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Abstract We discuss the design, implementation and performancegofitims
suitable for the efficient computation gbarse Jacobian and Hessian matrices us-
ing Automatic Differentiation via operator overloading onlticore architectures.
The procedure for exploiting sparsity (for runtime and meyeificiency) in serial
computation involves a number of steps. Using nonlineanopation problems as
test cases, we show that the algorithms involved in the uarsteps can be adapted
to multithreaded computations.
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1 Introduction

Research and development around Automatic Differentidd®) over the last sev-
eral decades has enabled much progress in algorithms amdsstools, but it has
largely focused on differentiating functions implemengsdserial codes. With the
increasing ubiquity of parallel computing platforms, esp#y desktop multicore
machines, there is a greater need than ever before for ¢ghéngl&D capabilities
for parallel codes. The subject of this work is on AD capéiesi for multithreaded
functions, and the focus is on techniques for exploiting $barsity available in
large-scale Jacobian and Hessian matrices.

Derivative calculation via AD for parallel codes has beengidered in several
previous studies, but the focus has largely been on the sdransformation ap-
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Fig. 1 Function evaluation of an OpenMP parallel code.

proach [1, 2, 3, 4, 11]. This is mainly because having a caenpil hand during the
source transformation makes it relatively easy to dete@ligdization function calls
(as in MPI) or parallelization directives (as in OpenMP)t&xing parallel sections
of code for an operator overloading tool is much harder stheecorresponding
parallelization function calls or directives are difficolt even impossible to detect
at runtime. For that reason, the operator overloading tddDA-C [13] uses its
own wrapper functions for handling functions that are galiakd with MPI. For
parallel function evaluations using OpenMP, ADOL-C uses ¢bncept of nested
taping [8, 9] to take advantage of the parallelization pded by the simulation for
the derivative calculation as well. In this paper we extdrnig approach to exploit
sparsity in parallel.

By exploiting sparsity is meant avoiding computing with @giin order to re-
duce (often drastically) runtime and memory costs. We aimxatoiting sparsity
in both Jacobian and Hessian computations. In the serial settiegg £xists an es-
tablished scheme for efficient computation of sparse Jacstind Hessians. The
scheme involves four major steps: automatic sparsity pattetection, seed matrix
determination via graph coloring, compressed-matrix astaon, and recovery.
We extend this scheme to the case of multithreaded composativhere both the
function evaluation and the derivative computation areedionparallel. The AD-
specific algorithms we use are implemented in ADOL-C. Theitog and recovery
algorithms are independently developed and implemente@uoiPack [6], which in
turn is coupled with ADOL-C. We show the performance of theauas algorithms
on a multicore machine using PDE-constrained optimizgtimilems as test cases.

2 Paralléel derivative computation in ADOL-C

Throughout this paper we assume that the user provides anNpearallel pro-
gram as sketched in Fig. 1. That is, after an initializatitvage, calculations are
performed on several threads, with a possible finalizatibasp performed by a
dedicated single thread (say thread 1). The current “motleperation of ADOL-
C when differentiating such OpenMP parallel codes is iteted in Fig. 2. Here,
the tracing part represents essentially the parallel function evadogirovided by
the user. For computing the derivatives also in paralleluber has to change in the
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Fig. 2 Derivative calculation with ADOL-C for an OpenMP parallelde.
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Fig. 3 Derivative calculation with ADOL-C for an OpenMP parallelde when exploiting sparsity.

function evaluation albdouble-variables toadouble-variables, include the head-
ersadolc.h andadolc_openmp.h, and insert the pragmaemp parallel firstpri-
vate(ADOLC_OpenMP_Handler) before the trace generation in the initialization
phase. Then, ADOL-C performs a parallel derivative caliboireusing the OpenMP
strategy provided by the user as sketched in Fig. 2. Hena= the variables are
declared in each thread, the traces are written on eacldtsegmrately during the
tracing phase. Subsequently, each thread has its own ahtiesmction representa-
tion. This allows for the computation of the required deti@information on each
threadseparately as described in [8].

3 Parallel sparse derivative computation

In this work, we extend this functionality of ADOL-C such thgparse Jacobians

and Hessians can be computed efficiently in a parallel gethigure 3 illustrates

the approach we take for parallel, sparsity-exploitingwddive computation. As in

Fig. 2 derivatives on each thread are computed separatelyhis time, the per-

thread computation is comprised of several steps: autorspéirsity pattern detec-
tion, seed matrix generation and derivative calculation.
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3.1 Sparsity pattern detection

In the case of a Jacobian matrix, we propagate in parallelach ¢hread the so-
called index domains

Zv={j<n:j—n<*k} for 1-n<k<I

determining the sparsity pattern corresponding to the @fattte function on that
thread. Heren denotes the number of independent varialleignotes the number
of intermediate variables, andl* denotes precedence relation in the decomposition
of function evaluation into elementary components. Sindg not possible to ex-
change data between the various threads when using Opem\farilelization,
the layout of the data structure storing these partial #ygratterns has to allow a
possibly required reunion of the sparsity pattern, for egienduring the finalization
phase performed by thread 1. However, since the user pottgeparallelization
strategy, this reunion can not be provided in a general way.

To determine the sparsity pattern of the Hessian of a fungtie f(x) of ninde-
pendent variables, in addition to the index domains, stedalonlinear interaction
domains

2

. 0cy .
<n: C <i<
{J_n axiaxjy_ﬁo}_m for 1<i<n

are propagated on each thread. Once more, each thread esngmly the part of

the sparsity pattern originating from the internal funoti@presentation available
on the specific thread. Therefore, in the Hessian case Asdgata structure storing
the partial sparsity patterns of the Hessian must allow aiplysrequired reunion to

compute the overall sparsity pattern. Again, this reunéies on the parallelization
strategy chosen by the user.

3.2 Seed matrix determination

A key need in compression-based computation ofre n Jacobian or am x n
Hessian matriXA of known sparsity pattern is determiningas p seed matrix S of
minimal p that would be used in computing the compressed represemBat: AS.
The seed matri§in our context encodespartitioning of then columns ofA into

p groups. It is a zero-one matrix, where entijyk) is one if thejth column of the
matrix A belongs to groufx in the partitioning and zero otherwise. The columns in
each group are pair-wise structurally “independent” in s@®nse. For example, in
the case of a Jacobian, the columns in a group are strugtardfiogonal to each
other. As has been shown in several previous studies (sder[8]survey), a seed
matrix can be obtained usingcaloring of an appropriate graph representation of
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the sparsity pattern of the matux In this work we rely on the coloring models and
functionalities available in (or derived from) the pack&mPack [6].

In ColPack, a Jacobian (nonsymmetric) matrix is represknsing abipartite
graph and a Hessian (symmetric) matrix is represented usingdgatency graph.
With such representations in place, we obtain a seed maitadde for computing a
Jacobian] using adistance-2 coloring of the column vertices of the bipartite graph
of J. Similarly, we obtain a seed matrix suitable for computirngessiarH using a
star coloring of the adjacency graph &f [7]. These colorings yield seed matrices
suitable for direct recovery, as opposed to recovery viatduition, of entries of the
original matrixA from the compressed representatiin

Just as the sparsity pattern detection was done on each foesing on the part
of the function evaluation on that thread, the coloringsadse done on the “local”
graphs corresponding to each thread. For the results egporthis paper, we use
parallelized versions of the distance-2 and star colonimgtionalities of ColPack.

3.3 Derivative calculation

Once a seed matrix per thread is determined, the compressigdtiye matrix (Ja-
cobian or Hessian) is obtained using an appropriate modéoflAe entries of the
original derivative matrix are then recovered from the coesped representation.
For recovery purposes, we rely on ColPack. In Fig. 3 the bfdekivative calcu-
lation” lumps together the compressed derivative matrixpotation and recovery
steps.

4 Experimental results

We discuss the test cases used in our experiments in Seanhddresent the results
obtained in Sect. 4.2.

4.1 Test cases

We consider optimization problems of the form

min f(x), such that c(x) =0, 1)
XeRM
with an objective functiorf : R" — R and a constraint function: R" — R™, ignor-
ing inequality constraints for simplicity. Many state-thfe-art optimizers, such as
Ipopt [12], require at least first derivative informatiore.j the gradient f (x) € R"
of the target function and the Jacobida(x) € R™". Furthermore, they benefit con-
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siderably in terms of performance from the provision of éxscond order deriva-
tives, i.e., the Hessial.# of the Lagrangian function

LR SR, L(xA) = f(X)+ATc(X).

Optimization tasks where the equality constraints reprieaestate description
as discretization of a partial differential equation (PO&m an important class
of optimization problems having the structure shown in fgre, sparsity in the
derivative matrices occurs inherently and the structuthefsparsity pattern is not
obvious when a nontrivial discretization strategy is used.

In [10] several scalable test cases for optimization taskis @onstraints given
as PDEs are introduced. The state in these test cases issal\@agribed by an el-
liptic PDE, but there are different ways in which the state ba modified, i.e.,
controlled. For four of the test problems, serial implenagiohs in C++ are pro-
vided in the example directory of the Ipopt package. Frons¢have chose the
Mttel mannDi stCntrl Diri andtheM ttel mannDi st Cnt r | NeumAtest
cases for our experiments. These represent optimizatss far a distributed con-
trol with different boundary conditions for the underlyipfiiptic PDE. Inspecting
the implementation of these test problems, one finds thagvhkiation of the con-
straints does not exploit the computation of common sulesgions. Therefore,
when taking the structure of the optimization problem (19 iaccount, a straight-
forward parallelization based on OpenMP distributes thglsitarget function and
the evaluation of then constraints equally on the available threads. The nunlerica
results presented in Sect. 4.2 rely on this parallelizattomtegy.

Problem sizes. The results we obtainedfortivétt el mannDi stCntrl Diri
andM tt el mannDi st Cnt r | NeumA showed similar general trends. Therefore,
we present results here only for the former. We consideretim®blem sizes
fi € {600,800,1000}, whereridenotes the number of inner grid nodes per dimen-
sion. The number of constraints (number of rows in the Jaedbt) is thusm = 2.
Due to the distributed control on the inner grid nodes andinehlet conditions
at the boundary nodes, the number of variables in the caynelipg target function
(number of columns in the Jacobiaft) is n = i* 4 (fi+ 2)2. Further, the Hessian
[2.# of the Lagrangian function is of dimensign+ m) x (n+m). The number
of nonzeros in eac x n Jacobian is 6f2. Here, five of the nonzero entries per
row stem from the discretization of the Laplacian operatmuoring in the elliptic
PDE, and the sixth entry comes from the distributed con8ihilarly, the number
of nonzeros in eactn +m) x (n+m) Hessian is 8fi°. The two additional nonzeros
in the Hessian case come from the target function involviegra of squares and a
regularization of the control in the inner computationat@dn. Table 1 provides a
summary of the sizes of the three test problems consideithe iexperiments.
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il m | n | ntm | nnz@o |nnz (2%)
600| 360000{ 722404|1082404| 2160000] 2880000
800| 640000| 1283204| 1923 204{ 3840000| 5120000

1000|1000 000f 2004 004| 3004 004{ 6 000 000] 8000000

Table1l Summary of problem sizes used in the experiments.
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Fig. 4 Timing results for multithreaded computation of the Jaaahic when sparsity is exploited.
Three problem sizes are considered: 600 (top),n’= 800 (middle), andh = 1000 (bottom).

4.2 Runtimeresults

The experiments are conducted on an Intel, Fujitso-Sienmeadel RX600S5 sys-
tem. The system has four Intel X7542, 2.67GHz, processats ewhich has six
cores; the system thus supports the use of a maximum of 24 ¢threads). The
node memory is 128 GByte DDR3 1066, and the operating systdrimux (Cen-
tOS). All codes are compiled with gcc version 4.4.5 with -Qi2imization enabled.
Figure 4 shows runtime results on the computation of thehlanmf the con-
straint function for the three problem sizes summarizedinld 1 and various num-
ber of threads. Figure 5 shows analogous results for the atatipn of the Hessian
of the Lagrangian function. The plots in Fig. 4 (and Fig. %)wla breakdown of the
total time for the sparse Jacobian (and Hessian) computatto four constituent
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Fig. 5 Timing results for multithreaded computation of the Hes<i#.# when sparsity is ex-
ploited. Three problem sizes considerad: 600 (top),n= 800 (middle), anch = 1000 (bottom).

parts: tracing, sparsity pattern detection, seed gewoarand derivative computa-
tion. The results in both figures show the times needed fofdis¢ributed” (across
threads) Jacobian and Hessian computation, excludingnigerteeded to “assem-
ble” the results. We excluded the assembly times as theyeandymegligibly small
and would have obscured the trends depicted in the figure §8kembly time is
less than M3 sec fom™= 600 and less than.09 sec fom™= 1000 for the Jacobian
case, and less thanl sec for the Hessian case for both sizes.)

Note that the vertical axis in Fig. 4 is in linear scale, whifie same axis in Fig. 5
is in log scale, since the relative difference in the timenspe the four phases in
the Hessian case is too big. Note also the magnitude of tferelifce between the
runtimes in the Jacobian and Hessian cases: the runtimes uatious phases of the
Jacobian computation (Fig. 4) are in the order of secondie\e times in some
of the phases in the Hessian case (Fig. 5) are in the ordepos#mds of seconds.
We highlight below a few observations on the trends seengn4and Fig. 5.

e Tracing: Inthe Jacobian case, this phase scales poorly with numhbrezds.
A likely reason for this phenomenon is that the phase is mgrmtensive. In the
Hessian case, tracing accounts for only a small fractiomefaverall time that
its scalability becomes less important.
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e Sparsity pattern detection: The routine we implemented for this phase involves
many invocations of theml | oc() function, which essentially is serialized in
an OpenMP threaded computation. To better reflect the @hgoic nature of
the routine, in the plots we report results after subtractire time spent on the
mal | ocs. In the Jacobian case, the phase did not scale with numitereafds,
whereas in the Hessian case it scales fairly well. A plaasison for the poorer
scalability in the Jacobian case is again that the runtiméhiat step (which is
about one second) is too short to be impacted by the use of timer@ds.

e Seed generation: For this phase, we depict the time spent on coloring (but not
graph construction) and seed matrix construction. It casdam that this phase
scales relatively well. Further, the number of colors usgthle coloring heuris-
tics turned out to be optimal (or nearly optimal). In part&uin the Jacobian
case, for each problem size, 7 colors were used to distano2the local bipar-
tite graphs consisting af column vertices anth/N row vertices on each thread,
whereN denotes the number of threads. Since each Jacobian hasigierne per
row this coloring is optimal. In the Hessian case, again éaheproblem size, 6
colors were used to star color the local adjacency graphssisting ofn+ m
vertices) on each thread.

e Derivative computation: This phase scales modestly in both the Jacobian and
Hessian cases.

e Comparison with dense computation: The relatively short runtime of the col-
oring algorithms along with the drastic dimension redutfjcompression) the
colorings provide enables enormous overall runtime andespaving compared
to a computation that does not exploit sparsity. The rurgifoethe dense com-
putation of the Jacobian far = 600, for example, are at least three to four or-
ders of magnitude slower requiring hours instead of secewels in parallel (we
therefore omitted the results in the reported plots). Feranger problem sizes,
the Jacobian (or Hessian) could not be computed at all duectsssive memory
requirement to accommodate the matrix dimensions (see Tabl

5 Conclusion

We demonstrated the feasibility of exploiting sparsityaedbian and Hessian com-
putation using Automatic Differentiation via operator deading on multithreaded
parallel computing platforms. We showed experimentalltesun a modest number
of threads. Some of the phases in the sparse computatiorvrark scaled reason-
ably well, while others scaled poorly. In future work, we Mekplore ways in which
scalability can be improved. In particular, more invedigais needed to improve
the scalability of the sparsity pattern detection alganitised for Jacobian compu-
tation (Fig. 4) and the tracing phase in both the Jacobiartisdian case. Another
direction for future work is the development of a paralletioyzer that could take
advantage of the distributed function and derivative eatadun.
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