
Exploiting Statistics on Query Expressions for
Optimization

Nicolas Bruno
Columbia University

nicolas@cs.columbia.edu

Surajit Chaudhuri
Microsoft Research

surajitc@microsoft.com

ABSTRACT

Statistics play an important role in influencing the plans produced

by a query optimizer. Traditionally, optimizers use statistics built

over base tables and assume independence between attributes while

propagating statistical information through the query plan. This

approach can introduce large estimation errors, which may result

in the optimizer choosing inefficient execution plans. In this pa-

per, we show how to extend a generic optimizer so that it also ex-

ploits statistics built on expressions corresponding to intermediate

nodes of query plans. We show that in some cases, the quality

of the resulting plans is significantly better than when only base-

table statistics are available. Unfortunately, even moderately-sized

schemas may have too many relevant candidate statistics. We in-

troduce a workload-driven technique to identify a small subset of

statistics that can provide significant benefits over just maintaining

base-table statistics. Finally, we present experimental results on an

implementation of our approach in Microsoft SQL Server 2000.

1. INTRODUCTION
Most query optimizers for relational database management sys-

tems (RDBMS) rely on a cost model to choose the best possible

query execution plan for a given query. Thus, quality of the query

execution plan depends on the accuracy of cost estimates. Cost

estimates, in turn, crucially depend on cardinality estimations of

various sub-plans (intermediate results) generated during optimiza-

tion. Traditionally, query optimizers use statistics built over base

tables for cardinality estimates, and assume independence while

propagating these base-table statistics through the query plans (see

Section 2 for a detailed discussion). However, it is widely recog-

nized that such cardinality estimates can be off by orders of mag-

nitude [21]. Therefore, the traditional propagation of statistics that

assumes independence between attributes can lead the query opti-

mizer to choose significantly low-quality execution plans.

In this paper, we introduce the concept of SITs, which are statis-

tics built on attributes o f the result o f a query expression 1. Thus,

*Work done in part while the author was visiting Microsoft Research.

1The obvious acronym SQE (Statistics on Query Expressions) is not quite
as nice as SIT(Statistics on Intermediate Tables). So, we decided to be safe
and pick a nicer acronym rather than being technically accurate.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
,4CM SIGMOD '2002 June 4-6, Madison, Wisconsin, USA
Copyright 2002 ACM 1-58113-497-5/02/06 ...$5.00.

SITs can be used to accurately model the distribution of tuples on

intermediate nodes in a query execution plan. We will show that

in some cases, when optimizers have appropriate SITs available

during query optimization, the resulting query plans are drastically

improved, and their execution times are tens, and even hundreds of

times more efficient than those of the plans produced when only

base-table statistics are used.

Despite the conceptual simplicity of SITs, significant challenges

need to be addressed before they can be effectively used in existing

RDBMS. First, we must show how query optimizers can be adapted

to exploit SITs for choosing better execution plans. Next, we must

address the problem of identifying appropriate SITs to build and

maintain. The latter is a nontrivial problem since for a moderate

schema sizes, there can be too many syntactically relevant SITs.

Finally, we need to address the issue of efficiently building and

maintaining SITs in a database system.

In this paper, we take the first steps towards meeting these chal-

lenges. While we briefly comment on the last issue, we primarily

focus on the first two issues referred to above. We explain how a

traditional relational query optimizer can be modified to take ad-

vantage of SITs. Identifying whether or not a SIT is applicable for

a given query can leverage materialized view matching technology.

But, as we will discuss, specific SITs applications have no counter-

part in traditional materialized view matching. Another desirable

goal is to ensure that the cardinality estimation module of an opti-

mizer is modified as little as possible to enable the use of SITs. We

have implemented such an optimizer by modifying the server code

of Microsoft SQL Server 2000. However, the ideas introduced in

this paper are general in the sense that the proposed algorithms do

not depend on the specific structure of statistics used in a RDBMS

(e.g., type of histogram).

We show how an appropriate set of SITs may be chosen to max-

imize the benefit to the query optimizer. We recognize that use-

fulness of SITs depends on how their presence impacts execution

plans for queries against the system. Therefore, it is necessary to

take into account workload information while selecting SITs. How-

ever, evaluating the effectiveness of SITs for queries in the work-

load leads us to a "chicken and egg" problem, as it is hard to de-

termine effectiveness of a SIT until it has been built. In this paper,

we present a novel technique to identify useful SITs based on in-

formation on workload analysis that has desirable property that we

do not necessarily need to build a SIT to evaluate its effectiveness.

Our technique can be seen as a non-trivial generalization of the

MNSA algorithm [6], which selects statistics on stored tables only.

We demonstrate experimentally that the plans produced using the

set of SITs chosen by our algorithm is close in quality to the plans

produced using all possible SITs, and considerably better than the

plans obtained using statistics only on stored tables.

263

(Simplified) Query Optimizer

[~ . 4 _ ~ E n UEmn;ir:e tiOn[

Cost Estimation

t
Figure h Simplified Optimizer's Architecture.

This work contributes to the broader goal of automating statistic

management for RDBMSs and was done as part of the AutoAdmin

project at Microsoft Research 2. The goal of this project is to re-

duce the total cost of ownership of relational database systems by

making them self-tuning.

The rest of the paper is structured as follows. In Section 2 we

give a brief overview of cost and cardinality estimation in current

query optimizers. In Section 3 we introduce the concept of SITs

and a framework to incorporate them in existing query optimizers.

In Section 4 we propose a workload-driven technique to efficiently

select a good subset of SITs that can significantly improve quality

of execution plans produced by the optimizers.

2. BACKGROUND
The query optimizer is the component in a database system that

transforms a parsed representation of an SQL query into an effi-

cient execution plan for evaluating it. Optimizers usually examine

a large number of possible query plans and choose the best one in a

cost-based manner. To efficiently choose among alternative query

execution plans, query optimizers estimate the cost of each eval-

uation strategy. This cost estimation needs to be accurate (since

the quality of the optimizer is correlated to the quality of its cost
estimations), and efficient (since it is invoked repeatedly during

query optimization). In this section we describe the components

of a generic query optimizer and show how statistical information

can be used to improve the accuracy of cost estimations, which in

turn impacts the whole optimization process.

2.1 Architecture of a Query Optimizer
There are several optimization frameworks in the literature [10,

11, 12, 14, 20] and most modern optimizers rely on the concepts

introduced by those references. Although the implementation de-

tails vary among different systems, all optimizers share the same

basic structure [4], shown in Figure 1. For each incoming query,

the optimizer maintains a set o f sub-plans already explored, taken

from an implicit search space. An enumeration engine navigates

through the search space by applying rules to the set of explored

plans. Some optimizers have a fixed set of rules to enumerate all

interesting plans (e.g., System-R) while others implement exten-

sible transformational rules to navigate through the search space

(e.g., Starburst, Cascades). All systems use dynamic programming

or memoization to avoid recomputing the same information dur-

ing query optimization. For each discovered query plan, a compo-

nent derives different properties if possible, or estimates them oth-

erwise. Some properties (e.g., cardinality and schema information)

are shared among all plans in the same equivalence class, while

others (e.g., estimated execution cost and output order) are tied to a

specific physical plan. Finally, once the optimizer has explored all

2http : / / r e s e a r c h .microsof t . com/dmx/aut oadmin.

interesting plans, it extracts the most efficient plan, which serves as

the input for the execution engine.

A useful property of a query plan from an optimization perspec-

tive is the estimated execution cost, which ultimately decides which

is the most efficient plan. The estimated execution cost of a plan, in

turn, depends heavily on the cardinality estimates of its sub-plans.

Therefore, it is fundamental for a query optimizer to rely on accu-

rate and efficient cardinality estimation algorithms.

EXAMPLE 1. Consider the query in Figure 2(a) and suppose

that IRI ~ ISl ~ ITI. I f the query optimizer has knowledge that

R.a < 10 is much more selective than T.b > 20 (i.e.,just a few

tuples in R verofy R.a < 10 and most o f the tuples in T veri y

T.b > 20), it should determine that plan P1 in Figure 2(b) is more

e~cient than theplan P2 in Figure 2(c) 3. The reason is that Pl first

joins R and S producing a (hopefully) small intermediate result

that is in turn joined with T. In contrast, P2 produces a large

intermediate result by first joining S and T. I

SELECT *

FROM R,S,T

WHERE R.w=S.x

AND S.y=T. Z

AND R.a<10

AND T.b>20

T.b > 20 < 10

rT (7 VR.a < 10 S T.b 20 S
I I
R T

Figure 2: Query plans chosen by query optimizers depending

on the cardinality of intermediate results.

Cardinality estimation uses statistical information about the data

that is stored in the database system to provide estimates to the

query optimizer. Histograms are the most common statistical infor-

mation used in commercial database systems. In the next section
we show how they are currently used to estimate the cardinality of

complex query plans during optimization.

2.2 Cardinality Estimation using Histograms
A histogram on attribute x consists of a set of buckets. Each

bucket bi represents a sub-range ri of x's domain, and has asso-

ciated two values. The frequency f i of bucket bi corresponds to

the number of tuples t in the data set for which t .x 6 rl, and the

value dvi of bucket bi represents the number of distinct values of

t .x among all the tuples t for which t .x 6 ri. The main assumption

is that the distribution of tuples inside each histogram bucket is uni-

form. We use the uniform spread model inside buckets, in which

each bucket bi is composed ofdvi equidistant groups o f f i / d v i tu-

pies each. We define the density of a bucket as 6i = f i /dv i , i.e., the

number of tuples per distinct value (assuming uniformity) that are

represented in the bucket. Other techniques for modelling bucket

contents can also be used, such as the continuous or randomized

models. We now describe how histograms are used to estimate the

cardinality of queries.

2.2.1 Se lec t ion Q u e r i e s

The uniformity assumption inside histogram buckets suggests a

natural interpolation-based procedure to estimate the selectivity of

range and join predicates. The situation is particularly simple for

range predicates. Consider the query an.~<2o(R) and suppose we

have a histogram on R.a. To estimate the cardinality of such a

3We assume that no indexes, thus no interesting orders, are available.

264

query, we consider, one at a time, all histogram buckets that are

completely or partially covered by the predicate, and then we ag-

gregate all intermediate results. This procedure is illustrated below.

EXAMPLE 2. Consider the four-bucket histogram on attribute

R.a of Figure 3. Bucket bl, for instance, covers 0 < x < 10 and

has a frequency of lO0 (i.e., it represents 100 tuples in the data

seO. Similarly, buckets b2, b3, and b4 represent 50, 80, and 100

tuples, respectively. Suppose we want to estimate the eardinality of

the range predieate p = R.a < 20. Since p completely includes

bucket bl, we can guarantee that the 100 tuples in ba verify p. Also,

p is disjoint with buckets b3 and 64, so no single tuple in b3 or b4

verifies p. Finally, p partially overlaps with bucket b2 (in particular,

p is verified by 50% of b2 's uniformly spread distinct values). Using

our assumption, we estimate that 50% of the tuples in b2 verify p. In

summary, the number of tuples verifying predieate p = R.a < 20
is estimated as 100 + 50/2 = 125. I

frequency

100

501b1 [:
b2 i

0 10 20
~ - ~ b4] R.a
30 40 5~0

Figure 3: Range selectivity estimation using histograms.

In general, selection queries may have multiple predicates on

differentattributes ofthetable. Forexample, considerthe query:

SELECT * FROM R

WHERE R.a>10 AND R.b<100

and assume that we have histograms on R.a and R.b available. If

sa is the selectivity for R.a > 10 and Sb is the selectivity for R.b <

100, the selectivity for the whole predicate is estimated, assuming

independence, as sa • Sb. Multidimensional histograms [3, 13, 15,

17] have proved to be accurate in modeling attribute's correlation.

It should be noted, however, that these novel estimation techniques

are not widely used in commercial databases yet.

2.2.2 Join Quer ies

Let us consider the join predicate R ~==v S. We can use his-

tograms on R.x and Sly (if available) to improve the accuracy of

the cardinality estimation. Consider histograms Hn.= and Hs.v in

Figure 4, where each bucket is delimited by square brackets. The

procedure to estimate the cardinality of the join predicate using his-

tograms Hn.= and Hs.v is composed of three steps.

In the first step, we align the histogram buckets so that their

boundaries agree (usually splitting some buckets from each his-

togram). For instance, buckets bz and b~ in the figure share the

same left boundary. However, bucket b2 spans beyond bucket b2' 's

right boundary. Therefore, we split bucket b2 into two sub-buckets.

The left sub-bucket boundary agrees with that of bucket b~. The

right sub-bucket starts at the same position as bucket b~ but ends

before b~ does. Then, bucket b~ is split in the same way, and this

procedure continues until all original buckets are aligned (see Step

1 in Figure 4). This step is guaranteed to at most double the total

number of buckets in both histograms.

In the second step, we analyze each pair of aligned buckets and
doper bucket estimation ofjoin sizes. There is no well-founded ap-
proach towards doing it and here we sketch one of the approaches.

First, using the containment assumption [20], it is concluded that

each group of distinct valued tuples belonging to the bucket with

the minimal number of different values joins with some group of

tuples in the other bucket. For instance, in Step 2 of Figure 4, the

three group of tuples from the upper bucket are assumed to match

with three of the five group of tuples in the lower bucket. We can

model the result of joining the pair of buckets as a new bucket with

three distinct values and density 40 = 2 • 20. That is, each dis-

tinct value in the resulting bucket represents 40 tuples, which is the

product of the original bucket densities. Therefore, the frequency
of the new bucket is 120 = 3 - 40.

After applying the same procedure to each pair of aligned buck-

ets, the third and last step consists of aggregating the partial fre-

quencies from each resulting bucket to get the cardinality estima-
tion for the whole join.

Original Histograms

bl - r : : b2(f=12,: dr,,:6) [I b3(fi=200' ¢1v=2)I - r .b' HR.x
_L 1

. = T T = = = ,, , T ~-Is.y
" . ; 1 ' I : 1 'JL = = bz'(f=40, dr=3) b3'(f=160, ¢1v=8) b 4'

Step 1
T
1

. , - ' IF ,
" ' JL '

, ,J1 ,
,

Step 2~=~"~"~ -'~'~ '~,'~;1

i// :r,, ,T.

= i : : I : Resulting bucket

f=loo, d~=5

T .HRx
JL

: ,, ~S.y

Figure 4: Join selectivity estimation using histograms.

2.2.3 Selec t Pro jec t Join (SPJ) Quer ies

The techniques in the previous section are used when the predi-

cates are directly applied to the base tables that hold the histograms

involved. When considering arbitrary SPJ queries, we face the ad-

ditional challenge that cardinality estimation requires propagating

statistics through predicates. Consider the query:

SELECT * FROM R,S

WHERE R.x=S.y AND S.a<lO

and assume that we have histograms on R.x, S.y and S.a avail-

able. There are conceptually two ways to estimate the selectivity

of the whole expression. On one hand (Figure 5(a)), histograms for

R.x and S.y are used to estimate the selectivity o f R ~ S ignoring

the predicate S.a < 10. Then, assuming independence between

S.y and S.a, the histogram for S.a is propagated 4 through the join

4The histogram propagation step just scales the bucket frequencies so that
they reflect the new selectivity information. In this case, the frequency val-
ues for histogram S.a are scaled so that the sum of all frequencies in the
histogram equals the estimated number oftuples in R t~ S.

265

upwards in the tree. The propagated histogram is then used to es-

timate the selectivity of S.a < 10 over the result from R ~ S,

to finally obtain the selectivity of as.a< lO (R ~ S). On the other

hand (Figure 5(b)), the histogram for S.a is used first to estimate

the selectivity of as.~<lo(S). Then, assuming independence be-

tween S.y and S.a, the histogram for S.y is propagated through

the selection operator and used together with the histogram of R.x

to estimate the selectivity of R ~ (as.a<lo(S)). It is important

to note that, although the two methods above estimate the same

expression, i.e., R ~ (as.a<lo(S)) ------ aS.a<lO(R tXl S), the re-

suiting estimations can be slightly different.

(~S a • 10 t~ ~ _ ~ ~ (~RS.a < 10
1 "x ~ R.~o.y, . ~ '~ I

M
R . ~ S . y ' 'Era m \ e~' RS / • t m c).

/ \ ,~o R O's.p,101 ~, a IXl
o ~

/ \ I .~ .,~ / / ~ ._~ where a s _----
S ~ j i R S~/ ~ R S

(a) S.a is propagated (b) S.y is propagated (c) Extra information is used

Figure 5: Histogram propagation in complex queries.

In this paper we focus on the propagation of statistics through

predicates, and study the sensitivity of the query optimizer to the

quality of statistics in intermediate nodes of query execution plans.

For that purpose, we introduce in the next section the notion of SITs

and evaluate the impact of this structure in the optimizer's choice

of query execution plans.

3. SIT: STATISTICS ON QUERY EXPRES-

SIONS

In this section we introduce the concept of statistics on query ex-

pressions, or SITs, which help eliminate the propagation of errors

through the query plan operators. As an example, consider again

Figure 5, and assume that we build statistics on the result of the

query expression R S = R ~ S, specifically on RS.a. In this case
(see Figure 5(c)), we can estimate the cardinality of the original

query plan by simply estimating the cardinality of the equivalent

plan Crns.a< lo (RS) . Thus, we avoid propagating estimation errors

through the join predicate. For complex query plans, the beneficial

effect of having statistics on query expressions that match interme-

diate subexpressions of the query is magnified since we can avoid

the propagation of errors through a sequence of operators. We now

formalize the concept of statistics over query expressions.

DEFINITION 1. Let R be a table, A an attribute "of R, and Q

an SOL query that contains R .A in the SELECT clause. We define

SIT(R.AIQ) as the statistic for attribute A on the result o f execut-

ing qi4ery expression Q. We call Q the generating query expression

of SIT(R.AIQ).

The above definition is easily extended for multi-attribute statis-

tics. Furthermore, the definition can be used as the basis for ex-

tending the CREATE STATISTICS statement in SQL where instead

of specifying the table name of the query, more general query ex-

pression (i.e., a table valued expression) can be used. We omit the

specifics of such formulation in this paper.

How to build and update SITs is an interesting problem in itself.

The obvious approach to build SITs is executing the query expres-

sion associated with the SIT and building the necessary statistics

on the result of the query. Once the statistics has been computed,

the result of the query expression can be discarded. When explic-

itly requested or triggered by the system, updating of the statis-

tics can be accomplished by recomputation and rebuilding of the

statistics. However, for a large class of query expressions, more

efficient techniques drawn from the wide body of work in approx-

imate query processing can be used. This is possible because we

only need to obtain statistical distributions instead of exact results.

For instance, the construction of SITs with generating queries con-

sisting of foreign-key joins can be efficiently performed by using

sampling. Furthermore, existing indexes and statistics can also be

leveraged for efficient computation of SITs. We defer a compre-

hensive study of these alternatives to future work.

After introducing SITs, two important questions need to be an-

swered. The first one is how to leverage an existing query optimizer

so that it incorporates SITs during query optimization. We address

this issue in the next section, by presenting a general framework

that can be incorporated into existing query optimizers. The sec-

ond question is how to select which SITs to build. We address this

complementary issue in Section 4.

3.1 A Framework to Exploit SITs

SITs are only useful if the optimizer is able to incorporate them

during query optimization. We enable use of SITs by implementing

a wrapper on top of the original cardinality estimation module of

the RDBMS. During the optimization of a single query, the wrapper

will be called many times, once for each different query sub-plan

enumerated by the optimizer (see Figure 1). Each time the query

optimizer invokes the modified cardinality estimation module with

a query plan, we transform this input plan into another one that

exploits SITs. Then, we obtain a potentially more accurate cardi-

nality estimation for the modified query plan, and return it to the

query optimizer. We should note that the transformed query plan is

simply a temporary structure used by the modified cardinality esti-

mation module, and is not used for query execution. In summary,

the modified cardinality estimation module should verify the fol-

lowing properties to be effectively integrated into an existing query

optimizer:

The transformed plan should exploit applicable SITs, so that

its estimated cardinality is potentially more accurate than the

original one.

2. The original cardinality estimation module should be able

to take the transformed plan as an input with only a few

changes.

3. The transformation should be efficient, since it will be used

for several sub-plans during a single query optimization.

As we will see, in the simplest case the original (unmodified)

cardinality estimation module could be used with the transformed

plan. For more complex transformations, we might need to slightly

modify the cardinality estimation module. This issue is further ex-

plored in Section 3.2.3. We now discuss cardinality estimation

using SITs in detail.

3.2 Cardinality Estimation using SITs

For the rest of this paper, we will make some simplifying as-

sumption about incoming queries (to be optimized) as well as on

the class of query expressions used to generate SITs. We assume

that incoming queries are SELECT-PROJECT-JOIN (SPJ) queries

where the filter expression is a conjunction of simple predicates.

We assume that SITs are constrained to belong to the above class

of queries as well. The four steps in the modified cardinality es-

timation module are summarized as follows: (1) analyze the input

query plan, (2) identify and apply relevant SITs, and (3) estimate

266

M
S.e=v.v

>< o,,. ~.~

1:4 M
R. -S.s ~.u

~R . ~ b > 2 0 T U
I I
R S

Tables Attributes Predicates

R R.a R.r=S.s

S R.r R.a<10

T S.b S.b>2O

U S.s T.t=U.u

V T.t S.s=V.v

U.u V.c=I5

V.C

V.v

Tables Attributes Predicates

a l ~ a l @ R.r=S.s (al l

a3 a3 R.a<10 (F1)

S . b > 2 0 (~'2)

J 2 ~ T. t=U.u (J21

S. s=V.v (J31

J2 R.a V.c=i5 (F3)

S.b

V.c

(a) Original query plan

1) R I~S D~T -""It" RST [a,b,c]
r=v a-t

2) R~'<IV l, RV[a,c, e d]
r-v

3) T ~U ~ TU[d e,f] t=u

(d) Available SIT-SETs

(b) Tabular representation

Tables Predicates

R ---~RV
V RV. r=S. s

RV. a<10

S ~ S S.b>20

RV. c=15

T
---PUT

U

(e) Application of SITs

(c) Table and Attribute classes

~>~ TU
RV.r-S.$

Clay. a<1o {~.b>2o

I s
RV

(0 Resulting query plan

Figure 6: Example of the transformation algorithm in the modified cardinality estimation module.

and return the cardinality of the transformed query plan. In the re-

mainder of this section, we explain these steps in detail using as a

running example the query in Figure 6(a).

3.2.1 Analysis o f the lnput Query Plan

In this first step we perform simple structure analysis on the in-

put query q that will later help to identify and apply SITs to q. For

instance, in our running example we first identify the tables and

columns referenced in the query, and the list of conjunctive predi-

cates (see Figure 6(b)). Next, we classify predicates as either filter
predicates or join predicates. We use the equality join predicates

to generate column equivalence classes and also to get the set of

table subsets that are joined. Figure 6(c) shows the results of this

step in the running example. The filter predicates are marked with

an F label, and the join predicates with a J label. Tables R, S and

V are joined using predicates J1 and Ja, and tables T and U are

joined using join predicate Jz. In a similar way, columns R.r, S.s
and V.v form one equivalence class, columns T.t and U.u form an-

other equivalence class, and the remaining columns form singleton

classes. More complex analysis can be performed in this step, de-

pending on the set of rewriting transformations that we apply later.

3.2.2 Application o f Relevant SITs

For ease of notation, we represent the set of available SITs by us-

ing SIT-Sets, which basically group SITs by their generating query

expressions. Suppose we have S I T (Q I a l) , . . . , SIT(QIa~). These

SITs can be compactly represented by the following SIT-Set:

Q--~ S[al,...,an]

where S is the SIT-Set identifier that holds the set of statistics

{ SIT(Qlal) , • • . , SIT(Qlan) }. Consider a query (or its plan) q and

a SIT-Set S defined by the generating query expression Q. SIT-Set

S is potentially usefial for cardinality estimation of q if some at-

tributes ai are referenced in the selection condition of q and there

is an "occurrence" of Q in q 5. To verify the latter, we can use well-

known algorithms for materialized view matching (e.g., [5, 9, 19]).

5We do not give a formal definition for "occurrence", as it is a well under-
stood concept in materialized view matching.

Thus, we check if q can be rewritten using S, and if so generate a

new query expression (e.g., see Figure 5(c)). In such cases, we can

simply forward the rewritten query expression to a traditional car-

dinality estimator module. During cardinality estimation, S will be

treated as a base table having statistics on columns ai. This requires

a change in the system metadata so that S is treated as a hypothet-
ical table [8]. Furthermore, note that such rewriting is exclusively

used for cardinality estimation and not for plan generation.

Exploiting Multiple SIT-Sets. In general, more than one SIT-Set

may be applicable to a query expression. Consider Figure 6(d),

which lists the SIT-Sets that are available. Consider the second

SIT-Set that uses as generating expression the join R t~r=v V 6

This SIT-Set can be used for the query in Figure 6(a). Likewise, the

third SIT-Set can be applied in conjunction with the first one (see

Figure 6(e)). The resulting query plan is shown in Figure 6(0, for

which traditional cardinality estimation can be used as described in

the previous paragraph. Note that no SIT is used for attribute S.b,
so a base-table statistic (if available) will be used in that case.

The above example illustrates the case where using one SIT-Set

does not interfere with the use of another. We now discuss exam-

ples where application of SIT-Sets may not be compatible. For ex-

ample, assume that a fourth SIT-Set, R N S -+ RS[a, b], is added

in Figure 6(d). Whenever SIT-Set R S T is applicable for a query,

then so is RS. However, R S T will be favored over RS. The rea-

son is that while estimating the cardinality of the query transformed

using RS T we make fewer independence assumption compared to

using RS (as explained in Section 2.2.3, use of the independence

assumption is responsible for error propagation). Note that RS
may be applicable in cases where R S T is not. These considera-

tions are similar to the case of materialized view matching.

A more complex scenario occurs when the use of one SIT-Set re-

sults in a "rewriting" that excludes the use of other SIT-Sets which

can still be useful to improve cardinality estimation. This is illus-

trated in the example below.

6This SIT-Set shows the use of single-column SITs on attributes a and c,
and a muLti-column SIT on attributes (c, d). The statistical object associated
with a multi-column SIT will have the same structure as any multi-column
statistics on base tables.

267

EXAMPLE 3. Consider the following SIT-Sets:

S t~8=t T --+ ST[b, c]

R ~r=~ S ~r=t T ~ 7LST[a]

R ~ = c T --~ 7ZT[a, c]

and suppose we want to estimate the cardinality of the query:

SELECT * FROM R,S,T

WHERE R.r=S.s AND S.s=T.t AND

R.a<lO AND T.c>20

SIT-Set 7LST can be applied to the given query. (Note that the join

predicate R.r = T.t in 7ZST-'s generating query is equivalent to

the join predicate S N~=t T in the given query modulo column

equivalence.) We then apply RST-, replacing R t~r=s S ~8=t T

in the query with the SIT-Set R S T . In this case, SIT(a[T¢,ST)

will be used for the filter condition R.a < 10, but SIT(cIT-¢,ST) is

not available. However, we can use SIT(cIST) from SIT-Set S T

to avoid assuming independence between T.c and T.t (note, how-

ever, that we are implicitly assuming independence between T.c

and R t~ ST). We are allowed to use SIT(c[ST) because S T is

compatible with TO.ST's generating query. Note that in this case,

we cannot use SIT(clRT) from SIT-Set ~ T due to the join predi-

cate R.r = T.c in its generating query. II

The example above underscores the point that simple materi-

alized view rewriting is not sufficient in some cases, since such

rewriting cannot account for the use of statistics such as SIT(cIST)

in the example. Therefore, when considering application of any

given SIT-Set S to a query q, the following steps are taken. First,

we verify that S ' s generating query is applicable to q and deter-

mine a "rewriting" that uses the SIT-Set Then, for each attribute

of q that potentially affects cardinality estimation but is not cov-

ered by S (i.e., it occurs in one or more predicates ofq but it is not

among the attributes for which S provides statistics), we look for

a SIT that would provide the best alternative for estimation. Such

SIT must come from a SIT-Set whose generating query is subsumed

by the original SIT-Set's generating query, or the result might not

be correct. In particular, if many options exist, we select the SIT

that would require the fewest number of independence assumptions

when we estimate the cardinality of the resulting query. Our at-

tempt to minimize the number of applications of the independence

assumption is justified since precisely independence assumptions

are the source of error propagation for cardinality estimation. We

refer to such additional SITs as auxiliary SITs due to application

of SIT-Set S to query q. In some cases, no such auxiliary SITs may

be necessary.
In order to minimize the number of applications of indepen-

dence assumptions in the resulting query, we have adopted a greedy

heuristic to determine the SIT-Sets and auxiliary SITs that should

be applied for a given input query. For each SIT-Set S, we consider

rewriting the query with S and at the same time identify the set of

auxiliary SITs that are applicable. Next, we count the number of

independence assumptions that must be made by a traditional car-

dinality estimator if we apply the given SIT-Set and its auxiliary

SITs to the input query. This provides a score for each SIT-Set,

and we select the SIT-Set with the lowest score. After applying

the selected SIT-Set, we repeat the procedure until no new SIT-Sets

qualify. This is summarized in the pseudo-code below.

01 while more SIT-Sets can be applied to the query q

02 Select the SIT-Set compatible with q that

minimizes the number of applications of the

independence assumption

03 Apply the selected SIT-Set and auxiliary SITs

As an example, assume that all SIT-Sets' generating queries con-

sist only of joins (no selections), and the attributes in the predicates

of the input query plan are { a l , . . . , ak}. It is not difficult to see

that the number of independence assumptions is minimized when

each attribute uses a SIT with the maximal number of joined ta-

bles in its generating query. In such scenario, we need to find the

SIT-Set (and auxiliary SITs) that maximize the value E/k=1 IAnt, I,

where IAntil is the number of joined tables in the generating query

expression that provides the SIT for attribute ai. (The value of

IAntil for an attribute that does not use a SIT is set to one if such

attribute has a base-table statistic available, or zero otherwise.)

3.2.3 Ac tua l Es t imat ion

In this last step, we get the estimated number of tuples in the

transformed query and return this value to the optimizer. It is im-

portant to note again that we do not use the transformed query out-

side the modified cardinality estimation module (otherwise it would

cause problems since some tables are hypothetical and do not really

exist in the system).

As discussed in the previous section, for some simple query

transformations the original cardinality estimation module does not

need to change at all except for the need to use hypothetical tables

for cardinality estimation. For more complex query transforma-

tions, however, we would need to do some modifications to the

cardinality estimation module. For instance, to handle the auxiliary

SITs of Section 3.2.2, we would need to augment the cardinality

estimation module with statistical hints, which detail specifically

which statistic in the system to use for specific attributes. A full

discussion of these details is beyond the scope of this paper.

3.3 An Illustrative Experiment
In this section we show with a simple example the effectiveness

of using SITs during query optimization. For that purpose, we used

the popular TPC-H benchmark schema [22]. One of the require-

ments of the benchmark, however, is that the data is generated from

a uniform distribution. Likewise, there is a constraint in the number
of foreign key joins per tuple (e.g., each o r d e r tuple has associated

n l i n e i t e m tuples, where n is a random integer between one and

seven). Our techniques are meaningful in the very common case

of skewed data distributions (where the simple histogram propaga-

tion mechanisms tend to introduce large estimation errors). For that

reason, we extended the TPC-H generation program to support data

generation with varying degree of skew. In particular, the generator

produces data for each column in the schema from a zipfian distri-

bution (similar to the modifications proposed in [6]). Zipfian dis-

tributions are also applied to foreign key joins, so for instance the

number oftuples in l i n e i t e m that join with each tuple in o r d e r s

follows a zipfian distribution.

We generated the TPC-H data sets using a skew factor z = 1

and a resulting size of 100MB. Consider the following SQL query,

which asks for information about the most expensive orders (those

with a total price greater than 1,000,000):

SELECT * FROM lineitem, orders, part, supplier

WHERE l_orderkey = o_orderkey and

l_partkey = p_partkey and

l_suppkey = s_suppkey and

o_totalprice > 1000000

In our database lo%_totaiprico>lOOOOOO (orders)l = 120, i.e.,

120 out of 750,000 tuples in orders verify the filter condition

(the selectivity is lower than 0.02%). However, precisely those tu-

pies are joined with a very large number of tuples in l i n e i t e m

(that is the reason they are so expensive). In fact, we have that

268

l ao_~o~.l~.o, > 1 , 0 0 0 , 0 0 0 (orders ~ l ineitem)[= 971,851 out of

2,943,815 tuples (the selectivity is around 33%). Clearly, if we sim-

ply propagate the histogram for o _ t o t a l p r i c e through the join

l i n e i t e m t:,< o rde r s , we will incur in large estimation errors,

which in turn will affect the optimizer's choice of an execution

plan.

//•Nes
t e d LOOPS] [Hash

part ~[Nested Loops] [.ash]~ part

supplier O[Sortl [Nested LoopB]~ supplier

[~] l [Nested rt'°°Pa] O" ~llneitem

..... I
llnelte talprice orders

.lOOK

I
orders

(a) Original Optimizer (b) Modified Optimizer

Figure 7: Query execution plans.

We optimized the query above using the original query optimizer

and the one that incorporates the framework of Section 3.1. We

made available to the query optimizer all possible SITs. When

we optimized the query using the original optimizer, we obtained

the query execution plan in Figure 7(a). In this scenario, the opti-

mizer estimates that the result size of the subquery lineitem

ao_tot.lpri¢. > 1,ooo,ooo (o rde r s) is small (only 713 tuples), there-
fore chooses to sort this intermediate result before pipelining it to

the next nested loop join with s u p p l i e r . Since the estimated in-

termediate result is still small, another nested loop join is used with

p a r t to obtain the final result. In contrast, the modified query opti-

mizer (Figure 7(b)) accurately estimates that the number of tuples

in l i n e i t e m ~ o r d e r s is large (970,627 tuples) and chooses a

different set of operators. In particular, the expensive sort oper-

ation is removed and the nested loop joins are replaced with the

(more efficient) hash joins (in some cases, the inner/outer role of

the tables is reversed). Figure 8 shows the execution time of both

query plans broken down in CPU time and I/O time (the shown

times are averaged over five independent executions). The actual

elapsed time of the original plan in Figure 7(b) was 419 seconds.

In contrast, the plan produced by the modifier optimizer incurred

in an elapsed time of only 23 seconds (less than 6% of the time

spent by the original plan). In this example, the modified optimizer

that uses SITs dramatically reduces the execution time of the given

query.

! " OCPU

~ 3 0 0

i:
200

100

[l

Original Optimizer Modified Optimizer

Figure 8: Elapsed execution times.

4. AUTOMATED SELECTION OF SITS
In Section 3.3 we showed that we can substantially improve the

quality of execution plans of existing query optimizers if statisti-

cal information about intermediate nodes in the query sub-plans is

made available. However, building SITs for all possible interme-

diate results is not viable even for moderate schema sizes: loading

many statistics and incrementally maintaining them can be very ex-

pensive. Therefore, an important problem is to select a small subset

of SITs that are sufficient to increase the quality of the query plans

produced by the optimizer. One approach to address this problem

is to take into consideration workload information. In other words,

the problem statement becomes: given a query workload and a

space constraint, find the set of SITs that fits in the available space

so that the actual cost from answering queries in similar workloads

is minimized (or at least substantially reduced). Note that other cri-

teria besides space, such as update cost, could be relevant for such

selection.

In this section we present a novel algorithm to choose a small

subset of SITs in such a way that it does not compromise the qual-

ity of plans chosen by the optimizer. We will consider in turn each

attribute al that occurs in the filter predicates of the input queries,

and obtain the optimized query plans assuming that attribute al has

different skewed hypothetical distributions 7 (see Section 4.2). In-

tuitively, for a given attribute al, if the estimated difference in cost

of the obtained query plans (assuming different distributions for

al) is close to zero, the introduction of more detailed information

(SITs) on ai will result in little effect, if any, on the quality of plans

chosen by the optimizer. In contrast, if the cost difference is sig-

nificant, chances are that a SIT over attribute ai can provide rele-

vant information and help the optimizer to choose the correct query

plan. Our technique can be seen as a very significant generalization

of the Magic Number Sensitivity Analysis (MNSA) technique [6]

that is able to consider SITs (see Section 4.1 for a description of

MNSA). However, even if we determine that the presence of a SIT

on attribute ai could improve the quality of plans chosen by the

query optimizer, we still need to identify which generating query

should we use for attribute ai. We address this issue in Section 4.3.

Although the main concepts in our techniques can be applied to

general queries, in the rest of the section we focus on a workload

consisting of SPJ queries.

4.1 Magic Number Sensitivity Analysis
The workload-based MNSA technique [6] significantly reduces

the set of base-table statistics that need to be created in a database

system without sacrificing the quality of generated query plans. A

relaxed notion of plan equivalence is exploited to make this selec-

tion. In particular, two plans Pl and p2 are t-Optimizer-Cost equiv-

alent if the query optimizer predicts that the execution costs of pl

and p2 are within t percent of each other, where t reflects the degree

of rigor used to enforce equivalence.

For a given a workload, the MNSA algorithm incrementally iden-

tifies and builds new statistics over the base tables until it deter-

mines that no additional statistic is needed. To test whether the cur-

rent subset of statistic is enough for estimation purposes, MNSA

considers how the presence of such statistics would impact opti-

mization of queries without building statistics first. For this pur-

pose, MNSA replaces the magic selectivity numbers, which are

used by the optimizer in absence of statistics, with extremely small

and large values (in practice, e and 1 - e, with e = 0.0005). It

then verifies whether the optimized query plans are insensitive, i.e.,

t-Optimizer-Cost equivalent, to those changes. Under reasonable

7This step is analogous to the magic number replacements in MNSA.

269

assumptions, if the query plans obtained by using these extreme

predicted selectivities for all attributes without statistics are cost

equivalent, then all actual plans for which the actual selectivities

lie between those extremes will be t-Optimizer-Cost equivalent as

well, and therefore the impact of materializing new statistics will

be rather limited.

In our scenario, we assume that all needed base-table statistics

were already materialized, either by using MNSA or some other

equivalent procedure. However, we cannot apply directly MNSA

to the problem of selection of SITs since the query optimizer does

not rely on magic numbers for cardinality estimation of non-leaf ex-

pressions, i.e., simple variations of MNSA are not suitable for this

generalized scenario. To overcome this limitation, in the next sec-

tion we generalize the main ideas of MNSA by introducing novel

estimation strategies that propagate cardinality information through

query plans by making extreme assumptions about the distribution

of attribute values.

4.2 Extreme Cardinality Estimation

We now introduce two new strategies to estimate cardinalities of

SPJ query plans. As explained in Section 4, these estimation strate-

gies make use of extreme hypothesis on the attribute distributions,

and are the building blocks of our main algorithm for selecting a

small set of SITs. In particular, we will focus on SPJ input queries

and histograms as the choice for SITs, but the general ideas can be

extended to other queries and statistical structures as well.

As explained in Section 2.2.2, cardinality estimation routines

assume independence between attributes and propagate statistics

through query plans. We now illustrate this technique using the

following query:

SELECT * FROM R,S

WHERE R.r=S.s AND S.a<lO

Suppose that the cardinality of predicate S.a < 10 is estimated

before the cardinality of the join (as in Figure 5(b)). In this case,
histogram S.s is uniformly scaled down so that the total number of

tuples equals to the estimated cardinality of S.a. That is, if N is

the number of tuples in table S, and N~ is the number of tuples

that verify predicate S.a < 10, each bucket frequency from S.s's
Na histogram is multiplied by the factor W-. After this transformation,

R.r and S.s 's histograms are used to estimate the cardinality of the

join, as explained in Section 2.2.2. We call this default estimation

strategy Ind with respect to S.a since we use the independence as-

sumption for attribute S.a. In this section we introduce two new es-

timation techniques, Min and Max (with respect to some attribute),

which make "extreme" assumptions about the statistical distribu-

tion of such attribute. In particular, instead of uniformly reducing

the frequency of all tuples in histogram S.s, we selectively choose

the N~ tuples in S.s that survive the filter condition, so thatthe re-

sulting join cardinality is the smallest (largest) possible under the

containment assumption, as illustrated in the following example.

EXAMPLE 4. Consider the already aligned histograms on at-

tributes R .r and S.s for the query above, which are denoted in

Figure 9 as HR and Hs, respectively. For instance, there are three

groups o f 20 tuples each in the first bucket of histogram Hs, and

two groups o f lO tuples each in the first bucket o f histogram HR.

At the bottom of the figure we show the number of tuples that can

be joined from each pair of buckets. For instance, the expression

40S x 10R below the first pair o f buckets specifies that 40 tuples in

S (two groups of 20 tuples each) can be joined with 10 tuples in R

each. In the same way, the expression 20S × OR specifies that for

20 tuples in S (the remaining group o f tuples) there is no tuple in R

that matches them. Now suppose that we know that only 30 tuples

in S veri y the filter predicate S.a < 10. Using the Max strategy,

we choose the 8 tuples in Hs 's third bucket (since each tuple in that

bucket joins with the largest number o f tuples in R) and 22 out o f

the 40 tuples in Ha 's first bucket that join with 10 tuples in R. The

estimated cardinality for the join is then: 8 .50 + 22.10 = 620. In

contrast, using the Min strategy, we choose the 20 tuples in S.s's

first bucket that do not join with any tuple in R, and 10 out of the

200 tuples in S.s's middle bucket. The estimated cardinality for

the join is: 20 • 0 + 10 • 5 : 50. For completeness, the Ind strat-

egy scales down the densities for S.s by the factor 30/268 (268

is the cardinality o f S), and therefore the estimated cardinality is

2 . 2 3 . 1 0 + 1 1 . 1 9 5 + 0 . 4 4 . 5 0 = 100.1

. T d= o = , , - IF
J L JL

• i " J L
d=lO

ff d=4
= ' ° , ° T i I ;

i' *] F ¢
JL =so

T
J L

, - I F
JL "

4 0 S x 10R 2 0 0 S x 5 R 8 S x 5 0 R

20Sx OR

Figure 9: Extreme cardinality estimation routines selectively

choose the matching tuples.

As hinted in the previous example, a simple procedure to select

the appropriate tuples for strategy Min (Max) is to sort the list of

pairs at the bottom of Figure 9 by increasing number of tuples in

R, and select the first (last) Na tuples in S from that sorted list.

It can be proved that this procedure effectively chooses the set of

tuples in S that minimize (maximize) the number of tuples in the

join. These strategies are not limited to just one join predicate, but

they can be easily extended to cope with multiple joins. Since both

the Min and Max strategies return a cardinality value, we can use

the output cardinality of one join as the input to the next join, in

the same way as the traditional Ind strategy, to get an extreme car-

dinality estimation for the complete join. Consider the 5-way join

represented in Figure 10, where each edge represents a join predi-

cate between two tables, and suppose we want to get the Max car-

dinality estimation with respect to attribute U.a. To do so, we first

get the cardinality ofau.~< lo using traditional techniques (suppose

N1 is such cardinality). We then apply the Max strategy for the join

T t~ U, selecting the N1 tuples in U so that the number oftuples in

the result is maximized (suppose the new cardinality estimation for

T ~ U is N2). We repeat the procedure by selecting the N2 tuples

in (T ~ U) that maximize the cardinality result o f S t~ (T t~ U).

We continue in this way (joining the accumulated result first with

R and finally with V) to obtain the extreme cardinality estimation

for the whole join. Of course, instead of the join order used in this

example, any order that is consistent with the topological order in

the join graph is possible.

R S V

\T u
(U.a<10)

Figure 10: Chained extreme cardinality estimation.

270

The scheme described above works for join queries with a single

filter predicate. In the general case, consider a SPJ query of the

form ap~^...^pk (R1 t~ . . . t~ Rn), and suppose we assign to each

column attribute a ~ , . . . , ak an estimation strategy (Min, Max, or

Ind). We can get the final cardinality estimation as follows:

Ol Get the cardinality C of the join sub-query

(R1 ~ . . . ~ Rn)
02 For each f i l t e r Pi with a t t r i b u t e ai, get the

"partial" extreme selectivity si of query

~rpi(Rl ~ ...~ Rn) as explained above.

03 Assuming independence multiply all "partial"

selectivities with the join cardinality and

re tu rn C • Hisi.

Note that in step 3 above we assume independence, but that is

the best we can do in the absence of multi-column statistics. In the

next section, we use these techniques in our algorithm for selecting

SITs.

4.3 Selecting SITs
In this section we present our algorithm to choose a small subset

of SITs in such a way that it does not compromise the quality of

plans chosen by the optimizer. In particular, we will consider in

turn each attribute ai present in a query filter predicate, and obtain

the estimated execution costs when ai propagates through the query

plan using the Min and Max strategies, and the remaining attributes

use the Ind strategy (see Section 4.2). Intuitively, i f for attribute ai

the difference in estimated cost between the two extreme strategies

is close to zero, the introduction of any SIT on a~ will result in

little or no effect on the quality of plans produced by the optimizer.

In contrast, i f the cost difference is significant, chances are that a

SIT over attribute ai can provide relevant information and help the

optimizer to choose better quality query plans. Besides, this very

difference in estimated execution cost is a good estimator of the

relative importance of the different attributes, and can be used to

rank the candidate SITs.

However, once we identified a promising attribute to build a SIT

on, we still need to choose which generating query to use for such

SIT. As an example, consider again Figure 10, and suppose we

obtain a large difference in estimated execution cost for the Min

and Max strategies with respect to attribute U.a. This difference

in estimated execution cost might come from correlation between

attribute U.a and another attribute in an intermediate join. In other

words, we need to determine which SIT over U.a to build among

several candidates, such as SIT(U.alT ~ U) or SIT(U.aIS

T t~ U), among others.

For this purpose, we will exploit the Min and Max extreme car-

dinality estimation strategies as follows. Consider the query q =

aU.a<lo(R txl S ~ T ~ U). When estimating the cardinality of

q using the Max and Min strategies with respect to U.a, we also

get for free the partial approximate cardinalities of the interme-

diate queries au.a<lo(U), o'u.a<lo(T ~ U), and au.~,<lo(S

T t~ U) (this sequence is based on the join order used in the ex-

treme cardinality estimation strategies). At no extra cost, we can

also obtain the cardinality of the pure join queries U, T ~ U

R ~ S ~ T ~ U. Combining these cardinalities, we obtain

the minimal and maximal partial selecfivities of the join predicates,

which are graphically represented in the example of Figure 11 (each

point in the x-axis corresponds to a different join, and we assume a

fixed natural join order). For instance, for the base table U, both the

minimal and maximal estimated selectivities are 0.55, since they

are taken from the base-table statistic for U.a. However, each join

increments the possible range of selectivities, and consequently,

the propagated estimation error. The estimated selectivity for the

whole join ranges between 0.25 and 0.85. However, most of this

range is inherited from the previous join S ~ (T ~ U). In effect,

the last join does not introduce large variations in selectivity when

using the Min and Max strategies.

ldax strategy

>~ 0.8

~ 0.6

0.4

0.2, I~'Ii1'~ Strategy
I I I I
U T ~ U S ~ T ~ U R~S ~ T ~ U Joins

Figure 11: Selectivity estimation of the partial join queries for

the Min and Max strategies.

We make the simplifying assumption that for a fixed attribute,

the relative importance of a join query (and therefore the impor-

tance of a candidate SIT) is proportional to the increase of uncer-

tainty of the selectivity estimation with respect to the previous join

in the sequence. That is, i f for some particular operator the mini-

mal and maximal selectivity estimations change significantly, it is

more likely that this particular operator has some correlation with

the filter predicate for which we are considering building statis-

tics. Using that assumption, the effect of building and exploiting

SIT(U.aIR ~ S ~ T ~ U) would be limited in Figure 11. In

contrast, since T ~ U substantially increases the range of possible

selectivities for the query, so SIT(U.alT ~ U) should be one of

the first candidates to build.

We now make these ideas concrete, starting with the simplest

case of a single SPJ query, and then generalizing the results for

workloads consisting of multiple SPJ queries. Consider the input

query q = O'plA...Ap, ~ (R1 t:~ . . . t:<l R n) and assume that predicate

pi references attribute a~. For simplicity, further assume that the

attribute ai we are interested in belongs to table R1 and the join

order that the Min and Max strategies consider is R 1 , . . . , Rn. In

this case, the candidate SITs for attribute ai are S I T (a i l R a) , . . . ,

SIY(ai[R1 t~ . . . t~ R,~). We define the score of SIT(ai[Ra t~

• . . t~ Rj) relative to query q as:

Scoreq (SIT(a/I na t ~ . . . ~ R3)) =

0 i f j = 1
~ a i _ h a l

a i a i • • (EM~ ~ _ EMi~) . --j . "~j-i otherwise
L3~n ~

a i a i where EMi n and EMa x are the estimated execution times for query

q when using the Min (respectively, Max) strategy with respect to

attribute ai, and A~. i --- SeIMax~. i - Se IMin~ ' is the difference

in selectivity of a m (Re t~ . . . t~ R j) when using the Max and

Min strategies with respect to attribute ai. The quantity (A~ ~ -
a i a i A j _ i) / A ~ varies from 0 to l and simply represents the fraction

of selectivity, relative to the final selectivity range for the whole

query, that is introduced by the j - th join (the shaded regions in

Figure 11). Clearly, the larger the score of a candidate SIT, the

more likely that it makes a difference during query optimization.

Now we generalize this procedure to a workload that consists of
several queries. In this situation, we maintain a hash table of SITs

and we add to each SIT the partial scores obtained from each query

271

in the workload. Therefore, for a given workload W, the score

Score (SIT(a/IQ)) is defined as EqEw Scoreq (SIT(ai IQ)). Af-

ter processing all queries, we select the top SITs according to the

Score value that fit in the available space. The following pseu-

docode summarizes these steps:

01 f o r e a c h q i n W a n d a t t r i b u t e ai r e f e r e n c e d i n

a f i l t e r c o n d i t i o n Pi i n q u e r y q

02 E M i n , E M a ~ : e s t i m a t e d c o s t f o r q u s i n g t h e

Min, Max strategies with respect to al

03 Let Ri,... Rn be the join order used by the

extreme strategies
• a. a,

04 SeIMznj',SeIMaxj' ---- selectivity of predicate

a p i (R 1 ~ . . . tx~ R j) u s i n g M i n , M a x w . r . t .

ai for j E 1. . . n (see pseudocode in Section 4.2)
05 for j = 2 to n

Score[SIT(ailR1 ~ . . . ~ Rj)] +=
Eai __ E e l A ai _Aai

(Max M i n) " "-2"-7-a~J-1
Z~n a

w h e r e A j = SelMax~. i - S e I M i n ? i

06 S e l e c t t h e t o p s t a t i s t i c s SIT (a i l Jk) t h a t f i t i n

the available space

Discarding non-essential statistics. The algorithm that we de-

scribe above only predicts which statistics can be useful to the

query optimizer. In practice, SITs with large scores can be false

positives, i.e., the independence assumption might work fine. A

post-processing step to discard SITs whose cardinality distributions

are similar to those from which they were generated would be ben-

eficial. In those cases, the independence assumption used by tradi-

tional optimizers is accurate, and we can use the resulting available

space to build other (more useful) SITs. This task can be done

with similar adaptations to our algorithm as in the MNSA/D tech-

nique [6], but in this paper we do not make use of such extensions.

5. EXPERIMENTAL STUDY

In this section, we present experimental results of an implemen-
tation of the framework proposed in this paper over Microsoft SQL

Server 2000, and the algorithm for selecting a subset of SITs. We

used as SITs the native statistics provided by Microsoft SQL Server

for base tables: a variant of MaxD/ffhistograms which minimize

intra-bucket frequency variance. The changes we made in the server

were minimal: less than 20 lines in the optimizer's code needed

to be modified to use our proposed wrapper. The wrapper itself

is around 4,000 lines of code and is incorporated in the server as a

new module. Finally, the algorithm to select SITs was implemented

as a client connecting to the server via ODBC.

5.1 Setup

Database: We created a synthetic database with the star schema

of Figure 12. Each node in the figure represents a table that consists

of 500,000 tuples and each edge represents a foreign-key join. Each

table is composed of four to eight attributes. Some attributes are

uniformly distributed and others follow a zipfian distribution (with

parameter z varying from 0.1 to 1). To verify the effectiveness of

our algorithms, some attribute distributions are generated indepen-

dently of the join attribute (so that the independence assumption

is accurate), and others are correlated with the join attribute in a

similar way as the t o t a l p r i c e attribute in Section 3.3 (so that the

independence assumption could result in large estimation errors).

We also used a database ten times larger than the original one, i.e.,

in which each table in Figure 12 contains 5,000,000 tuples. The

results are almost identical to those we already presented, and are

omitted for lack of space.

• S * T

IR U , V

W * X * Y

Figure 12: Star schema used in the experiments.

Workloads: For each experiment we generated two 100-query

workloads, denoted training and validation workloads, taken from

the same distribution. Each query in a given workload consists

of three to seven joined tables and one to three filter predicates.

The selectivity and attributes used in the filter predicates were ran-

domly generated. For each experiment, we used our algorithm of

Section 4.3 with the training workload, and built 100KB of SITs

(that roughly corresponds to the top-25 SITs). We then optimized

each query in the training workload using the following three opti-

mization frameworks:

1. Base: The unmodified query optimizer that uses only base-

table statistics.

2. SITs: The modified optimizer that also uses the SITs identi-

fied by our algorithm.

3. All-SITs: The modified optimizer for which we made avail-

able all possible SITs. This framework is used to evaluate

the effectiveness of our algorithm for selecting SITs.

For each optimization framework described above, we evalu-

ated the resulting query plans three times and averaged the elapsed

times. Finally, we repeated the optimization and evaluation steps

above for all the queries in the validation workload.

5.2 Results

No indexes available: In this experiment we used the database
described in Section 5.1 with no indexes available. Figure 13(a)

shows the reduction in execution time for the whole workload when

using SITs. The total execution time when using SITs is around

25% of that for Base. Also, when using All-SITs (in our case, more

than 180 SITs were built) we obtain only marginal improvement in

execution time (around 5%). This result validates our algorithm of

Section 4.3 for selecting a subset of SITs. Figure 13(b) presents

a histogram of the improvements in execution time for the queries

in the validation workload. As an example, 12 queries reduced

in half their execution times, and 6 queries had between 10- and

22-fold improvements. For the 4 queries that performed slightly

worse in the SITs framework (with execution times less than 5%

larger than those for Base), we checked the corresponding query

plans and found out that they were the same for both the Base and

SITs frameworks, so even in those situations SITs did not force

the query optimizer to choose worse query execution plans. For

two thirds of the workload there was a 2- to 22-fold improvement

in execution time. In those situations, the chosen query plans varied

considerably between the different optimization frameworks.

Indexes available. The Index Tuning Wizard in Microsoft SQL

Server is a tool that automatically selects appropriate indexes for

a given workload. We used such tool with our training work-

load and materialized the combination of indexes it suggested. We

then repeated the experiment in the previous section but using the

richer set of execution plans derived by using the new indexes. Fig-

ures 14(a) and 14(b) show the results for this case. We can see that

272

2500

i 2000

' ~ 1500

E

I~ 1000

=o
500

UJ 0

A 2 5 0 0

i 200C

'~ 150C

E

I-- IOOG

500

C

O Base • SITs BAli-SITs

Tra in ing Va l ida t ion

(a) Total execution time.

[] Improvement in Execution Time

30 .

25-
=..

:~ 20 - -
0

15 -

.0 10 -

E

z 5

0

0.95

~;ii!ili!ii~

i!iii!i;iiii~iil
ili!i~iii~i!i~ii:i .
iiiiiiiiiiiiii~ili

i~iiii~ili!!'i!i!ii
:~iii

1 2 3 4 5 6 7 5 9 10 16 19 22

(b) Improvement in execution time.

Figure 13: Using SITs in a database with no indexes.

[]Base I IS ITs BAli-SITs [] Improvement in Execution T ime

.~ 20

O' 15

lO

E s Z

Training Validation

(a) Total execution time.

Figure 14: Using SITs in a

25

20 . i

0
~ , ~ ~ ~ ~ ~ ~ • • ,~, , ,~ ,~ ~ ~ , ~

(b) Improvement in execution time.

database with indexes.

for the whole workload, the relative improvements are similar to

those of the no-indexes case. A closer inspection of Figure 14(b),

however, shows that some queries had two orders of magnitude im-

provements when using SITs.

6. RELATED W O R K

Virtually all optimization frameworks [10, 11, 12, 14, 20] rely on

statistics over the tables in the database to choose the most efficient

execution plan in a cost-based manner. There is a large body of

work that studies representation of statistics on a given column [16,

17, 18] or combination of columns [3, 13, 15, 17]. In this paper we

present techniques to effectively use SITs for query optimization,

and we study the orthogonal problem of deciding which columns

over intermediate query plans to build SITs on.

Reference [6] presents the MNSA technique to select which sub-

set of base-table statistics needs to be built without sacrificing the

quality of the generated query plans. In this paper we present a

non-trivial generalization of the techniques in [6] for the case of

statistics over intermediate nodes of query plans. Similar to our

work in self-tuning statistics [1, 3], LEO (DB2's LEarning Opti-

mizer) [21] is a framework that repairs incorrect statistics and car-

dinality estimates of a query execution plan. By monitoring pre-

viously executed queries, LEO computes adjustments to cost esti-

mates and statistics that may be used during fiature query optimiza-

tions. In this work we take a closer look at the particular case of

error propagation in query plans. We believe that some of our ideas

(specifically those discussed in Section 3) are relevant for LEO's

framework as well.

The idea of building statistics over non base-tables was intro-

duced in [2] by using join synopses, which are precomputed sam-

ples of a small set of distinguished joins. The main focus of this

work is approximate query processing, and the generating queries

are restricted to be foreign-key joins. In contrast, we present an

effective framework to incorporate SITs to existing query optimiz-

ers. Application of SITs to a given query leverages materialized

view matching algorithms [5, 9, 19]. However, as pointed out in

Section 3.2.2, our need to detect auxiliary SITs differs from tra-

ditional view matching. Furthermore, note that we do not need to

store and maintain materialized views, but instead we just need to

build statistics over those views.

Finally, the identification and use of SITs has great relevance to

the problem of selecting the right indexes of a database, e.g., [7].

Specifically, current index tuning tools use existing (and build new)

statistics to determine the appropriate choice of indexes. Such tools

will benefit from the techniques proposed in this paper.

7. C O N C L U S I O N S

In this paper, we showed how to extend a traditional query op-

timizer so that it exploits statistical information on query expres-

sions. In many cases, the quality of the resulting plans could be

much better than when only base-table statistics are available. Ex-

tending and evaluating our methodology for more complex queries

(such as aggregations and nested queries) and more complex statis-

tics (such as multidimensional histograms) is an important next

step. We introduced a workload-driven algorithm to select con-

servatively a small subset of SITs to build that can significantly im-

prove quality of query plans compared to using statistics on base-

tables only. Our implementation and experimental evaluation on

Microsoft SQL Server 2000 showed the promise of our techniques,

but more extensive experimental study is necessary to validate our

approach.

8. A C K N O W L E D G E M E N T S

We thank Luis Gravano, Christian KSnig, and Vivek Narasayya

for their valuable feedback.

273

9. REFERENCES

[1] A. Aboulnaga and S. Chaudhuri. Self-tuning histograms: Building
histograms without looking at data. In Proceedings of the 1999 ACM

International Conference on Management of Data (SIGMOD '99),
June 1999.

[2] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy. Join
synopses for approximate query answering. In Proceedings of the

1999 ACM International Conference on Management of Data
(SIGMOD'99), 1999.

[3] N. bruno, S. Chaudhuri, and L. Gravano. STHoles: A
multidimensional workload-aware histogram. In Proceedings of the

2001 ACM International Conference on Management of Data
(SI(;MOD '01), 2001.

[4] S. (haudhuri. An overview of query optimization in relational
syst,~ms. In Proceedings of the Seventeenth ACM
SIGACT-SIGMOD-S1GAR T Symposium on Principles of Database

Systems. ACM Press, 1998.

[5] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and K. Shim.
Optimizing queries with materialized views. In Proceedings of the

Eleventh International Conference on Data Engineering, 1995.

[6] S. Chaudhuri and V. Narasayya. Automating statistics management
for query optimizers. In Proceedings of the Sixteenth International

Conference on Data Engineering, 2000.

[7] S. Chaudhuri and V. R. Narasayya. An efficient cost-driven index
selection tool for Microsoft SQL Server. In Proceedings of the
Twenty-third International Conference on Very Large Databases
(VLDB '97), Aug. 1997.

[8] S. Chaudhuri and V. R. Narasayya. Autoadmin 'what-if' index
analysis utility. In SIGMOD 1998, Proceedings ACM SIGMOD

International Conference on Management of Data, 1998.

[9] J. Goldstein and P.-A. Larson. Optimizing queries using materialized
views: A practical, scalable solution. In Proceedings of the 2001

ACM International Conference on Management of Data

(S1GMOD '01), 2001.

[10] G. Graefe. The cascades framework for query optimization. Data
Engineering Bulletin, 18(3), 1995.

[11] G. Graefe and D. J. DeWitt. The exodus optimizer generator. In
Proceedings of the 1987 ACM International Conference on

Management of Data (S1GMOD'87), 1987.

[12] G. Graefe and W. J. McKenna. The volcano optimizer generator:
Extensibility and efficient search. In Proceedings of the Ninth
International Conference on Data Engineering, 1993.

[13] D. Gunopulos, G. Kollios, V. J. Tsotras, and C. Domeniconi.
Approximating multi-dimensional aggregate range queries over real
attributes. In Proceedings of the 2000 ACM International Conference

on Management of Data (SIGMOD '00), 2000.

[14] L. M. Haas, J. C. Freytag, G. M. Lohman, and H. Pirahesh.
Extensible query processing in starburst. In Proceedings of the 1989

ACM International Conference on Management of Data
(SIGMOD'89), 1989.

[15] M. Muralikfishna and D. J. DeWitt. Equi-depth histograms for
estimating selectivity factors for multidimensional queries. In

Proceedings of the 1988 ACM International Conference on
Management of Data (SIGMOD '88), 1988.

[16] G. Piatetsky-Shapiro and C. Connell. Accurate estimation of the
number of tuples satisfying a condition. In Proceedings of the 1984

ACM International Conference on Management of Data

(SIGMOD '84), 1984.

[17] V. Poosala and Y. E. loannidis. Selectivity estimation without the
attribute value independence assumption. In Proceedings of the

Twenty-third International Conference on Very Large Databases
(VLDB '97), Aug. 1997.

[18] V. Poosala, Y. E. loannidis, P. J. Haas, and E. J. Shekita. Improved
histograms for selectivity estimation of range predicates. In
Proceedings of the 1996 ACM International Conference on

Management of Data (S1GMOD '96), 1996.

[19] R. Pottinger and A. Y. Levy. A scalable algorithm for answering
queries using views. In VLDB 2000, Proceedings of 26th
International Conference on Very Large Data Bases, 2000.

[20] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and
T. G. Price. Access path selection in a relational database
management system. In Proceedings of the 1979 ACM International

Conference on Management of Data (S1GMOD '79), 1979.

[21] M. Stillger, G. M. Lohman, V. Markl, and M. Kandil. LEO - DB2's
learning optimizer. In Proceedings of the Twenty-seventh

International Conference on Very Large Databases, 2001.

[22] TPC Benchmark H. Decision support. Available at

h t t p ://www. t p c . org.

2 7 4

