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Abstract

There have been remarkable improvements in the se-

mantic labelling task in the recent years. However, the

state of the art methods rely on large-scale pixel-level an-

notations. This paper studies the problem of training a

pixel-wise semantic labeller network from image-level an-

notations of the present object classes. Recently, it has

been shown that high quality seeds indicating discrimin-

ative object regions can be obtained from image-level la-

bels. Without additional information, obtaining the full ex-

tent of the object is an inherently ill-posed problem due to

co-occurrences. We propose using a saliency model as ad-

ditional information and hereby exploit prior knowledge on

the object extent and image statistics. We show how to com-

bine both information sources in order to recover 80% of

the fully supervised performance – which is the new state

of the art in weakly supervised training for pixel-wise se-

mantic labelling.

1. Introduction

Semantic image labelling provides rich information about

scenes, but comes at the cost of requiring pixel-wise la-

belled training data. The accuracy of convnet-based mod-

els correlates strongly with the amount of available train-

ing data. Collection and annotation of data have become

a bottleneck for progress. This problem has raised interest

in exploring partially supervised data or different means of

supervision, which represents different tradeoffs between

annotation efforts and yields in terms of supervision sig-

nal for the learning task. For tasks like semantic segment-

ation there is a need to investigate the minimal supervision

to reach the quality comparable to the fully supervised case.

(c)our result(b)saliency(a)image labels

person

bicycle

training image test image

Figure 1: We train a semantic labelling network with (a)

image-level labels and (b) saliency masks, to generate (c) a

pixel-wise labelling of object classes at test time.

A reasonable starting point considers that all training

images have image-level labels to indicate the presence or

absence of the classes of interest. The weakly supervised

learning problem can be seen as a specific instance of learn-

ing from constraints [38, 47]. Instead of explicitly super-

vising the output, the available labels provide a constraint

on the desired output. If an image label is absent, no pixel in

the image should take that label; if an image label is present

at least in one pixel the image must take that label. How-

ever, the objects of interest are rarely single pixel. Thus to

enforce larger output regions size, shape, or appearance pri-

ors are commonly employed (either explicitly or implicitly).

Another reason for exploiting priors, is the fact that the

task is fundamentally ambiguous. Strongly co-occurring

categories (such as train and rails, sculls and oars, snow-

bikes and snow) cannot be separated without additional in-

formation. Because additional information is needed to

solve the task, previous work have explored different aven-

ues, including class-specific size priors [31], crawling ad-

ditional images [33, 46], or requesting corrections from a

human judge [17, 37].
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Despite these efforts, the quality of the current best res-

ults on the task seems to level out at ∼ 75% of the fully

supervised case. Therefore, we argue that additional in-

formation sources have to be explored to complement the

image level label supervision – in particular addressing the

inherent ambiguities of the task. In this work, we propose to

exploit class-agnostic saliency as a new ingredient to train

for class-specific pixel labelling; and show new state of the

art results on Pascal VOC 2012 semantic labelling with im-

age label supervision.

We decompose the problem of object segmentation from

image labels into two separate ones: finding the object loc-

ation (any point on the object), and finding the object’s ex-

tent. Finding the object extent can be equivalently seen as

finding the background area in an image.

For object location we exploit the fact that image clas-

sifiers are sensitive to the discriminative areas of an image.

Thus, training using the image labels enables to find high

confidence points over the objects classes of interest (we

call these “object seeds”), as well as high confidence re-

gions for background. A classifier, however, will struggle

to delineate the fine details of an object instance, since these

might not be particularly discriminative.

For finding the object extent, we exploit the fact that a

large portion of photos aim at capturing a subject. Using

class-agnostic object saliency we can find the segment cor-

responding to some of the detected object seeds. Albeit sali-

ency is noisy, it provides information delineating the object

extent beyond what seeds can indicate. Our experiments

show that this is an effective source of additional inform-

ation. Our saliency model is itself trained from bounding

box annotations only. At no point of our pipeline accurate

pixel-wise annotations are used.

In this paper we provide an analysis of the factors that in-

fluence the seeds generation, explore the utility of saliency

for the task, and report best known results both when using

image labels only and image labels with additional data. In

summary, our contributions are:

• Propose an effective method for combining seed and

saliency for the task of weakly supervised semantic

segmentation. Our method achieves the best perform-

ance among the known works that utilise image level

supervision with or without additional external data.

• Compare recent seed methods side by side, and ana-

lyse the importance of saliency towards final quality.

§3 presents our overall architecture, §4 investigates suitable

object seeds, and §5 describes how we use saliency to guide

the convnet training. Finally §6 discusses the experimental

setup, and presents our key results.

2. Related work

The last years have seen a renewed interest on weakly su-

pervised training. For semantic labelling, different forms

of supervision have been explored: image labels [32, 31,

30, 33, 46, 18], points [3], scribbles [47, 24], and bounding

boxes [9, 30, 16]. In this work we focus on image labels as

the main form of supervision.

Object seeds. Multiple works have considered using a

trained classifier (from image level labels) to find areas of

the image that belong to a given class, without necessar-

ily enforcing to cover the full object extent (high precision,

low recall). Starting from simple strategies such as “prob-

ing classifier with different image areas occluded” [50],

or back-propagating the class score gradient on the image

[41]; significantly more involved strategies have been pro-

posed, mainly by modifying the back-propagation strategy

[43, 51, 40], or by solving a per-image optimization prob-

lem [6]. All these strategies provide some degree of em-

pirical success but lack a clear theoretical justification, and

tend to have rather noisy outputs.

Another approach considers modifying the classifier train-

ing procedure so as to have it generate object masks as by-

product of a forward-pass. This can be achieved by adding

a global a max-pooling [33] or mean-pooling layer [54] in

the last stages of the classifier.

In this work we provide an empirical comparison of existing

seeders, and explore variants of the mean-pooling approach

[54] (§4).

Pixel labelling from image level supervision. Initial work

approached this problem by adapting multiple-instance

learning [32] and expectation-maximization techniques

[30], to the semantic labelling case. Without additional pri-

ors only poor results are obtained. Using superpixels to in-

form about the object shape helps [33, 47] and so does using

priors on the object size [31]. [18] carefully uses CRFs to

propagate the seeds across the image during training, while

[36] exploits segment proposals for this.

Most methods compared propose each a new procedure to

train a semantic labelling convnet. One exception is [40]

which fuses at test time guided back-propagation [43] at

multiple convnet layers to generate class-wise heatmaps.

They do this over a convnet trained for classification. Being

based on classifier, their output masks only partially capture

the object extents, as reflected in the comparatively low per-

formance (table 3).

Recognizing the ill-posed nature of the problem, [17] and

[37] propose to collect user-feedback as additional inform-

ation to guide the training of a segmentation convnet.

The closest work to our approach is [46], which also uses

saliency as a cue to improve weakly supervised semantic

segmentation. There are however a number of differences.

First, they use a curriculum learning to expose the segment-
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ation convnet first with simple images, and later with more

complex ones. We do not need such curriculum, yet reach

better results. Second, they use a manually crafted class-

agnostic saliency method, while we use a deep learning

based one (which provides better cues). Third, their train-

ing procedure uses ∼ 40k additional images of the classes

of interest crawled from the web; we do not use such class-

specific external data. Fourth, we report significantly better

results, showing in better light the potential of saliency as

additional information to guide weakly supervised semantic

object labelling.

The seminal work [45] proposed to use “objectness” map

from bounding boxes to guide the semantic segmentation.

By using bounding boxes, these maps end up being diffuse;

in contrast, our saliency map has sharp object boundaries,

giving more precise guidance to the semantic labeller.

Detection boxes from image level supervision. Detecting

object boxes from image labels has similar challenges as

pixel labelling. The object location and extent need to be

found. State of the art techniques for this task [4, 44, 15]

learn to re-score detection proposals using two stream archi-

tectures that once trained separate “objectness” scores from

class scores. These architecture echo with our approach,

where the seeds provide information about the class scores

at each pixel (albeit with low recall for foreground classes),

and the saliency output provides a per-pixel (class agnostic)

“objectness” score.

Saliency. Image saliency has multiple connotations, it can

refer to a spatial probability map of where a person might

look first [48], a probability map of which object a person

might look first [23], or a binary mask segmenting the one

object a person is most likely to look first [5, 39]. We em-

ploy the last definition in this paper. Note that this notion

is class-agnostic, and refers more to the composition of the

image, than the specific object category.

Like most computer vision areas, hand-crafted methods

[14, 28, 8] have now been surpassed by convnet based ap-

proaches [53, 22, 21] for object saliency. In this paper we

use saliency as an ingredient: improved saliency models

would lead to improved results for our method. We describe

in §6.1 our saliency model design, trained itself in a weakly

supervised fashion from bounding boxes.

Semantic labelling. Even when pixel-level annotations are

provided (fully supervised case), the task of semantic la-

belling is far from solved. Multiple convnet architectures

have been proposed, including recurrent networks [34],

encoder-decoders [29, 1], up-sampling layers [27], using

skip layers [2], or dilated convolutions [7, 49], to name a

few. Most of them build upon classification architectures

such as VGG [42] or ResNet [13]. For comparison with

previous work, our experiments are based on the popular

DeepLab [7] architecture.

image

Dense

loss

classifier

Segmenter
convnet

Guide labeller

person
table
chair

Saliency

Seeder

Figure 2: High level Guided Segmentation architecture.

3. Guided Segmentation architecture

While previous work have explored sophisticated training

losses or involved pipelines, we focus on saliency as an ef-

fective prior knowledge, and keep our architecture simple.

We approach the image-level supervised semantic seg-

mentation problem via a system with two modules (see fig-

ure 2), we name this architecture “Guided Segmentation”.

Given an image and image-level labels, the “guide labeller”

module combines cues from a seeder (§4) and saliency (§5)

sub-modules, producing a rough segmentation mask (the

“guide”). Then a segmenter convnet is trained using the

produced guide mask as supervision. In this architecture the

segmentation convnet is trained in a fully-supervised pro-

cedure, using per pixel softmax cross-entropy loss.

In §4 and 5 we explain how we build our guide labeller,

by first generating seeds (discriminative areas of objects of

interest), and then extending them to better cover the full

object extents.

4. Finding goods seeds

There has been a recent burst of techniques for localising

objects from a classifier. Some approaches rely on image

gradients from a trained classifier [41, 43, 51], while the

others propose to train global average pooling (GAP) based

classifiers [54]. Although the classifier based localisation

approach has a theoretical limitation that the training object-

ive (image classification) does not match final goal (object

locations), they have proved to be effective in practice.

In this section, we review the seeder techniques side by

side and compare their empirical performances. We report

empirical results on different GAP architectures [54, 18, 7].

4.1. GAP

GAP, or global average pooling layer, can be inserted in the

last or penultimate layer of a fully convolutional architec-

ture, which produces a dense prediction, to turn it into a

classifier. The resulting architecture is then trained with a

classification loss, and at test time the activation maps be-

fore the global average pooling layer have been shown to

contain localisation information [54].

In our analysis, we consider four different fully con-

volutional architectures with a GAP layer: GAP-LowRes,
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Figure 3: Precision-recall curves for different seeds. Fore-

ground curves show the average precision and recall among

the 20 foreground classes.

GAP-HighRes, GAP-DeepLab, and GAP-ROI. The archi-

tectural differences are summarised in table 1, and the

full details are provided in the supplementary materials.

GAP-LowRes [54] is essentially a fully convolutional ver-

sion of VGG-16 [42]. GAP-HighRes, inspired by [18],

has 2 times higher output resolution than GAP-LowRes.

GAP-DeepLab is a state of the art semantic segmenter Dee-

pLab with a GAP layer over the dense score output. The

main difference between GAP-HighRes and GAP-DeepLab

is the presence of dilated convolutions. GAP-ROI is a variant

of GAP-HighRes where we use the region of interest pool-

ing to replace the sliding window convolutions in the last

layers of VGG-16. GAP-ROI is identical to GAP-HighRes,

except for a slight structural variation.

4.2. Empirical study

In this section, we empirically compare the seed methods

side by side focusing on their utility for the final semantic

segmentation task. Together with GAP methods discussed

in the previous section, we consider the back-propagation

family: Vanilla, Guided, and Excitation back-propagations

[41, 43, 51]. We include the centre mean shape baseline that

always outputs the average mask shape; it works as a lower

bound on the localisation performance.

Evaluation. We evaluate each method on the val set of the

Pascal VOC 2012 [11] segmentation benchmark. We plot

the foreground and background precision-recall curves in

figure 3. In the foreground case, we compute the mean pre-

cision and recall over the 20 Pascal categories.

We define mean precision (mP) as a summary metric for

localisation performance. It averages the foreground pre-

cision at 20% recall and the background precision at 80%

recall; mP =
PrecFg@20%+PrecBg@80%

2
. Intuitively, for the

foreground region we only need a small discriminative re-

gion, as saliency will fill in the extent; we thus care about

precision at ∼ 20% recall. On the other hand, background

has more diverse appearance and usually takes a larger re-

gion; we thus care about precision at ∼ 80% recall. Since

we care about both, we take the average (as for the mAP

metric). This metric has shown a good correlation with the

final performance in our preliminary experiments.

We measure the classification performance in the stand-

ard mean average precision (mAP) metric.

Implementation details. We train all four GAP network

variants for multi-label image classification over the train-

aug set of Pascal VOC 2012. Full convnet training details

are in the supplementary materials. At test time, we take the

output per-class heatmaps before the GAP layer and norm-

alise them by the maximal per-class scores.

For the back-propagation based methods, we obtain im-

age (pseudo-)gradients from the VGG-16 [42] classifier

trained on the trainaug set of Pascal VOC 2012 (10 582

images in total). We take the maximal absolute gradient

value across the RGB channels to generate a rough object

mask (following [41]); it is successively smoothed first with

vanilla Gaussian kernel and then with dense CRF [19].

In both GAP and backprop variants, we mark pixels with

all foreground class scores below τ as background; other

pixels are marked according to the argmax foreground class.

Results. See figure 3 for the precision-recall curves. GAP

variants have overall greater precision than backprop vari-

ants at the same recall rate. We note that the Guided back-

prop gives highest precision at a very low recall regime

(∼ 5%), but the recall is too low to be useful. Among the

GAP methods, GAP-HighRes and GAP-ROI give higher pre-

cisions over a wide range of recall. GAP-DeepLab shows a

significantly lower quality than any other GAP variants.

Network matters for GAP. Table 1 shows detailed ar-

chitectural comparisons and classification/localisation per-

formances of the GAP variants. We observe that the net-

work with higher resolution output has better localisation

performance (80.7 mP for GAP-HighRes versus 76.5 mP for

GAP-LowRes). Dilated convolutions significantly hurt the

GAP performance (87.0 mP for GAP-HighRes versus 57.7

4413



GAP -LowRes -HighRes -ROI -DeepLab

[54] [18] [7]

high res. ✪ X X X

dil. conv. ✪ ✪ ✪ X

ROI pool ✪ ✪ X ✪

mAP 88.0 87.0 87.2 92.7

mP 76.5 80.7 80.8 57.7

Table 1: Architectural comparisons among GAP variants to-

gether with classification (mAP) and localisation (mP; see

text for details) performances. We compare the output resol-

ution (high res.), use of the dilated convolutions (dil. conv.),

and the region of interest pooling (ROI pool).

mP for GAP-DeepLab). The architectural choice matters a

lot for the localisation performance. This contrasts with the

classification performances (mAP), which are stable across

design choices. Intriguingly, GAP-DeepLab is in fact the

best classifier and the worst seeder at the same time; better

design choices for classifiers do not lead to better seeders.

We use GAP-HighRes as the seeder module in the next

sections. In [18], foreground and background seeds are

handled via different mechanisms; in our experiments we

treat all the non-foreground region as background.

5. Finding the object extent

Having generated a set of seeds indicating discriminative

object areas, the guide labeller needs to find the extent of

the object instances (§3).

Without any prior knowledge, it is very hard, if not im-

possible, to learn the extent of objects only from images and

image-level labels. Image-level labels only convey inform-

ation about commonly occurring patterns that are present in

images with positive tags and absent in images with negat-

ive tags. The system is thus susceptible to strong inter-class

co-occurrences (e.g. train with rail), as well as systematic

part occlusions (e.g. feet).

CRF and CRFLoss. A traditional approach to make labels

match object boundaries is to solve a CRF inference prob-

lem [20, 19] over the image grid; where the pair-wise terms

relate to the object boundaries. CRF can be applied at three

stages: (1) on the seeds (crf-seed), (2) as a loss function

during segmenter convnet training (crf-loss) [18], and

(3) as a post-processing at test time (crf-postproc). We

have experimented with multiple combinations of those (see

supplementary materials).

Albeit some gains are observed, these are inconsist-

ent. For example GAP-HighRes and GAP-ROI provide near

identical classification and seeding performance (see table

1), yet using the same CRF setup provides +13 mIoU per-

cent points in one, but only +7 pp on the other. In com-

parison our saliency approach will provide +17 mIoU and

+18 mIoU for these two networks respectively (see below).

5.1. Saliency

We propose to use object saliency to extract information

about the object extent. We work under the assumption that

a large portion of the dataset are intentional photographies,

which is the case for most datasets crawled from the web

such as Pascal [11] and Coco [25]. If the image contains

a single label “dog”, chances are that the image is about a

dog, and that the salient object of the image is a dog. We

use a convnet based saliency estimator (detailed in §6.1)

which adds the benefit of translation invariance. If two loc-

ally salient dogs appear in the image, both will be labelled

as foreground.

When using saliency to guide semantic labelling at least

two difficulties need to be handled. For one, saliency per-se

does not segment object instances. In the example figure

4a, the person-bike is well segmented, but person and bike

are not separated. Yet, the ideal Guide labeller (figure 2)

should give different labels to these two objects. The second

difficulty, clearly visible in the examples of figure 4, is that

the salient object might not belong to a category of interest

(shirt instead of person in figure 4b) or that the method fails

to identify any salient region at all (figure 4c).

We measure the saliency quality when compared to the

ground truth foreground on Pascal VOC 2012 validation

set. Albeit our convnet saliency model is better than hand-

crafted methods [14, 52], in the end only about 20% of im-

ages have reasonably good (IoU > 0.6) foreground saliency

quality. Yet, as we will see in §6, this bit of information is

already helpful for the weakly supervised learning task.

Crucially, our saliency system is trained on images con-

taining diverse objects (hundreds of categories), the object

categories treated as “unknown”. To ensure clean experi-

ments we handicap the system by removing any instance

of Pascal categories in the object saliency training set (fig-

ure 5). Our saliency model captures a general notion of

plausible foreground objects and background areas (details

in §6.1).

On every Pascal training image, we obtain a class-

agnostic foreground/background binary mask from our sali-

ency model, and high precision/low recall class-specific im-

age labels from the seeds model (§4). We want to combine

them in such a way that seed signals are well propagated

throughout the foreground saliency mask. We consider two

baselines strategies to generate guide labels using saliency

but no seeds (G0 and G1), and then discuss how we combine

saliency with seeds (G2).

G0 Random class assignment. Given a saliency mask, we

assign all foreground pixels to a class randomly picked from

the ground truth image labels. If a single “dog” label is

present, then all foreground pixels are “dog”. Two labels

are present (“dog, cat”), then all pixels are either dog or cat.
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(a) High quality (b) Medium quality (c) Low quality

Figure 4: Example of our saliency map results on Pascal VOC 2012 data.
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Figure 5: Example of saliency results on its training data.

We use MSRA box annotations to train a weakly supervised

saliency model. Note that the MSRA subset employed does

not contain Pascal categories.

G1 Per-connected component classification. Given a sa-

liency mask, we split it in components, and assign a sep-

arate label for each component. The per-component labels

are given using a full-image classifier trained using the im-

age labels (classifier details in §6.1). Given a connected

component mask R
fg
i (with pixel values 1: foreground, 0:

background), we compute the classifier scores when feed-

ing the original image (I), and when feeding an image with

background zeroed (I ⊙R
fg
i ). Region R

fg
i will be labelled

with the ground truth class with the greatest positive score

difference before and after zeroing.

G2 Propagating seeds. Here, instead of assigning the label

per connected component R
fg
i using a classifier, we instead

use the seed labels. We also treat the seeds as a set of con-

nected components (seed Rs
j ). Depending on how the seeds

and the foreground regions intersect, we decide the label for

each pixel in the guide labeller output.

Our fusion strategy uses five simple ideas. 1) We treat the

seeds as reliable small size point predictors of each object

instance, but that might leak outside of the object. 2) We as-

sume the saliency might trigger on objects that are not part

of the classes of interest. 3) A foreground connected com-

ponent R
fg
i should take the label of the seed touching it, 4)

If two (or more) seeds touch the same foreground compon-

ent, then we want to propagate all the seed labels inside it.

5) When in doubt, mark as ignore. The details for the corner

cases are provided in the supplementary material.

Figure 6 provides example results of the different guide

strategies. For additional qualitative examples of seeds, sa-

liency foreground, and generated labels, see figure 7. With

our guide strategies G0, G1, and G2 at hand, we now proceed

to empirically evaluate them in §6.

6. Experiments

§6 and 6.1 provide the details of the evaluation and our im-

plementation. §6.2 compares our different guide strategies,

and §6.3 compares with previous work on weakly super-

vised semantic labelling from image-level labels.

Evaluation. We evaluate our image-level supervised se-

mantic segmentation system on the Pascal VOC 2012 seg-

mentation benchmark [11]. We report all the intermediate

results on the val set (1 449 images) and only report the final

system result on the test set (1 456 images). Evaluation met-

ric is the standard mean intersection-over-union (mIoU).

6.1. Implementation details

For training the seeder and segmenter networks, we use the

ImageNet [10] pretrained models for initialisation and fine-

tune on the Pascal VOC 2012 trainaug set (10 582 images),

an extension of the original train set (1 464 images) [11, 12].

This is the same procedure used by previous work on fully

[7] and weakly supervised learning [18].

Seeder. Results in tables 2 and 3 are obtained using

GAP-HighRes (see §4), trained for image classification on

the Pascal trainaug set. The test time foreground threshold

τ is set to 0.2, following the previous literature [54, 18].

G1 Classifier. The guide labeller strategy G1 uses an image

classifier trained on Pascal trainaug set. We use the VGG-

16 architecture [42] with the softmax cross-entropy multi-

label loss.

Saliency. Following [53, 22, 21] we re-purpose a semantic

labelling network for the task of class-agnostic saliency. We

train the DeepLab-v2 ResNet [7] over a subset of MSRA

[26], a saliency dataset with class agnostic bounding box

annotations. We constrain the training only to samples of

non-Pascal categories. Thus, the saliency model does not

leverage class specific features when Pascal images are fed.

Out of 25k MSRA images, 11 041 remain after filtering.

MRSA provides bounding boxes (from multiple annotat-

ors) of the main salient element of each image. To train the

saliency model to output pixel-wise masks, we follow [16].
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(a) Image (b) Ground truth (c) Seed (d) Saliency (e) G0 (f) G1 (g) G2

Figure 6: Guide labelling strategies example results. The image, its labels (“bicycle, chair”), seeds, and saliency map are

their input. White overlay indicates “ignore” pixel label.

We generate segments from the MSRA boxes by applying

grabcut over the average box annotation, and use these as

supervision for the DeepLab model. The model is trained

as a binary semantic labeller for foreground and background

regions. The trained model generates masks like the ones

shown in figure 5. Although having been trained with im-

ages with single salient objects, due to its convolutional

nature the network can predict multiple salient regions in

the Pascal images (as shown in figure 7).

At test time, the saliency model generates a heatmap of

foreground probabilities. We threshold at 50% of the max-

imal foreground probability to generate the mask.

Segmenter. For comparison with previous work we use the

DeepLabv1-LargeFOV [7] architecture as our segmenter

convnet. The network is trained on Pascal trainaug set with

10 582 images, using the output of the guide labeller (§2),

which uses only the image itself and the presence-absence

tags of the 20 Pascal categories as supervision. The network

is trained for 8k iterations.

Following the standard DeepLab procedure, at test time we

up-sample the output to the original image resolution and

apply the dense CRF inference [19]. Unless stated oth-

erwise, we use the CRF parameters used for DeepLabv1-

LargeFOV [7]. Additional training details and hyper-

parameters are given in the supplementary materials.

6.2. Ingredients study

Table 2 compares different guide strategies G0, G1, G2, and

oracle versions of G2. The first row shows the result of train-

ing our segmenter using the seeds directly as guide labels.

This leads to poor quality (38.7 mIoU). The “Supervision”

column shows recall and precision for foreground and back-

ground of the guide labels themselves (training data for the

segmenter). We can see that the seeds alone have low re-

call for the foreground (37%). In comparison, using sali-

ency only, G0 reaches significantly better results, due to the

higher foreground recall (52%), at a comparable precision.

Adding a classifier on top of the saliency (G0 → G1)

provides only a negligible improvement (45.8 → 46.2).

This can be attributed the fact that many Pascal images con-

tain only a single foreground class, and that the classifier

might have difficulties recognizing the masked objects. In-

Method Seeds
Sali- Supervision val. set

ency Fg P/R Bg P/R mIoU

Seeds only X ✪ 69 37 81 95 38.7

G0 ✪ X 65 52 65 52 45.8

G1 ✪ X 75 51 75 51 46.2

G2 X X 73 59 87 95 51.2

Saliency oracle X X 89 91 100 99 56.9

Table 2: Comparison of different guide labeller variants.

Pascal VOC 2012 validation set results, without CRF post-

processing. Fg/Bg P/R: are foreground/background preci-

sion and recall of the guide labels. Discussion in §6.2.

terestingly, when using a similar classifier to generate seeds

instead of scoring the image (G1 → G2) we gain 5 pp (per-

cent points, 46.2 → 51.2). This shows that the details of

how a classifier is used can make a large difference.

Table 2 also reports a saliency oracle case on top of G2.

If we use the ground truth annotation to generate an ideal

saliency mask, we see a significant improvement over G2

(51.2 → 56.9). Thus, the quality of saliency is an important

ingredient, and there is room for further gains.

6.3. Results

Table 3 compares our results with previous related work.

We group results by methods that only use ImageNet

pre-training and image-level labels (I, P, E; see legend

table 3), and methods that use additional data or user-

inputs. Here our G0 and G2 results include a CRF post-

processing (crf-postproc). We also experimented with

crf-loss but did not find a parameter set that provided

improved results.

We see that the guide strategies G0, which uses saliency

and random ground-truth label, reaches competitive per-

formance compared to methods using I+P only. This shows

that saliency by itself is already a strong cue. Our guide

strategy G2 (which uses seeds and saliency) obtains the best

reported results on this task1. We even improve over other

1[36] also reports 54.3 validation set results, however we do not con-

sider these results comparable since they use the MCG scores [35], which

are trained on the ground truth Pascal segments.
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val. set test set

Method Data mIoU mIoU FS%

Im
ag

e
la

b
el

s
o

n
ly

MIL-FCN [32] I+P 25.0 25.6 36.5

CCNN [31] I+P 35.3 35.6 50.6

WSSL [30] I+P 38.2 39.6 56.3

MIL+Seg [33] I+E760k 42.0 40.6 57.8

DCSM [40] I+P 44.1 45.1 64.2

CheckMask [37] I+P 46.6 - -

SEC [18] I+P 50.7 51.7 73.5

AF-ss [36] I+P 51.6 - -

Seeds only I+P 39.8 - -

M
o

re
in

fo
rm

at
io

n CCNN [31] I+P+Z - 45.1 64.2

STC [46] I+P+S+E40k 49.8 51.2 72.8

CheckMask [37] I+P+µ 51.5 - -

MicroAnno [17] I+P+µ 51.9 53.2 75.7

G0 I+P+S 48.8 - -

G2 I+P+S 55.7 56.7 80.6

DeepLabv1 I+Pfull 67.6 70.3 100

Table 3: Comparison of state of the art methods, on Pascal

VOC 2012 val. and test set. FS%: fully supervised percent.

Ingredients: I: ImageNet classification pre-training, P: Pas-

cal image level tags, Pfull: fully supervised case (pixel wise

labels), En: n extra images with image level tags, S: sali-

ency, Z: per-class size prior, µ: human-in-the-loop micro-

annotations.

methods using saliency (STC) or using additional human

annotations (MicroAnno, CheckMask). Compared to a

fully supervised DeepLabv1 model, our results reach 80%

of the fully supervised quality.

7. Conclusion

We have addressed the problem of training a semantic seg-

mentation convnet from image labels. Image labels alone

can provide high quality seeds, or discriminative object re-

gions, but learning the full object extents is a hard problem.

We have shown that saliency is a viable option for feeding

the object extent information.

The proposed Guided Segmentation architecture (§3),

where the “guide labeller” combines cues from the seeds

and saliency, can successfully train a segmentation convnet

to achieve the state of the art performance. Our weakly su-

pervised results reach 80% of the fully supervised case.

We expect that a deeper understanding of the seeder

methods and improvements on the saliency model can lead

to further improvements.
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Figure 7: Qualitative examples of the different stages of our

system. More examples in the supplementary material.
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