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Abstract—Hybrid multiple input multiple output (MIMO)
systems consist of an analog beamformer with large antenna
arrays followed by a digital MIMO processor. Channel estimation
for hybrid MIMO systems in millimeter wave (mm-wave) com-
munications is challenging because of the large antenna array
and the low signal-to-noise ratio (SNR) before beamforming.
In this paper, we propose an open-loop channel estimator for
mm-wave hybrid MIMO systems exploiting the sparse nature
of mm-wave channels. A sparse signal recovery problem is
formulated for channel estimation and solved by the orthogonal
matching pursuit (OMP) based methods. A modification of the
OMP algorithm, called the multi-grid (MG) OMP, is proposed.
It is shown that the MG-OMP can significantly reduce the
computational load of the OMP method. A process for designing
the training beams is also developed. Specifically, given the analog
training beams the baseband processor for beam training is
designed. Simulation results demonstrate the advantage of the
OMP based methods over the conventional least squares (LS)
method and the efficiency of the MG-OMP over the original
OMP.

I. INTRODUCTION
Recently, hybrid MIMO systems consisting of analog beam-

formers in RF domain and digital MIMO processors in base-
band have been recognized as a useful technique for reducing
the cost for implementing MIMO systems. In these systems
more antennas can be employed without increasing the number
of costly RF chains, consisting of amplifiers, mixers, and
analog-to-digital (AD)/digital-to-analog (DA) converters. Hy-
brid MIMO processors have been proposed for both current
microwave communications [1], [2] and millimeter wave (mm-
wave) communications [3], [4].
Hybrid MIMO systems in mm-wave communications em-

ploy a large number of antennas, which is considerably greater
than the number of RF chains, to improve the signal-to-noise
ratio (SNR) by analog beamforming. In mm-wave systems,
analog beamformers have been designed through a closed-loop
beam training process consisting of beam pattern generation
using a codebook at the transmitter, best beam selection
at the receiver, and feedback of the selected beam indices
[5]-[8]. The beam training is performed iteratively starting
with a wide beam, and it reduces the beamwidth until it
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reaches the desired resolution. This closed-loop process can
efficiently design the analog beamformers without channel
knowledge at the transmitter. However, use of this technique
for hybrid MIMO systems will result in a suboptimal scheme
whose analog beamformer is designed without taking account
of the digital MIMO processor at the baseband. Techniques
for jointly designing the analog and digital parts of hybrid
MIMO processors have been developed by exploiting the
sparse nature of mm-wave channels [3], [4], [9]. Assuming
channel knowledge at the transmitter, these schemes adopt
the orthogonal matching pursuit (OMP) algorithm in the com-
pressed sensing field [10], to perform iteratively the joint beam
selection and baseband design. The OMP-based techniques
can outperform the beam training-based design at the cost of
channel knowledge at the transmitter. These days per antenna
channel estimation is becoming an important issue in mm-
wave systems, as in the case of conventional microwave
systems.
Channel estimation for mm-wave hybrid MIMO systems is

challenging because of the large antenna array and the low
SNR before beamforming. Recently, an adaptive compressed
sensing based algorithm in conjunction with closed-loop beam
training has been proposed to estimate such mm-wave chan-
nels [11]. This technique designs the codebook for beam
training in terms of analog/digital precoders, and it can exhibit
excellent performance characteristics. However, application of
this estimator to outdoor mm-wave channels would be difficult,
because outdoor environmental factors require a much larger
beamforming gain [8], which limits the use of wide beams for
beam training and the feedback channel.
In this paper, we develop an open-loop channel estimator for

mm-wave hybrid MIMO systems exploiting the sparse nature
of mm-wave channels. The proposed scheme uses training
beams with fixed beamwidth and estimates the channel without
any feedback from the receiver. We formulate a sparse signal
recovery problem and solve the problem by the OMP based
algorithms [10], [12], [13]. A modification of the OMP algo-
rithm, called the multi-grid (MG) OMP, is proposed to improve
the efficiency the OMP algorithm. It is shown that the MG-
OMP can significantly reduce the computational complexity
of the OMP. We also develop a process for designing the
baseband processor for beam training given the analog training
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Fig. 1. A mm-wave system employing hybrid MIMO processors.

beams. Computer simulation results demonstrate the follow-
ing: i) the proposed OMP based estimators can outperform
the conventional least squares (LS) method and can efficiently
achieve high resolution channel estimates without employing
fine beams, ii) the computational saving achieved by the MG-
OMP is significant.
The organization of the paper is as follows. Section II

presents the system model. The compressed sensing based
channel estimation problem is formulated and solved in Sec-
tion III. The training beam patterns for the hybrid MIMO
channel estimation are designed in Section IV. Simulation
results showing the advantage of the proposed schemes over
the conventional LS method are presented in Section V.
Finally, the conclusion is presented in Section VI.
Notations: Bold uppercase A denotes a matrix and bold

lowercase a denotes a vector. Superscripts A∗,AT ,AH ,A−1

denote the conjugate, the transpose, the conjugate trans-
pose, and the inverse of a matrix A, respectively. E [·] de-
notes the expectation and diag (A1, . . . ,AN ) represents a
block diagonal matrix whose diagonal entries are given by
{A1, . . . ,AN}. ‖a‖0 and ‖a‖2 are the L0 and L2 norms,
respectively, and a (n) denotes the n-th entry of a vector a.
‖A‖F is the Frobenius norm, and A (n) denotes the n-th
column of a matrix A. IN denotes the N×N identity matrix.
vec (A) is a vector obtained through the vectorization of a
matrix A, and vec−1 (a) represents a matrix obtained by the
inverse of vectorization.

II. SYSTEM MODEL
In this section we present the signal model for the open-

loop beam training and the channel model for mm-wave
communications.

A. Signal model for open-loop beam training
We consider the single user hybrid MIMO system shown

in Fig. 1, where the transmitter and the receiver are equipped
with NT and NR antennas, respectively, and both of them
have NRF RF chains where NRF ≤ min (NT, NR). It is
assumed that the RF beamformers are phased array beam-
formers having coefficients with unit magnitude. For channel
estimation, the transmitter has NBeam

T ≤ NT training beam
patterns denoted as

{
fp ∈ CNT×1 : p = 1, . . . , NBeam

T

}
, and

the receiver has NBeam
R ≤ NR beam patterns denoted as

{
wq ∈ CNR×1 : q = 1, . . . , NBeam

R

}
. Here, we assume that

NBeam
T and NBeam

R are multiples of NRF, and denote NBeam

T

NRF

and NBeam

R

NRF
by NBlock

T and NBlock
R , respectively. During the

training period, the transmitter successively sends its train-
ing beams {fp}, and at the receiver each training beam is
received through its NBeam

R beam patterns {wq}. Since the
receiver has NRF RF chains, it can generate NRF beams
simultaneously and receives the vector yq ∈ CNRF×1 for
q ∈ {

1, . . . , NBlock
R

}
. Here q denotes the received block index,

and NBlock
R is the number of blocks. The received vector for

the q-th block and the p-th transmit beam is given by

yq,p =
√
PWH

q Hfp +WH
q nq,p, (1)

where P is the transmit power, Wq =[
w(q−1)NRF+1 . . .wqNRF

] ∈ CNR×NRF , H ∈ CNR×NT

represents the channel matrix, and n ∈ CNR×1 is the noise
vector with CN (

0, σ2
nINR

)
(here, the transmit signal is

assumed to be 1). Collecting yq,p for q ∈ {
1, . . . , NBlock

R

}
,

we get yp ∈ CNBeam

R
×1 given by

yp =
√
PWHHfp

+diag
(
WH

1 , . . . ,WH
NBlock

R

) [
nT
1,p, . . . ,n

T
NBlock

R
,p

]T
, (2)

where W =
[
W1, . . . ,WNBlock

R

]
∈ CNR×NBeam

R . To repre-
sent the received signals for all transmit beams, we collect yp

for p ∈ {
1, . . . , NBeam

T

}
to get

Y =
√
PWHHF+N, (3)

where Y =
[
y1, . . . ,yNBeam

T

]
∈ CNBeam

R
×NBeam

T , F =[
f1, . . . , fNBeam

T

]
∈ CNT×NBeam

T and N ∈ CNBeam

R
×NBeam

T

is the noise matrix given by diag
(
WH

1 , . . . ,WH
NBlock

R

)
[[
nT
1,1, . . . ,n

T
NBlock

R
,1

]T
, . . . ,

[
nT
1,NBeam

T

, . . . ,nT
NBlock

R
,NBeam

T

]T]
.

In the hybrid MIMO framework, the transmit and receive
training matrices are decomposed as F = FRFFBB and
W = WRFWBB, where FRF ∈ CNT×NBeam

T and WRF ∈
CNR×NBeam

R represent the RF beamforming matrices, and
FBB ∈ CNBeam

T
×NBeam

T andWBB ∈ CNBeam

R
×NBeam

R represent
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the baseband processing matrices. These matrices are designed
under the following assumptions: i) FRF andWRF are unitary
matrices, ii) NBeam

T beams generated by the columns of FRF

cover all angles of departures (AoDs), iii) NBeam
R beams

generated by the columns ofWRF cover all angles of arrivals
(AoAs), iv) FBB andWBB are block diagonal matrices given
by FBB = diag

(
FBB,1, . . . , FBB,i, . . . , FBB,NBlock

T

)
and

WBB = diag
(
WBB,1, . . . ,WBB,i, . . . ,WBB,NBlock

R

)
whose

diagonal entries, FBB,i and WBB,i, consist of NRF × NRF

complex valued matrices.

B. Channel Model
We use the parametric channel model [3] given by

H =

√
NTNR

L

L∑
l=1

αlar (θ
r
l )a

H
t

(
θtl
)
, (4)

where L is the number of scatterers, αl is the complex
gain, and θrl and θtl are the AoA and AoD of the l-th path,
respectively. We assume the uniform linear arrays whose
array response vectors are denoted as ar (θ

r
l ) ∈ CNR×1 for

the receiver and at (θ
t
l ) ∈ CNT×1 for the transmitter. For

simplicity, each scatterer is assumed to contribute a single
propagation path. The channel gains {αl}Ll=1 are modeled
by i.i.d. random variables with distribution CN (

0, σ2
α

)
. The

AoAs and AoDs are modeled by the Laplacian distribution
whose mean is uniformly distributed over [−π, π), and angular
standard deviation is σAS. The channel model in (4) can be
rewritten in matrix form as

H = ARHaA
H
T , (5)

where Ha =
√

NTNR

L diag (α1, . . . , αl, . . . , αL), AR =

[ar (θ
r
1) , . . . , ar (θ

r
l ) , . . . , ar (θ

r
L)] ∈ CNR×L, and AT =

[aT (θt1) , . . . , aT (θtl ) , . . . , aT (θtL)] ∈ CNT×L.

III. PROPOSED SPARSE CHANNEL ESTIMATION
To formulate the sparse estimation problem, it is necessary

to vectorize the received signal matrix Y in (3). Denoting
vec (Y) by ȳ, (3) is rewritten as

ȳ=
√
P
(
(FRFFBB)

T ⊗WH
BBW

H
RF

)
· vec (H) + n̄, (6)

= Q · vec (H) + n̄, (7)

where the first equality comes from the identity,
vec (ABC) =

(
CT ⊗A

) · vec (B), n̄ = vec (N), and Q =√
P
(
(FRFFBB)

T ⊗WH
BBW

H
RF

)
∈ CNBeam

T
NBeam

R
×NTNR .

Given (7), a natural approach to estimating vec (H) is the LS
approach, which results in a closed-form solution given by(
QHQ

)−1
QH ȳ when NBeam

T NBeam
R ≥ NTNR. However,

use of this solution for mm-wave communication is difficult
because (NT, NR) are large integers and evaluating the
inverse of QHQ ∈ CNTNR×NTNR needs heavy computations.
The compressed sensing based channel estimation reduces
the computational load by exploiting the sparse nature of the
channel.

To apply compressed sensing techniques to the channel
estimation, we first select the set of discrete angles, called
the grid, defined as ΨG = {ϕg ∈ [0, π) : g = 1, . . . , G}.
Here ΨG includes all candidate angles of departures and
arrivals. {ϕg} are uniformly distributed in the candidate angle
space, and G � L to achieve the desired resolution. Then,
we define the array response matrices ĀT ∈ CNT×G and
ĀR ∈ CNR×G whose columns are the array response vectors
corresponding to the candidate angles in ΨG. Specifically,
ĀT = [at (ϕ1) , . . . , at (ϕg) , . . . , at (ϕG)] , and ĀR =
[ar (ϕ1) , . . . , ar (ϕg) , . . . , ar (ϕG)]. Using these matrices,
the channel matrix H in (5) can be approximated as H ∼=
ĀRH̄aĀ

H
T where H̄a ∈ CG×G is an L-sparse matrix having

L non-zero elements corresponding to AoDs and AoAs and
zeros, otherwise. UnlikeHa ∈ CL×L in (5) which is diagonal,
H̄a ∈ CG×G is not a diagonal matrix but a sparse matrix.
To simplify notations, we ignore the error caused by the
discretization of angles and rewrite (5) as

H = ĀRH̄aĀ
H
T . (8)

Using (8) in (6), we have

ȳ
(a)
=

√
P
(
(FRFFBB)

T ⊗WH
BBW

H
RF

) (
Ā∗

T ⊗ ĀR

)
×vec

(
H̄a

)
+ n̄

(b)
=

√
P
((

ĀH
TFRFFBB

)T ⊗WH
BBW

H
RFĀR

)
×vec

(
H̄a

)
+ n̄

= Q̄ · vec (H̄a

)
+ n̄, (9)

where the equalities (a) and (b) hold because vec (ABC) =(
CT ⊗A

) · vec (B) and (A⊗B) (C⊗D)=AC ⊗ BD,

and Q̄ =
√
P
((

ĀH
TFRFFBB

)T ⊗WH
BBW

H
RFĀR

)
∈

CNBeam

T
NBeam

R
×G2

. Since vec
(
H̄a

) ∈ CG2×1 is an L-sparse
vector, (9) is seen to be a sparse reconstruction problem with
the sensing matrix Q̄ and can be solved by a sparse signal
recovery technique, such as the OMP algorithm, which has
been used for channel estimation [12], [13]. The optimization
problem for compressed sensing based channel estimation can
be written as

vec
(
H̄CS

a

)
= argmin

H̄
a

∥∥ȳ − Q̄ · vec (H̄a

)∥∥
2

subject to
∥∥vec (H̄a

)∥∥
0
= L, (10)

where H̄CS
a denotes the estimate of the sparse matrix H̄a

through compressed sensing, and the estimate of the desired
channel, denoted as HCS, is given by

HCS = ĀRH̄
CS
a ĀH

T . (11)

The OMP algorithm solving (10) is summarized in Algo-
rithm 1. At the t-th iteration this algorithm chooses the column
of Q̄ that is most strongly correlated with the residual rt−1

(step 3), and updates the column index set (step 4). Each
column index obtained in step 3 corresponds to an AoD/AoA
pair of the grid and is called the AoD/AoA pair index. Then,
the channel gains associated with the chosen grid points are
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obtained by evaluating the LS solution of ȳ = Q̄Ωt
h in step

5, where Q̄Ωt
∈ CNBeam

T
NBeam

T
×t is the sub-matrix of Q̄

that only contains the columns whose indices are included
in Ωt. In step 6, the contributions of the chosen column
vectors to ȳ are subtracted to update the residual rt−1. This
procedure is repeated until ‖rt−1 − rt−2‖22 falls bellow the
predetermined threshold δ. In step 9, the algorithm constructs
the vector ĥa ∈ CG2×1 so that ĥa (i) = ht−1 (i) for i ∈ Ωt−1

and ĥa (i) = 0, otherwise. The desired estimate is given by
H̄CS

a = vec−1
(
ĥa

)
.

Algorithm 1 OMP based mmWave channel estimator
Require: sensing matrix Q̄, measurement vector ȳ, and a
threshold δ

1: Ω0=empty set, residual r−1 = 0, r0 = ȳ, set the iteration
counter t = 1

2: while ‖rt−1 − rt−2‖22 > δ do
3: j = arg max

i=1,...,G2

∣∣∣Q̄(i)Hrt−1

∣∣∣ � Find AoD/AoA pair

4: Ωt = Ωt−1 ∪ {j} � Update AoD/AoA pair set
5: ht = argmin

h

∥∥ȳ − Q̄Ωt
h
∥∥
2

� Estimate channel
gains

6: rt = ȳ − Q̄Ωt
ht � Update residual

7: t = t+ 1
8: end while
9: ĥa (i) = ht−1 (i) for i ∈ Ωt−1 and ĥa (i) = 0 otherwise
10: return H̄CS

a = vec−1
(
ĥa

)

Since the AoDs and AoAs are generated from the con-
tinuous Laplacian distribution, increasing the number of grid
points G can improve the estimation performance. However,
using large G in Algorithm 1 leads to heavy computational
load. To avoid this difficulty, we adopt the adaptive multi-grid
(MG) approach [13], [14], which adaptively refines the grid
to achieve better precision. In the MG based OMP, called the
MG-OMP, the algorithm starts with a coarse grid and makes
the grid fine only around the regions where the AoDs and
AoAs are present. To describe the r-th stage of the MG-OMP
algorithm we rewrite (9) as

ȳ = Q̄r · vec
(
H̄a,r

)
+ n̄, (12)

where Q̄r is the sensing matrix at the r-th stage given
by Q̄r =

√
P
((

ĀH
T,rFRFFBB

)T ⊗WH
BBW

H
RFĀR,r

)
∈

CNBeam

T
NBeam

R
×G2

r , ĀT,r ∈ CNT×Gr and ĀR,r ∈ CNR×Gr

are the array response matrices corresponding to the candidate
angles in the AoD grid ΨAoD

Gr
and the AoA grid ΨAoA

Gr
,

respectively, of the r-th stage whose number of points is Gr.
The MG-OMP algorithm is the same as Algorithm 1 with

exception of step 3. In the MG-OMP, this step is replaced with
the following:
Initialization: Set the initial sensing matrix Q̄0 = Q̄, the

initial grid size G0 = G, and r = 1. Find the coarse AoD/AoA
pair index, j = arg max

i=1,...,G2

0

∣∣∣Q̄0(i)
H
rt−1

∣∣∣.

3-1) Obtain the indices of AoD and AoA corresponding to j

by gr−1 =
⌈

j
Gr−1

⌉
and g′r−1 = mod (j − 1, Gr−1) + 1,

respectively, where �·� denotes the ceiling operator and
mod (a, b) is the remainder of a when divided by b.

3-2) Set Gr to achieve the desired resolution at the
r-th stage and get the refined grids ΨAoD

Gr
={

ϕgr ∈ [
ϕgr−1−1, ϕgr−1+1

]
: gr = 1, . . . , Gr

}
and

ΨAoA
Gr

=
{
ϕg′

r
∈
[
ϕg′

r−1
−1, ϕg′

r−1
+1

]
: g′r = 1, . . . , Gr

}
.

3-3) Define the array response matrices,
ĀT,r = [at (ϕ1) , . . . , at (ϕgr ) , . . . , at (ϕGr

)] and
ĀR,r =

[
ar (ϕ1) , . . . , ar

(
ϕg′

r

)
. . . , ar (ϕGr

)
]
.

3-4) Form the sensing matrix,
Q̄r =

√
P
((

ĀH
T,rFRFFBB

)T ⊗WH
BBW

H
RFĀR,r

)
.

3-5) Find the fine AoD/AoA pair index,
j = arg max

i=1,...,G2
r

∣∣∣Q̄r(i)
H
rt−1

∣∣∣ .
3-6) Set r = r+1 and return to step 3-1 until the grids reach

the desired resolution.

IV. TRAINING BEAM PATTERN DESIGN
In this section, we first briefly discuss about the RF beams

and then design the baseband processors following the proce-
dure in [15].
We suggest the use of the DFT beams for RF beamforming

whose transmit and receive weight vectors are given by the
columns of NBeam

T × NBeam
T and NBeam

R × NBeam
R DFT

matrices, respectively. In this case, it is convenient to assume
that

{
NT, NR, N

Beam
T , NBeam

R

}
are powers of two and that

the antennas are properly decimated when implementing the
beams with NBeam

T < NT and NBeam
R < NR. The trans-

mit and receive beamwidths defined as 180o

NBeam

T

and 180o

NBeam

R

,
respectively, should be determined depending on the required
beamforming gain (or SNR).
To design the baseband processors for given RF beamform-

ers, we consider the coherence μ
(
Q̄
)
defined as

μ
(
Q̄
) Δ
= max

1≤m,n≤G2,m �=n

∣∣∣Q̄(m)
H
Q̄ (n)

∣∣∣∥∥Q̄ (m)
∥∥
2
· ∥∥Q̄ (n)

∥∥
2

. (13)

In compressed sensing, it is known that a small
μ
(
Q̄
)

improves the estimation performance. Thus
it is desirable to design the sensing matrix Q̄

so that μ
(
Q̄
)

is minimized. Now due to the
identity, μ (A⊗B) = max {μ (A) , μ (B)}, we have
μ
(
Q̄
)
= max

{
μ
((

ĀH
TFRFFBB

)T)
, μ

(
WH

BBW
H
RFĀR

)}
,

indicating that the design problem for Q̄ can be
decomposed into the design of FBB and WBB minimizing
μ
((

ĀH
TFRFFBB

)T) and μ
(
WH

BBW
H
RFĀR

)
, respectively.

Next we describe the design of WBB (the process for
designing FBB is similar to that for WBB and will be
omitted).
Following the approach in [15], we first modify the objective

function μ
(
WH

BBW
H
RFĀR

)
so that the objective becomes

the sum of the squared inner products of all column pairs
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of WH
BBW

H
RFĀR. For the block diagonal matrix WBB =

diag
(
WBB,1, . . . ,WBB,i, . . . ,WBB,NBlock

R

)
the new objec-

tive is written as
G∑
m

G∑
n,m �=n

∣∣∣W̄(m)
H
W̄ (n)

∣∣∣2

=

NBlock

R∑
i

∥∥∥(WH
BB,iW

H
RF,iĀR

)H
WH

BB,iW
H
RF,iĀR − IG

∥∥∥2
F
, (14)

where W̄
Δ
= WH

BB,iW
H
RF,iĀR and WRF,i ∈

C
NR×NRF is the i-th sub-matrix of WRF =[
WRF,1, . . . ,WRF,i, . . . ,WRF,NBlock

R

]
. Thus designing

WBB is decomposed into designing
{
WBB,i : 1, . . . , N

Block
R

}
by solving

WBB,i = arg min
WBB,i

∥∥∥(WH
BB,iW

H
RF,iĀR

)H
×WH

BB,iW
H
RF,iĀR − IG

∥∥2
F
, 1 ≤ i ≤ NBlcok

R .(15)

It was shown in [15] that the optimal solution to (15) is given
by

WBB,i = U
(
Λ−1/2

)H

, 1 ≤ i ≤ NBlcok
R , (16)

where U and Λ are the matrices of the eigenvectors and
eigenvalues, respectively, satisfying WH

RF,iĀRĀ
H
RWRF,i =

UΛUH .

V. SIMULATION RESULTS

The performance of the proposed channel estimators is
examined through computer simulation with the following
parameters. The transmitter and the receiver are equipped with
the uniform linear arrays with NT = NR = 32 and NRF = 4.
They have DFT training beams with NBeam

T = NBeam
R = 32.

The results in this simulation are obtained through 500 channel
realizations with σ2

α = 1 and σAS = 20. At each channel
realization, the number of scatterers L is determined by L =
max {P10, 1} where P10 is the outcome of Poisson random
variable with mean 10. We consider two OMP algorithms with
G ∈ {60, 180}, called OMP1 for G = 60 and OMP2 for
G = 180, and two MG-OMP algorithms having two grids
(two stages) with (G0, G1) = (60, 7) and (60, 13), called the
MG-OMP1 and MG-OMP2, respectively. The grid points of
the OMP algorithms are uniformly distributed over [0, π), and
thus the OMP1 and OMP2 have angular resolutions of 3o and
1o, respectively. On the other hand, the second grid points of
the MG-OMPs are distributed over an angle of 7o, and thus
the MG-OMP1 and MG-OMP2 have angular resolutions of 1o
and 0.5o, respectively. From these resolutions, we expect the
following: OMP1 performs the worst, MG-OMP2 performs the
best, and OMP2 and MG-OMP1 exhibit comparable behaviors.
The simulation results comparing the normalized mean square
errors (NMSEs) will confirm these expectations. For compari-
son, we also consider the conventional LS algorithm based on
(7).

Fig. 2. The convergence characteristics of the OMP2 and MG-OMP1
algorithms in terms of NRE.

Fig. 3. NMSEs at different SNR levels (dB).

Before comparing the NMSEs, we examine the convergence
characteristics of the OMP and MG-OMP algorithms by eval-
uating the normalized residual error (NRE) at each iteration
of the OMP, defined as ‖rt‖22 / ‖ȳ‖22 . Fig. 2 compares the
NREs of OMP2 and MG-OMP1 when the SNRs defined as
P/σ2

n is 0dB, 4dB, and 8dB. As expected, the two algorithms
exhibit almost identical behaviors and converge after about 20
iterations. In fact, after 20 iterations ‖rt−1 − rt−2‖22, which
is evaluated in step 2 of Algorithm 1, is less than 0.1 σ2

n.
Therefore, we set δ = 0.1 σ2

n in step 2 of Algorithm 1.
Fig. 3 compares the NMSE defined as

10log10

(
E

[∥∥H−HLS
∥∥2
F
/ ‖H‖2F

])
. The LS method,

whose complexity is O
(
(NTNR)

2NBeam
T NBeam

R

)
, exhibits

the worst performance. Among the OMP based algorithms,
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as expected, the OMP1 performs the worst, the MG-OMP2
performs the best, and the OMP2 and the MG-OMP1 exhibit
almost identical performance. The complexities of the OMP
and MG-OMP are given by O

(
LNBeam

T NBeam
R G2

)
and

O
(
LNBeam

T NBeam
R

(
G0

2 +G1
2
))

, respectively, and the
OMP based methods need less computation than the LS
method. Comparing the complexities of the OMP2 and
MG-OMP1 showing similar performance characteristics,
the latter requires much less computation than the former.
Computational savings achieved by the MG approach can be
significant.

VI. CONCLUSION

An open-loop channel estimator for hybrid MIMO systems
in mm-wave communication was proposed. By exploiting the
sparse nature of mm-wave channels, a sparse signal recovery
problem was formulated for channel estimation and solved by
the OMP based methods. To reduce the computational load
of the OMP algorithm employing a dense grid, the MG-OMP
that adaptively uses dense grids only in the neighborhood of
AoDs/AoAs is proposed. Given the analog training beams the
baseband processor for training is designed to minimize the
coherence of the sensing matrix of the sparse signal recovery
problem. The simulation results demonstrate that the OMP
based methods can outperform the LS method, while requiring
less computation, and that the computational saving achieved
by the MG-OMP can be significant. Further work in this area
includes the extension of the proposed method to orthogonal
frequency division multiplexing systems.

REFERENCES

[1] X. Zhang, A. F. Molisch, and S. Y. Kung, “Variable-phase-shift-based
RF baseband codesign for MIMO antenna selection,” IEEE Trans. Signal
Process., vol. 53, no. 11, pp. 4091-4103, Nov. 2005.

[2] V. Venkateswaran, and A. van der Veen, “Analog beamforming in
MIMO communications with phase shift networks and online channel
estimation,” IEEE Trans. Signal Process., vol. 58, no. 8, pp. 4131-4143,
Aug. 2010.

[3] O. El Ayach, R. W. Heath, Jr., S. Abu-Surra, S. Rajagopal, and Z. Pi,
“Low complexity precoding for large millimeter wave MIMO systems,”
in Proc. IEEE Int. Conf. Commun., June 2012.

[4] O. El Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, Jr.,
“Spatially sparse precoding in millimeter wave MIMO systems,” IEEE
Trans. Wireless Commun., vol. 13, no. 3, pp. 1499-1513, Mar. 2014.

[5] IEEE 802.15 WPAN Millimeter Wave Alternative PHY Task Group 3c.
[Online]. Available: www.ieee802.org/15/pub/TG3c.html, Sep. 2011.

[6] IEEE P80211ad, Part 11: Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) Specifications - Amendment 3: Enhancements
for Very High Throughput in the 60GHz band, Dec. 2012.

[7] J. Wang, Z. Lan, C. Pyo, T. Baykas, C. Sum, M. Rahman, J. Gao, R.
Funada, F. Kojima, H. Harada et al., “Beam codebook based beamforming
protocol for multi-Gbps millimeter-wave WPAN systems,” IEEE J. Sel.
Areas Commun., vol. 27, no. 8, pp. 1390-1399, Oct. 2009.

[8] S. Hur, T. Kim, D. J. Love, J. V. Krogmeier, T. A. Thomas, and A. Ghosh,
“Millimeter wave beamforming for wireless backhaul and access in small
cell networks,” IEEE Trans. on Commun., vol. 61, no. 10, pp. 4391-4403,
Oct. 2013.

[9] J. Lee and Y. H. Lee, “AF relaying for millimeter wave communication
systems with hybrid RF/baseband MIMO processing,” in Proc. IEEE Int.
Conf. Commun., June 2014.

[10] J. A. Tropp and A. C. Gilbert, “Signal recovery from random measure-
ments via orthogonal matching pursuit,” IEEE Trans. Inf. Theory, vol. 53,
no. 12, pp. 4655-4666, Dec. 2007.

[11] A. Alkhateeb, O. El Ayach, G. Leus, and R. W. Heath, Jr., “Channel
estimation and hybrid precoding for millimeter wave cellular systems,”
IEEE J. Sel. Topics Signal Process., 2014.

[12] G. Taubock, F. Hlawatsch, D. Eiwen, and H. Rauhut, “Compressive
estimation of doubly selective channels in multicarrier systems: Leakage
effects and sparsity-enhancing processing,” IEEE J. Sel. Topics Signal
Process., vol. 4, no. 2, pp. 255-271, Apr. 2010.

[13] D. Hu, X. Wang, and L. He, “A new sparse channel estimation and
tracking method for time-varying OFDM systems,” IEEE Trans. Veh.
Technol., vol. 62, no. 9, pp. 4648-4653, Nov. 2013.

[14] D. Malioutov, M. Cetin, and A. S. Willsky, “A sparse signal reconstruc-
tion perspective for source localization with sensor arrays,” IEEE Trans.
Signal Process., vol. 53, no. 8, pp. 3010-3022, Aug. 2005.

[15] L. Zelnik-Manor, K. Rosenblum, and Y. Eldar, “Sensing matrix opti-
mization for block-sparse decoding,” IEEE Trans. Signal Process., vol.
59, no. 9, pp. 4300-4312, Sept. 2011.

Globecom 2014 - Signal Processing for Communications Symposium

3331


