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Exploiting Spatial-redundancy of Image Sensor for

Motion Robust rPPG
Wenjin Wang, Sander Stuijk, and Gerard de Haan

Abstract—Remote photoplethysmography (rPPG) techniques
can measure cardiac activity by detecting pulse-induced colour
variations on human skin using an RGB camera. State-of-the-
art rPPG methods are sensitive to subject body motions (e.g.,
motion-induced colour distortions). This study proposes a novel
framework to improve the motion robustness of rPPG. The
basic idea of this work originates from the observation that
a camera can simultaneously sample multiple skin regions in
parallel, and each of them can be treated as an independent
sensor for pulse measurement. The spatial-redundancy of an
image sensor can thus be exploited to distinguish the pulse-
signal from motion-induced noise. To this end, the pixel-based
rPPG sensors are constructed to estimate a robust pulse-signal
using motion-compensated pixel-to-pixel pulse extraction, spatial
pruning, and temporal filtering. The evaluation of this strategy is
not based on a full clinical trial, but on 36 challenging benchmark
videos consisting of subjects that differ in gender, skin-types
and performed motion-categories. Experimental results show that
the proposed method improves the SNR of the state-of-the-art
rPPG technique from 3.34dB to 6.76dB, and the agreement
(±1.96σ) with instantaneous reference pulse-rate from 55% to
80% correct. ANOVA with post-hoc comparison shows that the
improvement on motion robustness is significant. The rPPG
method developed in this study has a performance that is very
close to that of the contact-based sensor under realistic situations,
while its computational efficiency allows real-time processing on
an off-the-shelf computer.

Index Terms—Biomedical monitoring, photoplethysmography,
remote sensing, motion analysis.

I. INTRODUCTION

C
ARDIAC activity is measured by medical professionals

to monitor patients’ health and assist clinical diagnosis.

The conventional contact-based monitoring methods, i.e., elec-

trocardiogram (ECG) and photoplethysmography (PPG), are

somewhat obtrusive and may cause skin-irritation in sensitive

subjects (e.g., skin-damaged patients, neonates). In contrast,

camera-based vital signs monitoring triggers a growing inter-

est for non-invasive and non-obtrusive healthcare monitoring.

Earlier progress made in camera-based vital signs monitor-

ing can be categorised into two trends: (1) detecting the minute

optical absorption variations of the human skin induced by

blood volume changes during the cardiac cycle, i.e., remote-

PPG (rPPG) [1], [2], [3]; (2) detecting the periodic head

motions caused by the blood pulsing from heart to head via

the abdominal aorta and carotid arteries [4]. However, both
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the colour-based and motion-based approaches are sensitive to

body motions, since these can dramatically change the light

reflected from the skin surface and also corrupt the subtle

head motion driven by the cardiovascular pulse. Although

significant progress has been reported in the rPPG-category for

a fitness setting recently [3], the Signal-to-Noise Ratio (SNR)

of the pulse-signals obtained by all existing methods are still

reduced when the subject is moving relative to the camera.

The goal of this paper is to significantly improve the

SNR of the rPPG pulse-signal by better exploiting the spatial

redundancy of the image-sensor. To some extent, the spatial-

redundancy of the image-sensor has already been exploited

in previous rPPG methods [1], [2], [3] as they extract the

pulse-signal from the averaged pixel value in a skin region.

Such averaging of independent sensors is optimal only if

the (temporal) noise-level in skin pixels is comparable and

has a Gaussian distribution. However, the image-to-image

variations in skin pixels from a face may be very strong in

the mouth region of a talking subject, while relatively low on

the stationary forehead. If the outliers (pixels near the mouth)

could be removed from the average, the quality of the extracted

pulse-signal is expected to be improved significantly.

To this end, a motion robust rPPG method is proposed to

treat each skin pixel in an image as an independent rPPG

sensor and extract/combine multiple rPPG-signals in a way

that is immune to noise. The proposed method consists of three

steps: (1) creating pixel-based rPPG sensors from motion-

compensated image pixels, (2) rejecting motion-induced spa-

tial noise, and (3) optimising temporally extracted pulse-

traces into a single robust rPPG-signal. To demonstrate the

effectiveness, it has been evaluated on 36 challenging videos

with an equal number of male and female subjects in 3 skin-

type categories and 6 motion-type categories.

The contributions of this work are threefold: (1) a new strat-

egy is proposed to track pixels in the region of interest (e.g., a

subject’s face) for rPPG measurement using global and local

motion compensation; (2) exploiting the spatial-redundancy of

an image sensor, i.e., pixel-based rPPG sensors, is proved to

lead to a considerable gain in accuracy as compared to the

common approach that takes a single averaged colour trace;

and (3) a novel algorithm is introduced to optimise the pixel-

based rPPG sensors in spatial and temporal domain.

The rest of this paper is organised as follows. Section II

provides an overview of the related work. Section III analyses

the problem concerning this study and describes the proposed

method. The experimental setup is discussed in Section IV

while the proposed method is evaluated and discussed in

Section V. Finally, the conclusions are drawn in Section VI.
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Fig. 1. The flowchart of the proposed motion robust rPPG framework: A. a video sequence with a manually selected RoI is the input to the framework.
The global and local motion of the RoI are compensated, and pixel-based rPPG sensors between adjacent frames are constructed using motion-compensated
pixel-to-pixel correspondences; B. the outliers among the pixel-based rPPG sensors, i.e., the ones without skin information or distorted by motion noise, are
pruned in the spatial domain; and C. the spatially pruned inliers are chained up in the temporal domain as multiple pulse-traces, which are filtered and further
optimised into a single robust rPPG-signal.

II. RELATED WORK

In the cardiovascular system, the blood pulse propagating

throughout the body changes the blood volume in the vessels.

Given the fact that the optical absorption of haemoglobin

varies across the light spectrum, a specific cardiovascular event

can be revealed by measuring the colour variations of skin

reflections [1]. In 2008, Verkruysse et al. found that in an

ambient light condition, the PPG-signal has different relative

strength in three colour channels of an RGB camera that senses

the human skin [5]. Based on this finding, Poh et al. proposed

a linear combination of RGB channels defining three inde-

pendent signals with Independent Component Analysis (ICA)

using non-Gaussianity as the criterion for separating indepen-

dent resource signals [1]. As an alternative, Lewandowska et

al. suggested a Principal Component Analysis (PCA) based

solution to define three independent linear combinations of

RGB channels [2]. In 2012, MIT developed a method called

“Eulerian video magnification” to amplify the subtle colour

changes through band-pass filtering the temporal pyramidal

image differences [6]. However, any motion-induced colour

distortions within the same frequency band as that of the pulse

are unfortunately amplified. More recently, de Haan et al.

introduced the chrominance-based rPPG method (CHROM)

to consider the pulse as a linear combination of three colour

channels under a standardised skin-tone assumption [3]. This

method demonstrates the highest accuracy of all existing rPPG

methods. Based on a comparison of the state-of-art rPPG

methods, this study relies on the CHROM method as the

baseline to develop a motion robust rPPG method.

III. METHOD

The overview of the proposed motion robust rPPG frame-

work is shown in Figure 1, which takes a video sequence

containing a subject’s face as the input and returns the ex-

tracted pulse-signal as its output. There are three main steps in

the processing chain: motion-compensated pixel-to-pixel pulse

extraction, spatial pruning, and temporal filtering. Each step

is discussed in detail in the following subsections.

A. Motion-compensated pixel-to-pixel pulse extraction

To extract parallel pulse-signals from spatial-redundant pix-

els, the pixels belonging to the same part of skin should be

concatenated temporally. So this method compensates for the

subject motion and relates temporally corresponding pixels.

1) Global motion compensation: In previous rPPG methods

[1], [2], [3], the subject’s face is typically used as the Region

of Interest (RoI) for pulse measurement. The motion of the

face can be interpreted as a linear combination of global

rigid motion (head translation and rotation) and local non-

rigid motion (e.g., eye blinking and mouth talking). The

common approach to compensate for the global motion of a

face is using the Viola-Jones face detector to locate the face

in consecutive frames with a rectangular bounding-box [7].

However, a classifier that has for example been trained with

only the frontal-face samples cannot detect the side-view faces.

This fundamental limitation may lead to a discontinuous face

localisation across subsequent video frames.

As an alternative, a “Tracking-by-Detection” approach,

which enables the online updating of the target appearance

model while tracking the object, demonstrates the capability of

adapting to occasional appearance changes of the target as well

as handling the challenging environmental noise (e.g., partial

occlusions and background clutter). According to the latest

benchmark results of online object tracking presented in 2013

[8], the Circulant Structure of Tracking-by-detection with Ker-

nels (CSK) developed by Henriques et al. [9] has the highest

tracking speed among the top 10 accurate trackers, which can

achieve hundreds of frames-per-second [8]. Considering that

no significant accuracy difference can be observed among the

state-of-the-art trackers in the setting of this study, the fastest

CSK method is chosen to compensate for the global motion

of the subject’s face instead of a Viola-Jones face detector.

2) Local motion compensation: Based on the globally

tracked face, the pixels’ displacements can be more precisely

estimated in this step. The implementation of the Farneback

dense optical flow algorithm [10] in OpenCV 2.4 [11] is

utilised to measure the translational displacement of each

image pixel between adjacent frames. In addition, the idea

of forward-backward flow tracking proposed by Kalal et al.

[12] is adopted to detect the pixel-based tracking failures: in

a bi-directional tracking procedure, the motion vectors with

larger spatial errors yielded by abrupt motion are removed

as noise, whereas the consistent motion vectors are retained

to associate the temporal corresponding pixels via spatial bi-

linear interpolation.
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3) Pixel-to-pixel pulse extraction: After global and local

motion compensation, the pixels between adjacent frames have

been aligned into pairs. By concatenating them in a longer

frame interval, multiple pixel trajectories can be generated.

However, there is a problem in creating such longer pixel

trajectories: pixels belonging to the same trajectory may

disappear due to occlusions (e.g., face rotation).

In fact, under a constant lighting environment, the pixels in

different locations of the skin show the same relative PPG-

amplitude. It implies that if the pulse-induced colour changes

in each aligned pixel pair are temporally normalised, they

can be concatenated in an arbitrary order to derive a long-

term signal. Since the pixel-based motion vectors only need

to be estimated between two frames (the smallest possible

interval), it minimises the occlusion problem and also prevents

the propagation of errors in local motion estimation.

The temporally normalised RGB differences of the ith pixel

between frame t and t + 1 is denoted by a vector C
t→t+1

i ,

which is defined as:

C
t→t+1

i = C
t+1

i − C
t

i =







R
t→t+1

i

G
t→t+1

i

B
t→t+1

i






. (1)

Assuming the spatial displacement of the ith pixel from frame

t to t+ 1 is
−→
d (dx, dy), Eq. (1) can be written as:

C
t→t+1

i =











R
t+1

i
(x+dx,y+dy)−Rt

i(x,y)

R
t+1
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t+1
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i (x,y)

B
t+1
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









. (2)

Figure 2 shows the histogram distribution of C
t→t+1

i on

three different skin-tones: the Gaussian-shaped distribution of

R
t→t+1

i , G
t→t+1

i and B
t→t+1

i on different skin-tones are all

within the range [−0.02, 0.02], which is very concentrated

compared to its theoretical variation range [−1, 1]. Thus it

can be concluded that in all skin pixels, pulse-induced colour

variations roughly exhibit the same strengths in temporally

normalised colour channels.

After that, the temporally normalised RGB differences are

projected onto the chrominance plane using the CHROM
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Fig. 2. The histograms of temporally normalised RGB differences between
frame t and t+1 of three skin-types in a homogeneous lighting condition. The
histogram distributions show that all skin pixels describe the similar pulse-
induced RGB changes after temporal normalisation.

method [3], which defines the pulse-signal as a linear com-

bination of RGB channels as:

X
t→t+1

i = 3R
t→t+1

i − 2G
t→t+1

i

Y
t→t+1

i = 1.5R
t→t+1

i +G
t→t+1

i − 1.5B
t→t+1

i

. (3)

By temporally concatenating (X
t→t+1

i , Y
t→t+1

i ) estimated

from pixel pairs between adjacent frames and integrating them,

multiple chrominance-traces can be derived as:

X̃t→t+l
i = 1 +

∑l

0 X
t→t+1

i

Ỹ t→t+l
i = 1 +

∑l

0 Y
t→t+1

i

, (4)

where l is the interval length of the chrominance trace defined

by a temporal sliding window. In line with [3], l is specified

as 64 frames in case of a 20 FPS video recording rate. The

pulse-trace in the temporal window can be calculated as:

P̃ t→t+l
i = X̃t→t+l

i − αỸ t→t+l
i , (5)

with

α =
σ(X̃t→t+l

i )

σ(Ỹ t→t+l
i )

, (6)

where σ(·) corresponds to the standard deviation operator.

In order to avoid the signal drifting/explosion in a long-

term accumulation, the pulse-traces estimated from the sliding

window are overlap-added together with a Hann window [3].

Note that the spatial averaging of local pixels can reduce

quantisation errors during the temporal colour normalisation.

The face RoI is down-sampled starting from the local motion

compensation step, which not only reduces the noise sen-

sitivity of pixel-based rPPG sensors, but also increases the

processing speed of the dense optical flow. There is a trade-

off in selecting the optimal down-scaling size considering the

accuracy and efficiency. Since the size of all subjects’ face

used in this study are approximately 200×250 pixels, the RoI

is uniformly down-sampled to 36× 36 pixels.

B. Spatial pruning

Since the temporal noise-level in pixel-based rPPG sensors

is not Gaussian distributed, the next step is to optimally select

the inliers (reliable sensors) from a set of spatially redundant

sensors for a robust rPPG-signal measurement. In practice,

there are mainly two kinds of noise degrading the quality

of rPPG sensors: (1) non-skin pixels (e.g., eyebrow, beard

and nostril) that do not present pulse-signals; (2) skin pixels

that contain motion-induced colour distortions. Based on this

observation, a spatial pruning method including skin/non-skin

pixel classification and colour space pruning is designed to

pre-select the reliable sensors.

1) Skin/non-skin pixel classification: Most skin segmen-

tation methods use pre-defined thresholds of skin colour

composition or model a binary boundary between foreground

and background. However, these approaches suffer from

dilemmas in choosing suitable thresholds or defining fore-

ground/background. As a matter of fact, most of the pixels

inside a well-tracked face region represent the skin while only

a small number of them are not skin. Since the skin pixels that

share some similarities are bound in one cluster, a clustered
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feature-space can be constructed to detect the pixels that are

further away from the cluster centre as novelties (non-skin

pixels). In this method, the One Class Support Vector Machine

(OC-SVM) [13] is employed to estimate such a hyper-plane,

which encircles most of the pixel samples as a single class

(skin class) without any prior skin colour information.

In order to train an OC-SVM, a list of feature descriptors

x1, x2, x3, ..., xn should be created to represent the skin pixels.

Inspired by [14] that using the intensity-normalised rgb and

YCrCb to discriminate skin and non-skin regions, this method

represents each vector xi with four components: r− g, r− b,

Y − Cr and Y − Cb. The OC-SVM is only trained with the

first few frames to adapt to the subject skin-tone; then it is

used to predict the skin pixels in the subsequent frames, i.e.,

the pixels with the positive and negative response for f(x)
are classified as skin and non-skin pixels respectively. This

step significantly removes the pixel-based rPPG sensors that

are not pointing at the subject’s skin, and its performance is

invariant to different skin-tones, as shown in Figure 3.

Light skin subject Intermediate skin subject Dark skin subject

Fig. 3. An example of skin/non-skin pixel classification on three subjects
with different skin colours. The red bounding-box is the tracked face, and the
non-skin pixels inside the bounding-box are masked by black colour.

2) Colour space pruning: As explained before, the pulse-

induced colour variations exhibit similar changes in C
t→t+1

i

under a homogeneous lighting environment, i.e., in tempo-

rally normalised colour space, the transformation between

(R
t

i, G
t

i, B
t

i) and (R
t+1

i , G
t+1

i , B
t+1

i ) should ideally be the

translation. However, motion-induced colour distortions enter

this translation by adding additional residual transformations,

such as rotation. Therefore by checking the geometric trans-

formation of pixel-based rPPG sensors in the temporally nor-

malised colour space, a number of unreliable sensors distorted

during the transformation can be found and pruned. To realise

this step, the inner product φ of the unit colour vectors between

frame t and t+ 1 is simply calculated as:

φt→t+1
i =<

C
t

i

||C
t

i||
,

C
t+1

i

||C
t+1

i ||
>, (7)

where <,> denotes the inner product operation; || · || cor-

responds to the L2-normalisation. When φt→t+1
i is more

deviated from 1, the angle between C
t

i and C
t+1

i is larger,

which implies that the colour transformation is more likely

to be motion-induced. In this manner, all the rPPG sensors

are sorted based on their inner products and a fraction β (e.g.,

β = 1
8 ) of them ranking closest to 0 (orthogonal) are pruned as

outliers. Figure 4 shows an example of spatially pruned results

in this space: subject motion yields a more sparse distribution

of rPPG sensors in the spatial domain as compared to the

stationary scenario.
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Fig. 4. An example of spatial pruning in the temporally normalised RGB
space. The distribution of pixel-based rPPG sensors in this space is different
between the stationary and motion scenarios. This step removes the sensors
containing explicit motion-induced colour distortions.

Furthermore, the remaining rPPG sensors are pruned in the

temporally normalised XY space. On the projected chromi-

nance plane using Eq. (3), it can be observed that when

the subject is perfectly stationary, X − αY (pulse direction)

is the principal direction while the projections are densely

distributed as an ellipse; when motion appears, the direction

orthogonal to X − αY starts to dominate the space and the

projections are sparsely distributed like a stripe, as shown in

Figure 5. The direction orthogonal to the pulse direction on

this chrominance plane is named as the “motion direction”,

which can be expressed as:

M
t→t+1

i = X
t→t+1

i + αY
t→t+1

i , (8)

where α is identical to the one calculated in Eq. (6). The cri-

terion to prune sensors on the chrominance plane is: selecting

the sensors containing the least motion signals but the most

likely pulse-signals. Therefore in the first round, all sensors are

sorted in an ascending order based on the magnitude of their

motion signal |X+αY |. The ones ranking at the high end are

more affected by motion and are thus pruned. In the second

round, the remaining sensors are sorted again in an ascending

order based on their pulse-signal X−αY . The ones ranking in

the median position represent the most probable pulse-signal

and are thus selected. Similarly, this step uses the same fraction

β to prune the outliers on the chrominance plane.
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Fig. 5. An example of spatial pruning in the temporally normalised chromi-
nance space. This step removes the sensors containing implicit motion-induced
distortion residues, but retains the sensors with the most likely pulse-signal.

C. Temporal filtering

Till this step, there are two alternatives to use the spatially

pruned rPPG sensors: (1) averaging the inliers for subsequent

pulse estimation that is further identical to previous rPPG

methods; (2) first extracting independent pulse-signals from

the inliers in parallel, and then combining them into a single

robust pulse-signal after post-processing. Due to the residual



IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. ?, NO. ?, MONTH 2014 5

errors in motion estimation, the noise in spatial inliers still

shows no Gaussian distribution and is not zero mean. Further-

more, concatenating the local rPPG sensors separately allows

the local optimisation of the α in Eq. (5) when deriving the

pulse-signals. Consequently, option (2) is adopted to separate

the pulse-signal and noise by generating parallel pulse-traces.

Given the fact that the pulse derivatives in local rPPG

sensors are temporally normalised, they can be randomly

concatenated for creating long-term traces. But generating all

possible concatenations is an impossible task (e.g., (600!)64

different ways of concatenation in case of 600 skin pixels over

64 frames), so a simple solution is proposed to find favourable

concatenations: first sort all the pulse derivatives (sensors)

based on their distance to the mean, and concatenate them

in the sorted order. The signal-traces ranking at the top are

expected to be fairly reliable pulse-signals, whereas the ones

ranking at the bottom are likely to be sub-optimal. Afterwards,

the adaptive band-pass filtering and PCA decomposition steps

are designed to further enhance and combine the multiple

pulse-traces into a single robust rPPG-signal.

1) Adaptive band-pass filtering: Essentially, the pulse-rate

of a healthy subject falls within the frequency range [40, 240]
beats per minute (bpm), so the parts of signal that are not in

this frequency band can be safely blocked, i.e., in a temporal

sliding window with 64 frames length, the in-band frequency

range corresponds to [2, 12]. For a given moment, the instant

pulse frequency should be even more concentrated in a smaller

range such as [80, 90] bpm. So using the real-time pulse-rate

statistics, an adaptive band-pass filtering method is developed

to better limit the band-pass filter range.
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Fig. 6. An example of using the adaptive band-pass filtering on frequency
spectrums obtained from two subjects (e.g., light skin and dark skin subjects)
shown in Figure 3.

An example is shown in Figure 6: the mean frequency-

peak position of all pulse-traces in the current temporal

window is found as the most probable instantaneous pulse-

frequency of the subject, then a fraction (β) of pulse-traces

whose frequency-peak position has a large distance to the

most probable instantaneous pulse-frequency are pruned. After

that, the original pulse frequency band is adapted to the

first two harmonics derived from the mean frequency-peak

position, i.e., if the most probable peak position is at 4,

the pulse frequency range is reduced from original [2, 12] to

[3, 5] ∪ [6, 10] (first two harmonics). Similarly, if the most

probable peak position is at 5, the pulse frequency band is

narrowed down to [4, 6] ∪ [8, 12].
Note that the proposed adaptive band-pass filtering method

adjusts the pulse-frequency bandwidth based on instantaneous

statistics in the current sliding window, which does not rely on

any prior assumptions or previous observations (e.g., Kalman

filter) of a specific subject’s pulse-rate.

2) PCA decomposition: To derive a robust rPPG-signal

from multiple band-passed pulse-traces, the robust pulse-signal

is defined as a periodic signal with the highest variance. The

reasons are: (1) the subject motions are often occasional and

unintentional in a hospital/clinical use-case, i.e., non-periodic

motions; (2) the motion-induced variance has been reduced

by motion compensation, so the pulse-induced periodicity is

more obvious in a cleaner signal-trace.

Based on this observation, the periodicity of a pulse-signal is

defined as a ratio between the maximum power and total power

of the signal spectrum in the pulse-frequency band. When the

signal is more periodic, this ratio is larger. Similarly, the pulse-

traces are sorted based on their periodicity, and a fraction β

of traces with low periodicity are pruned.

Finally, PCA is performed on the periodic pulse-traces

to obtain the eigenvectors, which has two benefits: (1) the

decomposed eigenvectors are orthogonal to each other in the

subspace, which clearly separates the pulse-signal and noises;

(2) the eigenvectors are ordered in term of variance, which

simplifies the procedure of selecting the most variant trace.

In the temporal sliding window, the eigenvector (among the

top 5 eigenvectors) that has the best correlation with the mean

pulse-trace is selected to be the rPPG-signal after correcting

the arbitrary sign of the eigenvector as:

P̃ t→t+l
selected =

< P̃ t→t+l
eigen , P̃ t→t+l

mean >

| < P̃ t→t+l
eigen , P̃ t→t+l

mean > |
× P̃ t→t+l

eigen , (9)

where P̃ t→t+l
eigen and P̃ t→t+l

mean represent the eigenvector and mean

pulse-trace respectively; <,> corresponds to the inner product

(correlation) between two vectors; and |·| denotes the absolute

value operator.

IV. EXPERIMENT

This section presents the experimental setup for evaluating

the proposed rPPG method. First, it shows the way of creating

the benchmark video dataset. Next, it introduces two metrics

for evaluating the performance of rPPG methods. Finally, it

includes 5 (r)PPG methods for performance comparison.

A. Benchmark dataset

To evaluate the proposed rPPG method, 6 healthy subjects

(students) are recruited from Eindhoven University of Tech-

nology. The study is approved by the Internal Committee

Biomedical Experiments of Philips Research, and the informed

consent is obtained from each subject. The video sequences

are recorded with a global shutter RGB CCD camera (type

USB UI-2230SE-C of IDS) in an uncompressed data format,

at a frame rate of 20Hz, 768×576 pixels, 8 bit depth and has a

duration of 90 seconds per motion-category. During the video

recording, the subject wears a finger-based transmissive pulse

oximetry (model CMS50E from Contec Medical) for obtaining

the reference pulse-signal, which is synchronised with the

recorded video frames using the USB protocol available on

the device. The subjects sit in front of the camera with their
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Skin-type II male Skin-type II female Skin-type III male Skin-type III female Skin-type V femaleSkin-type V male

Fig. 7. A snapshot of the skin-types of six subjects in the benchmark dataset.
The subjects’ eyes are covered for protecting their identity only in the printing.

face visible and illuminated by a fluorescent light source (type:

Philips HF3319 - EnergyLight White).

Figure 7 shows a snapshot of the recorded subjects from

three skin-type categories according to the Fitzpatrick skin

scale [15]: Skin-category I with ‘Skin-type II’ male/female;

Skin-category II with ‘Skin-type III’ male/female; and Skin-

category III with ‘Skin-type V’ male/female. All subjects

are instructed to perform 6 different types of head motion:

stationary, translation, scaling, rotation, talking and mixed

motion (mixed motion is the mixture of all motions). For

each recording, the subject remains stationary in the first 15

seconds and then performs a specific motion till the end by

repeating it. There is no guidance to restrict the amount of

motion, so it leads to displacements up to the maximum 35

pixels per picture-period in practice. This is intended to better

mimic the practical use-cases and make the videos sufficiently

challenging for rPPG. Figure 8 shows some uniformly sampled

frames in the rotation video sequence of skin-category II male.

#300 #310 #320 #330

#340 #350 #360 #370

Fig. 8. An example of frames in skin-category II male rotation video. In this
video, the subject performs in-plane and out-of-plane rotations.

The goal of this study is aimed to improve the “motion

robustness” of rPPG, “motion” is considered the key variable

that is varied in the dataset. (As mentioned before, the gender

and skin-type are also varied.) So when recording each video

sequence, the subject is asked to perform a specific type of

motion repeatedly. Each motion is repeated approximately

15 times in each video sequence. Since motion is the most

important variable affecting the rPPG performance in a single

constant luminance environment, the measurement of the

whole video sequence with repeated subject motion can be

considered as a composition of multiple repeated short-term

measurements. Hence, the video sequences allow studying the

measurement repeatability. The Bland-Altman plots in Figure

10 shows for example the within-measurement repeatability

comparison between rPPG and PPG, in which each scat-

ter point represent the measurement of one complete pulse.

To prevent an explosion of test data, the subjects selected

for recording are representative/typical in each skin-category.

There are no subjects at all intermediate skin-types, which

makes it impossible for us to draw thorough conclusions on

skin-tone invariance of the rPPG methods.

B. Evaluation metrics

This study adopts the same SNR metric as used in [3] to

measure the signal quality for comparing the strength and

weakness of rPPG methods. In this SNR metric, a temporal

sliding window is utilised to segment the whole pulse-signal

into intervals for deriving the SNR-trace, i.e., the temporal

window has a 300 frames stride and a 1 frame sliding-step.

In the sliding window, the signal interval is transformed to

the frequency domain using FFT. The SNR is measured as

the ratio between the energy around the first two harmonics

(pulse in-band frequency) and the remaining energy (noises

out-of-band frequency) of the spectrum, which is defined as:

SNR = 10 log10(

∑220
f=40(Ut(f)S̃(f))

2

∑220
f=40(1− Ut(f)S̃(f))2

), (10)

where f is the pulse frequency in bpm; S̃(f) is the spectrum

of the pulse-signal; Ut(f) is a defined binary window to pass

the pulse in-band frequency and block the noisy out-of-band

frequencies. Consequently, the SNRa, an averaged value of

the SNR-trace, is used to summarise the quality of the pulse-

signal.

Additionally, Bland-Altman plots are included to show

the agreements of the instantaneous pulse-rate between the

rPPG and reference PPG-sensor. The instantaneous pulse-rate,

defined as the inverse of the peak-to-peak interval of the pulse-

signal, is derived by a simple peak detector in the time-domain.

The reasons of using it for signal comparison are twofold: (1)

the primitive pulse-signals obtained by rPPG and PPG have

good alignment with each other, thus their instantaneous rates

are comparable; (2) it captures the instantaneous changes of

the pulse-signal and reflects the occasional differences between

compared signals, as an example shown in Figure 10. In the

standard Bland-Altman plot, the Cartesian coordinate of a

pulse-rate’s sample si is calculated as:

si(x, y) = (
PRi +RRi

2
, PRi −RRi). (11)

where PRi and RRi are ith instantaneous pulse-rates obtained

by rPPG and PPG respectively. And RRi is smoothed by a 5-

point mean filter for suppressing the noise effect. Furthermore,

the Bland-Altman agreement A between PRi and RRi is

calculated as:

A =

∑n

i=1 ai

n
, (12)

with

ai =

{

1 if |PRi −RRi| < 1.96σ

0 if |PRi −RRi| ≥ 1.96σ
, (13)

where n is the total number of samples in a pulse-rate; σ

denotes the standard deviation of the difference between PRi

and RRi.

Finally, the Analysis of Variance (ANOVA) is applied on

SNRa values to analyse the significance of difference between

(r)PPG methods under certain categories (e.g., skin or motion),

i.e., to show whether the main variation in SNRa is “between”

groups (rPPG methods) or “within” groups (video sequences).

Based on the results of ANOVA, the post-hoc comparison is

used to further evaluate the posteriori pairwise comparisons
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between individual methods to see which one is significantly

better than the other. The ANOVA with post-hoc comparison

gives a clear overview of statistical comparison between

investigated (r)PPG methods.

C. Compared methods

Based on the benchmark dataset and evaluation metrics,

three comparisons have been performed for the evaluation: (1)

comparing the proposed method to the state-of-the-art rPPG

method CHROM [3]; (2) comparing the separate steps in the

developed framework to show their independent improvements

and contributions to the complete solution, since these separate

steps involve innovations that are not addressed in previous

rPPG studies; and (3) comparing the rPPG methods to the

PPG method to show the disparity between camera-based and

contact-based approaches. The details of the compared (r)PPG

methods are described below:

• Face-Detect-Mean (FDM) is a re-implementation of the

CHROM method. It uses the Viola-Jones face detector

to locate the face, and applies the OC-SVM method to

select the skin-pixels to derive the averaged RGB traces

for pulse-signal estimation.

• Face-Track-Mean (FTM) is the included sub-step of

the proposed method. It replaces the Viola-Jones face

detector in FDM with the CSK tracker for the better face

localisation.

• Pixel-Track-Mean (PTM) is the included sub-step of the

proposed method. It extends FTM with spatial redun-

dancy by creating pixel-based rPPG sensors, but takes

the averaged values of the temporally normalised colour

differences to derive the pulse-signal.

• Pixel-Track-Complete (PTC) is the complete version of

the proposed method, which adds the spatio-temporal

optimisation procedure (spatial pruning and temporal

filtering) to the PTM.

TABLE I
SNRA RESULTS GAINED BY (R)PPG METHODS ON BENCHMARK VIDEOS

(AVERAGED OVER GENDERS). BOLD ENTRIES INDICATE THE BEST

PERFORMANCE OF RPPG METHODS IN EACH CATEGORY.

Videos FDM FTM PTM PTC CBS

Skin-category I stationary 6.54 6.65 6.73 7.18 6.80

Skin-category I translation 6.20 6.75 6.33 8.40 7.16

Skin-category I scaling 3.90 5.48 5.44 8.26 7.14

Skin-category I rotation 1.53 6.83 6.78 7.91 8.72

Skin-category I talking 5.69 5.94 1.34 7.25 5.81

Skin-category I mixed motion 1.86 4.24 4.30 7.18 5.92

Skin-category II stationary 8.26 8.24 7.93 8.80 7.68

Skin-category II translation 6.13 6.95 6.52 6.91 4.64

Skin-category II scaling 7.43 7.39 7.20 8.11 5.48

Skin-category II rotation -0.20 4.29 4.30 5.90 7.46

Skin-category II talking 2.49 2.42 1.39 3.60 3.13

Skin-category II mixed motion 1.18 2.97 1.53 3.97 4.09

Skin-category III stationary 5.87 6.55 7.24 8.93 8.30

Skin-category III translation 2.81 3.89 3.90 5.97 6.24

Skin-category III scaling 2.16 2.29 2.55 7.37 5.52

Skin-category III rotation -1.80 -0.70 0.83 6.09 1.38

Skin-category III talking 0.30 1.24 -0.32 5.00 6.88

Skin-category III mixed motion -0.24 0.94 -0.21 4.93 5.44

Average 3.34 4.58 4.10 6.76 5.99

• Contact-Based-Sensor (CBS) is a finger-based pulse

oximetry. It is used to record the reference pulse-signal

for comparison.

V. RESULTS AND DISCUSSION

The proposed method is implemented in Java using the

OpenCV 2.4 libaray [11] and ran on a laptop with an Intel Core

i7 2.70 GHZ processor and 8 GB RAM. All 5 methods are

evaluated on 36 video sequences from the benchmark dataset.

For fair comparison, only the RoI (e.g., subject’s face) needs

to be manually initialised while the other parameters remained

identical when processing different videos.

The results show that the gender is not the key factor which

needs to be investigated in this dataset, i.e., the differences

between stationary male and female from the same skin-

category are rather small. Thus the results obtained by the

different genders in the same skin-category and motion-type

are averaged. Table I and Table II summarise the gender-

averaged SNRa and Bland-Altman agreements respectively.

Moreover, the SNRa values in Table I are further averaged

over (1) the three skin-categories for comparing the motion

robustness; (2) the six motion-types for comparing the skin-

tone invariance, as shown in Figure 9 (the standard deviation

of SNRa is also calculated to show the methods’ variability in

each category).

1) Stationary scenario: Figure 9a shows that all (r)PPG

methods gain similar performance on stationary subjects, i.e.,

the standard deviations of their SNRa are below 1.0dB. The

reason is that these methods are all using the chrominance-

based method [3] for pulse extraction. Their main difference

is in motion estimation and outlier rejection. No significant

improvements can be expected for static subjects.

2) Motion scenarios: In videos where the subjects’ frontal

face can be detected by the Viola-Jones method (e.g., transla-

tion, scaling and talking), FDM still works properly, whereas

FTM that relies on the online object tracker is approximately

TABLE II
AGREEMENTS GAINED BY RPPG METHODS ON BENCHMARK VIDEOS

(AVERAGED OVER GENDERS). BOLD ENTRIES INDICATE THE BEST

PERFORMANCE OF RPPG METHODS IN EACH CATEGORY.

Videos FDM FTM PTM PTC

Skin-category I stationary 96% 95% 96% 96%

Skin-category I translation 80% 77% 86% 97%

Skin-category I scaling 63% 79% 80% 97%

Skin-category I rotation 41% 75% 71% 95%

Skin-category I talking 66% 70% 45% 93%

Skin-category I mixed motion 36% 62% 57% 88%

Skin-category II stationary 98% 98% 97% 99%

Skin-category II translation 65% 62% 58% 76%

Skin-category II scaling 83% 84% 80% 83%

Skin-category II rotation 27% 57% 54% 84%

Skin-category II talking 57% 58% 47% 65%

Skin-category II mixed motion 48% 67% 57% 78%

Skin-category III stationary 74% 79% 84% 85%

Skin-category III translation 45% 52% 52% 75%

Skin-category III scaling 31% 53% 50% 68%

Skin-category III rotation 19% 25% 33% 43%

Skin-category III talking 40% 49% 34% 65%

Skin-category III mixed motion 24% 32% 28% 49%

Average 55% 65% 62% 80%
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Fig. 9. In each category, the colour bar is the averaged SNRa while the black bar is the standard deviation. (a) Motion SNRa: it compares the SNRa obtained
by the (r)PPG methods in different motion-types (averaged over genders and skin-categories). (b) Skin SNRa: it compares the SNRa obtained by the (r)PPG
methods in different skin-categories (averaged over genders and motion-types).

1.0dB better. The improvement is due to the object tracker,

which leads to a smoother face localisation between consec-

utive frames compared to the face detector by exploiting the

target’s appearance consistency and position coherence.

However, the comparison between FTM and PTM implies

that only exploiting the spatial-redundancy cannot consistently

improve the signal quality, i.e., in talking videos that con-

taining local non-rigid mouth/lips motions, PTM increases the

noise sensitivity in local pixel-based rPPG sensors and thus

exhibits more quantisation errors (even 2.4dB less than FTM).

This problem is solved in PTC that incorporates an outliers

pruning procedure to remove the motion-distorted sensors.

In videos with vigorous motions (e.g., rotation and mixed

motion), PTC including its substeps (FTM and PTM) show

superior performance against FDM in Figure 9a. The failure

of FDM in these two types of motion (−0.15dB and 0.93dB

respectively) is mainly caused by the face detector, which

cannot locate the side-view faces in some frames. Another

significant challenge is from the large motion-induced colour

distortions on the skin surface, i.e., both the magnitude and

orientation of skin-reflected light are dramatically changed

during the rotation. In such a case, PTC achieves the largest

improvement over FDM compared to other motion-types

(6.79dB and 4.43dB more respectively), which indicates that

the proposed method can better deal with the subject motions

in challenging use-cases. Comparing the subject variability

(standard deviation) between the videos with and without

motion, FDM, FTM and PTM increase around ±2.0dB while

PTC increases around ±0.7dB, which is fairly stable.

Figure 10 shows the instantaneous pulse-rate and Bland-

Altman plots of 6 motion-types in Skin-category II male.

In videos with regular motions (e.g., stationary, translation,

scaling and talking), all rPPG methods are able to precisely

capture the instantaneous abrupt changes of pulse-rate and

have good alignments with corresponding reference-signal.

In videos with vigorous motions (e.g., rotation and mixed

motion), PTC particularly outperforms other rPPG methods,

i.e., the agreement of PTC achieves 98% and 89% respectively.

3) Different skin-categories: In addition to the motion

robustness comparison, the skin-tone invariance of rPPG

methods is analysed. Figure 9b shows that FDM, FTM and

PTM have difficulties in dealing with the darker skin-type

(Skin-category III) as compared to the brighter skin-types

((Skin-category I and II) (around 3dB less). The performance

degradation is caused by using the skin-chromaticity based

method for pulse extraction: the higher melanin contents in

darker skin absorbs part of the diffuse light reflections that

carry the pulse-signal, whereas the specular reflection is not

reduced [3]. In contrast, PTC obtains a relatively consistent

performance across the different skin-categories, since the skin

pixels with specular reflections caused by either the subject

motion or skin absorption are all pruned as outliers. Besides,

its temporal filtering suppresses the out-of-band frequency

noise and strengthens the pulse-frequency. Figure 12 shows
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Fig. 10. The instantaneous pulse-rate plot (first row) and Bland-Altman plot (second row) for six motion-types of the male subject in skin-category II.
The subject’s appearance is shown in Figure 8. The Bland-Altman agreements are calculated between rPPG-signals and reference-signals (REF), where the
reference-signals are the smoothed signals recorded by CBS. To visually compare the agreements between rPPG methods and reference, the Bland-Altman
plots of four rPPG methods are put in one graph and use the σ of ±1.96σ obtained between PTC and the reference to denote the variance range.
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Fig. 12. An example of instantaneous pulse-rate plot (first row) and Bland-
Altman plot (second row) for stationary male subjects in three skin-categories.
The facial appearance of three male subjects are shown in Figure 3.

the instantaneous pulse-rate and the Bland-Altman agreement

of the stationary male subjects in three skin-categories. It is

apparent that only PTC shows consistently high agreements

with the reference-signal.

4) ANOVA with post-hoc comparison: To analyse the sig-

nificance of differences in motion and skin-tone robustness

between methods, the SNRa values in Table I are grouped

into five categories: the skin-categories (I, II and III), the

stationary-category and the overall-category. In each of the

skin categories, the significance of differences between meth-

ods on motion robustness is measured (results on moving

videos). In the stationary category, the significance of differ-

ences between methods on skin-tone robustness is investigated.

Finally in the overall category, the overall significance of

difference between methods is shown using the entire dataset.

This paper applied the balanced one-way ANOVA on these five

categories, and post-hoc comparison using Tukeys honestly

significant difference criterion. In each category, a common

significance threshold (p-value < 0.05) is used. Figure 11

shows the results, while Table III lists the main ANOVA

statistics.

In skin-categories I and III, the compared methods have

significant differences (both are < 0.05). In skin-category II,

TABLE III
THE STATISTICS OBTAINED BY ANOVA IN FIVE CATEGORIES. BOLD

ENTRIES INDICATE THE CATEGORY WITH p-VALUE LARGER THAN 0.05.

Categories MS-within MS-between F-ratio p-value

Skin-category I 2.42 12.62 5.2 0.0049

Skin-category II 5.89 3.71 0.63 0.6466

Skin-category III 3.07 28.74 9.36 0.0002

Stationary 0.86 0.88 1.03 0.4398

Overall 5.90 35.23 5.97 0.0003

the differences are not significant (p-value = 0.6466). This

high p-value reflects a limited variation between groups (3.71)

as compared to that within groups (5.89). Indeed the subjects

in this group caused rather large motion variations as compared

to subjects in the other groups. This could happen as limited

instructions for the precise movements to be made were given

to the subjects. In Figure 11, the ANOVA plots show that

PTC achieves the best performance in all three skin-categories

with respect to the subject motion. The post-hoc plots show

that PTC is the only method that is significantly different

from the baseline method (FDM) for skin-categories I and III.

CBS, the contact-based reference method, only has significant

difference with FDM in skin-category I. FTM and PTM have

no significant pairwise differences with FDM in any skin-

category, i.e., their possible motion-robustness improvement

is very limited.

In the stationary-category, the p-value is 0.4398 (> 0.05)

and thus the differences between methods are not significant

in terms of the skin-tone robustness. Figure 11 shows that on

average PTC does score best.

Also in the overall-category, the differences between meth-

ods in the complete benchmark dataset are significant 0.0003
(< 0.05). Figure 11 shows that PTC again yields the largest

improvement over the baseline method (FDM) and has a

performance that is similar to the contact-based method (CBS),

i.e., PTC and CBS have significant pairwise differences with

FDM in the post-hoc comparison.

It can be concluded that the proposed method, PTC, leads to

significantly improved motion robustness, while for stationary
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Fig. 11. The statistical comparison between five (r)PPG methods in five categories using ANOVA with post-hoc analysis. The ANOVA plots in the first row
show the overview of performance variation between methods in each category, i.e., median (red bar), standard deviation (blue box), minimum and maximum
(black bar) SNRa values. The post-hoc plots in the second row show the pairwise differences between the methods in each category and highlight the pairs
that are significantly different (in blue and red).
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videos the skin-tone robustness on average is the best though

the differences with other methods are not significant.

VI. CONCLUSION

This study introduces a motion robust rPPG method that

enables the remote detection of a pulse-signal from subjects

using an RGB camera. This work integrates the latest methods

in motion estimation and pulse extraction, and proposes novel

algorithms to create and optimise pixel-based rPPG sensors in

the spatial and temporal domain for robust pulse measurement.

Experimental results on 36 challenging benchmark video se-

quences show that the proposed method significantly improves

the SNR of the state-of-the-art rPPG method from 3.34dB

(±2.91) to 6.76dB (±1.56), and improves the Bland-Altman

agreement (±1.96σ) with instantaneous reference pulse-rate

from 55% to 80% correct, i.e., a performance that is very close

to the contact-based sensor. ANOVA with post-hoc comparison

shows that the proposed method, PTC, leads to significantly

improved motion robustness, while on stationary videos with

skin-tone variance it is also the best on average though the

difference with the baseline method is not significant.
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