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Abstract

Inductive noise in high-performance microprocessors is a reli-
ability issue caused by variations in processor current (di/dt)
which are converted to supply-voltage glitches by impedances in
the power-supply network. Inductive noise has been addressed by
using decoupling capacitors to maintain low impedance in the
power supply over a wide range of frequencies. However, even
well-designed power supplies exhibit (a few) peaks of high imped-
ance at resonant frequencies caused by RLC resonant loops. Pre-
vious architectural proposals adjust current variations by
controlling instruction fetch and issue, trading off performance
and energy for noise reduction. However, the proposals do not
consider some conceptual issues and have implementation chal-
lenges. The issues include requiring fast response, responding to
variations that do not threaten the noise margins, or responding
to variations only at the resonant frequency while the range of
high impedance extends to a resonance band around the resonant
frequency. While previous schemes reduce the magnitude of vari-
ations, our proposal, calledresonance tuning, changes the fre-
quency of current variations away from the resonance band to a
non-resonant frequency to be absorbed by the power supply.
Because inductive noise is a resonance problem, resonance tun-
ing reacts only to repeated variations in the resonance band, and
not to isolated variations. Reacting after a few repetitions allows
more time for the response and reduces unnecessary responses,
decreasing performance and energy loss.

1  Introduction

Inductive noise in high-performance microprocessors is a reli-
ability issue caused by variations in processor current (di/dt)
which are converted to supply-voltage glitches by impedances in
the power-supply network. Lower supply voltages, higher power
dissipation, and low-power techniques such as clock gating
aggravate the problem by reducing absolute noise margins,
increasing the chip current, and increasing the magnitude of cur-
rent swings.

Circuit techniques address inductive noise by using a hierar-
chy of on-die, on-chip, and off-chip decoupling capacitors (d-
caps) to maintain low impedance over a wide range of frequen-
cies. However, it is difficult to cancel the impedancesbetweenthe
levels of the d-cap hierarchy. Even well-designed power supplies
exhibit (a few) peaks of high impedance caused by resonant loops
due to the wires, inductances, and capacitances between and in
adjacent levels. Two such peaks, calledmedium-frequencyand
low-frequencypeaks, are usually in the range of tens to hundreds

of megahertz and a few megahertz, respectively [8,14]. Curr
variation at theresonant frequenciescan cause supply-voltage
glitches beyond the noise margins, which are typically around 5
of Vdd [10].

Recently, a few architectural techniques have been propose
address inductive noise. Because current variations are the
cause of the problem, the techniques adjust chip current such
voltage variations fall within noise margins. The technique
adjust current by controlling instruction fetch and issue, tradin
off performance and energy for noise reduction. The techniqu
either directly measure themagnitudeof voltage variations [10],
or indirectly infer voltage variations by measuring [8] or estima
ing [14] the magnitudeof current variations. Note that becaus
inductive noise is a reliability problem, reducing average di/dt
not sufficient and absolute guarantees are needed.

Unfortunately, these magnitude-based techniques do not c
sider some critical conceptual issues and have substantial im
mentation challenges. [10] relies on sensing variations off
threshold in the supply voltage to indicate imminent noise-marg
violations.(1) False alarms:Even if the threshold is close to the
violation point, most variations do not escalate to violation
because they either are caused by non-resonant current variat
which are absorbed by the power supply, or are resonant ech
from past variations due toringing at the resonant frequency. [10]
does not distinguish between such spurious variations and t
resonance, and reacts unnecessarily incurring performance
energy loss.(2) Need for fast reaction:To reduce false alarms,
the threshold must be close to the violation point. Then, howev
violations mayimmediatelyfollow small variations off the thresh-
old, requiring quick reaction, as acknowledged in [10]. [10
requires fine-grain sensors to classify quickly and accurate
small voltage deviations as being either small enough to ignore
large enough to justify immediate reaction. As supply voltag
reduce, and absolute noise margins shrink, implementing volta
sensors to classify quickly ever smaller deviations (less th
20mV) may be difficult (e.g., at scaled Vdd, current sensing
instead of voltage sensing is being considered for SRAM sen
amplifiers [20]). In addition, wire delays in obtaining data from
sensors spread across the die and in sending clock-gate signa
stall upon a threat put pressure on the sensor response time
[10].

[8] and [14] avoidsomeof these problems by using chip cur-
rent (rather than voltage) as an indicator, but create other pr
lems. (3) Difficult current estimates and real-time
calculations: Both assume accurate a-priori estimates of ch
current to infer voltage. Unfortunately, it is hard to obtain accu
rate current estimates. [8] uses the a-priori current estimates



c-
jor

a
ia-
tly
e.
n
al
the

un-
y-
ce
fig-

sor
g.
nd
in

y of
to

(2)
re-
hey
and

e
ge,
m-

e at

o-
a

uit
ow
r-
ns
C).
he
m-

and
he
r-

c-
is
in
nt

een

of
be

or
performs real-time convolution to compute future chip volt-
age. Unfortunately, computing convolution quickly enough to
prevent noise-margin violations may be difficult to implement,
as acknowledged in [8].(4) Resonance in a band of frequen-
cies, not just one frequency:[14] controls current variations
at exactly the resonant frequency. [14] does not consider the
fact that the range of high-impedance extends to aresonance
bandaround the resonant frequency and violations can occur
due to current variationsanywherewithin the band. [14]’s
implementation increases processor complexity by requiring
the issue queue to determine how many of each type of
instruction may be issued each cycle without violating the
inductive noise constraint. Extending damping to cover the
entire resonance band, instead of just the resonant frequency,
would add to this complexity and increase performance and
energy degradation

To address these problems, we proposeresonance tuningto
control inductive noise. While previous proposals reduce the
magnitudeof current or voltage variations, we focus on chang-
ing the frequencyof current variations. Resonance tuning is
based on two key observations: First, current variations only in
the resonance band are problematic; other variations are
absorbed by the power distribution network. Second, inductive
noise is a problem of circuit resonance fromrepeatedcurrent
variations in the resonance band; variations in isolation do not
build up to violations.

Our first observation has two implications.(1) Target reso-
nance band: We change the frequency of current variations
away from the resonance band to non-resonant frequencies, to
be absorbed by the power supply. In contrast, [10]’s target is
too wide in that [10] reacts to all voltage variations regardless
of whether they occur in the resonance band. [14]’s target is
too narrow in that [14] reduces current variations only atthe
resonant frequency.(2) Sense current, not voltage:We moni-
tor processor current, and not voltage. Monitoring processor
current is better than monitoring voltage because there is no
ringing in processor core current, as we explain later. We iden-
tify current variations by directly sensing the processor cur-
rent, without a priori estimates. Therefore, we avoid false
alarms of [10] due to ringing and difficult current estimations
of [14].

Our second observation has three implications.(3) True
resonance, not spurious variations:We respond only to
repeatedcurrent variations in the resonance band and not to
individual variations as do [10] and [14]. Thus, resonance tun-
ing alters nascent resonance before it builds up to a violation.
(4) Slow detection suffices:We use simple counting of
coarsely-identified current-variation events to detect a threat.
In contrast, [8] uses full-blown convolution, and [14] needs
accurate current magnitude estimates. Because typical reso-
nance periods are over tens of cycles and will bemore in
future technologies, slow sensors suffice for us now and in the
future. In contrast, [10] does not exploit resonant behavior and
instead relies on fast, accurate sensors. Because nascent reso-
nance takes a few repetitions to build up and many resonant
events die before enough repetitions to trigger our response,
we raise fewer false alarms than [14] or [10] and incur less
performance and energy penalties.(5) Gentle reaction suf-

fices:Because of the lenient timing, we do not need fast rea
tion either. We use a two-tiered response of minor and ma
perturbations in the pipeline resource usage (e.g., stalling
few issue widths and complete stall) to tune-out current var
tions while they are still nascent. Our response is significan
simpler than that of [14] which complicates the issue queu
Our first-tier response is gentle. In contrast, [10]’s detectio
requires harsh reaction (e.g, turning on and off all function
units and the d-cache), and [14] enforces strict bounds on
number and type of instructions that can issue each cycle.

Our simulations using SPEC2000 show that resonance t
ing, [10], and [14] incur 5-9%, 19-46%, and 17-26% energ
delay penalty and 4-8%, 11-24%, and 15-24% performan
degradation, respectively, over ranges of representative con
urations.

In the next section, we discuss resonance in microproces
packaging. In Section 3 we explain resonance tunin
Section 4 discusses our experimental methodology, a
Section 5 contains our results. We discuss related work
Section 6 and conclude in Section 7.

2  Resonance in Microprocessor Packaging

Because our technique attempts to change the frequenc
current variations away from the resonance band, we need
know these parameters: (1) what the resonant frequency is,
what the resonance band is — i.e., how much does the f
quency of the current variations need to be changed so t
become non-resonant, (3) when the change should occur,
(4) what should trigger the change. Based on design-tim
information about the resonant characteristics of the packa
we determine these parameters. We primarily discuss mediu
frequency resonance and mention low-frequency resonanc
the end.

2.1 Medium-frequency Resonance Characteristics

For the purposes of evaluating inductive noise, the micr
processor power-distribution network may be modeled as
second-order resistive, inductive, and capacitive (RLC) circ
with the power supply modeled as a voltage source. We sh
such a circuit in Figure 1(a). The circuit models the powe
supply impedance (R), the inductance of the connectio
between the die and the chip (L), and the on-die d-caps (
The CPU circuitry, which consumes current based on t
activity in the processor, is modeled as a current source. Co
ponents that are ignored in our model, such as the on-chip
off-chip d-caps, generally do not respond to variations at t
frequencies of interest. More complex models of the powe
distribution network are shown in [6, 8, 9]; however, the se
ond-order model effectively captures resonant behavior and
widely used [10, 9]. We discuss microprocessor resonance
the context of second-order circuit behavior in the resona
loop among the power supply impedance, inductance betw
the chip and the die, and on-die capacitors.

The circuit characteristics are determined by the values
R, L, and C. For a given microprocessor, these values can
calculated from technology parameters and CAD tools [6]. F
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our discussion, it is also useful to establish how the parameters
scale with technology. Scaling leads to smaller values of R as
power-distribution networks endeavor to deliver more current
with smaller voltage drop. L stays about the same as it is a
characteristic of the connections (usually solder bumps in
today’s flip-chip packages [16]) between the die and the pack-
age while the need for C increases due to the processor having
more devices and current [13,15,16].

2.1.1 What is the resonant frequency?

First, we must establish that resonant oscillation is actually
a concern. The circuit in the figure is said to beunderdamped
if

An underdamped circuit is subject to resonant oscillation.
Because technology scaling calls for small R and large C,
microprocessor power supplies are and will continue to be
underdamped. (Critically damped and overdamped circuits do
not satisfy the inequality and do not oscillate.)

Second, we note that the resonant frequency of a second-
order circuit, at which current variations cause maximum volt-
age variations and the circuit stores maximum energy, is
defined as:

A typical microprocessor package today may have an on-
die d-cap C value on the order of 500 nF (e.g., 320 nF for the
Alpha 21264 [13, 7, 16] and 700 nF for the Alpha 21364 [18])
and a parasitic inductance for all the power-distribution solder
bumps in parallel on the order of 0.005 nH, giving a resonant
frequency around 100 MHz [16].

2.1.2 How much should the frequency of variations be
changed?

The effect of resonance is limited not only to the specific
resonant frequency. Second-order circuits have a quality factor
(Q) that depends on the values of L and R.

Q determines the size of theresonance band (B),or the
width of the range of frequencies at which the circuit resonates
with more than half the energy than that at the resonant fre-

quency itself. The resonance band is shown in Figure 1(c)
our example circuit has an inductance of 0.005 nH and a res
tance of 500µΩ (because this value is theseriesresistance of
the microprocessor power supply, it must be small.), Q is 6.
and the resonance band is approximately 16 MHz wide. It
reasonable to assume this band is divided evenly about the
onant frequency of 100 MHz; therefore we identify curren
variations between 92 and 108 MHz as resonant behavior.

Recall from Section 1 that resonance tuning changes
frequency of current variations to a frequency outside the re
nance band while damping [14] addresses current variatio
only at the resonant frequency.

2.1.3 When should the change occur?

Q also affects how much repeated resonant behavior
required to cause noise margin violations because it de
mines how quickly voltage variations dissipate. fπ/Q is the
damping rate (in nepers/second, not to be confused w
damping, the technique, of [14]) of the circuit. A low Q indi
cates resonant energy dissipates quickly while a high-Q circ
more efficiently stores energy that may build into noise marg
violations. In our example, voltage variations dissipate by 40
after each resonant period.

The other factor in determining how many repetitions i
the resonance band are required to cause noise margin vi
tions is the size of the current variations. As expected, curr
variations below a certain threshold will not cause noise-m
gin violationseven if the variations occur repeatedly in the
resonance band.The variations simply do not have enoug
energy. Of course, this threshold is less than the maximu
chip current variation possible—otherwise, there is no indu
tive noise problem. We call the threshold as theresonant cur-
rent variation threshold.

Variations beyond the threshold within the resonance ba
will lead to violations. While the threshold gives a boun
below which variations can be ignored, we need to know ho
many repetitions of variations above the threshold can be t
erated by the power supply before a violation occurs. We c
the number of repetitions as themaximum repetition tolerance.
The larger the variations, the fewer the repetitions. Cons
quently, we need to know the maximum possible chip curre
variation within the resonance band to infer the maximum re
etition tolerance. Because the processor has a well-defi
peak current, minimum current, and maximum rate of chan
of current, the maximum current variation is not arbitraril
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FIGURE 1: Power supply model and impedance for typical values.
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large, even in the resonance band. Hence, the processor’s max-
imum current variation within the resonance band is well-
defined, and along with the characteristics of the resonant cir-
cuit, determines the maximum repetition tolerance.

Intuitively, the resonant current variation threshold and
maximum repetition tolerance can be computed from the
energy injected into the resonant circuit by the current varia-
tions and the energy dissipated in the resonant circuit in each
period (based on Q). However, the values can also be deter-
mined through circuit simulations using tools such as Spice or
Matlab, as we describe in Section 4. To do so, we need to
make one change to the circuit in Figure 1(a). Because we are
interested in solving for the effects of changes in the current
source, we use the linearity properties of the circuit in
Figure 1(a) to eliminate the voltage source, yielding the circuit
in Figure 1(b).

We extend our example to give a feel for these values. To
obtain the maximum current variation that can be tolerated by
the power supply in our example, we simulate the power sup-
ply excited with periodic current waveforms at the edges of the
resonance band. We determine that the power supply can with-
stand current variations up to 13 amps peak-to-peak at the
edges of the resonance band of 92-108 MHz (Section 2.1.2).
Note that the peak-to-peak variation is limited to 13 amps only
near the resonance band, larger variations are allowed else-
where (and are absorbed by the power supply). Similarly, we
determine that repeated variations larger than 10 amps inside
the resonance band causes violation of the noise margin of
±5%, assuming a Vdd of 2 V. Thus, 10 amps is the resonant
current variation threshold for our example. Next, we simulate
the circuit to see how many repetitions of current variations of
magnitude 13 amps at the resonant frequency are needed to
cause a noise margin violation. This count determines the
maximum repetition tolerance, which we count in half waves
(i.e., a full period counts as 2). The value is 6 in our example.
Note that in a real system, the maximum processor current
variation is not determined by the power-supply characteris-
tics, but the other way around.

By establishing how many repetitions of current variations
larger than the resonant current variation threshold are allow-
able, resonance tuning tracks and manages these repetitions
without the need for real-time voltage sensing as required by
[10], or estimates of current as required by [14].

2.1.4 What should trigger the change?

Although resonant behavior can be detected through either
voltage variations as done in [10], or current variations, there
are disadvantages to using voltage. Many voltage variations do
not cause noise-margin violations because they are caused by
current variations outside the resonance band. [10] needlessly
reacts to those changes. Furthermore, even in the absence of
current variations, supply voltage ringsat exactly the resonant
frequencyas an echo of leftover effects of past variations.
Even if [10] were to monitor voltage variations only at the res-
onant frequency, the ringing would trigger unnecessary reac-
tions. Thus, detecting resonance through voltage variations
results in unnecessary reactions, causing performance and
energy degradation.

In contrast to supply voltage, variations in microprocess
current directly relate to the potential for future noise-marg
violations. Microprocessor core current does not echo fro
past resonant behavior as the core circuitry isnot part of the
resonant loop of the power supply impedance, solder-bu
inductance, and the on-die d-caps, as shown in Figure 1
This point is subtle in that the processor core current doesvary
according to processor activity, but does notechodue to the
resonant loop. There is not sufficient capacitance in the c
circuitry for this current to echo within the resonance ban
(However, the current might echo at frequencies much high
than the resonance band).

Although the d-caps are distributed throughout the die, it
not difficult to sense the current. Because the d-caps are pla
in bulk in large empty spaces or under busses [7], it is possi
to sense the current between the d-cap bulks and core circu
We can detect microprocessor core current using a small nu
ber of on-die current sensors. Note that we do not wish toesti-
matepresent or future current as in [14]; we wish tosense
directly the present current. A coarse sensitivity to within
few amps is adequate because active microprocessor curr
are quite large (on the order of a hundred amps) and we n
only identify variations larger than the resonant current var
tion threshold.

Examples of techniques for sensing on-die current are d
cussed by [19] and [12]. [19] proposes a technique to comp
current for chip testing by using a differential transistor pair
measure the voltage drop across supply lines. The meas
ment is accurate because it depends on only the relative v
age difference across two points, and does not require
accurate, external reference. [12] proposes another techn
to implement on-die current sensors with a sensitivity of nan
amps to enable IDDQ testing of quiescent current in high-per
formance chips. These sensors use Lorentz-force effects a
MAGFET (magnetic field-effect transistor) in a standar
CMOS process to sense processor current without placing
resistance in series with the power supply. To achieve the h
sensitivity of microamps required for IDDQ testing, many of
these sensors must be placed at leaves of the power-su
network and perform tens of thousands of samples compa
to a reference current, making them quite slow (in the KH
range) [12]. However, for the coarse sensitivity required f
resonance tuning, only a few sensors are needed at the roo
the supply network, and a precise reference current is
needed. For coarse readings, the sensors can use a single
ple and run at or near processor clock speed (GHz range).

2.2 Low-frequency Resonance

Microprocessor packages exhibit an additional peak
high impedance at a low frequency due to off-chip inductan
and on-chip d-caps. These components (not shown in
Figure 1(a)) create a similar RLC loop with the power sourc
as the off-chip power supply and the core to the entire micr
processor package and core. Because off-chip inductances
capacitors are quite large, the corresponding resonant
quency is in the range of a few megahertz.

Although the fairly small low-frequency impedance pea
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in current technology is not as serious a threat as medium-fre-
quency resonance [8, 6], that may not always be the case as
more low-resistance, high-current power supplies are devel-
oped. Fortunately, resonance tuning can be applied to both
medium- and low-frequency resonance.

3  Resonance Tuning

Resonance tuning provides architectural detection of
nascent resonant behavior and prevention of that behavior
from building into noise-margin-violating resonance by mov-
ing current variations away from the resonant frequency. First
we discuss detection and then prevention.

3.1 Detection of Resonant Behavior

In this section, we explain how resonance tuning uses the
maximum repetition tolerance and resonant current variation
threshold defined in Section 2.1.3 and current sensing as dis-
cussed in Section 2.1.4 to detect nascent resonant behavior.
We wish to classify potentially resonant waveforms as shown
in Figure 2. Only those waveforms larger than the resonant
current variation threshold with frequencies inside the reso-
nance band are of concern. We begin by explaining how our
technique detects resonant behavior for a resonant frequency
with a period of T cycles; later we extend our technique to
cover the frequency range of the entire resonance band. We
explain first how to identify resonant waveforms, and then
how to count repetitions of resonant waveforms.

3.1.1 Identifying resonant waveforms

Resonant waveforms are identified by transitions from high
current to low current (or vice versa) at the resonant frequency.
Such a transition takes a half-period (T/2) of cycles as shown
by the resonant waveform in Figure 2 and is indicated by a
period of high (or low) current for the first quarter period (T/4
cycles) and a low (or high) current for the second quarter
period. We identify the waveform by comparing the sum of the
individual-cycle currents in the first quarter period to the sum
of the individual-cycle currents for the second quarter period.
For instance, the difference between the two sums for a trian-
gle wave of peak-to-peak magnitude X is XT/8 (for a sine
wave, this value is XT/2π). We identify a half period with a
difference in the quarter-period current sums of MT/8 or more,
where M is the resonant current variation threshold, as one
resonant event.

To perform the identification, we maintain a history of

CPU-core current for the last T/2 cycles as reported each cy
by current sensors such as those discussed in Section 2.1.
the current history register. Each cycle, we also compute a
sum of the individual-cycle currents in the most-recent an
second-most recent quarter periods. If the difference betwe
the sums exceeds MT/8, we note either a high-low or low-hi
resonant event depending on the sign of the difference.

3.1.2 Counting repetition of resonant events

Once we can detect resonant events, we count their rep
tion to identify nascent resonant behavior. Repetition occu
when two or more resonant events of opposite polarity (i.
high-low followed by low-high or vice versa) occur half-
period (T/2 cycles) apart. At any given time, we need to kno
how many resonant events are affecting the power supp
which we call theresonant event count.

The resonant event count depends on the number
repeated resonant events. To track repetition, we maintai
high-low history registerand alow-high history registerwhich
contain the history of each polarity of resonant events f
enough cycles to cover the maximum repetition tolerance
defined in Section 2.1.3. Each register contains one bit p
cycle. Each detected resonant event is noted for that cycle
the appropriate history register. When a new event is detec
we look back into the high-low and low-high histories a ha
period ago for a resonant event with appropriate polarity ind
cating nascent resonance, and determine the resonant e
count. For example, if we detect a high-low resonant event
this cycle, and there were a low-high event T/2 cycles ago a
a high-low event T cycles ago, then we have a resonant ev
count of three.

As resonant events leave the high-low and low-high histo
registers, the resonant event count decreases. Recall f
Section 2.1.3 that in the absence of additional current var
tions, voltage variations die down at the damping rate defin
in terms of Q. In our example, the circuit loses 40% of it
energy after one resonant period. The history registers are l
enough to hold as many resonant periods as the maximum r
etition tolerance. Therefore, by the time a resonant eve
leaves the registers the residual effect of the event is l
enough that the resonant event count can decrease.

Counting nascent resonant events and taking advantag
the maximum repetition tolerance allows resonance tuning
avoid many unnecessary reactions unlike [10], which respon
to all detected variations beyond a threshold.

3.1.3 Extension into resonance band

In this section, we extend our detection scheme to cover
frequencies in the resonance band. First, we extend identify
resonant events to the entire resonance band. Then, we ex
counting the repetitions of resonant events to the entire ban

To illustrate, we use our example from Section 2 which h
a resonance band from 92 to 108 MHz with the resonant f
quency at 100 MHz. Assuming a 5 GHz clock frequency, th
resonance band ranges from 46 to 55 cycles, so the half-w
periods range from 23 to 28 cycles. Instead of looking for re
onant events only over the half resonant period (25 cycles),
identify resonant events over all the half periods in the ba

FIGURE 2: High-low history to detect resonant events
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(23-28 cycles). One simplification that aids in the implementa-
tion is that we can use the same current history register for all
periods. However, we need to compute separately the quarter-
period sum for each period using separate adders.

Once we have detected the resonant events throughout the
resonance band, we track them using the same single pair of
high-low and low-high history registers. However, instead of
looking into the history registers for consecutive events only
half resonant periods apart (25 cycles), we look for consecu-
tive events at all half periods in the resonance band (23-28
cycles). Looking into the registers does not need expensive
associative searches. Just probing the registers at known, fixed
locations half periods away from the current cycle suffices.

It is possible for a single resonant event to be detected at
multiple periods in the resonance band. This possibility occurs
when there is a large current variation spanning several pro-
cessor cycles. Such a variation will be recorded in the high-
low and low-high registers repeatedly over all those cycles,
being detected as several resonant events. However, we should
count the variation as only one resonant event. To that end,
events of the same polarity occurring in consecutive processor
cycles in the high-low or low-high registers, count only once
in the resonant event count.

3.2 Prevention

In this section, we explain how we prevent noise-margin
violations by changing the frequency of resonant behavior
away from the resonance band. If the resonant event count
reaches the maximum resonance tolerance, a noise-margin
violation may occur. As established in Section 2.1.3, current
variations are non-violating as long as the number of repeti-
tions does not exceed the maximum repetition tolerance.
Therefore we must take actionbeforethe resonant event count
becomes that high. Fortunately, there is ample time between
increase in the resonant event count (half time periods in the
band — 23 to 28 cycles in our example), so our response need
not be instantaneous.

We use a two-level response system to change the fre-
quency of behavior. The first level tries to steer behavior to a
non-resonant frequency with a small impact on performance
and energy, while the second forces behavior away from the
resonance band, with a much larger impact. The brute force of
the second level is necessary toguaranteethat noise margin
violations do not occur.

The first-level response is engaged when a new resonant
event occurs and the resonant event count is greater than or
equal to theinitial response threshold(which of course is less
than the maximum repetition tolerance). The response is sim-
ply to reduce the processor issue width and the number of
memory ports available for a specified period of time, called
the initial response time. Doing so lowers the frequency at
which instructions move through the pipeline, lowering the
frequency of current variations. (It would be difficult toraise
the frequency of current variations because that would imply
the processor was not initially running at peak performance.)

If the first-level response is ineffective, the resonant event
count will continue to climb. In this case, when a new resonant

event occurs and the resonant event count reaches one b
the maximum repetition tolerance, we must engage the s
ond-level response. The second-level response forcibly low
the frequency of current variations by stalling processor iss
while maintaining a medium level of processor current. Th
medium level of current is achieved by “issuing” phantom
operations similar to those in [10] and [14]. These phanto
operations consume current but do no useful work. Becaus
stalls the processor and consumes extra energy, the secon
response is quite expensive.

It is importantbothto stall the processorandto set the pro-
cessor current to a medium level. If the processor were n
stalled, the frequency of current variations might not b
reduced, and if the current were not set to a medium level,
act of stalling itself might increase the resonant event cou
and cause a noise margin violation. To avoid noise-margin v
lations, the second-level response must remain engaged u
the resonant event count reduces by at least one.

Because of the expense of the second-level response,
wish to maximize the effectiveness of the initial respons
There is a trade-off between the performance penalty o
longer initial response time and the avoidance of the seco
level response.

We conclude this description by analyzing the effect
response delay. Both magnitude-based techniques in [10]
[14] require fast response to prevent noise-margin violation
[10] does not exploit resonant behavior for detection. As suc
[10] detects only a few (1-5) cycles before a violation, requi
ing quick reaction. [14] must make per-instruction, per-cyc
decisions at instruction issue to avoid current variations at t
resonant frequency. In contrast, the effectiveness of resona
tuning is not affected by delays as long as quarter reson
periods. Because it takes half a resonant period for the re
nant event count to increase and a full resonant period fo
resonant event to repeat, a delay of even a quarter reson
period allows ample time for a first-level or second-leve
response. Such delays may decrease the effectiveness o
first-level response because there is less time to take effect,
they will not reduce the brute-force effect of the second-lev
response.

Scaling trends favor resonance tuning. Because technol
scaling leads to larger C while L stays about the same, the r
onant frequency (Section 2.1.1) reduces with each technolo
generation. Combined with rising clock frequencies, the nu
ber of processor cycles in a resonant period increases w
each generation. This trend implies that resonance tuning
more time to sense, detect, and react in the future. While
quarter of a resonant period is 12 cycles in our example, it w
be 50 cycles in a 10 GHz processor with a 50 MHz resona
frequency. In contrast, the allowable response times in [1
and [14] worsen with scaling. [10] does not exploit resona
behavior and must still respond quickly to voltage change
while slow-scaling wire delays in obtaining data from senso
spread across the die and in sending clock-gate signals up
threat put more pressure on the sensor response times. [14]
must still make per-cycle decisions at instruction issue with
an ever-shrinking clock cycle time.



de
e
n
ut

We
lt-
che
read
of
as

g
e

hat
ts
r

or
r-
f
ro-
rs,
e-
to
),

ri-
d
up-

by
the
key
en-
er-

th
se
la-
uc-
be
do
ich
p-
to
a

nd
57
s

, a
d-
3.3 Implementation Overheads

Finally, we look at the area, performance, and energy over-
heads of resonance tuning. The current sensors proposed in
[12] consume approximately 1000 transistors but do not insert
any resistance in series with the power supply. Therefore, sen-
sors do not add much to area or energy. As we need to store
and sum current histories accurate only to the nearest ampere,
the current-history values and sums can use 7-bit integers. In
our example, up to 9 current-history adders are needed to
cover all the frequencies in the resonance band. The area of
this circuitry is small, and the per-cycle energy of the adders is
approximately equivalent to that of one 64-bit adder. The high-
low and low-high histories consist of n-bit shift registers,
where n is the number of processor cycles in the maximum-
repetition tolerance, or about 150 in the example from
Section 2.

The performance impact of resonance tuning, however, is
limited to the degradations caused by the first -and second-
level responses. None of the current or high-low history regis-
ters are on the critical path of the processor, and there are no
invasive changes which may affect the issue logic timing as in
[14]. Tuning coarsely controls the issue width and memory-
port availability but does not create specific requirements on
the type of instructions that are selected for issue.

4  Methodology

Simulating of inductive-noise techniques requires careful
selection of power-supply design-parameters and voltage/cur-
rent models not normally considered in architectural simula-
tion. First, we discuss our architectural and power simulator,
and our extensions to add a power-supply simulator. Next, we
discuss our design parameters.

4.1 Simulator

Our base simulator is Wattch [2] extended to include co
from SimpleScalar 3.0b [3] to execute the Alpha ISA. Th
architectural configuration of our simulator is shown i
Table 2. Wattch provides a power and clock-gating model, b
does not consider processor current or current variation.
determine processor current by dividing power by supply vo
age. Because Wattch simulates per-event current (e.g., ca
access) rather than per-cycle current (e.g., cache access sp
over 2 cycles), we add extensions to spread the current
multi-cycle operations over the appropriate pipeline stages,
was done in [10] and [14].

Current variation levels depend heavily on the clock-gatin
model—more aggressive gating leads to more variation. W
use the aggressive clock-gating model from Wattch except t
we do not allow clock-gating of the global clock componen
(which may be difficult to gate in a real system). [10] furthe
limited clock-gating to include only functional units, the
writeback bus, and caches.

The power-supply model is implemented in the simulat
using the circuit shown in Figure 1(b). We use the Huen Fo
mula (Improved Euler Formula) [1] to solve the system o
equations to simulate supply-voltage variations based on p
cessor core current. While more accurate equation solve
exist, we found the Huen Formula to be both simple and ad
quate. While real power supplies incur a voltage drop due
power-supply impedance (IR drop due to the R in Figure 1
the drop is unrelated to inductive noise (which is voltage va
ation due to di/dt). Therefore, we ignore the IR drop an
assume that the power-supply is capable of maintaining a s
ply voltage of Vdd at any constant current level.

We model the current sensors for resonance tuning
assuming that we can determine each cycle’s current to
nearest whole-amp. We also model the energy overhead of
components from the resonance tuning detection and prev
tion hardware as discussed in Section 3.3, though such ov
head is small (<1% of processor energy).

4.2 Design parameters

In Section 2, we described a power-supply network wi
characteristics similar to today’s processors. However, we u
parameters for an aggressive, future design for our simu
tions. We choose an aggressive design point such that ind
tive noise is a problem in some SPEC benchmarks (as will
shown in the next section) but that noise-margin violations
not occur continuously or outside the resonance band (wh
would characterize an unrealistic, poorly-designed power su
ply). Our parameters are shown in Table 2. We scale Wattch
assume a 1.0V Vdd and a clock-frequency of 10 GHz with
peak power of 105 W. (The supply voltage, frequency, a
power correspond to projections for a 7FO4 pipeline in a
nm technology [17].) We allocate 1500 nF of on-die d-cap
(approximately 3-4 times larger than those on the 21264 [7])
parasitic inductance of 1.69 pH, and a power-supply impe
ance of 375µΩ. A noise margin violation is assumed if the
supply voltage deviates more than 0.05 V (5%) from Vdd.

Table 1: System parameters.

Architectural Parameters
Instruction issue 8, out-of-order

Reorder buffer & LSQ 128 entries

L1 caches 64K 2-way, 2 cycle, 2 ports

L2 cache 2M 8-way, 12 cycles

Memory latency 80 cycles

Fetch up to 8 instructions/cycle

Int ALU & mult/div 8 & 2

FP ALU & mult/div 4 & 2

Power Distribution and Power Parameters

Vdd & Clock 1.0 V, 10 GHz

Max & min. current 105 A, 35 A

R, L, C 375µΩ, 1.69 pH, 1500 nF

Resonant frequency 100 MHz

Resonance band 84-119 cycles

Max repetition tolerance 4

Resonant current variation
threshold

32
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These parameters yield a fairly high resonant frequency of
100 MHz, which is conservative for our simulations because
resonance tuning has fewer cycles to respond prevent a noise-
margin violation, as discussed in Section 3.2. Based on the
exact equations from [4], the resonance band extends from 119
MHz to 83.9 MHz, or between 84 and 119 cycles. The remain-
ing parameters are computed as discussed in Section 2.1.

For our simulations, we run all 26 SPEC2K applications
with ref inputs. We fastforward 2 billion instructions to skip
initialization code and then run 500 million instructions. The
base IPC for each application, with no resonance tuning, is
shown as part of Table 2.

5  Results

In, Section 5.1 we show resonant behavior in a micropro-
cessor power-supply and show an example of resonance caus-
ing a noise-margin violation. Then we classify the SPEC2K
applications by their noise-margin violations. In Section 5.2,
we show results for resonance tuning. In Section 5.3 we com-
pare resonance tuning to the previously-proposed techniques
of [10] and [14].

5.1 Resonant behavior in microprocessors

5.1.1 Voltage variation in the power supply
In this section, we show the voltage response of the simu-

lated power supply when stimulated by known waveforms (as
opposed to microprocessor current). We use the circuit from
Figure 1(b) with the parameters listed in Table 1. We will
show that repeated resonant events lead to noise-margin viola-
tions and that resonant energy dissipates quickly from the
power supply.

The top graph of Figure 3 depicts supply-voltage variations
for our power supply when the processor current is as shown
in the bottom graphs. (Recall that by using the circuit in
Figure 1(b), we eliminate the supply-voltage source itself and
that we subtract out any IR voltage drop (Section 4.2)--so the
steady state value of the supply voltage should be 0.) The bot-
tom graph depicts processor current, a 34-amp square wave
beginning at cycle 100 and ending in cycle 500. The numbers
above the current plot depict resonant events as counted by the
resonant event count (Section 3.1.2).

The square current wave is larger than the resonance varia-
tion threshold of 32 amps and hence is large enough to cause
noise-margin violations. As we see in the top graph, the noise
margin is violated once when the resonant event count is equal

to four, which is the computed maximum repetition toleranc
value shown in Table 1.

The dissipation rate of the voltage variations after the cu
rent waveform stops is noteworthy. Voltage variations in th
power supply dissipate at a rate of 66% per resonant per
(100 cycles). As discussed in Section 2.1.3, this rate depe
on Q, which is computed from R, L, and C to be 2.83 for th
power supply. (This Q value is lower than that for the examp
in Section 2, and hence the faster dissipation rate for t
power supply.)

5.1.2 Voltage variations in applications
Now we extend our analysis of current and voltage vari

tions to microprocessor current. We use Figure 4 to illustra
typical noise-margin violation and the advance warning pr
vided by the resonant event count. The figure shows proces
voltage variation (top graph), processor core current (midd
graph), and resonant event count (bottom graph) for a 40
cycle sample of execution inparser.As can be seen in the top
graph, a noise-margin violation occurs near cycle 300. Curr
variations occur within the resonance band at roughly 1
cycle intervals (the long, flat current around cycle 250 is due
an L2 miss).

The resonant event count, as reported by the high-low a
low-high histories described in Section 3.1, is used to trigg
resonance tuning. In the graph, the event count increases to
maximum resonance tolerance of four as we approach the v
lation. The bottom graph shows that a resonant event coun
2 is reached approximately 150 cycles before the violation

1

2

3

4

FIGURE 3: Stimulation at resonant frequency.
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Table 2: Classification of SPEC2K applications.

Applications with noise-margin violations

name applu art bzip crafty facerec gcc lucas mcf mgrid parser swim wupwise

IPC 1.97 1.49 2.19 2.25 2.60 2.13 0.85 0.38 2.88 1.71 1.99 3.47

fraction of cycles
in violation x 10-6

0.173 3.26 173 4.52 0.047 0.047 5597 0.032 2.61 64.2 2730 0.097

Applications without noise-margin violations

name ammp apsi eon equake fma3d galgel gap gzip mesa perlbmk sixtrack twolf vortex vp

IPC 0.44 1.85 2.72 4.00 4.11 3.61 2.84 2.01 3.34 1.34 3.31 1.35 2.40 1.39
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resonant event count of 3 is reached just over 100 cycles
before the violation, and a resonant event count of 4 is reached
about 75 cycles before the violation (and during the violation
itself). From these timings it is clear that resonance tuning
does not need fast sensors like [10]. We also see that tracking
processor current to the precision of whole amps is enough to
flag imminent violations, confirming that resonance tuning
does not need precise sensors like [10] nor accurate estimates
like [14]. Note that the resonant event count falls off for brief
periods during which the high-low history does not detect res-
onant events. This fall-off is unimportant because the preven-
tion technique is engaged as soon as the initial response
threshold is reached.

5.1.3 Classification of applications

In this section, we classify each SPEC2K application as
either violating or non-violating depending on if our simulated
processor exhibits noise-margin violations. Because we wish
to simulate an aggressive future processor where inductive
noise is problematic, it is important that noise margin viola-
tions occur in a number of benchmarks. While a design where
noise-margin violations occur often would be unrealistic (indi-
cating a poorly-designed power supply), a design that never
exhibits noise-margin violations is not representative of future

inductive-noise problems.
Table 2 shows the SPEC2K benchmarks classified by

presence of noise-margin violations, and the benchmar
IPCs. Twelve applications exhibit violations, and the fractio
of cycles (x 10-6) spent in violation by these applications ar
given. Two characteristics of the applications are noteworth
The first is that there is no particular correlation between IP
and noise-margin violations. Resonant behavior can occur
not occur) in either high or low IPC applications. The secon
is that, as expected, the number of violations is quite low w
respect to the total execution time. While this number may
low, the presence ofany noise-margin violations is unaccept
able in a real processor.

5.2 Resonance Tuning

In this section we present performance and energy res
for resonance tuning. We expect resonance tuning to prev
noise-margin violations using our two-tiered response syst
with small performance and energy loss.

Based on the circuit values in Table 1, the resonance-tun
parameters described in Section 3.2 are set as follows. T
resonant current variation threshold is 32 A. Because the re
tition tolerance is 4 (at which violations can occur), we set th
initial response threshold to 2. The second-level response
initiated if the event count reaches 3. Our initial response is
reduce the issue width from 8 to 4 and the number of availa
cache ports from 2 to 1. We vary the initial-response-time. T
second-level response time is set based on the damping ra
the power supply (Section 2.1.3). In our power supply the
must be no activity for 32 cycles to ensure variations will dis
sipate an amount equivalent to reducing the event count by
Therefore, we set the second-level response time to 35 cyc

Table 3 shows results for resonance tuning for initi
response times between 75 and 200 cycles over all SPEC
applications compared to a base processor with no resona
tuning (i.e., one that allows noise-margin violations). We d
not separate violating and non-violating applications as w
found no substantial differences in their results. The fracti
of cycles spent in first-level and second-level responses
average is shown in the second and third columns. Perf
mance-related numbers are shown in the next three colum
Average relative energy-delay is shown in the last column.

The gentle first-level response is effective at reducing t
need for the harsh second-level response. The fraction
cycles spent in second-level response (which results in co
plete stalls) is between 0.0027 and 0.0040. The fraction
cycles spent in first-level response is much higher, between
and 0.2. This value is quite large compared to the fraction

FIGURE 4: Voltage and current variation in parser .
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Table 3: Resonance tuning.

Initial response time Fraction of cycles in
first-level response

Fraction of cycles in
second-level response

Worst relative slowdown Apps with > 15%
slowdown

Avg relative
slowdown

Avg relative
energy-delay

75 cycles 0.10 0.0040 1.19 (wupwise) 2 1.043 1.052

100 cycles 0.12 0.0038 1.20 (wupwise) 1 1.048 1.057

125 cycles 0.15 0.0032 1.19 (wupwise) 2 1.054 1.076

150 cycles 0.17 0.0031 1.35 (galgel) 4 1.068 1.079

200 cycles 0.20 0.0027 1.27 (galgel) 5 1.075 1.088
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cycles spent in noise-margin violation, shown in Table 2. This
difference occurs for two reasons. First, there are many
instances of nascent resonant behavior that do not build up to
violations. Second, it takes many cycles of first-level response
to tune out resonant behavior. Despite the high fraction of time
in first-level response, performance loss is only between 4%
and 8% because the first-level response is gentle.

Increases in the initial response time allow the gentler first-
level response to be more effective, reducing the need for the
second-level response. However, because the first-level
response is applied often, excessively large initial-response
times degrade performance. As we increase the initial
response time from 75 to 200 cycles, the average fraction of
cycles spent in the first-level response doubles, while the frac-
tion of cycles spent in the second-level response goes down by
32%. Although the average slowdowns increase with the ini-
tial-response time, the performance loss of the worst applica-
tion is lowest when the initial response time is 75 cycles, and
the number of benchmarks with greater than 15% performance
loss is lowest for an initial-response time of 100 cycles.

Energy-delay increases between 5% and 9%. The increase
is due both to performance loss from the first- (mostly) and
second-level responses, and to the extra energy associated
with phantom instructions in the second-level response. For
our best-performing initial response times of 75 and 100
cycles, the relative energy-delays are 5.2% and 5.7%, respec-
tively.

We also wish to determine if resonance tuning is affected
by delay between sensing nascent resonance and initiating the
first-level response. As stated in Section 3.2, delays that are
small compared to the resonant period will not diminish the
effectiveness of resonance tuning, but they might hurt perfor-
mance or energy. For an initial response time of 100 cycles
and a delay of 5 cycles, performance degradation is 5.8% and
relative energy-delay is 6.6% (not shown). These numbers are
only 1% and 2% higher, respectively, than those with no delay.

5.3 Comparison to Previous Techniques

In this section, we compare resonance tuning to [10] and to
pipeline damping [14]. First we discuss each of those tech-
niques, and then we provide an overall comparison. We expect
resonance tuning to have smaller performance and energy deg-
radations due to its use of a gentler response than either previ-
ous technique and its ability to avoid responding to non-
repetitive resonant events.

5.3.1 Technique of[10]

We implement [10] in our simulator. The best technique of

[10] responds by phantom firing the L1 caches and function
units if the voltage is too high or clock-gating the L1 cache
and functional units if the voltage is too low. We use the
response for high voltages; for low voltages we stop fetch a
instruction issue; it may be unrealistic to instantaneous
clock-gate the pipeline back-end if there are instructio
scheduled in those resources. It is unclear if [10] models t
effect of voltage ringing on their response mechanism
Because our voltage simulator is built into Wattch and o
threshold is detected directly off that voltage, our resu
include the effect of ringing.

Our choice of a design where many applications exhibit
least some noise-margin violations is important in evaluati
resonance tuning and [10]. While [10] discussed two desi
points (the “300%” and “400%” target impedance points) th
exhibited noise-margin violations in SPEC2K, the perfo
mance and energy results in [10] are in terms ofanother
design that does not exhibit violations in SPEC2K. While th
fact does not question the effectiveness of [10] at eliminati
noise-margin violations (theory guarantees that), the perf
mance and energy numbers of our design are different th
reported in [10].

We use detection thresholds similar to those determined
[10] to evaluate their performance and energy. To guaran
avoidance of noise-margin violations, we actually need thres
olds slightly smaller than those of [10] because our current
higher and the power supply is subject to more variatio
However, the values used are conservative (i.e. they favor [1
and are adequate for evaluating performance and energy.

Table 4 shows results for [10]. The desired detectio
threshold is in the first column (the high and low threshold a
equal in our results because we subtract out IR voltage drop
our simulations as discussed in Section 4.1, making o
threshold equivalent to half of [10]’s “safe window”.) Any
noise introduced is shown in the second column, with t
actual threshold (target minus half of noise) in the third. Th
remaining columns show the fraction of cycles during whic
there is a reaction, slowdown, and energy.

The first two data rows of the table show results with n
noise and no delay. The performance loss for the 20 mV ca
is larger than that for the 30 mV case due to non-resonant v
ations and voltage rings that are between 20 mV and 30 m
The average performance and energy losses are quite sm
The average fraction of cycles that are part of a response
the 30 mV threshold and the 20 mV threshold are lower a
higher, respectively, than the average number of second-le
responses in resonance tuning. As is the case with resona
tuning, most of these responses are unnecessary. However
performance and energy impact ofanyresponse in [10] is sim-

Table 4: Technique of [ 10]

Target threshold
(mV)

Noise (mV
peak-to-peak)

Actual thresh-
old (mV)

Sensor/control
delay

Fraction of cycles in
response

Worst relative slowdown Avg relative
slowdown

Avg relative
energy-delay

30 0 30 0 0.002 1.038 (swim) 1.005 1.030

20 0 30 0 0.04 1.180 (fma3d) 1.039 1.047

30 15 22 0 0.05 1.11 (fma3d) 1.031 1.074

20 10 15 5 0.15 1.32 (fma3d) 1.108 1.191

20 15 12 3 0.27 1.68 (galgal) 1.236 1.460
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ilar to that of thesecond-levelresponse in resonance tuning, as
both stall issue and/or phantom-fire resources. As the thresh-
old lowers, [10] incurs more unnecessary responses. This
trend only worsens when sensor noise and delay are intro-
duced.

The ideal design points just discussed may not be realistic
as discussed in Section 1. For example, it may not be possible
to design accurate voltage sensors to distinguish such small
voltage differences. The third row adds 15 mV peak-to-peak
of noise to the voltage sensors with a targeted threshold of 30
mV, reducing the actual threshold to 22 mV. Average perfor-
mance loss increases but is still relatively small at 3.1%.

However, a real system will have some delay between sens-
ing and response to a voltage change as mentioned in [10].
[10] show results for noise and delay separately and not com-
bined. Delay impacts the effectiveness of response and thus
requires a lower target threshold. In the fourth row of results,
we show a configuration with a delay of 5 cycles, a target
threshold of 20 mV (lower than 30 to account for the delay,
similar to [10])andnoise of 10 mV. Performance degradation
jumps to 10.8%, and relative energy-delay increases to 19% If
we increase the noise to 15 mV, the actual threshold becomes
only 12 mV as shown in the fifth row. Even if we decrease the
delay to 3 cycles, there are many non-resonant variations of
that magnitude, causing the fraction of cycles in response
nearly to double over the previous value. Average performance
degradation and energy delay increase to 24% and 1.46.

5.3.2 Damping
We also implement pipeline damping as described in [14].

We apply pipeline damping at the resonant period (which is
100 cycles, making the damping window 50 cycles) and use
the a priori relative current estimates given in [14] and their
assumption that each unit of estimated current is equivalent to
0.5 A (scaled to our processor configuration). We initially set
the worst-case current variation allowed over a resonant period
(δ in [14]) to be equal to the resonant current variation thresh-
old of 32 A and we use the “always-on” frontend-damping
technique of [14].

Pipeline damping addresses variations only at the resonant
frequency and not within the entire resonance band. There are
two options to modify damping to account for the entire band.
One is to extend the per-cycle decisions to cover the range of
frequencies in the band. However, doing so would complicate
the issue queue further (Section 1). Therefore, we do not use
this option. The other is tightening ofδ to reduce variations in
the entire band (though it may require substantial tightening of
δ to guarantee the noise margins). We use this option to show
results for values ofδ at one-half and one-quarter of our initial
value. In our results, we generously assume that the extensive

issue-queue modifications required for pipeline damping
not impact performance.

Table 5 shows our results for pipeline damping. The perfo
mance degradations increase from 10% to 24% and the r
tive energy delays from 1.11 to 1.26 as we reduce the value
δ relative to the resonant current variation threshold. The
values are similar to those reported in [14].

5.3.3 Comparison
We compare the relative energy-delays of resonance t

ing, [10], and pipeline damping in Figure 5, showing tw
design points from the previous sections for each scheme.
note that it is hard to compare to damping because it does
cover the resonance band, and it has issue queue and cu
estimation problems. To facilitate comparison between res
nance tuning and [10], we note that (1) the current sensor p
cision in resonance tuning is to the whole amp whereas
voltage sensor precision in [10] is 10-15 mV; (2) resonan
tuning is not sensitive to the delay of 3 to 5 cycles shown f
[10]. We see that resonance tuning outperforms the other t
schemes.

6  Related work

While [8], [10], and [14] propose architectural solutions fo
medium-frequency inductive noise, other proposals focus
high-frequency noise (near processor clock frequencies). [
proposes to ramp functional unit current slowly to reduc
high-frequency noise. [15] proposes architectural techniqu
to reduce high-frequency noise to reduce the requirements
on-die d-caps and save leakage energy. [5] measured step
rent using a microarchitectural simulator.

A simultaneous architectural work on di/dt characterizatio
appears in [11]. The authors propose a wavelet-based off-l
estimation technique to analyze supply voltage variation a
an on-line control technique for current variations that us
simplified wavelet-based convolution to avoid the complexi
of full convolution described in [8]. Wavelet-based convolu
tion may be an alternative to using maximum repetition tole
ance and resonant current variation threshold (as describe
Section 3.1) to detect resonant behavior for resonance tuni

Table 5: Pipeline damping [ 14].

δ relative to resonant cur-
rent variation threshold

Worst relative
slowdown

Avg relative
slowdown

Avg relative
energy-delay

1 1.35 (fma3d) 1.10 1.12

0.5 1.60 (fma3d) 1.15 1.17

0.25 2.04 (fma3d) 1.24 1.26

FIGURE 5: Comparison of techniques
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7  Conclusions

Inductive noise is caused by a few peaks of high impedance
at the resonant frequencies of RLC loops in the power-supply
network. Current variations in the band of resonant frequen-
cies cause supply-voltage glitches beyond the noise margins.
We proposedresonance tuningbased on the observations that
(1) current variations only in the resonance band are problem-
atic whereas other variations are absorbed by the power sup-
ply, and (2) only repeated, and not isolated, current variations
build up to noise-margin violations. Accordingly, resonance
tuning changes the frequency of current variations away from
the resonance band to non-resonant frequencies, responding
only to repeated current variations and not to individual varia-
tions. Upon detecting a build up, resonance tuning uses two-
tiered response of minor and major perturbations in the pipe-
line resource usage (e.g., stalling a few issue widths and com-
plete stall) to tune-out current variations while they are still
nascent.

Compared to previous techniques, resonance tuning incurs
fewer false alarms by distinguishing between resonant and
non-resonant variations, and by sensing current which avoids
ringing problems of sensing voltage. Because repetitions of
resonant periods are tens of cycles, resonance tuning does not
need fast sensors and has ample time to use the simple and
gentle first-tier response of minor stalling, unlike previous
techniques. Resonance tuning also avoids previous tech-
niques’ difficulties of accurate estimates of current, real-time
convolution calculations, and invasive changes to the issue
queue.

Our simulations using SPEC2000 show that resonance tun-
ing, [10], and [14] incur 5-9%, 19-46%, and 17-26% energy-
delay penalty and 4-8%, 11-24%, and 15-24% performance
degradation, respectively, over ranges of representative config-
urations. Technology scaling trends imply increasing number
of processor cycles in resonant periods in the future, making
resonance tuning’s timings more lenient. As supply voltages
fall and absolute noise margins shrink, resonance tuning will
likely become important for controlling inductive noise.
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