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Abstract

In recent years, deep learning has not only permeated the computer vision and speech recognition research fields but

also fields such as acoustic event detection (AED). One of the aims of AED is to detect and classify non-speech acoustic

events occurring in conversation scenes including those produced by both humans and the objects that surround us.

In AED, deep learning has enabled modeling of detail-rich features, and among these, high resolution spectrograms

have shown a significant advantage over existing predefined features (e.g., Mel-filter bank) that compress and reduce

detail. In this paper, we further asses the importance of feature extraction for deep learning-based acoustic event

detection. AED, based on spectrogram-input deep neural networks, exploits the fact that sounds have “global” spectral

patterns, but sounds also have “local” properties such as being more transient or smoother in the time-frequency

domain. These can be exposed by adjusting the time-frequency resolution used to compute the spectrogram, or by

using a model that exploits locality leading us to explore two different feature extraction strategies in the context of

deep learning: (1) using multiple resolution spectrograms simultaneously and analyzing the overall and event-wise

influence to combine the results, and (2) introducing the use of convolutional neural networks (CNN), a state of the art

2D feature extraction model that exploits local structures, with log power spectrogram input for AED. An experimental

evaluation shows that the approaches we describe outperform our state-of-the-art deep learning baseline with a

noticeable gain in the CNN case and provides insights regarding CNN-based spectrogram characterization for AED.

Keywords: Acoustic event detection; Local spectro-temporal characterization; Feature extraction; Time-frequency

resolution; Convolution neural networks

1 Introduction
In the context of conversational scene understanding,

most research is directed towards the goal of automatic

speech recognition (ASR), because speech is arguably the

most informative sound in acoustic scenes. For humans,

non-speech acoustic signals provide cues that make us

aware of the environment, and while most of our atten-

tion might be dedicated to actual speech, “non-speech”

information is critical if we are to achieve a complete

understanding of each and every situation we face. More-

over, this information is implied by the speakers, and

so they actively or passively neglect mentioning certain

concepts that can be inferred from their location, the cur-

rent activity, or event occurring in the same scene. For

instance, in a situation where two speakers are watching a
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sports game, most of the spontaneous speech utterances

are very likely to be related to sports, and ASR could bene-

fit from having such topic knowledge in advance [1]. On a

smaller scale, if we hear a door opening, we usually assume

that somebody has left or entered the room. Having access

to such information in an automated manner can enhance

the performance of ASR, diarization, or source separation

technologies [2].

Acoustic event detection (AED) is the field that deals

with detecting and classifying these non-speech acoustic

signals, and the goal is to convert a continuous acous-

tic signal into a sequence of event labels with associated

start and end times. The field has attracted increasing

attention in recent years including dedicated challenges

such as CLEAR [3], and recently D-CASE [4], with tasks

involving the detection of a known set of acoustic events

happening in a smart room or office setting. In addi-

tion, AED applications range from rich transcription in

speech communication [3, 4] and scene understanding
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[5, 6], to being a source of information for informed

speech enhancement and ASR. Gaining access to richer

acoustic event classifiers could effectively support speech

detection and informed speech enhancement [2] by pro-

viding the system with details about what kind of noise

surrounds the speakers, besides the obvious benefits of

richer transcriptions.

Recently, we have seen the potential of directlymodeling

the real spectrogram in AED in studies such as [7, 8].

The idea is that a detail-rich input such as a high reso-

lution spectrogram is sparse enough to deal with com-

plex scenarios with overlapping sounds. This complexity

does not appear only in the frequency domain, but also

in the form of a wide range of temporal structures. In

[8] (Fig. 1a), the spectrogram patch concept is used to

describe a model that receives an input including a con-

text of frames from a spectrogram. This is rather typical in

deep learning these days, but it is stressed here since a suf-

ficient amount of short-time temporal structure regarding

sounds can be packaged if the context is wide enough.

This approach is possible given the ability of DNNs to

model such a high dimensional input. This contrasts with

traditional approaches in which the classifier models pre-

defined acoustic features (e.g., MFCC, orMel-filter banks)

[9, 10], which compress and neglect details that we actu-

ally need. Espi et al. [8] succeeds in modeling spectro-

gram patches input as a whole, i.e.; it learns features that

describe “globally” a short-time spectrogram patch. How-

ever, this dismisses important properties of sounds (e.g.,

stationarity, transiency, burstiness, etc.), a taxonomy that

could also help to model acoustic events.

This concept was considered in [10] by combining fea-

tures extracted using multiple spectral resolutions, which

resulted in better classification accuracy compared with

standard single spectral scale features. This study exploits

“local” as opposed to “global” characterization of the

spectrogram. Such local properties, are also observable

at low feature levels (i.e., small and local subsets of adja-

cent time-frequency bins), since they are local in the

spectro-temporal domain.

This paper further investigates the importance of both

using the real spectrogram as a feature and achiev-

ing a proper characterization exploiting spectro-temporal

“locality”. We do this by exploring and comparing two

approaches in parallel: first, augmenting the input with

multi-resolution features and therefore dealing with the

locality outside the model, and second, exploiting the

locality with a model that integrates that concept, all

within the context of deep learning.

The main contribution of this paper relates to the

fact that while existing works rely on features that are

defined and crafted to fit certain characteristics of sounds,

deep learning is powerful enough to learn features by

itself when the appropriate architectures are in place.

This work is not novel in terms of using deep learning

for acoustic event detection as this is already familiar

in ASR [11], and we are starting to see it in acous-

tic event detection as well [12]. What these studies do

not do is truly exploit the feature learning ability of

deep learning and use custom crafted features downsam-

ple and focus on specific properties of certain sounds.

Here, we show how, with the appropriate architectures,

deep learning models can learn features directly from

a naive feature (i.e., the log power spectrogram in this

work).

The paper continues with Section 2, which addresses

the importance of spectro-temporal locality, and intro-

duces standard notions related to the deep learning frame-

work in the context of AED. Section 3 describes the first

approach combining multiple resolution spectrogram-

input DNN classifiers, thus dealing with locality outside

the model. In Section 4, the spectrogram-input con-

volutional neural network (CNN) [13, 14] is discussed,

reporting the results of our experimental evaluation in

Fig. 1 Overview of the spectrogram-input deep neural network on the left (a) and convolutional neural network on the right (b) architectures
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Section 5. Section 6 discusses the results and the insights

we obtained, concluding the paper with Section 7.

2 Conventional method and problem statement
This section describes a spectrogram input deep learning

AED baseline along with its limitations and the motiva-

tions that lead to the feature extraction strategies in this

study. It also includes a description of the spectrogram

input CNN framework that is evaluated later on.

2.1 Deep learning-based acoustic event detection

In [8], we can find an AED approach that directly mod-

els log spectra patches rather than pre-designed features

using deep neural networks (DNN). To better charac-

terize sounds that are quite different from speech, a

high-resolution spectrogram patch (a window of spectro-

gram frames stacked together) is directly used as input

shown in Fig. 1a. This ensures that the input feature is

embedded with enough time-frequency detail. But, mean-

ingful features still need to be obtained from such a

high-dimensional input. Restricted Boltzmann machines

(RBMs) [15] provide a useful paradigm for accomplishing

this, since they are unsupervised generative models with

great high-dimensional modeling capabilities, and allow

the model to learn features from data. Moreover, RBMs

form the basis of current state-of-the-art deep neural net-

works (DNNs) [16], allowing seamless integration into the

DNN framework.

The resulting model consists of a chain of RBM feature-

extraction layers trained in cascade by using spectrogram

patches as the input to the first layer and the output of

each layer as the input to the next layer. Pretrained layers

are then stacked together, with a softmax layer on top that

has an output node for each output state in the recognizer,

to form a deep neural network following standard deep

learning techniques [16]. The entire network is trained to

estimate state posteriors (one state per acoustic event),

which will be decoded later as a hidden Markov model

(HMM) forming what we know as a DNN-HMM. Please

see [8] for more details.

2.2 Importance of spectro-temporal locality

The model we described above provides excellent per-

formance, yet its main advantage is also a weakness,

and this forms the underlying idea of this paper. It is

because acoustic events have specific spectro-temporal

shapes that DNNs are capable of characterization and

classification with significant levels of robustness. How-

ever, these spectro-temporal shapes are global, meaning

that the DNN learns to model entire spectrogram patches.

That is, the input layer learns weights that describe com-

plete spectrogram patches. In a way, we can say that DNNs

are able to learn a “global” characterization of an acoustic

event. But that is only one side of the acoustic scene.While

sounds can be defined globally, a more abstract taxon-

omy can also be defined resulting in properties such as

stationarity and transiency, i.e., a “local” characterization.

In the spectrogram domain, “local” refers to the con-

cept of locality in time-frequency bins, and, with the deep

learning model described in the previous subsection as

the starting point, we approach this in two different ways:

outside the model and with a model that integrates local

characterization.

The first approach arises from observing the way in

which different spectral resolutions show different infor-

mation [10]. Figure 2 reveals that there are differences

with regard to the information shown by different spec-

tral resolutions. This is caused by the trade-off between

time and frequency resolution. That is, increasing the

frame length for computing the spectrum reduces the

time resolution. On the other hand, this increases the fre-

quency resolution. While this allows access to finer detail

in the frequency axis, the risk arises of missing low-energy

sounds such as “steps”. Conversely, with a shorter frame

length, the time resolution increases, thus reducing the

frequency detail, and potentially weakening the character-

ization of sounds with specific frequency-wide patterns

such as a “phone”, or a “door slam”. In summary, looking

at different spectral resolutions simultaneously could yield

some benefits in terms of performance.

The work reported in [10] exploits this by separating

the acoustic signal into components based on different

spectro-temporal scales, but again, these scales are hand-

crafted, and further processing is used to downsample

the feature resolution using MFCCs as features. We can

now use multiple spectrograms with multiple resolutions

directly as features thanks to the ability of deep architec-

tures to model high-dimensional inputs.

The second approach is intended to integrate the

spectro-temporal locality in the model itself. High-

resolution spectrogram patches are expected to embed

enough information about spectral and temporal struc-

tures to model complex sounds. And, if this is exploited

for “global” characterization, it can also be exploited for

“local” characterization. Rather than having a fully con-

nected input layer as in the DNN approach, a layer that

only connects a local subset of time-frequency bins to

each node of the hidden layer could exploit the concept

of locality. Moreover, if the weights locally connecting

input and hidden nodes are shared throughout the layer,

the model can potentially learn features regarding station-

arity, transiency, etc. CNNs do exactly this, and that is

what makes them the ideal candidate for our integrated

approach.

2.3 Convolutional neural networks for spectrogram input

Convolutional neural networks (CNN) [13], which

we have already seen in acoustic signal processing
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Fig. 2Magnified log power spectrogram regions for “steps” (a) and “phone ring” (b) sounds for high-time resolution (10 ms frame length, (a.1) and

(b.1)) and high-frequency resolution (90 ms frame length, (a.2) and (b.2))

applications [17–19] besides computer vision, provide

the means to extract local features from the spectro-

gram itself. The convolution of relatively small-sized

filters over a spectrogram patch makes it possible

to learn local feature maps (convolution is only per-

formed with adjacent bins in time and frequency, i.e.,

local).

CNNs consist of a pipeline of convolution-and-pooling

operations followed by a multilayer perceptron, namely

a deep neural network. CNNs are tightly related to the

concept of feature extraction, modeling not just the input

as a whole, but also independent local features in an

integrative manner. The entire model is then globally con-

structed by jointly training the convolutional and DNN

architectures as a whole using back-propagation (see

Fig. 1b for an overview).

Spectrogram input CNNs exploit time-frequency local

correlation by enforcing local connectivity patterns

between neurons of adjacent layers. The input hidden

units to the DNN part of the model (Ck , and Mk after

pooling) are connected to a locally limited subset of units

in the input spectrogram patch and are contiguous in time

and frequency. Each filter Fk is also replicated across the

entire input patch forming a feature map, which shares

the same parametrization (i.e., the same weights and bias

parameters).

The convolution-and-pooling architecture follows a

typical CNN architecture where convolved feature maps
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Ck are obtained from a spectrogram patch input xt with a

linear filter Fk of shape S × S, adding a bias term bk , and
applying a non-linear function,

Ck
ij = tanh

(

∑S

m=1

∑S

n=1

(

Fk
mnx

t
(

i+m−

⌊

S
2

⌋)

,
(

j+n−

⌊

S
2

⌋)

)

+ bk

)

(1)

where xtω,τ refers to the bin in the frequency index ω and

frame index τ , in patch xt . Max-pooling is then applied

following a specific shape P1 × P2, which we have chosen

to obtain the feature mapMk ,

Mk
ij = max

(

Ck
(iP1:(i+1)P1),(jP2:(j+1)P2)

)

(2)

where P1 and P2 refer to pooling along frequency and

time, respectively (e.g., 1 × 1 pooling scheme is equiva-

lent to no pooling). The pooling stage has no parameters,

and therefore, there is also no learning.

The rest of the CNN architecture consists of fully con-

nected layers of hidden nodes with sigmoid activations,

which receive a flattened concatenation of all the feature

maps
{

M1 · · ·MK
}

as the input. Further details can be

found in [13, 14].

3 Exploiting locality withmultiple resolution

spectrograms
Given the differences between acoustic events in terms

of time and frequency resolution, we can assume that

spectrogram-input AED systems are dependent on the

resolution with which the spectrogram was computed.

Figure 2 shows a magnified region of two acoustic events,

“steps” and a “phone ringing” , with high-time resolution

(top), and high-frequency resolution (bottom). Observing

the high time resolution spectrogram (Fig. 2a.1, b.1), we

can recognize onsets, transient sounds, and low-energy

signals without great effort. This does not happen with

high-frequency resolution (Fig. 2(a.2, b.2), but we have

more detailed access in the frequency axis. This trade-

off between time and frequency resolution is because the

frame length influences the shape of the time-frequency

bins in a spectrogram, and this shape influences the

amount of detail on each axis. The ability to able to

observe the spectrogram with a much wider shape that

covers both long time and frequency regions simultane-

ously could reveal much richer information.

In summary, the multi-resolution approach consists in

a set multiple single-resolution DNN classifier working in

parallel for the same task. The parallel output of this rec-

ognizer is then combined using the scheme presented in

subsection 3.1. As the presented approach includes sup-

port for output of multiple event labels simultaneously,

subsection 3.2 addresses why and how this compares with

other single output models.

3.1 Combination scheme

We propose a simple combination scheme to merge the

outputs of multiple single-resolution AED systems work-

ing in parallel. The scheme combining multiple spectral

resolutions is as follows (see Fig. 3):

1. First, using a development set, we learn which

single-resolution AED system Sr works better with

each of the acoustic events in the task.

2. Multiple single-resolution recognizers, such as that

described in subsection 2.1 {S10, · · · Sr · · · SR}, each

working with a different spectral resolution r (e.g.,
r = 10ms frame length) provide output labels in

parallel.

3. Then, each output will be filtered so that only the

optimal set of events Er for resolution r is selected, as
we have previously learned with a development set.

4. The final output is obtained by merging repeated

labels and/or removing the label “silence”, if there is

another label already, on a frame-wise basis.

This is rather a simple approach, but we could draw

conclusions from it.

3.2 On event overlapping and output of multiple labels

The combination scheme described above allows the out-

put of multiple labels on each frame. In other words, it

considers the overlapping of acoustic events as long as

those events are not assigned to the same single resolu-

tion classifier. From a real world perspective, this is more

realistic. In terms of performance, this can indeed result

in an improvement of the performance as more events can

be detected. For instance, a phone can ring while some-

body is typing on a keyboard. However, in the proposed

architecture, each of the single resolution classifiers target

all events, and the results are filtered at the output of the

classifier to allow only the labels for which each single res-

olution classifier works better. In this way, this system can

be compared to systems that only output a single label at

each frame.

Moreover, even considering the previously described

situation where a phone rings in the presence of a key-

board typing sound, these non-speech events are still

sparse enough in time to allow a single event classifier to

recognize both properly, as a sequence of keyboard-phone

events. For a further discussion of this topic, the reader

can refer to [20], which presents different possible metrics

for strongly polyphonic environments.

4 Exploiting locality with a spectrogram patch

input CNNmodel
The definition of CNN has already been addressed in

subsection 2.3. In this section, specific considerations for

AED are discussed, along with an observation of how an
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Fig. 3Multi-resolution spectrogram patch input classifier and label stream combination overview

example of spectrogram input CNN behaves with acoustic

events.

4.1 AED specific considerations

CNN’s most important advantage is the ability to learn

local filters from 2D inputs, and that is the motiva-

tion behind using them to learn local maps from time-

frequency patches. While in images this accounts for

figure corners, edges, and so on, such filters are alsomean-

ingful when the inputs are spectrogram patches. Finding

local features that highlight continuity in time, continu-

ity in frequency, or other more fluctuating local patterns,

allow the model to unfold a single spectrogram into many

local feature maps and perform classification over.

4.2 Spectrogram-patch-input CNN

The principle of CNNs for replicating convolution filters

as described in subsection 2.3 allows features learned by

the model to be detected regardless of their position in

time or frequency. This directly relates to the fact that we

are not learning event-dependent features, but rather use-

ful local filters that reveal more independent aspects of

sounds. Figure 4 shows some of the filters learned dur-

ing the experiments. For instance, maps for filters such as

F3 or F4 react very lightly to the sound of applause show-

ing that they are not focused on transiency, while others

such as F2, F4, F6, F8, and F9 do have quite noticeable

responses. The case of a phone ringing is more complex as

onsets and stationary notes both appear, and this causes

many convolution maps to activate in different ways to

highlight different properties.

It would be interesting to see how these filters and

their responses compare with other standard projection

techniques used to enhance data such as PCA or LDA.

However, this would require a way of ordering the filters

and finding their equivalent filters between each CNNs

and existing projection methods. We consider this to be

worth exploring in the near future.

5 Experiments and results
As two approaches are being introduced in this paper, the

models have been evaluated from two points of view:

• We evaluate how different parameters affect the

multi-resolution and CNN approaches.
• We compare best scores for these with a

state-of-the-art DNN using a baseline based on [8].

This section presents the datasets, the setup parameters

we used, and the evaluation results.

5.1 Datasets and front-end

The proposed approaches have been tested against the

acoustic event recognition task in CHIL2007 [3], a

Fig. 4 Example of filters obtained after training a 10-filter CNN with 5 × 5 size filters and a 30 frames long spectrogram patch input
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database of seminar recordings in which twelve non-

speech event classes appear in addition to speech:

applause (ap), spoon/cup jingle (cl), chair moving (cm),

cough (co), door slam (ds), key jingle (kj), door knock

(kn), keyboard typing (kt), laugh (la), phone ring (pr),

paper wrapping (pw), and steps (st). This database con-

tains three AED-related datasets which we have used for

this evaluation: a training dataset called FBK that con-

tains only isolated acoustic events without the presence

of any speech, a development dataset that contains meet-

ings in a similar manner to those in the evaluation dataset,

and a test dataset that contains seminar recordings where

speech and acoustic events appear in a natural manner

and overlapping at times (60 % of the events reportedly

overlap with speech in the test set [3]). Each dataset con-

sists of 1.65, 3.27, and 2.55 h for training, development, and

test, respectively.

Additionally, to deal with the case where speech over-

laps with acoustic events, we need such training data to

have the neural network learn to discriminate in such a

situation, and following the approach in [8], we have arti-

ficially augmented the training dataset to contain speech-

overlapped data by adding publicly available speech from

AURORA-4 [21]. This is added by taking a random chunk

of speech from the speech dataset and adding it to the

isolated events dataset in different signal-to-noise ratios

(SNR), where the signal is the non-speech acoustic event

and the noise is the speech that corrupts the targeted

acoustic event. A total of eleven SNR conditions were gen-

erated: -9, -6, -3, 0, 3, 6, 9, 12, 15, and 18 dB, and clean (no

speech noise added).

The front-end consists of computing the log power

spectrum and a frame basis, and stacking consecutive

frames together as a two-dimensional feature. For CNNs,

the log power spectrogram was computed using 10 ms

frames with a 10 ms shift, which performed the best. For

multi-resolution DNN, the frame lengths were 10, 20, 30,

40, 50, and 60 ms, with a 10-ms shift for all of them. The

input into the neural networks was normalized to remove

any variance.

5.2 Setup parameters

CNNs add more parameters to the typical deep model,

and therefore, we have designed a broad set of experi-

ments1 to learn how these parameters affect the perfor-

mance. All settings are summarized in Table 1.

CNN models have one convolution layer and four fully

connected layers with 512 nodes each, while the DNN-

only models have a first hidden layer with 1024 nodes to

deal with the input and four hidden layers with 512 hid-

den nodes each.We also compared the performance of the

CNN settings with a DNN-only spectrogram-patch-based

AED as described in subsection 2.1. Both CNN-based and

DNN-only models were trained for 500 epochs.

Table 1 Experimental setup parameters

Deep neural networks settings

FFT resolutions 10 ms (129 bins), 20 ms (257 bins)

(multi-resolution) 30 ms (257 bins), 40 ms (513 bins)

50 ms (513 bins), 60 ms (513 bins)

Patch lengths 10, 20, and 30 frames

Convolutional neural networks settings

Filter shapes (CNN) 5 × 5, 7 × 7, 9 × 9 (bins × frames)

Number of filters (CNN) 10, 20, and 40 filters

Pooling (CNN) 1 × 1 (no pooling)

2 × 1 (frequency pooling)

1 × 2 (time pooling)

2 × 2 (both axes)

The goal of this work is to compare the feature learning

ability of convolutional (CNN) and fully connected layers

(DNN), and that is why the compared models have the

same architectures except for the first hidden layer. This

allows us to fairly compare the spectrogram-modeling

capabilities of both types of layers. The reader can refer

to recent studies such as [12] in which the number of

convolutional layers is adequately evaluated.

5.3 Multi-resolution results

Table 2 compares the two metrics: frame-score (per-

centage of correctly classified frames), as in Fig. 7, and

AED-accuracy which is the event-wise f-measure between

precision and recall. Overall results confirmed that even a

simple combination approach provided a significant clas-

sification score improvement over the best performing

single-resolution DNN. This indicates the relevance of

time-frequency resolution.

Looking at event-wise results with the best spectro-

gram patch length (20 frames) as shown in Table 3, we

compared the performance of the AED described sub-

section 2.1 for several spectral resolutions (spectrum

Table 2 AED evaluation results with the “test” set

System Frame-score AED-acc

Best single resolution DNNmodel [8]

20 frames/patch, 10 ms frames 69.80 % 54.82 %

Multi-resolution DNNmodels

10 frames/patch 71.80 % 56.95 %

20 frames/patch 72.54 % 57.03 %

30 frames/patch 70.15 % 54.01 %

Best performing CNNmodels

No pool., 9 × 9 filters (40), 30 fr./patch 76.41 % 61.38 %

1 × 2 pool., 9 × 9 filters (20), 30 fr./patch 75.20 % 60.85 %

1 × 2 pool., 5 × 5 filters (20), 30 fr./patch 75.11 % 60.85 %
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Table 3 Resolution-event-wise results (frame-score %) for the

best performing spectrogram patch size (20 frames/patch)

DNN-only model

AE Frame length (resolution)

10 ms 20 ms 30 ms 40 ms 50 ms 60 ms

ap 76.39 % 65.39 % 66.32 % 82.65% 69.90 % 72.85 %

cl 71.84 % 84.04% 68.17 % 62.26 % 62.40 % 70.64 %

cm 31.59 % 35.71 % 33.73 % 30.98 % 44.00% 23.62 &

co 36.97 % 27.82 % 27.49 % 17.09 % 21.58 % 29.97 %

ds 29.70 % 16.92 % 17.76 % 11.62 % 38.74% 21.66 %

kj 12.90 % 11.46 % 14.64 % 12.70 % 17.11% 13.66 %

kn 49.66 % 27.08 % 37.03 % 66.89% 44.57 % 23.55 %

kt 38.37 % 27.97 % 26.98 % 27.29 % 32.61 % 28.59 %

la 13.67 % 12.14 % 12.48 % 10.78 % 10.90 % 11.48 %

pr 53.58 % 55.98 % 51.35 % 60.25% 55.43 % 52.82 %

pw 83.34 % 82.28 % 87.28 % 92.02% 92.69 % 88.15 %

st 54.85 % 47.15 % 51.83 % 46.43 % 63.27 % 48.38 &

all 69.20 % 69.80% 67.34 % 68.09 % 68.33 % 67.34 %

frame length) between 10 and 60 ms to determine its

importance.

The first conclusion is that the best performing resolu-

tion overall is not the best resolution for each and every

acoustic event class separately. In general, and consis-

tent with previous assumptions, certain low-energy events

such as “keyboard typing” are better tracked with short

frame resolutions, whereas long frames perform better for

a “door slam” (50 ms). This is also the case with “applause”

(40 ms), which has a very similar structure in the fre-

quency domain. On the other hand, with events such as

“chair move” , switching the frame length seems to have

almost no effect on performance. Other sounds such as a

“laugh” perform in various ways with no strong trend.

5.4 CNN results

The results are shown in Fig. 7, and the top scores are sum-

marized for ease of comparison in Table 2. At first sight,

the first conclusion is that we are able to achieve better

performance than any DNN-only model (Table 2).

Figure 7 also provides some insights into CNN-based

AED performance. The best performance came from

the longest spectrogram patch configuration (Fig. 7a).

Regarding the convolution filters, the results indicate that

more filters provide better performance (Fig. 7b), and

filter shapes covering smaller regions provide better per-

formance on average (Fig. 7c), but the actual best score

was obtained with a wide filter (Table 2). As for pooling,

the general conclusion is that the effects are different for

pooling along frequency and pooling along time (Fig. 7d).

However, the results do show that performance degrades

visibly when frequency pooling is included.

6 Discussion
6.1 Comparingmulti-resolution input and CNN-based AED

Conceptually, the multi-resolution DNN and the CNN

approaches travel in different directions. Multi-resolution

analysis approaches the issue of characterizing spectro-

temporal locality outside the model, while the CNN

approach itself exploits local features. These approaches

are not mutually exclusive but complementary. While

CNNperforms better than combining resolutions, it is not

hard to imagine in the near future a deep model in which

parallel working convolution-and-pooling layers receive

spectrogram patches of the same signal with different

spectral resolutions, and where their outputs are stacked

and fed to the DNN part of the CNN. The question then

is if the potential gain is worth the cost.

6.2 Convolution filters

When we look at a specific example of the filters

obtained for a simple CNN configuration (Fig. 4) the

convolved maps after convolution, bias, and activation

function (Figs. 5 and 6), we can obtain some interest-

ing insights into what the convolution filters are learn-

ing. For instance, some filter responses show in Figs. 5

and 6 such as F2, F4, F6, F8, and F9 focus more on

short-time properties of the spectrum as we can see

they are more salient with an “applause” sample. With

the a “phone ringing” sample, this filters activate again

as phone ringtones contain short-time onsets, but other

filter responses also activate to highlight more station-

ary properties such as with F8. F9 is also interest-

ing as it seems to activate only with the absence of

sounds.

Using different numbers of filters (Fig. 7b), we can com-

pare their performance and see intuitively that the more

parameters we have, the more local features we can learn,

therefore more filters (40) usually means better perfor-

mance. That being said, we have already obtained fair

performance with ten filters without pooling. A careful

observation of the filters after training reveals that as we

increase the number of parameters (number of filters)

some of these filters seem to receive less training and

remain largely random. This might also be in part due the

fact that we have too few data.

6.3 Pooling

According to the results (Fig. 7d), the answer to how

pooling affects performance is that there seems to be no

gain in pooling along time or frequency. However, pool-

ing along time show up in the top three scores (Table 2).

As mentioned above, max-pooling basically downsamples

the data, and this seems to adversely affect acoustic events

signals.

Pooling along both axes is worse than with any of the

previous approaches.
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Fig. 5 Responses to filters shown in Fig. 4 for the sound of an “phone ringing”

The basis of this work is to feed the model with a

high-resolution detailed enough feature that is sufficiently

detailed to find sounds in overlapping speech scenarios.

This has worked fairly well with DNNs in the past, and

while the convolution step filters the signal, pooling is a

more drastic step that reduces the detail in the data. The

results suggest that this reduction in detail is not so impor-

tant when pooling is along time, which can be observed by
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Fig. 6 Responses to filters shown in Fig. 4 for the sound of an “applause”

the similar performance for 1× 1 and 1× 2, and 2× 1 and

2 × 2, in Fig. 7d. However, the results reveal that incor-

porating pooling along frequency has a negative effect on

performance as the accuracy decreases between 1× 1 and

2 × 1, and 1 × 2 and 2 × 2.

This difference in the way pooling among time or fre-

quency affects performance has no obvious justification,

but we can consider intuitively why pooling as performed

in image processing does not work as expected with

acoustic spectrograms. In fact, as CNNs were widely
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Fig. 7 Averaged frame-score (percentage of correctly classified frames) by parameter as described in subsection 5.2: spectrogram patch length (a),

number of convolutional filters to be trained upon (b), filter shape (c), and max-pooling scheme (d)

adopted first in image processing, pooling is a function

that makes much more sense in that domain. Downsam-

pling an image would still maintain the overall shape of

the object to be recognized, whereas this is hard to imag-

ine happening in acoustic spectrograms. While this is

not in the scope of this work, CNNs for acoustic sig-

nal processing might require a pooling function of their

own. To illustrate this, imagine downsampling a black-

and-white image of a circle or a square. Since the edges of

this figure are adjacent, traditional pooling schemes make

sense. However, with a note in a phone ringtone as seen

in Fig. 2, this does not stand. Harmonic sounds have very

specific rules in the spectrum domain, while they are still

continuous in the traditional sense in time. In fact, this is

exactly what the results show. Traditional pooling in fre-

quency has negative effects as the pooling rules in acoustic

spectrograms and in images are different. This opens the

door for future investigations of more appropriate pooling

schemes for acoustic spectrograms.

6.4 Context

While on average, we see that larger contexts provide bet-

ter performances indicate the longer the better, it is hard

to imagine acoustic events that require more than 300

ms of input to be recognized. Even when we consider

longer events such as “clapping”, this consists of shorter

“single clap” events that should not require such a long

patch. From this point of view, none of the acoustic events

require such a long patch, but this assumptionmight differ

for different acoustic events, and therefore, this assump-

tion is task-based. Additionally, the increase in complexity

when enlarging the input size must to be considered as

the dimensionality of each additional frame being added

to the context is high.

7 Conclusions
We have described two approaches that deal with the

importance of feature extraction in deep learning-based

AED. Both models highlight the superiority of using

high-resolution spectrogram patches as input to the

models, thanks to DNNs and their ability to model

high-dimensional data. First, taking a high-resolution

spectrogram-input DNN model as a starting point, we

described a model that combines the outputs of sev-

eral single-resolution models working in different spectral

resolutions to achieve a superior performance to any of

the single-resolution models by itself. Second, we intro-

duced the use of CNN in AED to model “local” properties

of acoustic events, which provided the best results in

the evaluation task. From a broader point of view, both

approaches adopt the concept that even if acoustic events

have very specific “global” spectra patterns, they also have

“local” properties, but approach the issue in complemen-

tary ways; the multi-resolution approach by dealing with
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the problem outside the model, and the CNN approach by

incorporating the locality concept in the model itself.

While results show that the CNN approach performs

considerably better, we must also note that the com-

bination scheme in the multi-resolution approach out-

performs any single-resolution model, despite it being a

rather simple and naive approach. With that in mind, fur-

ther and more advanced combination schemes must be

incorporated into the framework to assess a more real-

istic comparison based on what we have learned in this

paper. Regarding the CNN, as in ASR and other areas,

there is still much to be done and learned, but the pos-

sibility of combining both approaches, and the layer-wise

pre-training of CNNs, must be considered.

Endnote
1All the experiments were implemented using the

Theano library [22].
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