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ABSTRACT

Practically all information retrieval based approaches developed to date for automatic bug localization are
based on the bag-of-words assumption that ignores any positional and ordering relationships between the
terms in a query. In this paper, we argue that bug reports are ill-served by this assumption because such re-
ports frequently contain various types of structural information whose terms must obey certain positional
and ordering constraints. It therefore stands to reason that the quality of retrieval for bug localization would
improve if these constraints could be taken into account when searching for the most relevant files. In this
paper, we demonstrate that such is indeed the case. We show how the well-known Markov Random Field
based retrieval framework can be used for taking into account the term-term proximity and ordering relation-
ships in a query vis-à-vis the same relationships in the files of a source-code library to greatly improve the
quality of retrieval of the most relevant source files. We have carried out our experimental evaluations on
popular large software projects using over 4000 bug reports. The results we present demonstrate unequivo-
cally that the new proposed approach is far superior to the widely used bag-of-words based approaches.
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1. INTRODUCTION

Code search plays an important role in software development and maintenance. The tools that are

deployed today for code search range all the way from simple command-line functions like ‘grep’ to

complex search facilities tailored for the specific needs of the developers. These different types of

search facilities are used to locate various parts of a software library for concept location, change

impact analysis, traceability link analysis, and so on [1–6]. Our particular interest lies in a class of

code search tools that are based on information retrieval (IR) techniques, and our end goal is bug

localization. For automatic bug localization, we treat the bug reports as text queries and the

corresponding software constructs that should be modified to implement a fix for the bugs as the

relevant artifacts that should be retrieved by the search tool [7–9].

Obviously, the success of an IR framework that leverages bug reports for automatic bug localization

depends much on how the bug reports are represented vis-à-vis the source code files and other

documents in a library. In the widely used bag-of-words (BOW) representations for both the queries

and the source code files, all positional and ordering relationships between the terms are lost [8–10].

To us, this is tantamount to a serious loss of information considering that a bug report, in general, is

a composition of structured and unstructured textual data that frequently includes the following:

(i) patches; (ii) stack traces when the software fault throws an exception; (iii) snippets of code; and
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(iv) natural language sentences [7, 11]. Patches and stack traces, especially, contain vital inter-term

proximity and ordering relationships that ought to be exploited for the purpose of retrieval. For

instance, if two terms are proximal to each other in a stack trace, the user would want a source code

file containing similar code to have the same two terms in a similar proximal relationship. The work

we report in this paper demonstrates that the quality of retrieval improves greatly when a retrieval

framework allows for ordering and positional (through proximity) relationships to be taken into

account in the retrieval process.

As to how to incorporate ordering and positional relationships in a retrieval framework, we have

several possibilities at our disposal that have been examined in the past mostly in the context of

retrieval from natural language corpora. At one end of the spectrum, we have ad hoc approaches

such as those that compute term co-occurrence frequencies and proximity-based term-term

dependencies. And, at the other end of the spectrum, we have more principled approaches, such as

those based on Markov Random Fields (MRF) [12], that are based on modeling the term-term

dependencies by graphs whose arcs capture the inter-term relationships in the queries vis-à-vis the

same in the documents.

With regard to the investigation of such approaches in retrieval from software libraries, in a recent

contribution [13], we presented an ad hoc approach that demonstrated how the inter-term proximities

can be used to reformulate the queries in order to improve the quality of retrievals. The query

reformulation (QR) in that approach takes place through a two-step process that is carried out

without any additional input from the user. In the first step, the top-ranked retrievals for the user-

supplied query are analyzed for the detection of the terms that are proximal to the query terms as

supplied by the user. The proximal terms thus discovered are used to enrich the original query in the

second step. We showed that the retrieval for the query reformulated in this way is significantly

more precise than it is for the original query.

We now show that even more significant improvement in retrieval precision can be obtained by

using a more principled alternative to ad hoc approaches. In particular, we will show that when an

MRF is used to model the ordering and the positional dependencies between the query terms vis-à-

vis the documents, we end up with a framework that not only yields a higher retrieval precision with

the simplest of the ordering and proximity constraints but that can also be generalized to the

investigation of more general such constraints. In the MRF-based approach, certain subsets of the

terms in a bug report are used for scoring the software artifacts while taking into account term-term

proximity and order. This approach exploits the fact that the software artifacts that contain the query

terms in the same order and/or in similar proximities as in the query itself are more likely to be

relevant to a given query.

While, as demonstrated by our results, MRF is a powerful approach to the modeling of query–

document relationships; to fully exploit its potential, it must be used in conjunction with what we

refer to as query conditioning (QC). The goal of QC is to recognize the fact that a bug report

constitutes a highly structured query whose various parts consist, as we mentioned previously,

of a textual narrative, a stack trace, etc [11]. These different parts are disparate in the sense

that the inter-term relationships do not carry the same weight in them. For example, the

proximity of the terms used in the stack trace portions of a bug report carries far more weight

than in the textual narrative. Therefore, the ordering and proximity constraints are likely to be

far more discriminative in those portions of bug report that, by their very nature, are far more

structured. To further underscore the importance of these structured portions of the bug reports,

past studies have shown that stack traces are one of the most valuable sources of information

for pinpointing the location of the bugs [14, 15].

We have named the overall code retrieval engine that includes both QC and MRF modeling as

Terrier+. The reason for the ‘+’ suffix in the name is that ours is an enhancement of the popular

open-source research IR engine called Terrier.1 The functionality we have added to create Terrier+

is highly modular, in the sense that any of the enhancements can be turned on and off merely by

clicking buttons in the GUI in order to measure the retrieval effectiveness of the selected

1http://terrier.org
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enhancements. This allows for a convenient assessment of the retrieval power that can be attributed

to each enhancement.

Note that whereas Terrier+ applies MRF modeling to all queries, QC becomes an important factor

only when structured elements are present in the queries. In general, detecting the structured

elements in bug reports is a difficult task as they may have different formats and they are usually

surrounded by other types of textual data [11]. It is also not uncommon for these constructs to

undergo unexpected format changes, such as those caused by accidental line breaks, when they are

copied into a bug report. In order to overcome these challenges, Terrier+ employs several regular

expressions to detect and extract these structured elements from bug reports.

We experimentally validate the proposed bug localization framework on three large software

libraries: AspectJ, Eclipse 3.1 for full bug reports, and Google Chrome for experimenting with

bug report titles only. We show that MRF modeling of the queries and the QC step

(whenever the queries lend themselves to such conditioning) significantly improve the accuracy

with which the bugs can be localized. In order to investigate the effect of the length of

queries on the precision with which the bugs are localized, we carried out retrievals with just

the bug report titles and with the bug reports taken in their entirety. Whereas MRF modeling

resulted in improved precision in bug localization even for short queries consisting of just the

bug report titles, the improvements were even more significant when the bug reports in their

entirety were subject to MRF modeling and the QC step. Our experimental results also include

comparison with the other state of the art IR-based approaches to bug localization. We

demonstrate that, on the average, the MRF and QC-based framework outperform all these

other approaches.

This paper is organized as follows. In the next section, we start by stating the research

questions addressed in the experimental validation of the proposed code retrieval framework.

Seeing these questions at the outset will give the reader a better sense of the scope of our

work, especially in relation to the previous related contributions by us and by others. We then

present the proposed MRF modeling along with QC. We evaluate our retrieval framework in

Section 4. Section 5 discusses possible threats to the validity of the experiments we have

conducted to establish the power of the proposed approach. The relevant work is presented in

Section 6. Finally, we conclude in Section 7.

2. RESEARCH QUESTIONS

Our empirical evaluation on large open-source software projects shows that our proposed retrieval

framework leads to significant improvements in automatic bug localization accuracy. As mentioned

in the previous section, our retrieval engine has been packaged as an enhancement to the popular

research IR retrieval engine known as Terrier, and we refer to our enhancement as Terrier+.

We compare the performance of Terrier+ with the other IR approaches developed for the

retrieval of the buggy source files in response to bug reports. Included in these other IR-based

approaches is the Spatial Code Proximity (SCP)-based QR algorithm in which a given short

query is enriched with additional informative terms drawn from the highest ranked retrieval

results with respect to the original query for an improved retrieval accuracy [13]. Another

important class of IR tools developed for automatic bug localization leverages the past

development efforts. Such IR tools have also been shown to improve the bug localization

accuracy significantly [8, 9].

For the evaluation of Terrier+, we conducted extensive validation tests with the following

research questions in mind:

RQ1 Does including code proximity and order improve the retrieval accuracy of bug localiza-

tion. If so, to what extent?

RQ2 Is QC effective for improving the query representation vis-à-vis the source code?

RQ3 Does including stack traces in the bug reports improve the accuracy of bug localization?

RQ4 How does the MRF-based retrieval framework compare with the Query Reformulation (QR)

based retrieval frameworks for bug localization?
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RQ5 How does the MRF-based retrieval framework compare with the other bug localization frame-

works that leverage the past development history?

3. THE PROPOSED APPROACH

Directly or indirectly, all traditional IR-based approaches to bug localization amount to comparing the

first-order distribution of terms in a query vis-à-vis the documents. This applies as much to simple

approaches based on VSM and Unigrams [8, 10] as it does to approaches based on Latent Dirichlet

Allocation (LDA) [4, 10, 16] that use hidden variables for injecting additional degrees of freedom

for comparing the queries with the documents. All of these approaches miss out on the information

contained in the inter-term relationships in the queries and in the documents.

While we do now know how to extend the BOW approaches of the sort mentioned previously with

proximity-based reformulation of a query for improving the quality of retrievals [13], what we need are

theoretically well-grounded approaches that can be generalized to the incorporation of arbitrary inter-

term relationships between the terms of a query vis-à-vis the documents. The goal of this section is to

address this need by using the notion of MRF.

In the subsections to follow, we first review how the inter-term dependencies are modeled with

MRF. We then mention three different specializations of MRF modeling that appear to be

particularly appropriate for our needs. Subsequently, in order to exploit MRF modeling to the

maximum, we present our QC method to extract from a query those portions that are particularly

suited to modeling by MRF. Note that, as we will demonstrate later, MRF improves retrievals even

in the absence of QC. However, by giving greater weight to the inter-term relationships in those

portions of a query that QC has identified as being highly structured, we improve the quality of

retrievals much further.

3.1. Markov Random Fields

Over the years, researchers in the machine learning community have devoted much energy to the

investigation of methods for the probabilistic modeling of arbitrary dependencies among a collection

of variables. The methods that have been developed are all based on graphs. The nodes of such

graphs represent the variables, and the arcs the pairwise dependencies between the variables. The

graphs may either be directed, as in Bayesian Belief Networks [17], or undirected, as in the

networks derived from MRF [12, 17]. In both these methods, the set of variables that any given

variable directly depends on is determined by the node connectivity patterns. In a Bayesian Belief

Network, the probability distribution at a node q is conditioned on only those nodes that are at the

tail ends of the arcs incident on q, taking the causality into account. In a Markov network, on the

other hand, the probability distribution at a node q depends on the nodes that are immediate

neighbors of q without considering any directionality. In the context of retrieval from natural

language corpora, the work of Metzler and Croft [12] has shown that Markov networks are

particularly appropriate for the modeling of inter-term dependencies vis-à-vis the documents.

In general, given a graph G whose arcs express pairwise dependencies between the variables, MRF

modeling of the probabilistic dependencies among a collection A of variables is based on the

assumption that the joint distribution over all the variables can be expressed as a product of

nonnegative potential functions over the cliques in the graph:

P Að Þ ¼
1

Z
∏
K

k¼1

φ Ckð Þ; (1)

where {C1,C2,…,CK} represents the set of all cliques in the graph G, and φ(Ck) a nonnegative

potential function associated with the clique Ck. In the aforementioned expression, Z is merely for

the purpose of normalization because we want the sum of P(A) over all possible values that can be

taken by the variables in A to add up to unity.
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Our end goal with MRF is to rank the files in the code base according to the probability of a file f in

the software library to be relevant to a given query Q. We denote this probability by P(f |Q) [8]. Using

the definition of the conditional probability, we can write

Pðf Qj Þ ¼
P Q; fð Þ

P Qð Þ
: (2)

As we are only interested in ranking the files and considering that the denominator in Equation (2)

does not depend on the files, the denominator can be ignored. Hence, Pðf Qj Þ ¼
rank

P Q; fð Þ. In order to

separate out the roles played by the variables that stand for the query terms (because we are

interested in the inter-term dependencies in the queries) vis-à-vis the contents of a source file f, as

suggested by Metzler and Croft [12], we will use the following variation of the general form

expressed in Equation (1) to compute this joint probability:

P Q; fð Þ ¼
1

Z
∏
K

k¼1

φ Ckð Þ ¼
rank

X

K

k¼1

log φ Ckð Þð Þ; (3)

where Q stands for a query that is assumed to consist of the terms q1, q2,…, q|Q| and f a file in the

software library. The nodes of the graph G in this case consist of the query terms, with one node for

each term. G also contains a node that is reserved for the file f whose relevancy to the query is in

question. As before, we assume that this graph contains the cliques {C1,C2,…,CK}. As shown in

the formula, for computational ease, it is traditional to express the potential ψ(Ck) through its

logarithmic form, which is through ψ(Ck) = log(φ(Ck)).

The fact that a fundamental property of any Markov network is that the probability distribution at

any node q is a function of only the nodes that are directly connected to q may now be expressed as

P qi f ; qj≠i∈Q
�

�

�

¼ P qi f ; qj∈neig qið Þ
�

�

�

;

��

(4)

where neig(qi) denotes the terms whose nodes are directly connected to the node for qi. As observed in

[12], this fact allows arbitrary inter-term relationships to be encoded through appropriate arc

connections among the nodes that represent the query terms in the graph G. At one end of the

spectrum, we can assume that the query terms are all independent of one another by the absence of

any arcs between them. This assumption, known as the usual BOW assumption in IR, is referred to

as the full independence (FI) model. And at the other end of the spectrum, we may assume a fully

connected graph in which the probability distribution at each node representing a query term

depends on all the other query terms (besides being dependent on the file f). This is referred to as

the full dependence (FD) model. Figures 1a and 1c depict the graph G for FI and FD assumptions

for the case when a query Q consists of exactly three terms.

What makes MRF modeling particularly elegant is that it gives us a framework to conceptualize any

number of other ‘intermediate’ forms of dependencies between the two extremes of FI and FD. This we

can do by simply choosing graphs G with different connectivity patterns. Whereas FI is based on the

Figure 1. This figure illustrates the notion of a Markov network for capturing the inter-term dependencies in
a query vis-à-vis a document. The case depicted is for a query consisting of just three terms. The FI variant
shown in (a) corresponds to the Smoothed Unigram Model with retrievals based on Query Likelihoods.
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absence of any inter-term arcs in G and FD on there being an arc between each query term and every

other term, we may now think of more specialized dependencies such as the one depicted in Figure 1b.

This dependency model, referred to as the sequential dependency (SD) model in [12], incorporates

both order and proximity between a sequence (q1,q2,…,q|Q|) of query terms.

At this point, the reader may wonder how one would know in advance as to which connectivity

pattern to use for the graph G. The connectivity pattern is obviously induced by the software library

itself. Suppose you believe that the phrase ‘interrupt sig handler’ occurs in the files and can be used

to discriminate between them, you would want the nodes for the terms ‘interrupt’, ‘sig’, and

‘handler’ to be connected in the manner shown in Figure 1b.2

This is because the SD model shown in that figure would only allow for pairwise (and ordered)

occurrences of the words ‘interrupt’ and ‘sig’, on the one hand, and of the words ‘sig’ and ‘handler’,

on the other, to be considered when comparing a query with the files. The frequencies with which

these terms appear individually in the files may also carry discriminatory power. The importance of

a file to a query would be determined by the relative frequencies with which the terms occur

individually and the relative frequencies with which the ordered pairs appear in the file vis-à-vis the

relative frequencies of the same in the query. In contrast to the case depicted in Figure 1b, should it

happen that the queries and the relevant files contain the three terms ‘interrupt’, ‘sig’, and ‘handler’

in all possible orders, you would want to use the FD assumption depicted in Figure 1c. In this case,

the number of times these terms occur together within a window of a certain size for each possible

order would carry discriminatory power for choosing the files relevant to a query. If a certain order

of appearance for the three terms is prominent in the query, the files that show high counts for the

same order of appearance would carry greater weight. Finally, should it happen that the three terms

occur in the relevant files without the order of their appearance being significant in any sense, the

BOW assumption implied by the FI model in Figure 1a would be sufficient.

We are particularly interested in the graph connectivity induced by the notion of Spatial Code

Proximity (SCP) [13]. SCP consists of first associating a positional index with each term in a query

and in the documents as shown in Figure 2. Our goal is to translate the values of the positional

indexes into graph models based on the FI, SD, and FD assumptions. In the next three subsections,

we will present formulas that show how these models can be derived from SCP-based indexes.

3.1.1. Full independence. As already stated, the FI assumption reduces an MRF model to the usual

BOW model that has now been extensively investigated for automatic bug localization [8–10]. As

should be clear from the graph representation of this model depicted in Figure 1a for the case of a

query with exactly three terms, FI modeling involves only 2-node cliques. Therefore, under MRF

modeling, the probability of a query given a file is simply computed by summing over the 2-node

cliques: PFIðf Qj Þ ¼
rank

∑i¼1 Qj j ψFI qi; fð Þ . The choice of the potential function, obviously critical in

computing this probability, should be in accord with the fact that MRF modeling under the FI

assumption amounts to BOW modeling. Therefore, a good choice is to make the potential ψFI(qi, f)

proportional to the frequency of the query term qi in the file f. Because the zero probability

associated with a query term qi that does not appear in a file f can create problems when estimating

the relevance of f to the query, it is common to add what is referred to as a smoothing increment to

the term frequencies. A powerful smoothing approach, known as Dirichlet smoothing, consists of

adding to the potential the frequency of the term in the entire corpus [8]. Shown below is a formula

for the potential ψFI(qi, f) that includes Dirichlet smoothing:

2Since modeling how the terms are ordered in a document is central to the SD model, it might seem strange to the reader
that the arcs between the nodes that represent the terms are undirected in the graph in that figure. The lack of arrows on
the arcs might cause a reader to think that the SD model would not be able to distinguish between the sequences (q1, q2,
q3) and (q3, q2, q1) of the terms. As we will show later, the term ordering constraints are taken care of by the formulas
used for calculating the potentials and the probabilities associated with the different ordering of the terms in the docu-
ments vis-à-vis their orderings in the queries. We should also mention that our not using arrows in our graphical depiction
of term-term ordering is in keeping with the notational conventions that have emerged over the last three decades in the
community of researchers who work on making inferences from network models of multi-variable probabilistic informa-
tion. These conventions have come into existence in order to distinguish between Markov Random Fields (MRF) and
Bayesian Belief Networks.
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ψFI qi; fð Þ ¼ λFI log
tf qi; fð Þ þ μP qijCð Þ

fj j þ μ

� �

; (5)

where C denotes the entire collection of files in the software library, P(qi|C) the probability of the term

qi in C, tf(qi, f) the term frequency of qi in file f, |f| the length of the file, and μ the Dirichlet smoothing

parameter. The coefficient λFI has no impact on the file rankings with this model. However, we keep it

in the formulation as we will use it later in SD and FD modeling.3

The probability expression shown above for the relevance of a query term to a file is exactly the

same as it appears in the widely used BOW model known as SUM whose usefulness in automatic

bug localization has been demonstrated in [8–10]. We will use the retrieval results obtained with FI

as the baseline in order to determine the extent of improvements one can obtain with the other two

models, SD and FD.

3.1.2. Sequential dependence. The SD model takes the order and the proximity of the terms into

account in such a way that the probability law for a query term qi given a file f obeys P(qi|{q1,…,

qi� 1,qi + 1,…, q|Q|}) =P(qi|f, qi� 1, qi + 1).

To see how a software library can be processed to induce the SD model, note from the example

shown in Figure 1b that we now have 3-node cliques in addition to the 2-node cliques of the FI

model. Therefore, we must now count the frequencies with which pairs of terms occur together,

with one following the other (without necessarily being adjacent) in a specific order, in addition to

counting the frequencies for the terms occurring singly as in the FI model [18]. Again incorporating

Dirichlet smoothing for the same reasons as in the FI model, we employ the following potential

function for the 3-node cliques corresponding to a file f and two consecutive query terms qi� 1 and qi:

ψSD qi�1; qi; fð Þ ¼ λSDlog
tf W qi�1qi; fð Þ þ μP qi�1qijCð Þ

fj j þ μ

� �

; (6)

where C is the collection of all the files in the software library, tfW(qi� 1qi, f) the number of times the

terms qi� 1 and qi appear in the same order in file f as in the query within a window length ofW≥ 2. For

W> 2, the terms do not have to be adjacent in the file and a window may also contain other query terms

in between. The smoothing increment P(qi� 1qi|C) is the probability associated with the pair (qi� 1qi)

in the entire software library. To the potential function shown above, we must now add the potential

function for 2-node cliques the reader has already seen for the FI model:

PSD f jQð Þ ¼
rank

∑
Qj j

i¼2

ψSD qi�1; qi; fð Þ þ ∑
Qj j

i¼1

ψFI qi; fð Þ: (7)

As the reader would expect, the ranking of the files with the combined potential function shown

above depends on the relative values of the model parameters λFI and λSD. However, the overall

scaling of these parameters is inconsequential on account of the unit summation constraint on the

3The problems caused by zero-frequency terms in documents and queries have also been dealt with in other related areas,
such as traceability link recovery, etc., in software engineering [45] [46].

Figure 2. An illustration of indexing the positions of the terms in the Eclipse class SystemBrowserDescriptor.java.
The ‘x’ symbol indicates the stop words that are dropped from the index.
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probabilities. We therefore set λFI+ λSD=1. We can think of λSD as an interpolation or a mixture

parameter that controls the relative importance of the 3-node cliques vis-à-vis the 2-node cliques.

If the reader is still confused as to how the SD model can distinguish between, say, the sequence

(q1, q2, q3) and the sequence (q3, q2, q1) of terms, let us start with the simplest case in which we

want to measure the relevancy of a file to a query on the basis of the frequency with which the pair

(q1, q2) shows up, with the two terms appearing in that specific order, in the files and in the queries.

When we use Equations (6) and (7) in this case for a probabilistic assessment of the relevancy of a

file to a bug report, what those equations say is that we must measure the frequency with which the

terms (q1,q2) occur together, in that order, in both the files and the bug reports. What that implies is

that, in the context of an SD model, we will only measure the frequencies associated with the

appearance of (q1,q2) and not with the appearance of (q2, q1). Now let’s consider the case where

the search window include three terms (q1, q2, q3), and with the SD model, we want to enforce

the ordering constraint that q1 appear before q2, and that q2 appear before q3. Using Equations (6)

and (7), we measure the frequencies associated with the pairwise appearance of the terms (q1,q2),

with the two terms showing up in that order, and with the pairwise appearance of (q2,q3), again,

with the two terms showing up in that specific order. Therefore, our frequency of occurrence

measurements would ignore the situations where q2 may come before q1 and q3 may come

before q2.

3.1.3. Full dependence. As demonstrated previously by Figure 1c, the FD assumption implies a fully

connected graph G whose nodes correspond to the individual query terms, with one node being

reserved for the file f under consideration. The graph being fully connected allows for a file f to be

considered relevant to a query regardless of the order in which the query terms occur in the file.

(Compare this to the SD case where, for a file f to be considered relevant to a query, it must contain

the query terms in the same order as in the query). Therefore, the FD assumption provides a more

flexible matching mechanism for retrievals.

The price to be paid for the generality achieved by FD is the combinatorics of matching all possible

ordering of the query terms with the contents of a file. To keep this combinatorial explosion under

control, following [18], we again limit ourselves to just 2-node and 3-node cliques. While this may

sound the same as for the SD assumption, note that the 3-node cliques are now allowed for a pair of

query terms for both orderings of the terms. Therefore, for any two terms qi and qj of the query, the

potential function takes the following form for the 3-node cliques:

ψFD qi; qj; f
� �

¼ λFDlog
tf W qiqj; f

� �

þ μP qiqjjC
� �

fj j þ μ

0

@

1

A; (8)

where λFD again works as a mixture parameter in a manner similar to λSD; that is, λFI+ λFD=1. As

before, μ is the smoothing parameter, and tfW(qiqj, f) the frequency for the pair qiqj in f. Summing

over the cliques, we obtain the ranking score of a file by

PFD

�

f Q
�

�

�

¼
rank

∑
Qj j

i¼1

∑
Qj j

j¼1;j≠i
ψFD qi; qj; f

� �

þ ∑
Qj j

i¼1

ψFI qi; fð Þ: (9)

3.1.4. A motivating example. We will now use a simple example to compare the retrieval

effectiveness of the three models: FI, SD, and FD. For reasons of space limitations, we will limit

our example to the simplest of the bug reports, one that only contains a one-line text narrative,

which corresponds to the title of the bug report.

The bug 989954 filed for Eclipse v3.1 has a title that reads ‘monitor memory dialog needs to accept

empty expression’. The target source files that were eventually modified to fix this bug are:

1. org.eclipse.debug.ui/…/ui/views/memory/MonitorMemoryBlockDialog.java

4https://bugs.eclipse.org/bugs/show_bug.cgi?id=98995
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2. org.eclipse.debug.ui/…/ui/views/memory/AddMemoryBlockAction.java

3. org.eclipse.debug.ui/…/ui/DebugUIMessages.java.

After removing the stop word ‘to’ from the title, the final query consists of the following seven

terms: ‘monitor memory dialog needs accept empty expression’. Table I presents the retrieval

accuracies obtained for this query, along with the number of cliques utilized for each dependency

assumption. In the table, the column ‘Ranks’ gives the ranks of the three relevant files in the

retrievals. AP is the resulting average precision.

Investigating the ranked lists returned for the three models, we see that FI ranks several irrelevant

files above the relevant ones. One such file is ASTFlattener.java. Although this file does not contain

any of the terms ‘monitor’, ‘memory’, and ‘dialog’, it is retrieved at the top rank by this model

because, as a file related to parsing, it contains the terms ‘accept’, ‘empty’, and ‘expression’ with

very high frequencies. Clearly, the FI model misses the word order in the query. Note that the FI

model compares only the first-order probability distributions for the term counts.

In comparison with FI, SD is able to retrieve the relevant files at higher ranks, as shown in Table I.

The improvement obtained with SD is a consequence of the discriminations achieved by requiring that

the query terms, when they appear together in a source file, do so in a specific order. The creation of the

3-node cliques with the query terms is illustrated in Figure 3. A 3-node clique is formed by the two

words depicted together with an under-bracket and the node corresponding to a file. Because the

relevant files contain these term blocks in close proximity with high frequencies; with this model,

they receive higher ranking scores in comparison to the irrelevant files.5

Despite the improvements, SD still ranks one irrelevant file, ASTRewriteFlattener.java, above all

the relevant ones. This file also does not contain any of the terms ‘monitor’, ‘memory’, and ‘dialog’.

However, it contains in close proximity the term pairs for two of the 3-node cliques: ‘accept empty’

and ‘empty expression’. The file manages to receive a high ranking score with these term pairs in

addition to the abstract syntax tree related terms.

In this example, FD does better than the other two models because the cliques it incorporates also

allow for ordering constraints on pairs of terms that are separated by another term. So if a file has

many instances of, say, the pair ‘monitor dialog’, which in the sequence of the seven terms shown

earlier is separated by the term ‘memory’, that would contribute to the file becoming more relevant to

the query. In general, though, whether or not FD would score higher than SD would depend on how

often the differently ordered versions of the same set of terms appear in the files vis-à-vis the bug reports.

3.2. Query conditioning

When a bug report contains highly structured components, such as a stack trace and/or a source code

patch [11], such information can be crucial to locating the files relevant to the bug [15]. Being highly

structured, these components must first be identified as such and subsequently processed to yield the

terms that can then be used to form a query for IR-based retrieval. The processing steps needed for

Table I. Retrieval accuracies for the Bug 98995 with the three different models.

Method 2-node cliques 3-node cliques Ranks AP

FD 7 42 1-3-2 1.0000
SD 7 6 2-3-4 0.6389
FI (BOW) 7 0 6-5-10 0.2778

FI represents the BOW model with the Smoothed Unigram Model.
FI: full independence; BOW: bag-of-words; FD: full dependence; SD: sequential dependence; AP: average
precision.

5As for the ‘mechanics’ of how the SD model is able to distinguish between the term sequence ‘monitor memory dialog’
and the term sequence ‘memory monitor dialog’, we take the reader back to the explanation at the end of Section 3.1.2.
Using Equations (6) and (7), we measure the frequencies associated with the pairwise appearance of the terms in ‘monitor
memory’, with the two terms showing up in that order, and with the pairwise appearance of the terms in ‘memory dialog’,
again, with the two terms showing up in that specific order. Therefore, our frequency of occurrence measurements ignore
the situations where ‘memory’ may come before ‘monitor’ and ‘dialog’ may come before ‘memory’.
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that purpose are different for the two different types of components we consider: stack traces and

source code patches. We refer to the collection of these steps as QC. QC is carried out with a set of

regular expressions that, while custom designed for the different types of structured components

encountered, are sufficiently flexible to accommodate small variations in the structures.6

As already stated, our retrieval framework has been packaged as an enhancement to the popular

research IR retrieval engine Terrier, and we refer to our enhancement as Terrier+. With regard to the

flow of processing related to QC in Terrier+, it uses regular expressions to first identify the patches

and the stack traces in a given bug report if any of these elements is available in the report. Then, it

processes them separately to sift out the significant source code identifiers to be used in the retrievals.

The final query is composed only from the terms extracted from the stack traces and the patches if

one or both of these components are available. If these structured components are not available,

Terrier+ makes do with the entire bug report as it is and feeds it into the MRF framework.

3.2.1. Stack traces. When Terrier+ detects a stack trace in a bug report, it automatically extracts the

most likely locations of the bug by identifying the methods in the trace. Since the call sequence in a

stack trace starts with the most recent method call,7 we extract only the topmost T methods while

discarding the rest of the trace; the methods further down in the trace are not likely to contain any

relevant terms, and they may introduce noise into the retrieval process. Figure 4 illustrates the stack

trace that was included in the report for Bug 77190 filed for Eclipse.8 The bug caused the

EmptyStackException to be thrown by the code in PushFieldVariable.java and was subsequently

fixed in a revised version of this code. The figure highlights the extracted portion of the stack trace

that is used in forming the final query. Note that we only extract the methods that are present in the

code base to which the bug report applies. That is, we skip the methods from the libraries belonging

to the Java platform itself, as illustrated in the figure. During the experiments, we empirically set

T=3, as this setting resulted in the best retrieval accuracies on the average. As we show in our

experimental evaluation, this filtering approach increases the precision of the retrievals significantly.

3.2.2. Patches. Source code patches are included in a bug report when a developer wishes to also

contribute a possible (and perhaps partial) fix to the bug. When contributed by an experienced

developer, these components of a bug report can be directly used for pinpointing thefiles relevant to a bug.

A patch for a given bug is usually created with the Unified Format to indicate the differences

between the original and the modified versions of a file in a single construct. With this format, the

textual content of the patch contains the lines that would be removed or added in addition to the

contextual lines that would remain unchanged in the file after the patch is applied. For term

extraction from the patches, Terrier+ does not use the lines that would be added after the suggested

patches are applied to the files as those lines are not yet present in the code base.

Obviously, the files mentioned by a developer in a patch may not correspond to the actual location

of the bug. And, there may be additional files in the code base that may require modifications in the

final fix for the bug. While the importance of information in such source code patches cannot be

6Our QC only takes into account the stack traces and source code patches when they can be identified in a bug report.
Note that a bug report may also contain additional source code snippets that are not meant to be patches [5]. QC treats
any additional such code on par with the main textual part of the report.
7We do realize that for some languages the methods in a stack trace are in the opposite order. That is, the most recent
method call appears as the last entry in the trace. The logic of identifying the methods most relevant to a bug would ob-
viously need to be reversed for such languages.
8https://bugs.eclipse.org/bugs/show_bug.cgi?id=77190

Figure 3. Clique creation for the Bug 98995. The figure shows the first four query term blocks for the 3-node
cliques utilized by the sequential dependency modeling.
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overstated, it is important to bear in mind that their inclusion in the bug reports is more the exception

than the rule. As mentioned in Table III, out of the 4035 bug reports we analyzed for Eclipse v3.1, only

eight contained a patch. Along the same lines, out of the 291 bug reports we analyzed for the AspectJ

project, only four contained a patch. Nonetheless, considering the importance of the information

contained in the patches when they are included in a bug report, Terrier+ takes advantage of that

information whenever it can.

Figure 5 illustrates the data flow in the retrieval framework with QC and MRF.

4. EXPERIMENTAL EVALUATION

We evaluate the effect of incorporating term-term dependencies on the retrievals for bug localization

for three large software projects, namely Eclipse IDE9 and AspectJ10 for experimenting with full

bug reports, and Google Chrome11 for experimenting with just the bug report titles. We evaluate QC

on only Eclipse and AspectJ as the bug reports for Chrome do not contain stack traces or patches.

We use a set of bug reports, denoted B, that were filed for these projects and, for the ground truth,

the files modified to fix the corresponding bugs as the relevant file sets to be retrieved by the

retrieval engine. The relevant file set for a bug report is denoted RF.

Because the bug tracking databases such as Bugzilla12 do not usually store the modification histories

of the changes made to the files in response to the bug reports, researchers commonly use the commit

messages in the repository logs in order to establish the links between the repository modifications and

the bug reports [9, 13, 19–21]. The BUGLinks13 [13] and the iBugs14 [19] are the resulting datasets of

such approaches that give us the links between the bug reports and the files relevant to the bugs in the

repositories for the projects we have used. The BUGLinks dataset contains information related to the

Eclipse and the Chrome projects, whereas the iBugs dataset contains information related to the

AspectJ project. For Eclipse and Chrome, we indexed the version 3.1 and 4.0.305.0, respectively, to

perform the retrievals, whereas for AspectJ, we indexed the corresponding version for each bug

report separately as the bugs in the iBugs dataset are filed for different versions of this project.

Tables II and III present various statistics drawn from these datasets regarding the three projects

used in our evaluation study. In Table II, |B| denotes the number of bug reports used in querying the

code base of each project, avg(|RF|) the average number of relevant files per bug, and avg(|QTitle|)

the average length of the bug report titles that are used in the retrievals.15 Additional information for

the two cases in which we also used QC for retrieval is presented in Table III. In the table, #Patches

9www.eclipse.org
10http://eclipse.org/aspectj/
11www.google.com/chrome
12https://bugs.eclipse.org/bugs/
13https://engineering.purdue.edu/RVL/Database/BUGLinks/
14https://www.st.cs.uni-saarland.de/ibugs/
15As we describe in Section 4.3, our experimental studies involve two types of experiments: those that are based on just
the titles of the bug reports, and those that include the titles and the bug descriptions. Obviously, whereas MRF modeling
can be applied to both types of queries, query conditioning (QC) can only be investigated for the latter type.

Figure 4. The stack trace that was included in the report for Bug 77190 filed for Eclipse. With query condi-
tioning, the trace is first detected in the report with regular expression based processing. Subsequently, the
highlighted lines are extracted as the most likely locations of the bug and fed into the Markov Random Field

framework.
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and #ST show the number of bug reports containing patches and stack traces, respectively, and |QTitle +Desc|

is the average length of the bug reports, including both the title and the description without any filtering, in

terms of the number of tokens used in querying the code base. In order to evaluate the accuracy of extracting

structural elements with QC, we randomly sampled 1000 bug reports for the Eclipse project and manually

investigated them for the presence or the absence of structural elements. Because AspectJ has a relatively

smaller set of bug reports. we manually examined all of them to evaluate the accuracy of structural

element identification for this project. Pr and Re in Table IV show the precision and the recall

numbers for detecting the stack traces. The precision and recall for detecting the patches were both 1.0.

In the rest of this section, we will start out with how the source files and the bug reports are

tokenized for the extraction of the terms that are used to represent each file and each bug report.

Subsequently, we describe the metrics we use in our evaluation study. That is followed by the

experimental results demonstrating the power of the MRF-based approach to the modeling of the

source code libraries.

Table II. Evaluated projects.

Project, description Language |B| avg(|RF|) avg(|QTitle|)

AspectJ, an extension to Java programming language Java 291 3.09 5.78
Eclipse v3.1, integrated development environment Java 4,035 2.76 5.80
Chrome v4.0 (for titles only), web browser C/C++ 358 3.82 6.21

Table III. Various statistics related to the bug reports used in the experiments for the evaluation of bug
localization with Markov Random Field modeling and query conditioning.

Project #Patches #ST #Remaining |QTitle + Desc|

AspectJ 4 89 198 56.77
Eclipse v3.1 8 519 3,508 44.11

Table IV. The accuracy with which stack traces are detected in bug reports prior to MRF based retrieval.

Project Pr Re

AspectJ 1.0 0.96
Eclipse v3.1 1.0 0.93

Figure 5. An illustration of the data flow in the proposed retrieval framework.
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4.1. Preprocessing of the source code files and the bug reports

For the indexing of a particular version of the target code base, we first split the compound terms that

are typically formed by using punctuation characters and camel casing. Then we drop the programming

language specific terms and a set of standard English stop words. The remaining terms are then

stemmed to their common roots using the Porter’s stemming algorithm [22]. The position of each

term extracted from the files is recorded after these preprocessing steps, as illustrated in Figure 2.

These steps constitute the front end to the enhancements that distinguish Terrier+ from Terrier. As

mentioned previously, Terrier+ is an extension to the open-source research search engine Terrier

[23]. As for the bug reports, they are also subject to the same preprocessing steps.

Subsequent to preprocessing, Terrier+ represents a file by a multidimensional array that can be

accessed via its ID. This data structure contains term IDs, the corresponding term frequencies, and

the positions of the terms in the file. For each term in a given query, the files that contain the term

are accessed via an inverted index in which a term is represented by a two dimensional array that

stores the file IDs and the frequency of the term in those files.

4.2. Evaluation metrics

We evaluate the retrieval accuracy of Terrier+ using precision and recall based metrics [22]. We have

tabulated the bug localization performance using precision at rank r (P@r), recall at rank r (R@r), and

mean average precision (MAP) metrics. While P@r measures the accuracy with which the files are

retrieved up to rank r, R@r measures the completeness of the retrievals. The average precision (AP)

for a query Q∈B is given by

AP Qð Þ ¼

XRT

r¼1
P@r�I rð Þ

relQ
; (10)

where I(r) is a binary function whose value is 1 when the file at rank r is a relevant file, and 0 otherwise.

The parameter RT in the summation bound stands for the total number of highest-ranked files that are

examined for the calculation of AP for a given query Q. The denominator relQ is the total number of

relevant files in the collection for Q. AP estimates the area under the precision-recall curve for a given

query Q, and therefore, it is suitable for comparing retrieval algorithms [22]. MAP is computed by

taking the mean of the APs for all the queries. In addition to these metrics; we also present the number

of hits (H@r) for the bug reports [24], which gives the number of bugs for which at least one relevant

source file is retrieved in the ranked lists above a certain cut-off point r.

We use MAP for comparing the different retrieval methods as it is the most comprehensive metric

that takes into account both the precision and the recall at multiple ranks. In computation of this metric

for the results we report in this paper, we set RT=100 in the summation in Equation (10). In order to

evaluate whether the improvements obtained with the proposed approaches are significant or not, we

use pairwise student’s t-test on the APs for the queries.

4.3. Bug localization experiments

For an in-depth analysis of the retrievals, we divide each bug report into two parts, Title and

Description. We first conduct two sets of experiments using these two parts for each bug report

without QC: (1) retrievals with MRF modeling using only the titles of the bug reports. The queries

used for these retrievals are denoted ‘title-only’. And (2) retrieval with MRF modeling using the

complete bug reports; that is, including both the titles and the descriptions for the bug reports. The

queries used for these retrievals are denoted ‘title + desc’. Then, we incorporate QC in the second

category of retrievals and analyze the usefulness of including stack traces and patches in queries by

comparing the overall retrieval accuracy for the set of bug reports that contain these elements to the

remaining set of the bug reports in our query set.

4.3.1. Parameter sensitivity analysis. The model parameters that affect the quality of the retrievals in

our retrieval framework are: (1) the window length parameter (W); (2) the mixture parameters of the
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respective dependency models (λSD, λFD); and (3) the Dirichlet smoothing parameter (μ). While W sets

the upper bound for the number of intervening terms between the terms of the 3-node cliques, λSD and

λFD simply adjust the amount of interpolation of the scores obtained with the 2-node cliques with those

obtained with the 3-node cliques as explained in Section 3. As the ranking is invariant to a constant

scaling in the mixture parameters, we enforce the constraints λFI+ λSD=1 and λFI+ λFD=1 for SD and

FD modeling, respectively. In all experiments, we empirically set the Dirichlet smoothing parameter

as μ=4000. Note that the retrieval accuracy is not very sensitive to the value of this parameter [8].

Figures 6 and 7 show retrieval accuracies for bug localization in terms of MAP as the window length

and the mixture parameters are varied for the ‘title-only’ and the ‘title + desc’ queries. As shown in

Figures 6a and 7a, a value of 0.2 works well for the mixture parameters in general. Note that when

λSD= λFD=0.0, SD and FD use only the 2-node cliques, and hence, they reduce to FI, the SUM. As

for the window length, Figures 6b and 7b illustrate the effect of varying this parameter for

λSD= λFD=0.2. On the average, W=8 results in high retrieval accuracies for the analyzed projects

for both types of queries.

As shown in Figures 6b and 7b, when the window length is set asW=2, SD performs better than FD

in all experiments across the projects. This is because the terms are required to be adjacent to be matched

in the code base when we use this setting, and therefore, the order of the terms becomes more important.

Figure 7. The effects of varying model parameters on mean average precision for AspectJ. The rest of the
caption here is the same as for Figure 6.

Figure 6. The effects of varying model parameters on mean average precision (MAP) for Eclipse. The figure
on the left shows the MAP values as the mixture parameters (λSD for the sequential dependency assumption
and λFD for the full dependency assumption) are varied while the window length parameter is fixed asW= 2.
The figure on the right shows the MAP values as W is varied while the mixture parameters are fixed at 0.2.
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Overall, SD is less sensitive to the window length parameter, achieving high retrieval accuracies

consistently.

4.3.2. Retrieval results. In this section, we compare the retrieval performances of the two term-term

dependency models, SD and FD, with the FI model. We fix the interpolation parameters as λSD= λFD=0.2

and the window lengths as W=8 in all the experiments presented in the remainder of this paper.

Table V presents the bug localization accuracies on the evaluated projects for the ‘title-only’ queries

and MRF modeling. With these experiments, we explore the retrieval accuracy of Terrier+ for

short queries comprised of only a few terms. The last row of the table shows the ‘baseline’

accuracy; this is obtained with the FI assumption, which, as mentioned previously, is the same thing

as SUM [8–10]. The highest score in each column is shown in bold. All the dependency-model

based improvements reported in this table over the FI model are statistically significant at α=0.05

level. Note that incorporating the term dependencies into the retrievals improves the accuracy of bug

localization substantially in terms of the six metrics presented in the table.

Table VI presents the bug localization accuracies for the ‘title + desc’ queries without QC. (The

results obtained with QC will be shown in Subsection 4.3.3 that follows.) That is, the entire textual

content of the bug reports, without any QC, is used for querying the code base. The improvements

obtained with FD and SD over FI are statistically significant at α=0.05 in this table. Note that the

retrieval accuracies improve significantly when the description parts of the bug reports are also

included for carrying out the retrievals (even in the absence of any QC). While SD and FD perform

Table V. Retrieval accuracy with the ‘title-only’ queries. (The baseline, FI represents the BOW assumption).

Method

Eclipse

MAP P@1 P@5 R@5 R@10 H@10

FD 0.2564 (+24.83%) 0.2198 0.1110 0.3199 0.4070 2,100
SD 0.2466 (+20.06%) 0.2116 0.1069 0.3083 0.3934 2,042
FI (BOW) 0.2054 0.1710 0.0883 0.2556 0.3417 1,805

Method

AspectJ

MAP P@1 P@5 R@5 R@10 H@10

FD 0.1410 (+12.89%) 0.1409 0.0832 0.1794 0.2420 124
SD 0.1348 (+7.93%) 0.1340 0.0790 0.1675 0.2382 125
FI (BOW) 0.1249 0.1375 0.0708 0.1498 0.2079 111

MAP: mean average precision; FD: full dependence; SD: sequential dependence; FI: full independence; BOW:
bag-of-words.

Table VI. Retrieval accuracy for the ‘title + desc’ queries.

Method

Eclipse

MAP P@1 P@5 R@5 R@10 H@10

FD 0.2778 (+16.87%) 0.2496 0.1201 0.3427 0.4317 2,249
SD 0.2840 (+19.48%) 0.2543 0.1232 0.3530 0.4391 2,268
FI (BOW) 0.2377 0.2020 0.1060 0.3046 0.3859 2,044

Method

AspectJ

MAP P@1 P@5 R@5 R@10 H@10

FD 0.1945 (+14.08%) 0.2131 0.0997 0.2322 0.2996 142
SD 0.1794 (+5.22%) 0.1856 0.0990 0.2203 0.3096 148
FI (BOW) 0.1705 0.1856 0.0880 0.2003 0.2693 126

MAP: mean average precision; FD: full dependence; SD: sequential dependence; FI: full independence; BOW:
bag-of-words.
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comparably well in these experiments on the Eclipse project, FD outperforms SD on AspectJ on

average in terms of MAP.

We are now in a position to answer the first of the five research questions (RQ) formulated in

Section 2 of this paper. For convenience, here is the question again:

RQ1 Does including code proximity and order improve the retrieval accuracy for bug localization.

If so, to what extent?

Based on the results presented in Tables V and VI, we conclude that incorporating spatial code

proximity and order in the retrieval process improves the accuracy of automatic bug localization

significantly. On average, for both short and long queries, which may contain stack traces and/or

patches, SD and FD modeling consistently enhance the retrieval performance of Terrier+ over FI

across the projects. The improvements are up to 24.83% for Eclipse and up to 14.08% for AspectJ

in terms of MAP.

4.3.3. The effect of query conditioning on retrievals. The retrieval accuracies obtained with QC on the

‘title + desc’ queries are presented in Table VII, where each bug report is first probed for stack traces

and patches in order to extract the most useful source code identifiers to be used in bug localization

as explained in Section 3.2. The results shown in Table VII help us answer the following research

question that was presented in Section 2:

RQ2 Is QC effective on improving the query representation vis-à-vis the source code?

Comparing the results presented in Tables VI and VII, we conclude that QC indeed leads to superior

query formulation for source code retrieval. For all three forms of the dependency assumption, we

obtain significant improvements with QC in terms of the six evaluation metrics mentioned in the tables.

The main benefits of QC are seen for the bug reports that contain stack traces because patches are

included only in a few bug reports. Figure 8 presents the retrieval accuracies of Terrier+ obtained

specifically with the bug reports that contain stack traces. The figure shows that, on the average, the

accuracy of the retrievals doubles with QC for both projects in terms of MAP, reaching values

above the 0.3 threshold.

Figure 8 also demonstrates the effect of the MRF modeling with stack traces. Comparing the results

obtained with the two term-term dependency models, we observe that FD and SD outperform FI

consistently when QC is used in retrievals with the stack traces. The main reason for these results is

that the order and the proximity of the terms in stack traces are extremely important in locating the

relevant source files. As we also mentioned in Section 3, the likelihood of a file to be relevant to a

query increases when it contains longer phrases from the stack trace with the same order and

proximity relationships. Interestingly, when the queries are not processed with QC, the average

retrieval accuracy with FD on the Eclipse project is slightly lower than FI. This is clearly due to the

Table VII. Retrieval accuracy for the ‘title + desc’ queries with query conditioning.

Method

Eclipse

MAP P@1 P@5 R@5 R@10 H@10

FD 0.3019 (+17.93%) 0.2696 0.1274 0.3709 0.4640 2,386
SD 0.3014 (+17.74%) 0.2704 0.1290 0.3749 0.4599 2,354
FI (BOW) 0.2560 0.2186 0.1114 0.3263 0.4102 2,147

AspectJ

FD 0.2307 (+8.31%) 0.2715 0.1155 0.2703 0.3400 161
SD 0.2263 (+6.24%) 0.2646 0.1148 0.2658 0.3554 167
FI (BOW) 0.2130 0.2440 0.1052 0.2438 0.3215 147

MAP: mean average precision; FD: full dependence; SD: sequential dependence; FI: full independence; BOW:
bag-of-words.
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noise in the lengthy stack traces that contain many method signatures most of which are irrelevant to

the bug. The QC framework effectively removes the irrelevant method signatures from the trace for a

better query representation.

4.3.4. The role of stack traces in automatic bug localization. Studies have shown that the developers

who are in charge of fixing bugs look for stack traces, test cases, and the steps contained therein, in

order to reproduce the bugs, these being the most useful structural elements for comprehending the

underlying cause of the bugs and fixing them [14, 15]. Among these structural elements, stack traces

are very important for the work we report in this paper. They are not only frequently included in

bug reports but also a good source of discriminative source code identifiers for automatic bug

localization. Figure 9 presents the retrieval accuracies obtained with the bug reports containing

different types of structural elements. In the figure, ‘remaining’ denotes the bug reports that do not

contain any stack traces or patches.

That sets us up to answer the research question RQ3 that was previously stated in Section 2:

RQ3 Does including stack traces in the bug reports improve the accuracy of automatic bug

localization?

As demonstrated in Figure 9, bug reports with patches lead to the highest accuracies as expected. After

the patches, stack traces hold the second position in terms of their usefulness in locating the relevant

source code. The retrieval results for the remaining bug reports that do not contain any stack traces or

patches are the worst in this comparison. Based on these results, we conclude that including stack

traces in the bug reports does improve the bug localization accuracy. Note that the retrieval accuracies

we obtained with the stack traces are consistently above the 0.3 threshold for the analyzed projects in

terms of MAP.

Figure 9. The effect of including structural elements in bug reports on automatic bug localization accuracy.
Patches lead to the highest retrieval scores while the bug reports with no stack traces or patches perform the
worst in terms of the mean average precision. The number of queries used in these experiments are given in

Table III.

Figure 8. The effect of query conditioning on bug localization with bug reports containing stack traces.

EXPLOITING SPATIAL CODE PROXIMITY AND ORDER FOR IMPROVED SOURCE CODE RETRIEVAL

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)

DOI: 10.1002/smr



4.4. Comparison to automatic query reformulation

In [13], we proposed an automatic QR framework to improve the query representation for bug

localization. For experimental evaluation, we used the title of a bug report as an initial query, which

was reformulated via pseudo relevance feedback based on the retrieval results obtained with the

initial query. The experimental evaluation of the approach showed that the proposed SCP-based QR

model in [13] outperformed the state-of-the-art QR models. That admittedly very brief introduction

to SCP-based QR leads us to the next question that was posed originally in Section 2:

RQ4 How does the MRF-based retrieval framework compare with the QR-based retrieval frame-

work for bug localization?

Comparing the retrieval accuracies presented in Tables VIII and IX to the retrieval accuracies of the

QR models reported in [13], we observe that MRF framework outperforms the SCP-based QR

(denoted as SCP-QR in the tables) on the average. For the Chrome project, while the differences

between the AP obtained with the respective models are not statistically significant at α=0.05, the

differences in terms of the presented recall metrics are. Additionally, H@10 values obtained with

the MRF framework are considerably higher than the values obtained with SCP-QR. For the Eclipse

project, both SD and FD perform better than SCP-QR in terms of the metrics shown. The

differences are statistically significant at α=0.05.

4.5. Comparison with bug localization techniques that use prior development history

Another important class of IR approaches to bug localization is based on the prior development history

[8, 9]. In [9], Zhou et al. proposed BugLocator, a retrieval tool that uses the textual similarities between

a given bug report and the prior bug reports to enhance the bug localization accuracy. Themainmotivation

behind BugLocator is that the same files tend to get fixed for similar bug reports during the life-cycle of a

software project. Another study that leverages the past development efforts was reported by us in [8]. In

that work, we mined the software repositories for the defect and modification likelihoods of the source

files in order to estimate a prior probability distribution, which could then be used for more accurate

source code retrieval for bug localization. This brief review of this class of approaches to bug

localization takes us to the last of the research questions posed in Section 2:

RQ5 How does the MRF-based retrieval framework compare with the other bug localization frame-

works that leverage the past development history?

Table VIII. Query Reformulation versus Markov Random Field for the Eclipse project with the ‘title-only’
queries.

Method MAP P@1 P@5 R@5 R@10 H@10

FD 0.2564 0.2198 0.1110 0.3199 0.4070 2,100
SD 0.2466 0.2116 0.1069 0.3083 0.3934 2,042
SCP-QR 0.2296 0.1906 0.1014 0.2853 0.3746 1,915

MAP: mean average precision; FD: full dependence; SD: sequential dependence; SCP-QR: spatial code proximity
- query reformulation.

Table IX. Query Reformulation versus Markov Random Field for the Chrome project with the ‘title-only’
queries.

Method MAP P@1 P@5 R@5 R@10 H@10

FD 0.1951 0.1844 0.1061 0.2394 0.3159 178
SD 0.1814 0.1760 0.1039 0.2288 0.3137 177
SCP-QR 0.1820 0.1788 0.0933 0.2021 0.2775 151

MAP: mean average precision; FD: full dependence; SD: sequential dependence; SCP-QR: spatial code proximity
- query reformulation.
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The accuracy of BugLocator was also evaluated on Eclipse v3.1 and iBugs datasets. The evaluation

on the Eclipse project was carried out using 3075 bug reports filed for version 3.1 of the software,

whereas our experiments with Terrier+ were performed using 4035 bug reports filed for the same

version. In order to compare the performance of Terrier+ with that of BugLocator, we repeated the

experiments using only the bug reports with which BugLocator was evaluated.

Using the MAP metric, Figure 10 shows the accuracy of the proposed framework along with that of

BugLocator. In the figure, we also include the accuracies obtained with the revised Vector Space

Model (rVSM) [9] that, according to the authors of BugLocator, yields retrieval results superior to

those obtained with the classic Vector Space Model (VSM). As can be seen in the figure, FD+QC

and SD+QC outperform BugLocator with MAP values above 0.32 threshold for the Eclipse project.

In comparison, BugLocator performs better than SUM and SUM+QC with a MAP value of 0.30,

while SUM+QC outperforms rVSM. The performance comparisons with the different models are

similar for the AspectJ project.

The other bug localization technique that reports improved retrieval performance with past

development history leverages the version histories for a software library [8]. In that study, we

showed that the Term Frequency - Inverse Document Frequency (TFIDF) model incorporating

defect histories for the software artifacts (TFIDF+ Defect History based Prior with Decay (DHbPd))

reaches a MAP value of 0.2258 on the AspectJ project.

Based on these results, we conclude that Terrier+ performs at least as good as these other bug

localization techniques but without having to leverage the past development history for a software

library.

4.6. Comparison with Lobster

In this section, we compare our approach with the Lobster (LOcating Bugs using Stack Traces and tExt

Retrieval) framework presented in [25].

Lobster uses a combination of textual similarity and stack trace based similarity to retrieve source

code files relevant to bug reports. In order to compute the textual similarity between a source code

file and a bug report, the method uses the traditional BOW model (VSM). On the other hand, stack

trace based similarity is computed using the distance between the source code file and the file

present in the stack trace. Note that this distance is calculated by, first, creating the dependency

graph of the library, and then, finding the shortest path (in the dependency graph) between each

source code file and the file present in the stack trace. The dependency graph is a directed graph in

which each node represents a distinct source code file and each edge from one node to another

represents control or data flow. If there is no path between two files in the dependency graph, the

distance is assumed to be infinity. For such cases, the stack trace based similarity is set to zero, and

the total similarity (which is a linear combination of textual and stack trace based similarites) relies

only on the textual similarity.

Figure 10. Comparison of the retrieval models for bug localization.

EXPLOITING SPATIAL CODE PROXIMITY AND ORDER FOR IMPROVED SOURCE CODE RETRIEVAL

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)

DOI: 10.1002/smr



The two important parameters of Lobster are α and λ. The value of α adjusts the relative

weights of the textual and stack trace based similarities, whereas the value of λ indicates how

far a source code file can be from the stack trace file in the dependency graph in order for

the two to be considered similar. The values of α and λ were set to 0.8 and 2,

respectively, as recommended by the authors of Lobster.

To compare our MRF approach with Lobster, we installed the software provided by its authors

in one of our computers and realized that it did not come with the preprocessing code needed

for stop word removal, stemming, and so on. We therefore had to add our own preprocessing

code to the downloaded software. Initially, though, we applied the downloaded code to the

ZooKeeper preprocessed data that the authors have made available at their website. This was

done to make sure that our installation of Lobster was correct. Running our install of Lobster

on the downloaded preprocessed files for ZooKeeper yielded a MAP value of 0.66, which is

roughly the same as 0.63 in the Lobster publication.

What we found interesting was that when we preprocessed the ZooKeeper source code libraries with

our own best-practice algorithms, the MAP values obtained using the Lobster software dropped down

from 0.66 to 0.48. (Note that we used the same stop word list as provided by the authors at their

website [25].) The main conclusion to be drawn from these MAP values is that a significant

component of retrieval precision is predicated on how the preprocessing of the source code libraries

is carried out. It is also important to note that there is yet no standardized set of preprocessing

algorithms for the source files for the kind of research reported here. The MAP values obtained for

the installation verification procedure carried out by us are tabulated in the top portion of Table X.

Now we will report on a comparison of Lobster with our MRF-based approach on the AspectJ

library. For this comparison, we consider only those queries that contain stack traces. As shown in

the lower part of Table X, the MRF-based approach significantly outperforms Lobster. The former

yields a MAP of 0.34, as was shown previously in Figure 8b, whereas the same for the latter is

0.05. Note that we use only those queries that contain stack traces for this comparison in order to

conform to the evaluation methodology used in the Lobster paper.

5. THREATS TO VALIDITY

The threats to the validity of our approach mainly emanate from the scope of the datasets we used in

our evaluations and the procedures used to create them. Although our experimental evaluation involves

large open source projects commonly used in the evaluation of bug localization approaches, the

performance of the proposed framework may vary for other open source or propriety projects. An

important step used in the preparation of these datasets is the reconstruction of the links between the

bug tracking databases and the corresponding development effort in the software repositories. This

reconstruction step is performed using regular expressions to link the bug reports to the repository

commits based on the commit messages. Despite the fact that a large number of bug reports are

accurately linked to the repository commits, this linking process may occasionally fail when the

commit messages in the versioning tools are much too cryptic for regular-expression based matching

to succeed [26].

Table X. Lobster versus Markov Random Field for bug localization.

Method Preprocessing by Result generated by Library MAP

Installation Lobster Moreno et al. Moreno et al. (in publication) ZooKeeper 0.63
Verification Lobster Moreno et al. Us ZooKeeper 0.66

Lobster Us Us ZooKeeper 0.48

Comparison MRF Us Us AspectJ 0.34
Lobster Us Us AspectJ 0.05

MAP: mean average precision.
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6. RELEVANT WORK

Traditional methods for bug localization rely on the dynamic or the static properties of software [27–32].

Whereas dynamic approaches require that a set of test cases be executed to locate the parts of the

program causing the bug, static approaches aim to leverage the static properties of the software such

as its function call graphs, dependency relationships between the code segments, etc. The main

problem with the static approaches is that they tend to return too many false positives [33]. Although

dynamic approaches tend to be more accurate than static methods, designing an exhaustive set of test

cases to reveal defective behaviors is very difficult and expensive. The bug localization approach we

presented in this paper does not call for a program to be executed. Besides, it is lightweight and

inexpensive.

Concept location, feature/concern location, and bug localization are closely related problems in

software engineering. Early work on using text retrieval methods for concept location includes the

work by Marcus et al. [5]. They used Latent Semantic Indexing (LSI) to retrieve the software

artifacts in response to short queries. The retrievals are performed in the lower dimensional LSI

space, which assigns greater importance to the terms that frequently co-occur in the source files.

This framework can also be used to expand a given initial query that consists of just a single query

term. In [34], Poshyvanyk et al. extended this approach to include formal concept analysis. They

showed that the irrelevant search results returned by the LSI model can be reduced with formal

concept analysis. Hybrid methods that combine dynamic analysis with IR have also been proposed

in this area [2, 35].

In [36], Hill et al. leveraged source code identifiers to automatically extract the phrases relevant to

a given initial query. These phrases were then used to either find the relevant program elements or to

manually reformulate the query for superior feature/concern localization. In [37], Hill et al.

investigated the effect of the position of a query term on the accuracy of the search results. The

main idea in this study is that the location of a query term in the method signatures and in the

method bodies determines its importance in the search process. Along the same lines, Ripon et al.

[38] have improved the precision of the basic BOW-based bug localization by giving greater

weight to ‘structural terms’. This contribution is based on the premise that there is much

structural information in source code, and it ought to be exploited in a retrieval algorithm for bug

localization. The structure that Ripon et al. have used is reflected in the terms that are used for

classes, methods, and variables. An abstract syntax tree representation of a source code file

(which can be obtained by parsing the file) immediately yields the terms that are used as the

names for classes, methods, and variables. These terms can subsequently be weighted

differentially to reflect their importance in bug localization. Suppose a bug report explicitly

mentions a class, the differential weighting given to the terms that stand for classes are likely to

result in higher-precision retrieval of the relevant files. As to how this work compares with ours,

note that the work of Ripon et al. does not directly model the term-term dependencies. Yes,

indirectly, by giving differential weighting to the terms used for, say, the classes, the work by

Ripon et al. introduces an element of positional specificity into the retrieval process – but that is

only with respect to a select category of terms (such as those used for classes). The overall

retrieval framework in Ripon et al. remains that of BOW. Our work, on the other hand, goes

beyond BOW and uses MRF modeling to capture proximity relationships between arbitrary terms

in the files. Yet another approach to capturing proximity and order relationships in text files – but

only at the character level – is through n-grams-based modeling of a software library [39]. Our

work captures such relationships at a higher level of abstraction – the word level.

We should also mention a recent study by Hill et al. [40] that investigates the effect of incorporating

term-term proximity and order on feature location. This work shows that MRF-based approaches to

leveraging positional proximity leads to more consistent retrieval accuracies in comparison to

NLP-based approaches [40].

In [41], Gay et al. used explicit relevance feedback for QR for the purpose of concept location. This

framework requires developers to engage in an iterative query/answer session with the search engine.

At each iteration, the developer is expected to judge the relevance of the returned results vis-á-vis the

current query. Based on these judgments, the query is reformulated with the Rocchio formula [42] and

EXPLOITING SPATIAL CODE PROXIMITY AND ORDER FOR IMPROVED SOURCE CODE RETRIEVAL

Copyright © 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)

DOI: 10.1002/smr



resubmitted to obtain the next round of retrieval results. This process is repeated until the target file is

located or the developer gives up.

In [43], Haiduc et al. introduced Refocus, an automatic QR tool for text retrieval in software

engineering. Refocus automatically reformulates a given query by choosing the best QR technique,

which is determined by training a decision tree on a separate query set and their retrieval results.

After training, based on the statistics of the given query, the decision tree recommends an automatic

QR technique that is expected to perform the best among the others.

Recently, several studies have investigated the IR algorithms for the retrieval of software

artifacts for bug localization. In a comparative study, Rao and Kak evaluated a number of

generic and composite IR models to localize the files that should be fixed to resolve bugs [10].

The main result that came out of this study was that simpler models, such as the VSM or the

SUM, performed better than the more sophisticated models such as LDA. Another similar

comparative study is by Lukins et al. [4]. Their results show LDA performing at least as well

as Latent Semantic Analysis (LSA). In a related contribution, Nguyen et al. [16] also proposed

an LDA-based approach to narrow down the search space for improving bug localization

accuracy. In [7], Ashok et al. have shown how the relationship graphs can be used to retrieve

source files and prior bugs in response to what they refer to as ‘fat queries’ that consist of

structured and unstructured data. And, finally, Thomas et al. [44] have shown that parameter

tuning has a significant effect on retrieval accuracy. The study also showed that combining

multiple models can further enhance the retrieval accuracy of even the best performing models.

7. CONCLUSIONS

We presented a theoretically sound IR framework for automatic bug localization that takes into account

spatial code proximity and term ordering relationships in a code base for improved retrieval accuracy.

The proposed retrieval framework benefits from a fuzzy matching mechanism between the term blocks

of the queries and the source code. At the heart of the approach is the concept of MRF that captures

both the positional and the order attributes of the terms in source files. Our experimental validation

involving large open-source software projects and over 4000 bugs has conclusively established that

the retrieval performance improves significantly when both the proximity and ordering relationships

between the terms are taken into account in matching bug reports with files.

Our experimental evaluation also demonstrates that, in conjunction with the MRF model, the

proposed QC approach effectively exploits the different types of structural information that is

frequently included in bug reports. We showed that the structural elements in bug reports –

particularly stack traces – contain vital information that is not well represented vis-à-vis the source

code with the widely used BOW assumption.

Overall, on the basis of retrieval accuracies, it is clear that one can obtain significantly higher bug

localization accuracies when MRF modeling and QR are included in a retrieval framework

compared with all other state-of-the-art approaches, even including those that take prior

development history into account.
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