is at the core
of the proposed consolidation approach, we next analyze
several principal existing models for computing c(u, v).

Diffusion Kernels. The earliest work in this direction
that we can trace is in the area of kernel-based pattern anal-
ysis [29]. The kernel methodology currently undergoes very
active development, and shows a great promise for improv-
ing various pattern analysis tasks. In particular, this area
studies ‘diffusion kernels on graph nodes’, which are of direct
interest in our context and are defined as follows.

A base similarity graph G = (S, E) for a dataset S is
considered. The vertices in the graph are the data items
in S. The undirected edges in this graph are labeled with
a ‘base’ similarity τ(x,y) measure. That measure is also
denoted as τ1(x,y), because only the direct links (of size
1) between nodes are utilized to derive this similarity. The
base similarity matrix B = B1 is then defined as the matrix
whose elements Bxy, indexed by data items, are computed
as Bxy = τ(x,y) = τ1(x,y). Next the concept of base
similarity is naturally extended to path of arbitrary length
k. To define τk(x,y), the set of all paths P k

xy of length k

between the data items x and y is considered. The similarity
is defined as the sum over all these paths of the products of
the base similarities of their edges:

τk(x,y) =
∑

(x1x2...xk)∈P k
xy

k∏

i=1

τ1(xi−1,xi)

Given such τk(x,y) measure, the corresponding similarity
matrix Bk is defined. It can be shown that Bk = Bk. The

idea behind this process is to enhance the base similarity by
those indirect similarities. For example, the base similarity
B1 can be enhanced with similarity B2, e.g. by consider-
ing a combination of the two matrices: B1 + B2. The idea
generalizes to more then two matrices. For instance, by ob-
serving that in practice the relevance of longer paths should
decay, it was proposed to introduce a decay factor λ and de-
fine what is known as the exponential diffusion kernel: K =∑∞

k=0
1
k!

λkBk = exp(λB). The von Neumann diffusion ker-

nel is defined similarly: K =
∑∞

k=0 λkBk = (I−λB)−1. The
diffusion kernels can be computed efficiently by performing
eigen-decomposition of B, that is B = V′ΛV, where the
diagonal matrix Λ contains the eigenvalues of B, and by
making an observation that for any polynomial p(x), the
following holds p(V′ΛV) = V′p(Λ)V. The elements of the
matrix K exactly define what we refer to as the connection
strength: c(x,y) = Kxy.

The solutions proposed for the diffusion kernels work well,
if the goal is to compute c(u, v) for all the elements in the
dataset. They are also very useful for illustration purposes
and similar in nature (though cannot be used “as is”) to the
weight-based model we employ in our previous work [14,
17]. However, in data cleaning, the task is frequently to
compute only some of c(u, v)’s, thus more efficient solutions
are possible. Also, often after computing one c(u, v), the
graph is adjusted in some way, which affects the values of
c(u, v)’s computed after that.

Relevant importance in graphs. White et al. in [33]
consider the problem of computing ‘relevant importance’ of
a set of nodes in a graph with respect to the set of ‘root’
nodes. The problem of computing c(u, v) can be postulated
as computing the relevant importance of node u with re-
spect to the root node v. In [33] several known techniques
are evaluated for their goal. Basic techniques, such as the
length of the shortest paths between u and v, are compared
against more involved ones, which are similar to the diffu-
sion kernels. In the context of our problem, the work in [33]
has an advantage over the work on kernels, because [33] fo-
cuses on efficient computation of one c(u, v), whereas the
kernel methods compute the whole similarity matrix K.

Electric circuit analogy. Faloutsos et al. in [9] con-
siders a model for computing c(u, v). They view the graph
as an electric circuit consisting of resistors, and compute
c(u, v) as the amount of electric current that goes from u

to v. One of the primary contributions of that paper is the
optimizations that scale their approach to large graphs.

Random walks in graphs. Another common model
used for computing c(u, v) is to compute it as the probability
to reach node v from node u via random walks in the graph.
That model has been studied extensively, including in our
previous work [14,17].

Problems with existing models. In the context of
data cleaning, the existing techniques have several disad-
vantages. One disadvantage is that the true ‘base’ similarity
is rarely known in real-world datasets. Some existing tech-
niques try to mitigate that by imposing a similarity model.
However, the CAP principle implies its own similarity mea-
sure, and any imposed model, created for its own sake in
isolation from the specific application, might have little to
do with it. Ideally, the similarity measure should be de-
rived directly from data for the specific application at hand
that employs it. One step toward achieving this, is to con-
sider parameterized models and then try to learn an optimal
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combination of parameters directly from data. We have ex-
plored such an approach in [16] for the problem of reference
disambiguation. Next we will present the c(u, v) model we
use in this paper for object consolidation. That model is
parameterized, however in this paper we do not study how
to learn the right parameters, but rather assume they are
assigned by the domain analyst, as we will elaborate shortly.
Let us note that our overall approach is independent from
a particular c(u, v) model, and a different model, e.g. [17],
can be utilized for this purpose.

4.1.2 The connection strength model.
The c(u, v) model we use is very similar to that of the

diffusion kernels. To compute c(u, v), the set of all L-short
simple paths PL(u, v) between u and v is analyzed, where
a path is L-short if its length does not exceed L. The total
connection strength between nodes u and v is computed as
the sum of connection strengths of paths in PL(u, v):

c(u, v) =
∑

p∈PL(u,v)

c(p). (1)

The connection strength c(p) of each individual path p

is computed the same way as in the kernel formulae: as a
product of base similarities of edges.

The differences between the proposed model M and that
of the kernels MK are as follows. The model MK employs
the decay factor λ, whereas M does not. In MK , we have
L = ∞, in M the parameter L is finite, e.g. L = 5. In
MK all base similarities τ(u, v) are known, in M we will
derive them in a particular way: the ultimate goal (not con-
sidered in this paper) is to eventually to be able to learn
them directly from data.

The procedure for computation c(u, v) consists of two log-
ical phases. The first phase discovers connections/paths be-
tween u and v. The second phase computes/measures the
strength in connections discovered by the first phase.

The connection discovery phase. In general there
can be many connections between nodes u and v. Intuitively,
many of those (e.g., very long ones) are not very important.
To capture most important connections while still being ef-
ficient, the algorithm computes the set of all L-short simple
paths PL(u, v) between nodes u and v in graph G. This
algorithm is the bottleneck of the overall approach. Several
optimizations of this algorithms has been studied in [14,17],
which achieve orders of magnitude in improvement. In this
paper we employ the same optimizations.

The second phase computes the strength in the discovered
connections using Equation (1). We are yet to specify how
we compute the connection strength c(p) of each individual
path p from PL(u, v) in Equation (1). Let us address this
issue.

Motivating c(p) formula. Which factors should be
taken into account when computing the connection strength
c(p) of each individual path p? Figure 9 illustrates two
different paths (or connections) between nodes u and v:
pa = u → a → v and pb = u → b → v. Let us under-
stand which connection is better.

Both connections have the same length of two. One con-
nection is going via node a and the other via node b. The
intent of Figure 9 is to show that node b “connects” many
nodes, not just u and v, whereas node a “connects” only u

and v. For instance, in the context of the author matching
problem u and v can be two authors, a can be a publication
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Figure 9: Motivating c(p).
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Figure 10: c(p).

Figure 11: Experiments

and b a university, as illustrated in Figure 10. We argue the
connection between u and v via b is much weaker than the
connection between u and v via a: since b connects many
nodes, it is not surprising we can connect u and v via b as
well. Notice, measures such as path length, network flow do
not capture the fact that c(pa) > c(pb).

We compute c(p) as follows. Let us assume first that path
p consists of only regular edges, and no similarity edges. All
edges in the ARG can be classified into a finite set of types
T = {T1, T2, . . . , Tm}. For example, for the author matching
problem, type T1 can be the edges that connect authors and
publications, type T2 can be the edges that connect authors
and their affiliated organizations. So path pa in Figure 10
can be viewed as a 〈T1, T1〉 path and path pb as a 〈T2, T2〉
path. Each edge type Ti has a weight wi (a real number from
[0,1] interval) associated with it. The connection strength
of path p is computed as the product of weights associated
with its edge types. For example, if path p contains n1

edges of type T1, n2 edges of type T2 and so on, then c(p) is
computed as

c(p) = w
n1

1 w
n2

2 × · · · × w
nm

m . (2)

Assigning weights. An important question is how those
wi weights are determined. There are several methods to
accomplish that, we will briefly discuss only two methods:

1. The weights are assigned by the domain analyst.
2. The weights are learned from data using a supervised

learning algorithm.

The first case is straightforward: the domain analyst, who
is well-familiar with the dataset and the nature of this al-
gorithm, picks the appropriate weights. However, it is of-
ten desirable to minimize the participation of the analyst.
Thus, in our ongoing work, e.g. [16], we address the second
case, where the challenge is to learn the weights automati-
cally, directly from training data, by employing a supervised
learning algorithm. Ideally, that solution should lead to a
self-tunable algorithm, which achieves the best quality of
consolidation.
Example. Without loss of generality, let us assume the
weights are assigned by a domain analyst. Then, in the
context of our motivating example, taking into account the
fact that connections via publications are more unique than
those via universities, the analyst might decide that the fol-
lowing combination of weights is reasonable: w1 = 1

2
and

w2 = 1
10

. So c(pa) = w2
1 = 1

4
, c(pb) = w2

2 = 1
100

, and
c(pa) > c(pb).
Paths with similarity edges. Let us consider paths that
can contain similarity edges. Recall that a similarity edge
between nodes for two representation x and y denote the fact
that there is a chance that x and y can refer to the same
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Figure 12: Paths with/without similarity edges.

entity. This edge has a weight wF associated with it, which
reflects the degree of similarity between x and y based on
their features: wF = sim(x, y). We will refer to this weight
as the FBS weight.

Let us note that a path containing a similarity edge might
not even exist in reality. For instance, in Figure 12(a) the
path consists of only regular edges and we are confident it
exists. However, the existence of the path in Figures 12(b)
depends on whether R3 and A1 refer to the same entity or
not. The same applies to R3 and A3 in Figure 12(c).

The simplest solution is not to consider paths that contain
similarity edges at all. Another (heuristic) solution we use
is to associate the same very small base weight wε for all
similarity edges. Then, compute the total weight vi of a
similarity edge as a product of its FBS weight wF and the
base weight wε: vi = wF × wε. So, if path p has ni edges
of type Ti (i = 1, 2, . . . , m) and k similarity edges with total
weights v1, v2, . . . , vk, then c(p) is computed as

c(p) = w
n1

1 w
n2

2 × · · · × w
nm

m v1v2 × · · · × vk. (3)

4.2 Consolidating objects by partitioning VCS’s
To consolidate objects we need to partition the represen-

tations in each VCS. Each VCS contains representations of
at least one object. If a representation of an object is con-
tained in a VCS, then, by construction of VCSs, the rest
of the representations of the same objects are contained in
the same VCS. Two scenarios are possible. In one scenario,
the knowledge of the number of objects contained in each
VCS is available. In the other scenario, no such knowledge
is available.

Assume we know that a given VCS contains the repre-
sentations of exactly k objects. Then, the VCS must be
partitioned into exactly k clusters. We need to consider all
possible partitions of the VCS into k clusters, which are fea-
sible according to the similarity edges in the VCS. There
might be several such partitions and we should choose the
one that best satisfies the CAP principle. We try to achieve
that by employing a min-cut algorithm proposed in [30].
The standard min-cut problem is defined as follows. Given
a weighted graph G = (V, E), the goal is to partition V into
two non-empty disjoint subsets V1 and V2, such that the to-
tal weight of the edges connecting the two parts, called the
cut (i.e., the weight of {(u, v) ∈ E : u ∈ V1; v ∈ V2}), is
minimized.

In our case, we partition V into not 2, but k subsets. The
min-cut algorithm we employ [30] has two useful properties:
(a) it utilizes a ‘normalized’ (to [0, 2] interval) cut; and (b)
it achieves the goal of minimizing connections across clus-
ters and maximizing connections inside clusters at the same
time. The former property will later allow us to specify a
single threshold per all VCS’s, while the latter property is
important to better satisfy the CAP principle.

Defining weights for partitioning. A min-cut algo-
rithm uses weights w(u, v) between nodes for partitioning.

The weights are defined as follows: if there is a similar-
ity edge between u and v then w(u, v) = c(u, v), otherwise
w(u, v) = 0. Let us note that the formula for w(u, v) can
also include the feature-based similarity sim(u, v), e.g. as a
weighted sum: w(u, v) = α × c(u, v) + (1 − α) × sim(u, v),
0 ≤ α ≤ 1. But we do not study this approach in this paper.

Further partitioning. Consider now the second sce-
nario, where we do not know the number of objects in a
given VCS. The algorithms handle this case by first parti-
tioning VCS into two parts. Then, the algorithm decides
whether to actually split the nodes into two clusters, or not.
It achieves that by comparing the value of the resulting nor-
malized cut c against predefined threshold τ . Currently, the
value of τ is not yet learned from data, but rather is set by
the domain analyst. If c > τ , the two parts are still well
inter-connected and the algorithm does not divide VCS fur-
ther into two clusters. That means the algorithm assumes
that all the representations in this VCS refer to a single real-
world entity, and hence they should be grouped together in
one cluster. On the other hand, if c < τ , the algorithm re-
peatedly partition the resulting subgraphs until c > τ . The
resulting clustering of representations is returned as the final
result of the algorithm.

4.3 Measuring the quality of outcome
The goal of object consolidation algorithms is to accu-

rately group the representations of entities. However, con-
solidation algorithms can make mistakes, and thus the qual-
ity of the outcome should be quantified. Measures known
as dispersion and diversity has been proposed before for this
purpose [2].
Dispersion. We want the representations of the same
entity to be clustered together in one cluster. The dispersion
of a given entity captures the number of distinct clusters into
which its representations are clustered. Therefore, the lesser
the dispersion the better and the ideal dispersion is 1 for a
given entity.
Diversity. We also want each cluster to contain represen-
tations of just one entity. The diversity of a given cluster
captures the number of distinct entities whose representa-
tions are in this cluster. Similarly, the lesser the diversity
the better and the ideal diversity is 1 for a given cluster.
Problems with dispersion and diversity. The disper-
sion and diversity do not always accurately reflect the qual-
ity of the outcome of object consolidation, although they
are simple and easy to understand. Consider the following
example. Assume a VCS to be partitioned is composed of
2n representations a1, a2, · · · , a2n of entity EA and of 2n

representations b1, b2, · · · , b2n of entity EB . The goal is to
group them correctly and therefore the ideal result is the
two clusters:

C1 = {a1, a2, . . . , a2n},
C2 = {b1, b2, . . . , b2n}.

The algorithm however can make mistakes and the resulting
two clusters might be:

C1 = {a1, a2, . . . , an, b1, b2, . . . , bn},
C2 = {an+1, an+2, . . . , a2n, bn+1, bn+2, . . . , b2n},

that is, half of the representations are misassigned. In an-
other situation, the two clusters might be

C1 = {a1, a2, . . . , a2n−1, b2n},
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C2 = {b1, b2, . . . , b2n−1, a2n},

that is, just one is misassigned for each cluster.
Obviously, the latter answer is better than the previous

one. However, in both situations, since the representations
of both EA and EB are scattered across two clusters, the
dispersion of each of the two entities, EA and EB , is 2.
The diversity of each of the two clusters C1 and C2 is 2,
since each cluster contains the representations of both EA

and EB . Therefore, the dispersion and diversity measures
cannot distinguish the two situations in this case.
Entropy-based quality measures. We argue that the
metrics known as entropy can be utilized to better capture
the above situations. Entropy was first proposed by Shan-
non in his famous work [28] on the mathematical theory of
communication.

The entropy of a discrete random variable X reflects the
degree of uncertainty associated with possible values of X.
Let variable X take values from set {x1, x2, . . . , xn} with the
respective probabilities p(x1), p(x2), . . . , p(xn), where p(xi) 6=
0 and p(x1) + p(x2) + · · · + p(xn) = 1. Then the entropy of
X, denoted H(X), is defined as:

H(X) =

n∑

i=1

p(xi) log2
1

p(xi)

Entropy H(X) attains its minimum value H(X) = 0, when
there exists some i such that p(xi) = 1. In that situa-
tion there is no uncertainty associated with X: the value
of X is always xi. On the other hand, H(X) attains its
maximum value in the most uncertain scenario: when all
the values x1, x2, . . . , xn are equally likely, in which case
H(X) = log2 n. Thus, H(X) ∈ [0, log2 n].
Entity entropy. Assume that a certain entity E has
m representations in the database, which are assigned to
n clusters C1, C2, . . . , Cn by the algorithm. The assign-
ment is such that m1 representations are assigned to the
cluster C1, m2 to C2 and so on, such that mi 6= 0 and
m1 + m2 + · · · + mn = m. To measure the spread of rep-
resentations of E over the clusters, we consider the frac-
tions of all representations of E assigned to each cluster Ci

(i = 1, 2, . . . , n): pi = mi

m
. Then, using those fractions, we

utilize entropy to quantify the spread of the entity’s repre-
sentations: H(E) =

∑n
i=1 pi log2

1
pi

. Let us note that the

dispersion for this case is always n. The lower the value of
H(E), the better. The ideal value is 0.
Cluster entropy. Similarly, we can define the cluster en-
tropy. Assume that the algorithm assigns to a cluster C ex-
actly m representations, that correspond to n entities. Sup-
pose that m1 of them are representations of entity E1, m2 of
E2, . . . , mn of En, where mi 6= 0 and m1 +m2 + · · ·+mn =
m. Like in the case above, we consider fractions pi = mi

m
and then use them in entropy to quantify the spread of the
cluster’s representations: H(C) =

∑n
i=1 pi log2

1
pi

. Let us

observe that the diversity in this case is always n. The
lower the value of H(C) the better, the ideal value is 0.
Example. Consider the example above with the two clus-
ters C1 and C2, and assume that n = 10. In the first situa-
tion, the entity entropy is:

H(EA) = n
2n

log2
1

n/2n
+ n

2n
log2

1
n/2n

= 1,

H(EB) = 1,

avg = H(EA)+H(EB)
2

= 1.

The cluster entropy is:

H(C1) = n
2n

log2
1

n/2n
+ n

2n
log2

1
n/2n

= 1,

H(C2) = 1,

avg = H(C1)+H(C2)
2

= 1.

In the second situation, the entity entropy is:

H(EA) = 2n−1
2n

log2
1

(2n−1)/2n
+ 1

2n
log2

1
1/2n

= 0.0703,

H(EB) = 0.0703,

avg = H(EA)+H(EB)
2

= 0.0703.

The cluster entropy is:

H(C1) = 2n−1
2n

log2
1

(2n−1)/2n
+ 1

2n
log2

1
1/2n

= 0.0703,

H(C2) = 0.0703,

avg = H(C1)+H(C2)
2

= 0.0703.

Let us observe that in contrast to the diversity and disper-
sion, the entropy-based measures do capture that the second
partitioning is better than the first one, since 0.0703 < 1.0.

5. EXPERIMENTAL EVALUATION
In this section, we experimentally study the proposed ap-

proach on a real dataset. We conducted the experiments on
a 2GHz Pentium 4 machine with 1GB RAM. In the rest of
this section, we first describe the dataset we use and then
present the experiments that test the quality and the effi-
ciency of the proposed technique.

5.1 RealMov Dataset
One of the dataset used in data cleaning research is the

movies dataset, available from [34]. It is a real public-
domain dataset. In this paper we refer to a processed ver-
sion of it as ‘RealMov’. RealMov contains entities of three
types: movies (11,453 entities), studios (992 entities), and
people (22,121 entities), which are stored in movies, studios
and people tables respectively. The movies table contains
multiple attributes, such as the title of a movie, the direc-
tor, the producer, the studio producing the movie, the studio
distributing the movie, etc. The studios table has attributes
such as studio name, the founder of the studio, the year of
foundation, etc. The people table contains attributes like a
person’s name, the date of birth, gender, etc. There is also
a cast table storing all the actors of each movie.

This dataset contains five types of (regular) relationships:
movie actor, movie director, movie producer, producingStu-
dio, and distributingStudio, which map movies to their ac-
tors, directors, producers, producing studios and distribut-
ing studios respectively. Figure 13 presents a sample graph
for RealMov dataset. Relationships movie actor, movie director,
and movie producer connect entities of type movies to enti-
ties of type people. Relationships producingStudio and dis-
tributingStudio connect entities of types movies and studios.

A clean version of this dataset is available, in which all en-
tities and relationships among them are accurately captured.
This will allow us to test the quality of various consolidation
techniques: by comparing their output against the true situ-
ation. Figure 13 shows a sample ARG for RealMov dataset.
Each entity is represented as a node, and each relationship
as an edge.

5.2 Quality experiments
Typically, two aspects of data cleaning algorithm are eval-

uated empirically: the quality of their outcome and their
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Figure 13: Graph example for movie dataset

efficiency. In this section, we study the quality of our ap-
proach on consolidating the representations of director enti-
ties. Let us note that the true mapping between the movies
and their directors is available. Having this knowledge is the
advantage of this dataset, since it will allow to compute the
quality of various consolidation techniques.
Constructing experiment data. To test our approach,
we will use a standard technique, commonly employed by
data cleaning practitioners, e.g. in [4]: we introduce un-
certainty/errors (in director representations) manually. The
uncertainty will be introduced differently in different exper-
iments, as explained next.

Assume that RealMov stores information about d1, d2, . . . , dn

director entities. We first choose randomly a fraction ρ of
those directors: all their representations will be made uncer-
tain. Based on the typical degree of uncertainty in real-world
dataset [17], we set ρ to either 1%, 5%, 10%, 15%. Suppose
that, say, the directors d1, d2, . . . , d10 were chosen. We will
make uncertain all the representations that refer to them,
whereas for the rest of the directors d11, d12, . . . , dn, all their
representations will still uniquely identify the right director.

To achieve that, we group the “uncertain” directors d1, d2,
. . . , d10 in some fashion, say in groups of two, e.g. {d1, d2},
{d3, d4}, . . . , {d9, d10}. Then, we simulate the desired FBS
uncertainty by changing all the representations of directors
that belong to one group, such that each representation can
refer to all directors in this group – if only the FBS similarity
is utilized. For instance, assume that the dataset contains a
representation r1, which could only represent d1. We mod-
ify r1 such that it will fit the description of both, d1 and
d2, – but will not fit the description of any other director.
Such a constructed dataset is characterized by two types of
parameters: ρ and the sizes of those groups.
Baseline methods. To reflect how our approach would
compare against FBS techniques, we construct two baseline
methods: Baseline 1 and Baseline 2. Recall that our algo-
rithm is applied only to ‘tough’ cases – after the existing
FBS methods have already been used to successfully con-
solidate many of the representations (e.g., those “certain”
representations). We now only test the quality of consoli-
dating those ‘tough’ cases, which cannot be disambiguated
by FBS methods.

Given that FBS cannot be used further to distinguish be-
tween the representations, whereas we would like to compare
our algorithm against at least simple solutions, we construct
our baseline methods as follows.

• Baseline 1 method creates one cluster per each VCS
and then assigns all the VCS’s representations to this
one cluster. That is, that method does not parti-
tion the VCS’s further. This näıve method always
achieves the ideal dispersion and entity entropy, be-
cause entities end up in just one cluster, as they should.
However, if the VCS contains the representation of m

objects, then the diversity of the cluster will be m,
whereas the ideal diversity is 1.

• Baseline 2 method knows the statistics of how many
director groups there are of size 2, of size 3, and so on.
Based on this statistics, for a given VCS, it first selects
the number of partitions to split this VCS into. It
then creates that many clusters, and randomly assigns
representations from the VCS to each cluster.

Experiment 1. In this experiment, we set ρ = 1% and
the size of each group of directors to be 2. The results for
ρ = 5%, 10% and 15% closely resemble those for ρ = 1%
and thus omitted. For this experiment we also make our
algorithm (and Baseline 2) aware that each resulting VCS
must be partitioned into exactly two clusters.

Figure 14(c) and 14(d) show the average diversity and
dispersion as we vary parameter L . Recall that we con-
sider only L-short paths, or paths of length no greater than
L. The results show that additional semantic information,
stored in inter-object relationship, improves the quality of
object consolidation. They also show that longer paths help
improve the quality of the outcome.

Since Baseline 1 does not partition VCS’s at all, each re-
sulting cluster always contains representations of 2 entities,
and thus the diversity is always 2. Also, since the nodes of
the same entity are always grouped into the same cluster,
the entity dispersion is always 1 (the ideal dispersion).

Compared to the diversity and dispersion, the entropy
should more properly capture the composition of groups.
Figures 14(a) and 14(b) show the average cluster- and entity-
entropy, achieved by the consolidation approaches. Recall
that the lower the entropy, the better, and that the ideal
entropy is zero. The figures look similar to the figures for
the diversity and dispersion.
Experiment 2. In this experiment, the size of each direc-
tor group is not 2 as in the previous experiment, but chosen
randomly as 2, 3, or 4 with equal probability. Also our ap-
proach now is not aware into how many clusters each VCS
should be clustered but rather utilizes threshold τ to decide
that, as discussed in Section 4.2.

Figure 15 studies the effects of τ on the quality of the out-
put. When τ is small, the normalized cut of most partitions
is greater than τ , so the further partitioning is not carried
out. Therefore, representations in each VCS are likely to be
grouped into a small number of clusters and that is why the
results closely resemble those of Baseline 1. On the other
hand, large τ leads to creating many clusters for each VCS.
This improves the cluster entropy, but the entity entropy
becomes worse. So, there is a natural trade-off between the
cluster entropy and entity entropy.

Figure 15(c) plots the cluster and entity entropy in one
figure. Such a figure is useful for the analysts to pick the
right value of τ , such that the desired compromise between
the values of cluster- and entity- entropies is achieved. Fig-
ures 15(d), 15(e), 15(f) are similar to Figures 15(a), 15(b),
15(c), but for the diversity and dispersion.
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Figure 14: Experiments with various lengths of paths
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(b) Entity entropy vs. τ

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

E
nt

ity
 E

nt
ro

py

Cluster Entropy

RelCluster 1%
Baseline1 1%
Baseline2 1%
RelCluster 5%
Baseline1 5%
Baseline2 5%

(c) Entropy: cluster vs. entity
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Figure 15: Experiments with various thresholds
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Figure 16: Execution time vs. database size.

5.3 Efficiency
Experiment 3. This experiment tests the efficiency of
the proposed approach. Figure 16 shows the execution time
of RelCluster as a function of the fraction of movies from
RealMov dataset, e.g. 1.0 corresponds to the whole RealMov
dataset. The bottleneck of our approach is the algorithm
for discovering all L-short simple paths. In [14] we study
several optimizations of that algorithm, which improve the
performance by 1–2 orders of magnitude. We employ the
same optimizations in out implementation of RelCluster.

6. RELATED WORK
Many research challenges have been explored in the con-

text of data cleaning: dealing with missing data, handling
erroneous data, record linkage, and so on. The closest to
the problem of object consolidation addressed in this paper
is the problem of record linkage. The importance of record
linkage is underscored by the large number of companies,
such as Trillium, Vality, FirstLogic, DataFlux, which have
developed domain-specific record linkage solutions.

Researchers have also explored domain-independent tech-
niques, e.g. [1, 10, 13, 19, 23]. Their work can be viewed as
addressing two challenges: (1) improving similarity func-
tion, as in [3]; and (2) improving efficiency of linkage, as
in [4]. Typically, two-level similarity functions are employed
to compare two records. First, such a function computes
attribute-level similarities by comparing values in the same
attributes of two records. Next, the function combines the
attribute-level similarity measures to compute the overall
similarity of two records. A recent trend has been to em-
ploy machine learning techniques, e.g. SVM, to learn the
best similarity function for a given domain [3]. Many tech-
niques have been proposed to address the efficiency challenge
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as well: e.g. using specialized indexes [4], sortings, etc.
Those domain-independent techniques deal only with at-

tributes. Only one existing approach [17] analyzes rela-
tionships in a fashion similar to that proposed in this pa-
per. That approach, and the one proposed in this paper,
are part of the Relationship-based Data Cleaning (RelDC)
project [15] at UCI. However, [17] solves a different data
cleaning challenge, called reference disambiguation. That
problem is known to be a subproblem of the problem of ob-
ject consolidation and the approach proposed in [17], in gen-
eral, cannot be used to solve the problem addressed in this
paper. That approach converts the cleaning task to solv-
ing a nonlinear programming problem whereas we employ
partitioning techniques for data cleaning. Other researchers
have also proposed using relationships for cleaning, but in a
different fashion. In [1] Ananthakrishna et al. employ simi-
larity of directly linked entities, for the case of hierarchical
relationships, to solve the record deduplication challenge.
In [18] Lee et al. develop an association-rules mining based
method to disambiguate references using similarity of the
context attributes: the proposed technique is still an FBS
method, but [18] also discusses “concept hierarchies” which
are related to relationships. Getoor et al. in [2] use simi-
larity of attributes of directly linked objects, like in [1], for
the purpose of object consolidation. However, applying that
technique in practice on real-world datasets was identified
as future work in that paper. In contrast to the above de-
scribed techniques, our approach and [17] utilize the CAP
hypothesis to automatically discover and analyze relation-
ship chains, thereby establishing a framework that employs
systematic relationship analysis for the purpose of cleaning.

7. CONCLUSION
In this paper, we have shown that analysis of inter-object

relationships is important for object consolidation and have
demonstrated one approach that utilizes relationships for
this purpose. Our ongoing work [16] addresses the challenge
of automatically adapting the proposed data cleaning tech-
niques to datasets at hand, by learning how to weigh differ-
ent connections directly from data, in an automated fashion.
Solving this challenge, in general, not only makes the ap-
proach a plug-and-play solution, but also improves both the
accuracy and efficiency of the approach as discussed in [16].
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