
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VT-2007-00572.R2 1

Exploiting Spectral Reuse in Routing,
Resource Allocation, and Scheduling

for IEEE 802.16 Mesh Networks
Lien-Wu Chen, Yu-Chee Tseng, Senior Member, IEEE, You-Chiun Wang, Member, IEEE,

Da-Wei Wang, Member, IEEE, and Jan-Jan Wu Member, IEEE

Abstract— The IEEE 802.16 standard for wireless metropolitan
area networks (WMAN) is defined to meet the need of wide-range
broadband wireless access at low cost. The objective of this paper
is to study how to exploit spectral reuse in resource allocation
in an IEEE 802.16 mesh network, which includes routing tree
construction, bandwidth allocation, time-slot assignment, and
bandwidth guarantee of real-time flows. The proposed spectral
reuse framework covers bandwidth allocation at the application
layer, routing tree construction and resource sharing at the MAC
layer, and channel reuse at the physical layer. To the best of
our knowledge, this is the first work which formally quantifies
spectral reuse in IEEE 802.16 mesh networks and which exploits
spectral efficiency under an integrated framework. Simulation
results show that the proposed schemes significantly improve the
throughput of IEEE 802.16 mesh networks.

Index Terms— IEEE 802.16, mesh network, resource allocation,
routing tree, WiMax, wireless network.

I. INTRODUCTION

TO achieve the requirement of wide-range wireless broadband
access at a low cost, the IEEE 802.16 standard [1] has

been proposed recently. The goal of this standard is to solve
the last-mile problem in a metropolitan area network in a more
flexible and economical way as opposed to traditional cabled
access networks, such as fiber optics, DSL (digital subscriber
line), or T1 links [2], [3]. The IEEE 802.16 standard is based
on a common MAC (medium access control) protocol compliant
with different physical layer specifications. The physical layer can
employ the OFDM (orthogonal frequency division multiplexing)
scheme below 11 GHz or the single carrier scheme between
10 GHz and 66 GHz.

The IEEE 802.16 MAC protocol supports the point-to-
multipoint (PMP) mode and the mesh mode. In the PMP mode,
stations are organized as a cellular network, where subscriber
stations (SSs) are directly connected to base stations (BSs). Such
networks require each SS to be within the communication range
of its associated BS, thus greatly limiting the coverage range of
the network. On the other hand, in the mesh mode, stations are
organized in an ad-hoc fashion. Each SS can either act as an end
point or a router to relay traffics for its neighbors. Thus, there is
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no need to have a direct link from each SS to its associated BS.
This leads to two advantages: SSs may transmit at higher rates
to their parent SSs or BS, and a BS can serve wider coverage at
a lower deployment cost [4].

In an IEEE 802.16 mesh network, transmissions can undergo a
multi-hop manner. The standard specifies a centralized scheduling
mechanism for the BS to manage the network. Stations will form a
routing tree rooted at the BS for the communication purpose. SSs
in the network will send request messages containing their traffic
demands and link qualities to the BS to ask for resources. The BS
then uses the topology information along with SSs’ requests to
determine the routing tree and to allocate resources. Resources in
an IEEE 802.16 network are usually represented by time slots
within a frame. Our goal is to solve the resource allocation
problem, given the uplink/downlink bandwidth demands of each
SS and their link qualities. There are four issues to be considered:

• Tree reconstruction: How to determine the routing tree based
on SSs’ current bandwidth demands and link qualities?

• Bandwidth allocation: How to determine the number of
time slots of each SS according to its uplink and downlink
bandwidth demands?

• Time-slot assignment: How to assign time slots to each SS
in a frame?

• Bandwidth guarantee: How to schedule transmission on time
slots for each SS, so that a fixed amount of bandwidth is
guaranteed for each real-time flow?

In this paper, we investigate the resource allocation problem
by exploring the concept of spectral reuse. Although it is well-
known that a time slot used by a station can be “reused”
by another station if the latter is sufficiently separated from
the former, the IEEE 802.16 standard does not explore in this
direction. We propose a spectral reuse framework to efficiently
allocate resources in an IEEE 802.16 mesh network with global
fairness in mind, that is, the bandwidths allocated to SSs will
be proportionate to their requests, in an end-to-end (SS-to-BS)
sense. Our framework includes a routing tree construction and a
centralized scheduling algorithm. The former allows a BS to form
an efficient routing tree according to SSs’ bandwidth demands
and interferences. The latter helps a BS to determine bandwidth
allocation and time-slot assignment. In particular, when time slots
are tight, we show how to adjust scheduling to prioritize real-time
from non-real-time traffics so as to guarantee some bandwidths
for real-time traffics. Note that the tree topology is consistent with
the current IEEE 802.16 standard. Also, our framework does not
require any change to the message structures and the signaling
mechanism defined in the standard.
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In the literature, early works on the IEEE 802.16 standard
have primarily focused on the PMP mode [5]–[7]. For the mesh
mode, former efforts have devoted to topology design [8], packet
scheduling [9], [10], and QoS support [11], [12]. Reference [13]
shows how to manage radio resources in a WiMAX single-carrier
network in a distributed manner. Reference [14] discusses how to
improve channel efficiency and provide fair access to SSs. The BS
allocates time slots to SSs in a per-hop basis in such a way that
one-hop nodes will have precedence over two-hop nodes (“hop” in
the sense of nodes’ distances to the BS). Similarly, i-hop nodes
will have precedence over (i+1)-hop nodes. However, this may
lead to starvation of farther-away SSs as the network becomes
congested, especially when SSs with smaller hop counts request
larger bandwidths. On the contrary, our scheduling algorithm
allocates time slots to SSs proportionate to their requests and
thus avoids such starvation.

Several studies [15]–[17] have addressed the issue of spectral
reuse to solve the resource allocation problem. Reference [15]
proposes a routing tree construction and a scheduling algorithm by
considering the interference among neighboring SSs. It attempts
to find a route to reduce the interference among SSs, and then
to maximize the number of concurrent transmissions. How to
attach a new SS to a routing tree incurring the least interference
is discussed in [16]. In [17], the authors indicate that the network
performance highly depends on the order that SSs join the
routing tree, and then propose a routing tree reconstruction and
a concurrent transmission scheme to achieve spectral reuse. As
can be seen, the prior works only discuss partial aspects of the
resource allocation problem.

Table I compares the functions provided by other schemes
and ours. Our framework offers the most complete solution
to the resource allocation problem. The contributions of our
framework are four-fold. First, it formally quantifies the spectral
reuse in a mesh network, thus capable of achieving higher spectral
efficiency. Second, it takes dynamic traffic demands of SSs into
account and includes not only a tree optimization algorithm, but
also a bandwidth allocation and a time-slot assignment. Third, we
propose a way to prioritize real-time from non-real-time traffics,
so that a fixed amount of bandwidth is maintained for each real-
time flow when resources are stringent. Finally, the proposed
framework covers bandwidth allocation at the application layer,
routing tree construction and resource sharing at the MAC layer,
and channel reuse at the physical layer. Extensive performance
studies are conducted and the simulation results show that our
framework can achieve better spectral reuse and higher network
throughput compared with existing results.

The rest of this paper is organized as follows: Section II
briefly reviews the operations of an IEEE 802.16 mesh network
and formally defines the resource allocation problem. Section III
proposes our spectral reuse framework. Section IV discusses how
to guarantee bandwidths of real-time traffics by our framework.
Section V gives the simulation results. Section VI concludes this
paper.

II. PRELIMINARY

A. Resource Allocation in an IEEE 802.16 mesh network

An IEEE 802.16 mesh network is composed of a BS and several
SSs. These stations form a routing tree rooted at the BS and
transmissions between stations may undergo a multi-hop manner.
The IEEE 802.16 MAC protocol supports both centralized and

distributed scheduling methods. In this paper, we focus on the
centralized scheduling to fully exploit spectral reuse.

In the centralized scheduling, the standard supports two control
messages, MSH-CSCF (Mesh Centralized Scheduling Configura-
tion) and MSH-CSCH (Mesh Centralized Scheduling), to help the
BS establish its routing tree and specify transmission schedules
of SSs in the network. To achieve this, the BS first broadcasts
an MSH-CSCF message containing the routing tree information
to the network. An SS receiving such a message can know its
parent and children in the tree and then rebroadcasts the MSH-
CSCF message according to its index specified in the message.
This procedure is repeated until all SSs have received the MSH-
CSCF message.

After constructing the routing tree by the MSH-CSCF message,
SSs can transmit MSH-CSCH:Request messages to request time
slots. The transmission order is from leaves to the root. An
SS will combine the requests from its children into its own
MSH-CSCH:Request message, and then transmits the message
to its parent. In this way, the BS can gather bandwidth requests
from all SSs and then broadcasts an MSH-CSCH:Grant message
containing the slot allocations to all SSs. Note that the BS can
also update the routing tree by containing tree update information
in the MSH-CSCH:Grant message. In this case, SSs have to
update their positions in the new tree according to the message.
Otherwise, the routing tree remains the same as specified in the
previous MSH-CSCF message. Note that according to the 802.16
standard, the period during which the MSH-CSCH schedule is
valid is limited by the time that the BS takes to aggregate traffic
requirements and distribute the next schedule. So the scheduling
interval is about several frames depending on the size of the mesh
network. Therefore, it is reasonable to assume that link data rates
and bandwidth demands of SSs are constants during a short period
of time.

To allocate bandwidths for SSs, the IEEE 802.16 standard gives
an example, as illustrated in Fig. 1. Each SS i first sends its uplink
bandwidth demand bUL

i and downlink bandwidth demand bDL
i to

the BS. Let the uplink and downlink data rates of SS i be rUL
i

and rDL
i , respectively. The ratios of uplink slots allocated to SS 1,

SS 2, SS 3, and SS 4 will be bUL
1 +bUL

3 +bUL
4

rUL
1

:
bUL
2

rUL
2

:
bUL
3

rUL
3

:
bUL
4

rUL
4

(=

γ1 : γ2 : γ3 : γ4). Note that here the calculation also includes
the relay traffics. If NUL

total is the total number of uplink slots
per frame, the numbers of slots allocated to them are γ1·NUL

total∑4
i=1 γi

,
γ2·NUL

total∑4
i=1 γi

, γ3·NUL
total∑4

i=1 γi
, and γ4·NUL

total∑4
i=1 γi

, respectively. The bandwidth
allocation for downlink traffics follows the same way.

However, the above bandwidth allocation is very inefficient
because a slot is always allocated to only one SS. In fact, SS 2
and SS 3 can transmit concurrently without interfering with each
other. We can quantify the waste of slots as follows: Given a
routing tree T , the aggregated uplink bandwidth demand dUL

i for
each SS i is defined as

dUL
i = bUL

i +
∑

j∈child(i)

dUL
j , (1)

where child(i) is the set of SS i’s children in T . Then, the demand
of uplink transmission time for SS i is

TUL
i =

dUL
i

rUL
i

. (2)
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TABLE I
COMPARISON OF PRIOR WORKS [15]–[17] AND OUR SPECTRAL REUSE FRAMEWORK.

reuse load tree time-slot bandwidth
features modeling1 awareness reconstruction allocation guarantee3

reference [15] partial2 √
reference [16] partial2

reference [17]
√ √

our framework
√ √ √ √ √

1 Mathematical modeling is provided to evaluate the degree of spectral reuse.
2 Initial tree construction is provided, but without tree reconstruction.
3 The guarantee is for real-time flows.
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Fig. 1. A bandwidth allocation example in the IEEE 802.16 standard.

Let us denote the sum of uplink transmission time of all SSs by

CUL
total =

∑

i∈T −BS

TUL
i ,

Therefore, only a ratio of TUL
i

CUL
total

of the uplink slots are allocated
to SS i. However, let the sum of transmission time of SS i and its
interference neighbors be

CUL
i =

∑

j∈Ei

TUL
j , (3)

where Ei = {i}∪I(i) and I(i) is the set of interference neighbors
of SS i. From SS i’s perspective, it only sees a ratio of CUL

i

CUL
total

of the

uplink slots to be busy. In other words, the remaining 1− CUL
i

CUL
total

portion of time is simply idle as seen by SS i. The downlink
direction will suffer from the similar waste.

B. Problem Definition

The problem with the above waste is due to lack of spectral
reuse. Our goal is to solve the resource allocation problem in an
IEEE 802.16 mesh network with spectral reuse. Given the uplink
and downlink bandwidth demands bUL

i and bDL
i and data rates

rUL
i and rDL

i , respectively, of each SS i, we will consider the
following four issues:

1. Tree reconstruction: How to organize the routing tree accord-
ing to SSs’ bandwidth demands and data rates, so that traffic
loads among tree nodes can be balanced and the network
throughput can be maximized?

2. Bandwidth allocation: How to allocate time slots to SSs
according to their bandwidth demands and data rates, so that
SSs can fully utilize the channel?

3. Time-slot assignment: How to assign slots of a frame for
SSs with global fairness in mind, so that the transmissions
between SSs will not conflict with each other?

4. Bandwidth guarantee: How to schedule real-time and non-
real-time traffics when resources are stringent, so that band-
width requirements of real-time flows can be maintained?

III. THE SPECTRAL REUSE FRAMEWORK

In this section, we propose our spectral reuse framework to
solve the first three issues in the resource allocation problem.
In Section IV, we will discuss how to extend our framework to
provide bandwidth guarantee for real-time flows. Table II sum-
marizes the notations used in this paper. Fig. 2 shows the system
architecture of our framework. First, the BS collects the MSH-
CSCH:Request messages and passes the bandwidth demands and
data rates of SSs to the scheduling and the routing modules. The
scheduling module is a fast process, which determines the number
of time slots and their positions allocated to each SS in each
frame. The routing module is a slow process, which continuously
monitors the quality of the routing tree and reconstructs the tree
when the quality of the tree degrades. That is, when it is found
that the tree cannot efficiently deliver the traffics of SSs, a new
routing tree will be computed by the routing module. The BS
then broadcasts a MSH-CSCH:Grant message containing the new
routing tree and time slot allocation of each SS to the network.

Below, we first present the basic concept of our spectral reuse
framework, followed by the designs of the scheduling and the
routing modules.

Fig. 2. System architecture of our spectral reuse framework.

A. Basic Concept

Earlier, we have indicated that in the uplink case, the scheduling
scheme in IEEE 802.16 only assigns pi =

TUL
i

CUL
total

portion of uplink
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TABLE II
SUMMARY OF NOTATIONS.

notation definition

N number of time slots within a data subframe
NUL

total/N
DL
total number of uplink/downlink slots within a frame

NUL
i /NDL

i number of uplink/downlink slots allocated to SS i

bUL
i /bDL

i individual bandwidth demand of uplink/downlink traffics generated by SS i

dUL
i /dDL

i aggregated bandwidth demands of uplink/downlink traffics delivered by SS i

rUL
i /rDL

i uplink/downlink data rate of SS i

TUL
i /TDL

i demand of uplink/downlink transmission time of SS i

Ei set of SSs that contains SS i and its interference neighborhood I(i)

CUL
i /CDL

i aggregated TUL
j /TDL

j of all SS j in Ei

CUL
total/CDL

total aggregated TUL
j /TDL

j of all SS j in the network
CUL

max/CDL
max maximal CUL

i /CDL
i among all SS i in the network

slots to each SS i. From each SS i’s view, the remaining 1− CUL
i

CUL
total

portion of uplink slots are idle. Ideally, SS i may expect the idle
portion to be fairly distributed to all SSs in Ei proportionally. This
implies that SS i can share an additional qi =

(
1− CUL

i

CUL
total

)
× TUL

i

CUL
i

portion of uplink transmission time. Thus, the total portion of
uplink transmission time assigned to SS i is

TUL
i

CUL
total

+

(
1− CUL

i

CUL
total

)
× TUL

i

CUL
i

=
TUL

i

CUL
i

. (4)

Similarly, the total portion of downlink transmission time assigned
to SS i can be upgraded, ideally, to TDL

i

CDL
i

.
Unfortunately, the above Eq. (4) does not consider the conges-

tion issue in the global network. In a non-congested network, the
uplink bandwidth of an SS should be able to deliver all traffics
from itself plus those from its children. Otherwise, congestion
on that SS’s uplink will occur. Therefore, given a non-congested
network, if an SS i’s uplink bandwidth is increased by a ratio of
α, a sufficient condition to avoid the network becoming congested
is to enforce the parent of SS i to increase its uplink bandwidth
by at least a ratio of α. Now, let αi be the ideal ratio of increase
by SS i in the uplink direction,

αi =
qi

pi
=

(
1− CUL

i

CUL
total

)
× TUL

i

CUL
i

TUL
i

CUL
total

=
CUL

total

CUL
i

− 1.

The minimum ratio of increase among all SSs is

αmin = min
∀i
{αi} =

CUL
total

CUL
max

− 1 ≥ 0,

where CUL
max = max∀i{CUL

i }. Therefore, using αmin as the global
ratio of increase, the portion of uplink transmission time for each
SS i such that the network will not be congested is

(1 + αmin)× TUL
i

CUL
total

=
TUL

i

CUL
max

.

Similarly, the portion of downlink transmission time for each
SS i such that the network will not be congested is TDL

i

CDL
max

, where

CDL
max = max∀i{CDL

i }.
Note that the above calculation includes the demands of indi-

vidual SSs as well as relay traffics. So our slot allocation is in an
end-to-end sense. Next, we discuss how to adopt this concept to

the scheduling module to increase channel efficiency. The routing
module will reconstruct the routing tree to further improve the
performance of the scheduling module. For readability, we first
discuss how the scheduling module works, and then present how
the routing module works.

B. Scheduling Module

Given a routing tree T , the scheduling module should properly
allocate time slots to SSs in each frame so that the transmissions
of nearby SSs will not cause collision and global fairness among
SSs can be maintained. Assuming N to be the total number of
slots in a data subframe, the scheduling module involves the
following steps:

1. We first choose the ratio of the number of uplink slots to
the number of downlink slots to be CUL

max : CDL
max. Thus, the

numbers of uplink and downlink slots in a data subframe
observed by the BS are NUL

total =
⌊

CUL
max

CUL
max+CDL

max
×N

⌋
and

NDL
total =

⌊
CDL

max
CUL

max+CDL
max

×N
⌋

, respectively1.

2. Based on NUL
total and NDL

total, we then allocate NUL
i =

TUL
i

CUL
max

×
NUL

total and NDL
i =

TDL
i

CDL
max

×NDL
total slots to each SS i for its

uplink and downlink traffics, respectively. Note that since
spectral reuse is considered, it is possible that

∑
∀i NUL

i >

NUL
total and

∑
∀i NDL

i > NDL
total.

3. Next, we need to allocate NUL
i collision-free uplink slots in

each data subframe to SS i. These slots are divided into two
parts. Part 1 contains TUL

i

CUL
total

× NUL
total slots. Part 2 contains

(
TUL

i

CUL
max

− TUL
i

CUL
total

)
×NUL

total slots. Part-1 slots are more suitable
for real-time traffics because a packet issued by any SS in
T can be delivered to the BS with a latency no more than
one frame time (the reason will be explained in Theorem 1).
Now we describe how these slots are determined.
• Part-1 slots: These slots are assigned in a bottom-

up manner along the tree T . Specifically, we traverse

1Recall that CUL
max and CDL

max represent the maximum uplink and downlink
demands, respectively, seen by individual nodes. They are bottlenecks of
uplink and downlink transmissions. So we use the ratio of CUL

max and CDL
max

to reflect the demands of uplink and downlink slots and use this ratio to
distribute slots. Later on, we will construct the routing tree by minimizing
the sum of CUL

max and CDL
max to improve spectral reuse. Also, note that the

number of slots should be bounded to integers. However, in the following,
we will avoid using floor and ceiling functions for ease of presentation.
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SSs in T according to the transmission order of MSH-
CSCH:Request messages. In IEEE 802.16, such order is
reverse in hop-count to the BS (that is, largest hop-count
first), and is retained as nodes’ IDs in the routing tree
for SSs with the same hop-count. Thus, the order of a
child SS is always before that of its parent. Following
this transmission order, for each SS i being visited, we
select the first TUL

i

CUL
total

× NUL
total unoccupied slots as its

part-1 slots, and then mark these slots as occupied. This
operation is repeated until all SSs are visited.

• Part-2 slots: We also assign these slots following the
transmission order of MSH-CSCH:Request messages.
For every SS i being visited, each of its part-2 slots is
selected from the first unoccupied slot by any SS in
Ei. Then that slot is marked as occupied. The above
operation is repeated until all SSs are visited.

Algorithm 1 gives the pseudo code of the above time-slot
assignment scheme.

4. We then designate NDL
i collision-free downlink slots to

each SS i. These slots are also divided into two parts,
where part 1 contains TDL

i

CDL
total

× NDL
total slots and part 2

contains
(

TDL
i

CDL
max

− TDL
i

CDL
total

)
×NDL

total slots. For each part, we
assign their slots in a top-down manner along the tree T .
Specifically, we traverse SSs in T by the transmission order
of MSH-CSCH:Request messages and then assign slots to
these SSs following the reverse order. For each SS being
visited, we assign downlink slots to them according to the
rules specified in step 3.

Consider an illustrative example in Fig. 3, where we need to
assign uplink slots for five SSs in the network. Let the demand
of each of SSs a, b, c, and d be one slot and the demand of SS e

be two slots. We assume that the interference neighborhood of an
SS contains all its neighbors within two-hop range. First, part-1
slots can be assigned easily in a sequential manner (e → c →
d → a → b). To assign part-2 slots, observe that the interference
neighborhood I(a) of a includes c, d, and e. For e, we assign
slot 8 as its part-2 slot since it is the first unoccupied slot by
SSs in Ee = {a, c, d, e}. Similarly, we assign slot 10 as c’s part-
2 slot because it is the only unoccupied slot by SSs in Ec =

{a, b, c, d, e}. For a, since Ea = {a, c, d, e}, we assign slot 9 as
its part-2 slot. Note that although slot 9 has already been assigned
to b, it does not prevent a from using it because b /∈ Ea. From
Fig. 3, we can observe that any packet issued in part-1 slots can
always be delivered to the BS within one frame time. However,
a packet issued by e in its part-2 slot takes totally 12 slots to
be delivered to the BS, which exceeds one frame time. Note that
the above scheduling employs a proportional allocation in the
sense that the bandwidth allocation for each SS is based on its
own bandwidth demand, its children’s demands, and the sum of
all SSs’ demands in the mesh network. The BS collects all SSs’
demands and allocates bandwidth to them by the ratio of their
aggregated demands and CUL

max. Since all aggregated demands
of SSs are divided by the same factor of CUL

max, the resource is
proportionally allocated to SSs. Also, once a slot is allocated to
an SS, relaying slots are allocated to its parent SS too. Therefore,
the allocation is done in an end-to-end perspective.

Theorem 1: Part-1 slots are collision-free and any packet is-
sued in part-1 slots can be delivered to the destination station
within one frame time.

Algorithm 1: Time-slot assignment for uplink traffics

Input: numbers of uplink slots for SSs, {NUL
1 , · · · , NUL

n }
Output: result of slot assignment, transmit[n][NUL

total]
// assign part-1 slots
let SS 1, 2, · · · , n be the transmission order of
MSH-CSCH:Request messages in T ;
free ← 1;
for i = 1 to n do

allocated ← free +
TUL

i

CUL
total

×NUL
total;

for j = free to allocated do slot[j] ← i;
free ← allocated;

// assign part-2 slots
for i = 1 to n do

for j = 1 to NUL
total do

transmit[i][j] ← NULL;

for i = 1 to n do // mark occupied slots of SSs
for j = 1 to NUL

total do
if slot[j] ∈ Ei then transmit[i][j] ← slot[j];

for i = 1 to n do
allocated =

(
TUL

i

CUL
max

− TUL
i

CUL
total

)
×NUL

total;

for j = 1 to NUL
total do

if allocated > 0 and transmit[i][j] = NULL then
transmit[i][j] ← i;
allocated ← allocated −1;
for k = 1 to n do

if k ∈ Ei then transmit[k][j] ← i;

Fig. 3. An example of time-slot assignment for uplink traffics.

Proof: We first prove that part-1 slots are collision-free.
For the uplink case, since

∑
∀i TUL

i = CUL
total, the total number

of part-1 slots is
∑
∀i

(
TUL

i

CUL
total

×NUL
total

)
= NUL

total. Thus, there
must be enough slots assigned to all SSs for their part-1 slots. In
addition, since step 3 in the scheduling module guarantees that
any two SSs will not select the same uplink slot, part-1 slots in
the uplink case are collision-free. Similarly, for the downlink case,
since

∑
∀i

(
TDL

i

CDL
total

×NDL
total

)
= NDL

total, it is guaranteed that there
are enough slots assigned to all SSs. Again, since step 4 ensures
that two SSs will not choose the same downlink slot, part-1 slots
in the downlink case are also collision-free.
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We then show that the latency of any packet issued in part-
1 slots is bounded to one frame time. For the uplink case,
we schedule SSs following the transmission order of MSH-
CSCH:Requet messages. Since this order is reverse to the hop-
count to the BS, it is guaranteed that we always assign uplink
slots of a child SS before its parent. In addition, since each
SS has enough uplink slots to relay its children’s packets, any
packet issued in part-1 slots can be delivered to the BS within
one frame time. For the downlink case, since we schedule SSs
following the reverse order of the transmission order of MSH-
CSCH:Request messages, we will always assign downlink slots of
a parent SS before its children. Again, since each SS has enough
downlink slots to relay packets from the BS, we can guarantee
that any packet from the BS in part-1 slots can be delivered to
the destination SS within one frame time.

Theorem 2: Part-2 slots are collision-free.
Proof: We first prove that part-2 slots in the uplink direction

are collision-free. In Section III-A, we have shown that each SS
can be assigned with TUL

i

CUL
max

×NUL
total slots without congesting the

network. Thus, there are enough slots assigned to all SSs for
their part-2 slots. In addition, step 3 in the scheduling module
guarantees that any two SSs inside the interference range will
not select the same slot. Thus, part-2 slots in the uplink case
are collision-free. For the downlink case, since each SS can be
assigned with TDL

i

CDL
max

×NDL
total slots without congesting the network,

there are also enough slots assigned to all SSs. Similarly, by step
4, we can ensure that two SSs inside the interference range will
not choose the same slot. Thus, this theorem still holds in the
downlink case.

Remark 1: The IEEE 802.16 mesh mode only supports time
division duplex (TDD) for uplink and downlink traffics. The TDD
framing is adaptive in that the bandwidths allocated to uplink and
downlink traffics can vary. Unlike the PMP mode, there is no clear
boundary between uplink and downlink slots in the mesh mode.
In this work, we assume that a slot will be used exclusively by
only uplink or downlink throughout the whole network.

C. Routing Module

In Section III-A, we have indicated that the uplink and down-
link slots allocated to each SS is inversely proportional to the
values of CUL

max and CDL
max, respectively. Therefore, the goal of

this routing module is to reconstruct the routing tree, whenever
needed, to reduce both CUL

max and CDL
max so that SSs can receive

more time slots.
Definition 1: Given a mesh network G, and bandwidth de-

mands and data rates of SSs in G, the routing tree construction
(RTC) problem is to find a routing tree T in G such that the value
of CUL

max + CDL
max is minimized.

To prove that the RTC problem is NP-complete, we define a
decision problem as follows:

Definition 2: Given a mesh network G, bandwidth demands
and data rates of SSs in G, and a real number R, the routing tree
construction (RTC) problem is to decide whether G has a routing
tree T such that CUL

max + CDL
max ≤ R.

Theorem 3: The RTC problem is NP-complete.
Proof: First, given routing trees in G, we can calculate

the values of their CUL
max and CDL

max, and check whether CUL
max +

CDL
max ≤ R. Clearly, this takes polynomial time. Thus, the RTC

problem belongs to NP.

We then prove that the RTC problem is NP-hard by reducing
a NP-complete problem, the partition problem [18], to a special
case of the RTC problem in polynomial time. Given a set X where
each element xi ∈ X has an associated size s(xi), the partition
problem asks whether it can partition X into two subsets with
equal total size.

Consider a special case of the RTC problem in Fig. 4, where
the interference neighborhoods I(a) and I(b) of SS a and SS b

are not overlapped. The data rates and bandwidth demands of SSs
in Ea ∪ Eb are set to r and zero, respectively. Except for those
SSs in Ea∪Eb, there are n SSs X = {x1, x2, · · · , xn} connected
with both SS c and SS d, each with non-zero equal uplink and
downlink bandwidth demands.

∪
a b
E E

Fig. 4. A special case of the RTC problem.

Here, we reduce the partition problem to the special case of the
RTC problem. Let size s(xi) be the sum of uplink and downlink
bandwidth demands of each xi ∈ X , and R = 5

2

∑
∀i

s(xi)
r . From

Fig. 4, we can observe that the parent of xi ∈ X is either SS c or
SS d. Because the bandwidth demands of all SSs in Ea ∪Eb are
zero, the only way to make CUL

max + CDL
max ≤ R is to partition X

into two subsets (where the SSs in X select either SS c or SS d as
their parent) with equal total size. Thus, if there exists a routing
tree in G such that CUL

max + CDL
max ≤ R, there must be a partition

to divide X into two subsets with equal total size. Obviously, this
reduction can be performed in polynomial time. Therefore, the
RTC problem is NP-complete.

Below, we propose a heuristic load-aware tree construction
(LTC) algorithm to solve the RTC problem. The LTC algorithm
constructs the routing tree from leaves to the root. Let Pi =

PLS
i ∪PEQ

i , where PLS
i is the set of SS i’s neighbors whose hop

counts to the BS are less than that of SS i, and PEQ
i is the set of

SS i’s neighbors whose hop counts to the BS are equal to that of
SS i and these neighbors have already been assigned with parents.
The LTC algorithm works as follows:

1. Our goal is to form a routing tree T to connect all SSs.
Initially, SSs are not connecting to any node. So we have a
forest of trees, where each tree is an individual SS. Then we
can use Eqs. (1) and (2) to calculate the aggregated uplink
bandwidth demand dUL

i , aggregated downlink bandwidth
demand dDL

i , demand of uplink transmission time TUL
i ,

and demand of downlink transmission time TDL
i of each

SS i. However, note that to calculate Eq. (2), it is necessary
to know the parent node of SS i (so as to estimate the
transmission rate between i and its parent). To resolve this
uncertainty, we assume that before an SS i decides its actual
parent, it has a tentative parent SS j, where j ∈ Pi and the
transmission rate between i and j is the highest among all
candidates.
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2. Since the demands of transmission times TUL
i and TDL

i of
all nodes i are known, we can apply Eq. (3) to calculate
CUL

i and CDL
i for all SS i.

3. Let A be the set of SSs which have not decided their actual
parents and which have the maximum hop counts to the BS.

4. This step will decide the actual parent of one SS in A.
(a) For each SS i ∈ A, connect SS i to each SS j ∈ Pi

and recompute the new values of CUL
j and CDL

j by
assuming that i’s actual parent will become j. Note that
in order to avoid forming a cycle, if the path from SS i

to SS j results in a loop, we set the values of CUL
j and

CDL
j as ∞. We then choose the SS j with the minimum

value of CUL
j + CDL

j as the candidate parent of SS i.
(b) The above step (a) will choose a candidate parent, say,

p(i) for each SS i ∈ A. Among these candidates, we
choose the SS p(i) such that the value of CUL

p(i) + CDL
p(i)

is minimized as the actual parent of SS i and make a
connection between i and p(i).

5. Repeat step 4, until the set A is empty.
6. Repeat steps 3, 4, and 5, until all SSs have decided their

actual parents.
Step 4(a) is to build the subtree whose subtree root (SS j) has

the minimum value of CUL
j + CDL

j . Similarly, step 4(b) is to
build the subtree whose subtree root (SS p(i)) has the minimum
value of CUL

p(i) + CDL
p(i). This can help balance the distribution

of forwarding traffics and keep the final value of CUL
max + CDL

max

as small as possible in the constructed tree. Note that the above
calculations of CUL

i and CDL
i are all tentative. Their values will

keep on changing as the tree is building up. Algorithm 2 gives
the pseudo code of the LTC algorithm.

Next, we analyze the time complexity of the LTC algorithm.
Since each SS has exact one parent, step 4 will be repeated at
most n times, where n is the number of SSs in the network. In
step 4(a), at most m nodes will be checked and each will check
at most d candidates, where m is the maximum number of SSs
with the same hop count to the BS and d is the maximum degree
of SSs. Thus, the time complexity is O(nmd).

Finally, we comment on the timing to invoke the routing mod-
ule. Since reconstructing the routing tree causes communication
cost, one possible moment to invoke the routing module is when
the value of CUL

max + CDL
max of the old tree is higher than that of

the new tree by a predefined threshold.

IV. BANDWIDTH GUARANTEE FOR REAL-TIME FLOWS

The aforementioned spectral reuse framework can allocate time
slots to SSs proportionate to their requests. However, when SSs
request new flows or need more bandwidths for their old flows, the
system may no longer guarantee enough bandwidths for the origi-
nal flows. To solve this problem, we propose an admission control
mechanism to extend our spectral reuse framework. Specifically,
we separate flows into real-time and non-real-time flows. When
an SS requests a new flow or more bandwidth for its old flows,
we will check whether the bandwidth requirements of all real-
time flows can be still satisfied. If so, we will admit this request.
Otherwise, we will reject this request to guarantee bandwidths of
existing real-time flows.

Fig. 5 illustrates the flowchart of our admission control mech-
anism. The idea is to prioritize real-time from non-real-time
flows. For each SS, we always ensure sufficient slots to satisfy

Algorithm 2: Load-aware tree construction (LTC) algorithm
Input: set G of all SSs in the network
Output: routing tree T
foreach i ∈ G do

let rUL
j(max) and rDL

j(max) be the highest rates of uplinks and
downlinks of SS j to SSs in Pj ;

CUL
i ← ∑

j∈Ei

bUL
j

rUL
j(max)

;

CDL
i ← ∑

j∈Ei

bDL
j

rDL
j(max)

;

while G 6= ∅ do
let A be the set of SSs without parents which have the
largest hop counts to the BS;
G ← G −A;
while A 6= ∅ do

Cmin ←∞;
foreach i ∈ A do

foreach j ∈ Pi do
calculate CUL

j and CDL
j after attaching SS i to

SS j;
if CUL

j + CDL
j < Cmin then

Cmin ← CUL
j + CDL

j ;
parent ← j;
child ← i;

T [child] = parent;
A ← A− {child};
foreach i ∈ Eparent ∪Echild do update CUL

i and CDL
i ;

SS j requests a new flow i

no

yes

no

no

no

yes

yes

yes

reject flow i admit flow i

check whether SS j has enough

slots to support all its real-time flows

reallocate slots to SSs by spectral

reuse framework with the bandwidth

requirements of all flows

reallocate slots to SSs by spectral

reuse framework with the bandwidth

requirements of only real-time flows

Is i a real-time flow?

Fig. 5. Flowchart of the admission control mechanism.

the bandwidth requirements of all its real-time flows, and then
distribute the remaining slots to its non-real-time flows. This
is what we mean by prioritizing real-time from non-real-time
flows. This implies that an SS can always admit more non-real-
time flows since its real-time flows always have higher priority.
However, when an SS j requests a new real-time flow i (or wants
to increases bandwidth of a real-time flow i), the following steps
will be executed:

1. Check whether SS j’s current slots can support required
bandwidths of all its real-time flows (including flow i). If
there are enough slots, we can admit flow i. Otherwise,
it means that we have to reallocate slots in the system to
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support this new request (refer to step 2).
2. To reallocate slots of SSs in the network, we will execute

our spectral reuse framework in Section III. We will update
the bandwidth requirement of SS j, run the routing module
to reconstruct the routing tree, and then run the scheduling
module to allocate slots to all SSs. Then we check whether
this new allocation can support the real-time flows of all
SSs. If so, we can admit flow i and adopt the new allocation.
Otherwise, it means that the new scheduling cannot satisfy
some real-time flows, so we go to step 3.

3. Update the bandwidth requirements of all SSs by remov-
ing their non-real-time flows. With these requirements, we
execute our spectral reuse framework again. We run the
routing module to reconstruct the routing tree, and then run
the scheduling module to allocate slots to all SSs. Then we
check whether this new allocation can support the real-time
flows of all SSs. If so, we can admit flow i and adopt the
new allocation. Otherwise, the system does not have enough
slots to support flow i, so we should reject the request of
flow i.

Note that although the above step 3 allocates slots to SSs based
on their requirements of real-time flows, an SS can still transmit
non-real-time flows, as long as its real-time flows do not consume
all bandwidths of the SS. Also, we comment that although the
above discussions only cover two classes (real-time and non-
real-time) of traffics, general multiple m classes of traffics are
applicable. In this case, we should check whether the addition
of a new flow i (say, in class k < m) can still guarantee the
bandwidth requirements of all flows in classes 1, 2, · · · , k. If not,
we can remove flows in classes k+1, k+2, · · · , m and reallocate
slots to check whether the system has enough slots to support the
request of flow i.

V. PERFORMANCE EVALUATION

In this section, we present some experimental results conducted
by the ns-2 simulator [19] to verify the effectiveness of the
proposed framework. We adopt a single-channel OFDM physical
layer and a two-ray ground reflection model for radio propagation,
and extend the TDMA (time division multiple access) MAC
module in ns-2 for the MAC layer. We consider three kinds
of network topologies: regular, dense, and random. In a regular
network, there are at most 84 SSs placed in a diamond mesh
topology, as shown in Fig. 6. In a dense network, we add an extra
SS in each position marked by ‘+’ in Fig. 6. In a random network,
we arbitrarily select at most 84 positions from the dense network
to place SSs. Note that the resulting network is connected. All
SSs are stationary and work in half duplex. The interference
neighborhood of an SS includes all its neighbors within two-
hop range. So there are at most 12 and 24 nodes in an SS’s
interference range in the regular and dense networks, respectively.
In the random network, an SS’s interference range contains 12
nodes in average. There are 512 time slots in a frame. The channel
bandwidth is set to 50 Mb/s, and we assume that all links have
the same data rates. For each experiment, at least 100 simulations
are repeated and we take their average.

A. Network Throughputs under Different Network Topologies

We first evaluate the network throughputs under different
network topologies. The network throughput is defined as the
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communication link

Fig. 6. The regular and dense network topologies in our experiments.

total amount of data received and transmitted at the BS. We
compare our results against the basic 802.16 mesh operation
and the concurrent transmission scheme with route adjustment
proposed in [17]. For the 802.16 operation, the random routing
tree is adopted and the numbers of uplink and downlink slots
are set to equal. Each SS will generate random traffic loads and
request the same uplink and downlink bandwidth demands. For
the regular and random networks, the number of SSs is set to 4,
12, 24, 40, 60, and 84. For the dense network, we set the number
of SSs as 8, 24, 48, 80, 120, and 168.

Fig. 7 shows the network throughputs of different methods in
the regular network. Clearly, the network throughput will decrease
as the number of SSs increases because a packet needs to travel
more hops in average as the network scales up. From Fig. 7, we
can observe that the throughput of the 802.16 operation drops
significantly when the number of SSs increases. This is because
it adopts a random routing tree, which causes longer relay routes.
Moreover, the neglect of spectral reuse greatly hurts the system
performance. The improvement of throughput by the concurrent
transmission scheme proposed in [17] is limited because it con-
structs the routing tree according to the SSs’ positions, rather
than their traffic loads. Thus, the network bottleneck cannot be
reflected and the benefit of route adjustment is limited. Besides,
this concurrent transmission scheme restricts that SSs cannot
transmit data earlier than their child SSs so that the throughput is
reduced. Our framework performs better than these two schemes
because it can estimate the degree of spectral reuse according to
SSs’ traffic loads and thus allocates more time slots to SSs. As
the network scale grows, the degree of spectral reuse can also
increase. In addition, the LTC algorithm of the tree module can
generate better routing paths to distribute the traffics more evenly.
Therefore, the complete framework can result in the highest
throughput.

We then verify the network throughputs of different methods
in the dense and random networks, as shown in Fig. 8. All
network throughputs are normalized by that of the basic 802.16
mesh operation. From Fig. 8, we can observe that the results are
similar to that in Fig. 7. However, as compared with Fig. 7, the
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Fig. 7. Comparison of network throughputs in the regular network.

improvement of our framework slightly degrades. For the dense
network, this is due to the decrease of degree of spectral reuse
since the number of nodes in each SS’s interference neighborhood
becomes double. For the random network, this is because the
network bottleneck usually appears in the one-hop neighbors of
the BS.

In the following experiments, we conduct all simulations in the
regular network.

B. Network Throughputs under Different Traffics Demands

Fig. 9 shows the normalized network throughputs under dif-
ferent number of SSs with various uplink traffic demands. Each
SS randomly requests 50% to 100% uplink bandwidth demand.
From Fig. 9, we can observe that the network throughput of our
framework is much higher than that of the 802.16 operation. This
is because the 802.16 operation only allocates equal numbers
of slots to uplink and downlink traffics without any flexibility.
The situation becomes worse when the number of SSs increases,
because the difference between the amount of uplink traffics and
the amount of downlink traffics could be large. On the contrary,
our framework allocates the ratio of uplink to downlink slots as
CUL

max : CDL
max, which reflects the practical traffic loads of SSs. In

addition, the tree module helps reconstruct a better routing tree
to reduce both the values of CUL

max and CDL
max, thereby further

improving the system performance.
Fig. 10 illustrates the normalized network throughputs under

different uplink traffic demands. We set the number of SSs as

 0.5

 1

 1.5

 2

 2.5

 3

 8  24  48  80  120  168

no
rm

al
iz

ed
 n

et
w

or
k 

th
ro

ug
hp

ut

number of SSs

our framework (with tree module)
our framework (without tree module)

concurrent transmission [17]
basic 802.16 mesh

(a) dense network
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Fig. 8. Comparison of normalized network throughputs in the dense and
random networks.
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Fig. 9. Comparison of normalized network throughputs under different
number of SSs with various uplink traffic demands.

84. Each SS generates 0.3 Mb/s traffic load in average, where
the ratio of uplink request is varied from 10% to 50%. From
Fig. 10, we can observe that our framework can significantly
improve the network throughput, especially when the difference
between uplink and downlink traffic demands increases. This is
because the 802.16 operation simply allocates equal numbers of
slots for uplink and downlink traffics, which may lead to network
congestion in one direction while leave slots wasted in another
direction. The situation becomes worse when the traffic loads in
uplink and downlink directions become extremely unbalanced.
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Fig. 10. Comparison of normalized network throughputs under different
uplink traffic demands.

C. Packet Dropping Ratio of Real-Time Flows

We then evaluate the packet dropping ratio of real-time flows
in the network, which is defined as the ratio of the number of
real-time packets dropped (due to exceeding deadlines) to the
number of real-time packets generated. We set the deadline of a
real-time packet as 500 ms. There are 80% real-time flows and
20% non-real-time flows in the network. Fig. 11 illustrates the
packet dropping ratios under different number of SSs. We can
observe that our framework can result in a lower packet dropping
ratio because it can achieve a higher network throughput with the
help of spectral reuse and tree reconstruction. Therefore, real-
time flows can receive more bandwidths to alleviate their packet
dropping ratios.
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Fig. 11. Comparison of packet dropping ratios under different number of
SSs.

D. Real-Time Flow Granted Ratio

Fig. 12 shows the real-time flow granted ratio under different
number of SSs. The real-time flow granted ratio is defined as the
ratio of the number of admitted real-time flows to the number of
requested real-time flows. We set the ratio of the number of real-
time flows to the number of non-real-time flows as 4 : 1. Each
flow uniformly generates a traffic load of [0.1 Mb/s, 0.5 Mb/s].
From Fig. 12, we can observe that when the number of SSs
increases, the real-time flow granted ratio will decrease because
the average routing path to the BS increases. In this case, SSs have
to relay more traffics from their children, resulting in a high risk of

network congestion. By exploiting spectral reuse, our framework
can achieve a higher network throughput and thus improves
the real-time flow granted ratio. Besides, the extension of our
framework in Section IV prioritizes real-time from non-real-time
flows, thereby further improving the real-time flow granted ratio.

 0

 20

 40

 60

 80

 100

 4  12  24  40  60  84

flo
w

 g
ra

nt
ed

 r
at

io
 (

%
)

number of SSs

our framework (with tree module)
our framework (without tree module)

basic 802.16 mesh

Fig. 12. Comparison of real-time flow granted ratios under different number
of SSs.

Fig. 13 illustrates the real-time flow granted ratio under differ-
ent traffic loads of 84 SSs. We vary the average traffic load of SSs
from 0.1 Mb/s to 0.6 Mb/s. Each SS will request 80% real-time
flows and 20% non-real-time flows. From Fig. 13, we can observe
that the real-time flow granted ratio decreases significantly as
the average traffic load increases due to the serious network
congestion. In such a severe environment, the 802.16 operation
can only admit no more than 10% real-time flows. On the other
hand, our framework can still admit 25% real-time flows even
when the average traffic load of SSs arrives to 0.6 Mb/s. This
reflects the flexibility of the flow scheduling in our framework.
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Fig. 13. Comparison of real-time flow granted ratios under different traffic
loads.

Fig. 14 shows the real-time flow granted ratio under different
non-real-time traffic demands. We set the number of SSs as 84.
Each SS generates 0.3 Mb/s traffic load in average, where the
ratio of non-real-time flows is varied from 10% to 50%. From
Fig. 14, we can observe that the real-time flow granted ratio of our
framework can be improved as the ratio of non-real-time flows
increases because real-time flows can obtain more bandwidths
from these non-real-time flows.
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Fig. 14. Comparison of real-time flow granted ratios under different non-
real-time traffic demands.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we have shown how to increase the degree of
spectral reuse in an IEEE 802.16 mesh network. An integrated
spectral reuse framework for centralized scheduling and a routing
tree construction scheme are developed. Compared to previous
works, our framework is most complete in exploiting spectral
reuse of IEEE 802.16 mesh networks in the sense that it takes
dynamic traffic loads of SSs into account and integrates not only
a bandwidth scheduling scheme but also a time-slot allocation
scheme. In addition, a routing algorithm with tree optimization is
proposed. We have also developed an extension of our framework
to support bandwidth requirements of real-time flows. Simulation
results have shown that the proposed framework significantly
improves the network throughput and the flow granted ratio
compared with the specification in the IEEE 802.16 standard.

Our discussion has focused on bandwidth guarantee of real-
time flows. As for future works, several directions may deserve
further investigation. First, more QoS factors of real-time flows
such as delay constraints and jitters could be considered in the slot
assignment strategy [20]. Second, flow differentiation rater than
flow prioritization could be considered in the bandwidth allocation
scheme to prevent non-real-time flows from starvation. Third,
multi-path routing and distributed scheduling could be considered
to provide better performance. Finally, the limitation that a slot
is only exclusively used for uplink or downlink throughout the
whole network could be relaxed for better bandwidth efficiency.
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