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ABSTRACT 

Statistics play an important role in influencing the plans produced 

by a query optimizer. Traditionally, optimizers use statistics built 

over base tables and assume independence between attributes while 

propagating statistical information through the query plan. This 

approach can introduce large estimation errors, which may result 

in the optimizer choosing inefficient execution plans. In this pa- 

per, we show how to extend a generic optimizer so that it also ex- 

ploits statistics built on expressions corresponding to intermediate 

nodes of  query plans. We show that in some cases, the quality 

of  the resulting plans is significantly better than when only base- 

table statistics are available. Unfortunately, even moderately-sized 

schemas may have too many relevant candidate statistics. We in- 

troduce a workload-driven technique to identify a small subset of  

statistics that can provide significant benefits over just maintaining 

base-table statistics. Finally, we present experimental results on an 

implementation of  our approach in Microsoft SQL Server 2000. 

1. INTRODUCTION 
Most query optimizers for relational database management sys- 

tems (RDBMS) rely on a cost model to choose the best possible 

query execution plan for a given query. Thus, quality of  the query 

execution plan depends on the accuracy of  cost estimates. Cost 

estimates, in turn, crucially depend on cardinality estimations of  

various sub-plans (intermediate results) generated during optimiza- 

tion. Traditionally, query optimizers use statistics built over base 

tables for cardinality estimates, and assume independence while 

propagating these base-table statistics through the query plans (see 

Section 2 for a detailed discussion). However, it is widely recog- 

nized that such cardinality estimates can be off by orders of  mag- 

nitude [21 ]. Therefore, the traditional propagation of  statistics that 

assumes independence between attributes can lead the query opti- 

mizer to choose significantly low-quality execution plans. 

In this paper, we introduce the concept of  SITs, which are statis- 

tics built on attributes o f  the result o f  a query expression 1. Thus, 

*Work done in part while the author was visiting Microsoft Research. 

1The obvious acronym SQE (Statistics on Query Expressions) is not quite 
as nice as SIT(Statistics on Intermediate Tables). So, we decided to be safe 
and pick a nicer acronym rather than being technically accurate. 
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SITs can be used to accurately model the distribution of  tuples on 

intermediate nodes in a query execution plan. We will show that 

in some cases, when optimizers have appropriate SITs available 

during query optimization, the resulting query plans are drastically 

improved, and their execution times are tens, and even hundreds of  

times more efficient than those of  the plans produced when only 

base-table statistics are used. 

Despite the conceptual simplicity of  SITs, significant challenges 

need to be addressed before they can be effectively used in existing 

RDBMS. First, we must show how query optimizers can be adapted 

to exploit SITs for choosing better execution plans. Next, we must 

address the problem of identifying appropriate SITs to build and 

maintain. The latter is a nontrivial problem since for a moderate 

schema sizes, there can be too many syntactically relevant SITs. 

Finally, we need to address the issue of  efficiently building and 

maintaining SITs in a database system. 

In this paper, we take the first steps towards meeting these chal- 

lenges. While we briefly comment on the last issue, we primarily 

focus on the first two issues referred to above. We explain how a 

traditional relational query optimizer can be modified to take ad- 

vantage of  SITs. Identifying whether or not a SIT is applicable for 

a given query can leverage materialized view matching technology. 

But, as we will discuss, specific SITs applications have no counter- 

part in traditional materialized view matching. Another desirable 

goal is to ensure that the cardinality estimation module of  an opti- 

mizer is modified as little as possible to enable the use of  SITs. We 

have implemented such an optimizer by modifying the server code 

of  Microsoft SQL Server 2000. However, the ideas introduced in 

this paper are general in the sense that the proposed algorithms do 

not depend on the specific structure of  statistics used in a RDBMS 

(e.g., type of  histogram). 

We show how an appropriate set of  SITs may be chosen to max- 

imize the benefit to the query optimizer. We recognize that use- 

fulness of  SITs depends on how their presence impacts execution 

plans for queries against the system. Therefore, it is necessary to 

take into account workload information while selecting SITs. How- 

ever, evaluating the effectiveness of  SITs for queries in the work- 

load leads us to a "chicken and egg" problem, as it is hard to de- 

termine effectiveness of  a SIT until it has been built. In this paper, 

we present a novel technique to identify useful SITs based on in- 

formation on workload analysis that has desirable property that we 

do not necessarily need to build a SIT to evaluate its effectiveness. 

Our technique can be seen as a non-trivial generalization of  the 

MNSA algorithm [6], which selects statistics on stored tables only. 

We demonstrate experimentally that the plans produced using the 

set of  SITs chosen by our algorithm is close in quality to the plans 

produced using all possible SITs, and considerably better than the 

plans obtained using statistics only on stored tables. 
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Figure h Simplified Optimizer's Architecture. 

This work contributes to the broader goal of automating statistic 

management for RDBMSs and was done as part of the AutoAdmin 

project at Microsoft Research 2. The goal of this project is to re- 

duce the total cost of ownership of relational database systems by 

making them self-tuning. 

The rest of the paper is structured as follows. In Section 2 we 

give a brief overview of cost and cardinality estimation in current 

query optimizers. In Section 3 we introduce the concept of SITs 

and a framework to incorporate them in existing query optimizers. 

In Section 4 we propose a workload-driven technique to efficiently 

select a good subset of SITs that can significantly improve quality 

of execution plans produced by the optimizers. 

2. BACKGROUND 
The query optimizer is the component in a database system that 

transforms a parsed representation of an SQL query into an effi- 

cient execution plan for evaluating it. Optimizers usually examine 

a large number of possible query plans and choose the best one in a 

cost-based manner. To efficiently choose among alternative query 

execution plans, query optimizers estimate the cost of each eval- 

uation strategy. This cost estimation needs to be accurate (since 

the quality of the optimizer is correlated to the quality of its cost 
estimations), and efficient (since it is invoked repeatedly during 

query optimization). In this section we describe the components 

of a generic query optimizer and show how statistical information 

can be used to improve the accuracy of cost estimations, which in 

turn impacts the whole optimization process. 

2.1 Architecture of a Query Optimizer 
There are several optimization frameworks in the literature [ 10, 

11, 12, 14, 20] and most modern optimizers rely on the concepts 

introduced by those references. Although the implementation de- 

tails vary among different systems, all optimizers share the same 

basic structure [4], shown in Figure 1. For each incoming query, 

the optimizer maintains a set o f  sub-plans already explored, taken 

from an implicit search space. An enumeration engine navigates 

through the search space by applying rules to the set of explored 

plans. Some optimizers have a fixed set of rules to enumerate all 

interesting plans (e.g., System-R) while others implement exten- 

sible transformational rules to navigate through the search space 

(e.g., Starburst, Cascades). All systems use dynamic programming 

or memoization to avoid recomputing the same information dur- 

ing query optimization. For each discovered query plan, a compo- 

nent derives different properties if possible, or estimates them oth- 

erwise. Some properties (e.g., cardinality and schema information) 

are shared among all plans in the same equivalence class, while 

others (e.g., estimated execution cost and output order) are tied to a 

specific physical plan. Finally, once the optimizer has explored all 

2http : / / r e s e a r c h  .microsof t .  com/dmx/aut oadmin. 

interesting plans, it extracts the most efficient plan, which serves as 

the input for the execution engine. 

A useful property of a query plan from an optimization perspec- 

tive is the estimated execution cost, which ultimately decides which 

is the most efficient plan. The estimated execution cost of a plan, in 

turn, depends heavily on the cardinality estimates of its sub-plans. 

Therefore, it is fundamental for a query optimizer to rely on accu- 

rate and efficient cardinality estimation algorithms. 

EXAMPLE 1. Consider the query in Figure 2(a) and suppose 

that IRI ~ ISl ~ ITI. I f  the query optimizer has knowledge that 

R.a < 10 is much more selective than T.b > 20 (i.e.,just a few 

tuples in R verofy R.a < 10 and most o f  the tuples in T veri y 

T.b > 20), it should determine that plan P1 in Figure 2(b) is more 

e~cient than theplan P2 in Figure 2(c) 3. The reason is that Pl first 

joins R and S producing a (hopefully) small intermediate result 

that is in turn joined with T. In contrast, P2 produces a large 

intermediate result by first joining S and T. I 

SELECT * 

FROM R,S,T 

WHERE R.w=S.x 

AND S.y=T. Z 

AND R.a<10 

AND T.b>20 

T.b > 20 < 10 

rT (7 VR.a < 10 S T.b 20 S 
I I 
R T 

Figure 2: Query plans chosen by query optimizers depending 

on the cardinality of intermediate results. 

Cardinality estimation uses statistical information about the data 

that is stored in the database system to provide estimates to the 

query optimizer. Histograms are the most common statistical infor- 

mation used in commercial database systems. In the next section 
we show how they are currently used to estimate the cardinality of 

complex query plans during optimization. 

2.2 Cardinality Estimation using Histograms 
A histogram on attribute x consists of a set of buckets. Each 

bucket bi represents a sub-range ri of x's domain, and has asso- 

ciated two values. The frequency f i  of bucket bi corresponds to 

the number of tuples t in the data set for which t .x  6 rl, and the 

value dvi of bucket bi represents the number of distinct values of 

t .x  among all the tuples t for which t .x  6 ri. The main assumption 

is that the distribution of tuples inside each histogram bucket is uni- 

form. We use the uniform spread model inside buckets, in which 

each bucket bi is composed ofdvi equidistant groups o f f i / d v i  tu- 

pies each. We define the density of a bucket as 6i = f i /dv i ,  i.e., the 

number of tuples per distinct value (assuming uniformity) that are 

represented in the bucket. Other techniques for modelling bucket 

contents can also be used, such as the continuous or randomized 

models. We now describe how histograms are used to estimate the 

cardinality of queries. 

2.2.1 Se lec t ion  Q u e r i e s  

The uniformity assumption inside histogram buckets suggests a 

natural interpolation-based procedure to estimate the selectivity of 

range and join predicates. The situation is particularly simple for 

range predicates. Consider the query an.~<2o(R) and suppose we 

have a histogram on R.a. To estimate the cardinality of such a 

3We assume that no indexes, thus no interesting orders, are available. 
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query, we consider, one at a time, all histogram buckets that are 

completely or partially covered by the predicate, and then we ag- 

gregate all intermediate results. This procedure is illustrated below. 

EXAMPLE 2. Consider the four-bucket histogram on attribute 

R.a of  Figure 3. Bucket bl, for instance, covers 0 < x < 10 and 

has a frequency of  lO0 (i.e., it represents 100 tuples in the data 

seO. Similarly, buckets b2, b3, and b4 represent 50, 80, and 100 

tuples, respectively. Suppose we want to estimate the eardinality of  

the range predieate p = R.a < 20. Since p completely includes 

bucket bl, we can guarantee that the 100 tuples in ba verify p. Also, 

p is disjoint with buckets b3 and 64, so no single tuple in b3 or b4 

verifies p. Finally, p partially overlaps with bucket b2 (in particular, 

p is verified by 50% of  b2 's uniformly spread distinct values). Using 

our assumption, we estimate that 50% of the tuples in b2 verify p. In 

summary, the number of  tuples verifying predieate p = R.a < 20 
is estimated as 100 + 50/2 = 125. I 

frequency 

100 

501b1 [ : 
b2 i 

0 10 20 
~ - ~  b4 ] R.a 
30 40 5~0 

Figure 3: Range selectivity estimation using histograms. 

In general, selection queries may have multiple predicates on 

differentattributes ofthetable. Forexample, considerthe query: 

SELECT * FROM R 

WHERE R.a>10 AND R.b<100 

and assume that we have histograms on R.a and R.b available. If 

sa is the selectivity for R.a > 10 and Sb is the selectivity for R.b < 

100, the selectivity for the whole predicate is estimated, assuming 

independence, as sa • Sb. Multidimensional histograms [3, 13, 15, 

17] have proved to be accurate in modeling attribute's correlation. 

It should be noted, however, that these novel estimation techniques 

are not widely used in commercial databases yet. 

2.2.2 Join Quer ies  

Let us consider the join predicate R ~==v S. We can use his- 

tograms on R.x and Sly (if available) to improve the accuracy of 

the cardinality estimation. Consider histograms Hn.= and Hs.v in 

Figure 4, where each bucket is delimited by square brackets. The 

procedure to estimate the cardinality of the join predicate using his- 

tograms Hn.= and Hs.v is composed of three steps. 

In the first step, we align the histogram buckets so that their 

boundaries agree (usually splitting some buckets from each his- 

togram). For instance, buckets bz and b~ in the figure share the 

same left boundary. However, bucket b2 spans beyond bucket b2' 's 

right boundary. Therefore, we split bucket b2 into two sub-buckets. 

The left sub-bucket boundary agrees with that of bucket b~. The 

right sub-bucket starts at the same position as bucket b~ but ends 

before b~ does. Then, bucket b~ is split in the same way, and this 

procedure continues until all original buckets are aligned (see Step 

1 in Figure 4). This step is guaranteed to at most double the total 

number of buckets in both histograms. 

In the second step, we analyze each pair of aligned buckets and 
doper bucket estimation ofjoin sizes. There is no well-founded ap- 
proach towards doing it and here we sketch one of the approaches. 

First, using the containment assumption [20], it is concluded that 

each group of distinct valued tuples belonging to the bucket with 

the minimal number of different values joins with some group of 

tuples in the other bucket. For instance, in Step 2 of Figure 4, the 

three group of tuples from the upper bucket are assumed to match 

with three of the five group of tuples in the lower bucket. We can 

model the result of joining the pair of  buckets as a new bucket with 

three distinct values and density 40 = 2 • 20. That is, each dis- 

tinct value in the resulting bucket represents 40 tuples, which is the 

product of the original bucket densities. Therefore, the frequency 
of the new bucket is 120 = 3 - 40. 

After applying the same procedure to each pair of aligned buck- 

ets, the third and last step consists of aggregating the partial fre- 

quencies from each resulting bucket to get the cardinality estima- 
tion for the whole join. 

Original Histograms 

bl - r  : : b2(f=12,: dr,,:6) [ I b3(fi=200' ¢1v=2)I - r  .b' HR.x 
_L 1 

. = T  T = = = ,, , T  ~-Is.y 
" . ; 1 '  I : 1  'JL = = bz'(f=40, dr=3) b3'(f=160, ¢1v=8) b 4' 

Step 1 
T 
1 

. , - ' IF ,  
" ' JL '  

, ,J1 ,  
, . . . .  

Step 2~=~"~"~ -'~'~ '~,'~;1 

i// :r,, ,T. 

= i  : : I : Resulting bucket 

f=loo, d~=5 

T .HRx 
JL 

: ,, ~S.y  

Figure 4: Join selectivity estimation using histograms. 

2.2.3 Selec t  Pro jec t  Join (SPJ)  Quer ies  

The techniques in the previous section are used when the predi- 

cates are directly applied to the base tables that hold the histograms 

involved. When considering arbitrary SPJ queries, we face the ad- 

ditional challenge that cardinality estimation requires propagating 

statistics through predicates. Consider the query: 

SELECT * FROM R,S 

WHERE R.x=S.y AND S.a<lO 

and assume that we have histograms on R.x, S.y and S.a avail- 

able. There are conceptually two ways to estimate the selectivity 

of the whole expression. On one hand (Figure 5(a)), histograms for 

R.x and S.y are used to estimate the selectivity o f R  ~ S ignoring 

the predicate S.a < 10. Then, assuming independence between 

S.y and S.a, the histogram for S.a is propagated 4 through the join 

4The histogram propagation step just scales the bucket frequencies so that 
they reflect the new selectivity information. In this case, the frequency val- 
ues for histogram S.a are scaled so that the sum of all frequencies in the 
histogram equals the estimated number oftuples in R t~ S. 
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upwards in the tree. The propagated histogram is then used to es- 

timate the selectivity of S.a < 10 over the result from R ~ S, 

to finally obtain the selectivity of as.a< lO (R ~ S). On the other 

hand (Figure 5(b)), the histogram for S.a is used first to estimate 

the selectivity of as.~<lo(S). Then, assuming independence be- 

tween S.y and S.a, the histogram for S.y is propagated through 

the selection operator and used together with the histogram of R.x  

to estimate the selectivity of R ~ (as.a<lo(S)). It is important 

to note that, although the two methods above estimate the same 

expression, i.e., R ~ (as.a<lo(S)) ------ aS.a<lO(R tXl S), the re- 

suiting estimations can be slightly different. 

(~S a • 10 t~ ~ _ ~  ~ (~RS.a < 10 
1 "x ~ R.~o.y, .  ~ '~  I 

M 
R . ~ S . y  ' 'Era m \ e~' RS / • t m  c). 

/ \  ,~o R O's.p,101 ~, a IXl 
o ~ 

/ \ I .~ .,~ / / ~ ._~ where  a s  _---- 
S ~ j  i R S~/  ~ R S 

(a) S.a is propagated (b) S.y is propagated (c) Extra information is used 

Figure 5: Histogram propagation in complex queries. 

In this paper we focus on the propagation of statistics through 

predicates, and study the sensitivity of the query optimizer to the 

quality of statistics in intermediate nodes of query execution plans. 

For that purpose, we introduce in the next section the notion of SITs 

and evaluate the impact of this structure in the optimizer's choice 

of query execution plans. 

3. SIT: STATISTICS ON QUERY EXPRES- 

SIONS 

In this section we introduce the concept of  statistics on query ex- 

pressions, or SITs, which help eliminate the propagation of errors 

through the query plan operators. As an example, consider again 

Figure 5, and assume that we build statistics on the result of the 

query expression R S  = R ~ S, specifically on RS.a. In this case 
(see Figure 5(c)), we can estimate the cardinality of the original 

query plan by simply estimating the cardinality of the equivalent 

plan Crns.a< lo (RS) .  Thus, we avoid propagating estimation errors 

through the join predicate. For complex query plans, the beneficial 

effect of having statistics on query expressions that match interme- 

diate subexpressions of the query is magnified since we can avoid 

the propagation of errors through a sequence of operators. We now 

formalize the concept of statistics over query expressions. 

DEFINITION 1. Let R be a table, A an attribute "of R, and Q 

an SOL query that contains R .A  in the SELECT clause. We define 

SIT( R.AIQ ) as the statistic for attribute A on the result o f  execut- 

ing qi4ery expression Q. We call Q the generating query expression 

of  SIT(R.AIQ). 

The above definition is easily extended for multi-attribute statis- 

tics. Furthermore, the definition can be used as the basis for ex- 

tending the CREATE STATISTICS statement in SQL where instead 

of specifying the table name of the query, more general query ex- 

pression (i.e., a table valued expression) can be used. We omit the 

specifics of such formulation in this paper. 

How to build and update SITs is an interesting problem in itself. 

The obvious approach to build SITs is executing the query expres- 

sion associated with the SIT and building the necessary statistics 

on the result of the query. Once the statistics has been computed, 

the result of the query expression can be discarded. When explic- 

itly requested or triggered by the system, updating of the statis- 

tics can be accomplished by recomputation and rebuilding of the 

statistics. However, for a large class of query expressions, more 

efficient techniques drawn from the wide body of work in approx- 

imate query processing can be used. This is possible because we 

only need to obtain statistical distributions instead of exact results. 

For instance, the construction of SITs with generating queries con- 

sisting of foreign-key joins can be efficiently performed by using 

sampling. Furthermore, existing indexes and statistics can also be 

leveraged for efficient computation of SITs. We defer a compre- 

hensive study of these alternatives to future work. 

After introducing SITs, two important questions need to be an- 

swered. The first one is how to leverage an existing query optimizer 

so that it incorporates SITs during query optimization. We address 

this issue in the next section, by presenting a general framework 

that can be incorporated into existing query optimizers. The sec- 

ond question is how to select which SITs to build. We address this 

complementary issue in Section 4. 

3.1 A Framework to Exploit SITs 

SITs are only useful if the optimizer is able to incorporate them 

during query optimization. We enable use of SITs by implementing 

a wrapper on top of the original cardinality estimation module of 

the RDBMS. During the optimization of a single query, the wrapper 

will be called many times, once for each different query sub-plan 

enumerated by the optimizer (see Figure 1). Each time the query 

optimizer invokes the modified cardinality estimation module with 

a query plan, we transform this input plan into another one that 

exploits SITs. Then, we obtain a potentially more accurate cardi- 

nality estimation for the modified query plan, and return it to the 

query optimizer. We should note that the transformed query plan is 

simply a temporary structure used by the modified cardinality esti- 

mation module, and is not used for query execution. In summary, 

the modified cardinality estimation module should verify the fol- 

lowing properties to be effectively integrated into an existing query 

optimizer: 

The transformed plan should exploit applicable SITs, so that 

its estimated cardinality is potentially more accurate than the 

original one. 

2. The original cardinality estimation module should be able 

to take the transformed plan as an input with only a few 

changes. 

3. The transformation should be efficient, since it will be used 

for several sub-plans during a single query optimization. 

As we will see, in the simplest case the original (unmodified) 

cardinality estimation module could be used with the transformed 

plan. For more complex transformations, we might need to slightly 

modify the cardinality estimation module. This issue is further ex- 

plored in Section 3.2.3. We now discuss cardinality estimation 

using SITs in detail. 

3.2 Cardinality Estimation using SITs 

For the rest of this paper, we will make some simplifying as- 

sumption about incoming queries (to be optimized) as well as on 

the class of query expressions used to generate SITs. We assume 

that incoming queries are SELECT-PROJECT-JOIN (SPJ) queries 

where the filter expression is a conjunction of simple predicates. 

We assume that SITs are constrained to belong to the above class 

of queries as well. The four steps in the modified cardinality es- 

timation module are summarized as follows: (1) analyze the input 

query plan, (2) identify and apply relevant SITs, and (3) estimate 
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S ~ S S.b>20 

RV. c=15 

T 
---PUT 

U 

(e) Application of SITs 

(c) Table and Attribute classes 

~>~ TU 
RV.r-S.$ 

Clay. a<1o {~.b>2o 

I s 
RV 

(0 Resulting query plan 

Figure 6: Example of the transformation algorithm in the modified cardinality estimation module. 

and return the cardinality of  the transformed query plan. In the re- 

mainder of  this section, we explain these steps in detail using as a 

running example the query in Figure 6(a). 

3.2.1 Analysis  o f  the lnput  Query Plan 

In this first step we perform simple structure analysis on the in- 

put query q that will later help to identify and apply SITs to q. For 

instance, in our running example we first identify the tables and 

columns referenced in the query, and the list of  conjunctive predi- 

cates (see Figure 6(b)). Next, we classify predicates as either filter 
predicates or join predicates. We use the equality join predicates 

to generate column equivalence classes and also to get the set of  

table subsets that are joined. Figure 6(c) shows the results of this 

step in the running example. The filter predicates are marked with 

an F label, and the join predicates with a J label. Tables R, S and 

V are joined using predicates J1 and Ja, and tables T and U are 

joined using join predicate Jz. In a similar way, columns R.r, S.s 
and V.v form one equivalence class, columns T.t and U.u form an- 

other equivalence class, and the remaining columns form singleton 

classes. More complex analysis can be performed in this step, de- 

pending on the set of  rewriting transformations that we apply later. 

3.2.2 Application o f  Relevant  SITs 

For ease of  notation, we represent the set of  available SITs by us- 

ing SIT-Sets, which basically group SITs by their generating query 

expressions. Suppose we have S I T ( Q I a l ) , . . . ,  SIT(QIa~). These 

SITs can be compactly represented by the following SIT-Set: 

Q--~ S[al,...,an] 

where S is the SIT-Set identifier that holds the set of  statistics 

{ SIT(Qlal ) ,  • • . ,  SIT(Qlan)  }. Consider a query (or its plan) q and 

a SIT-Set S defined by the generating query expression Q. SIT-Set 

S is potentially usefial for cardinality estimation of  q if  some at- 

tributes ai are referenced in the selection condition of  q and there 

is an "occurrence" of  Q in q 5. To verify the latter, we can use well- 

known algorithms for materialized view matching (e.g., [5, 9, 19]). 

5We do not give a formal definition for "occurrence", as it is a well under- 
stood concept in materialized view matching. 

Thus, we check if  q can be rewritten using S,  and if  so generate a 

new query expression (e.g., see Figure 5(c)). In such cases, we can 

simply forward the rewritten query expression to a traditional car- 

dinality estimator module. During cardinality estimation, S will be 

treated as a base table having statistics on columns ai. This requires 

a change in the system metadata so that S is treated as a hypothet- 
ical table [8]. Furthermore, note that such rewriting is exclusively 

used for cardinality estimation and not for plan generation. 

Exploiting Multiple SIT-Sets. In general, more than one SIT-Set 

may be applicable to a query expression. Consider Figure 6(d), 

which lists the SIT-Sets that are available. Consider the second 

SIT-Set that uses as generating expression the join R t~r=v V 6 

This SIT-Set can be used for the query in Figure 6(a). Likewise, the 

third SIT-Set can be applied in conjunction with the first one (see 

Figure 6(e)). The resulting query plan is shown in Figure 6(0, for 

which traditional cardinality estimation can be used as described in 

the previous paragraph. Note that no SIT is used for attribute S.b, 
so a base-table statistic (if  available) will be used in that case. 

The above example illustrates the case where using one SIT-Set 

does not interfere with the use of  another. We now discuss exam- 

ples where application of  SIT-Sets may not be compatible. For ex- 

ample, assume that a fourth SIT-Set, R N S -+ RS[a, b], is added 

in Figure 6(d). Whenever SIT-Set R S T  is applicable for a query, 

then so is RS. However, R S T  will be favored over RS. The rea- 

son is that while estimating the cardinality of  the query transformed 

using RS T  we make fewer independence assumption compared to 

using RS (as explained in Section 2.2.3, use of  the independence 

assumption is responsible for error propagation). Note that RS 
may be applicable in cases where R S T  is not. These considera- 

tions are similar to the case of  materialized view matching. 

A more complex scenario occurs when the use of  one SIT-Set re- 

sults in a "rewriting" that excludes the use of  other SIT-Sets which 

can still be useful to improve cardinality estimation. This is illus- 

trated in the example below. 

6This SIT-Set shows the use of single-column SITs on attributes a and c, 
and a muLti-column SIT on attributes (c, d). The statistical object associated 
with a multi-column SIT will have the same structure as any multi-column 
statistics on base tables. 
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EXAMPLE 3. Consider the following SIT-Sets: 

S t~8=t T --+ ST[b, c] 

R ~r=~ S ~r=t T ~ 7LST[a] 

R ~ = c  T --~ 7ZT[a, c] 

and suppose we want to estimate the cardinality of the query: 

SELECT * FROM R,S,T 

WHERE R.r=S.s AND S.s=T.t AND 

R.a<lO AND T.c>20 

SIT-Set 7LST can be applied to the given query. (Note that the join 

predicate R.r = T.t in 7ZST-'s generating query is equivalent to 

the join predicate S N~=t T in the given query modulo column 

equivalence.) We then apply RST-, replacing R t~r=s S ~8=t T 

in the query with the SIT-Set R S T .  In this case, SIT(a[T¢,ST) 

will be used for the filter condition R.a < 10, but SIT(cIT-¢,ST) is 

not available. However, we can use SIT(cIST) from SIT-Set S T  

to avoid assuming independence between T.c and T.t (note, how- 

ever, that we are implicitly assuming independence between T.c 

and R t~ ST).  We are allowed to use SIT(c[ST) because S T  is 

compatible with TO.ST's generating query. Note that in this case, 

we cannot use SIT(clRT) from SIT-Set ~ T  due to the join predi- 

cate R.r = T.c in its generating query. II 

The example above underscores the point that simple materi- 

alized view rewriting is not sufficient in some cases, since such 

rewriting cannot account for the use of statistics such as SIT(cIST) 

in the example. Therefore, when considering application of any 

given SIT-Set S to a query q, the following steps are taken. First, 

we verify that S ' s  generating query is applicable to q and deter- 

mine a "rewriting" that uses the SIT-Set Then, for each attribute 

of q that potentially affects cardinality estimation but is not cov- 

ered by S (i.e., it occurs in one or more predicates ofq but it is not 

among the attributes for which S provides statistics), we look for 

a SIT that would provide the best alternative for estimation. Such 

SIT must come from a SIT-Set whose generating query is subsumed 

by the original SIT-Set's generating query, or the result might not 

be correct. In particular, if many options exist, we select the SIT 

that would require the fewest number of independence assumptions 

when we estimate the cardinality of the resulting query. Our at- 

tempt to minimize the number of applications of the independence 

assumption is justified since precisely independence assumptions 

are the source of error propagation for cardinality estimation. We 

refer to such additional SITs as auxiliary SITs due to application 

of  SIT-Set S to query q. In some cases, no such auxiliary SITs may 

be necessary. 
In order to minimize the number of applications of indepen- 

dence assumptions in the resulting query, we have adopted a greedy 

heuristic to determine the SIT-Sets and auxiliary SITs that should 

be applied for a given input query. For each SIT-Set S,  we consider 

rewriting the query with S and at the same time identify the set of 

auxiliary SITs that are applicable. Next, we count the number of 

independence assumptions that must be made by a traditional car- 

dinality estimator if we apply the given SIT-Set and its auxiliary 

SITs to the input query. This provides a score for each SIT-Set, 

and we select the SIT-Set with the lowest score. After applying 

the selected SIT-Set, we repeat the procedure until no new SIT-Sets 

qualify. This is summarized in the pseudo-code below. 

01 while more SIT-Sets can be applied to the query q 

02 Select the SIT-Set compatible with q that 

minimizes the number of applications of the 

independence assumption 

03 Apply the selected SIT-Set and auxiliary SITs 

As an example, assume that all SIT-Sets' generating queries con- 

sist only of joins (no selections), and the attributes in the predicates 

of the input query plan are { a l , . . . ,  ak}. It is not difficult to see 

that the number of independence assumptions is minimized when 

each attribute uses a SIT with the maximal number of joined ta- 

bles in its generating query. In such scenario, we need to find the 

SIT-Set (and auxiliary SITs) that maximize the value E/k=1 IAnt, I, 

where IAntil is the number of joined tables in the generating query 

expression that provides the SIT for attribute ai. (The value of 

IAntil for an attribute that does not use a SIT is set to one if such 

attribute has a base-table statistic available, or zero otherwise.) 

3.2.3 Ac tua l  Es t imat ion  

In this last step, we get the estimated number of tuples in the 

transformed query and return this value to the optimizer. It is im- 

portant to note again that we do not use the transformed query out- 

side the modified cardinality estimation module (otherwise it would 

cause problems since some tables are hypothetical and do not really 

exist in the system). 

As discussed in the previous section, for some simple query 

transformations the original cardinality estimation module does not 

need to change at all except for the need to use hypothetical tables 

for cardinality estimation. For more complex query transforma- 

tions, however, we would need to do some modifications to the 

cardinality estimation module. For instance, to handle the auxiliary 

SITs of Section 3.2.2, we would need to augment the cardinality 

estimation module with statistical hints, which detail specifically 

which statistic in the system to use for specific attributes. A full 

discussion of these details is beyond the scope of this paper. 

3.3 An Illustrative Experiment 
In this section we show with a simple example the effectiveness 

of using SITs during query optimization. For that purpose, we used 

the popular TPC-H benchmark schema [22]. One of the require- 

ments of the benchmark, however, is that the data is generated from 

a uniform distribution. Likewise, there is a constraint in the number 
of foreign key joins per tuple (e.g., each o r d e r  tuple has associated 

n l i n e i t e m  tuples, where n is a random integer between one and 

seven). Our techniques are meaningful in the very common case 

of skewed data distributions (where the simple histogram propaga- 

tion mechanisms tend to introduce large estimation errors). For that 

reason, we extended the TPC-H generation program to support data 

generation with varying degree of skew. In particular, the generator 

produces data for each column in the schema from a zipfian distri- 

bution (similar to the modifications proposed in [6]). Zipfian dis- 

tributions are also applied to foreign key joins, so for instance the 

number oftuples in l i n e i t e m  that join with each tuple in o r d e r s  

follows a zipfian distribution. 

We generated the TPC-H data sets using a skew factor z = 1 

and a resulting size of 100MB. Consider the following SQL query, 

which asks for information about the most expensive orders (those 

with a total price greater than 1,000,000): 

SELECT * FROM lineitem, orders, part, supplier 

WHERE l_orderkey = o_orderkey and 

l_partkey = p_partkey and 

l_suppkey = s_suppkey and 

o_totalprice > 1000000 

In our database lo%_totaiprico>lOOOOOO (orders)l = 120, i.e., 

120 out of 750,000 tuples in orders verify the filter condition 

(the selectivity is lower than 0.02%). However, precisely those tu- 

pies are joined with a very large number of tuples in l i n e i t e m  

(that is the reason they are so expensive). In fact, we have that 
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l ao_~o~.l~.o, > 1 , 0 0 0 , 0 0 0  (orders ~ l ineitem)[ = 971,851 out of 

2,943,815 tuples (the selectivity is around 33%). Clearly, if we sim- 

ply propagate the histogram for o _ t o t a l p r i c e  through the join 

l i n e i t e m  t:,< o rde r s ,  we will incur in large estimation errors, 

which in turn will affect the optimizer's choice of an execution 

plan. 

//•Nes 
t e d  LOOPS] [Hash 

part ~[Nested Loops] [.ash]~ part 

supplier O[Sortl [Nested LoopB]~ supplier 

[ ~ ] l  [Nested rt'°°Pa ] O" . . . . . . . . .  ~llneitem 

..... I 
llnelte talprice orders 

.lOOK 

I 
orders 

(a) Original Optimizer (b) Modified Optimizer 

Figure 7: Query execution plans. 

We optimized the query above using the original query optimizer 

and the one that incorporates the framework of Section 3.1. We 

made available to the query optimizer all possible SITs. When 

we optimized the query using the original optimizer, we obtained 

the query execution plan in Figure 7(a). In this scenario, the opti- 

mizer estimates that the result size of the subquery lineitem 

ao_tot.lpri¢. > 1,ooo,ooo (o rde r s )  is small (only 713 tuples), there- 
fore chooses to sort this intermediate result before pipelining it to 

the next nested loop join with s u p p l i e r .  Since the estimated in- 

termediate result is still small, another nested loop join is used with 

p a r t  to obtain the final result. In contrast, the modified query opti- 

mizer (Figure 7(b)) accurately estimates that the number of tuples 

in l i n e i t e m  ~ o r d e r s  is large (970,627 tuples) and chooses a 

different set of operators. In particular, the expensive sort oper- 

ation is removed and the nested loop joins are replaced with the 

(more efficient) hash joins (in some cases, the inner/outer role of 

the tables is reversed). Figure 8 shows the execution time of both 

query plans broken down in CPU time and I/O time (the shown 

times are averaged over five independent executions). The actual 

elapsed time of the original plan in Figure 7(b) was 419 seconds. 

In contrast, the plan produced by the modifier optimizer incurred 

in an elapsed time of only 23 seconds (less than 6% of the time 

spent by the original plan). In this example, the modified optimizer 

that uses SITs dramatically reduces the execution time of the given 

query. 

! " OCPU 

~ 3 0 0  . . . . . .  

i: 
200 . . . . .  

100 . . . . . .  

[ l 

Original Optimizer Modified Optimizer 

Figure 8: Elapsed execution times. 

4. AUTOMATED SELECTION OF SITS 
In Section 3.3 we showed that we can substantially improve the 

quality of execution plans of existing query optimizers if statisti- 

cal information about intermediate nodes in the query sub-plans is 

made available. However, building SITs for all possible interme- 

diate results is not viable even for moderate schema sizes: loading 

many statistics and incrementally maintaining them can be very ex- 

pensive. Therefore, an important problem is to select a small subset 

of SITs that are sufficient to increase the quality of the query plans 

produced by the optimizer. One approach to address this problem 

is to take into consideration workload information. In other words, 

the problem statement becomes: given a query workload and a 

space constraint, find the set of SITs that fits in the available space 

so that the actual cost from answering queries in similar workloads 

is minimized (or at least substantially reduced). Note that other cri- 

teria besides space, such as update cost, could be relevant for such 

selection. 

In this section we present a novel algorithm to choose a small 

subset of SITs in such a way that it does not compromise the qual- 

ity of plans chosen by the optimizer. We will consider in turn each 

attribute al that occurs in the filter predicates of the input queries, 

and obtain the optimized query plans assuming that attribute al has 

different skewed hypothetical distributions 7 (see Section 4.2). In- 

tuitively, for a given attribute al, if  the estimated difference in cost 

of the obtained query plans (assuming different distributions for 

al) is close to zero, the introduction of more detailed information 

(SITs) on ai will result in little effect, if  any, on the quality of plans 

chosen by the optimizer. In contrast, if the cost difference is sig- 

nificant, chances are that a SIT over attribute ai can provide rele- 

vant information and help the optimizer to choose the correct query 

plan. Our technique can be seen as a very significant generalization 

of the Magic Number Sensitivity Analysis (MNSA) technique [6] 

that is able to consider SITs (see Section 4.1 for a description of 

MNSA). However, even if we determine that the presence of a SIT 

on attribute ai could improve the quality of plans chosen by the 

query optimizer, we still need to identify which generating query 

should we use for attribute ai. We address this issue in Section 4.3. 

Although the main concepts in our techniques can be applied to 

general queries, in the rest of the section we focus on a workload 

consisting of SPJ queries. 

4.1 Magic Number Sensitivity Analysis 
The workload-based MNSA technique [6] significantly reduces 

the set of base-table statistics that need to be created in a database 

system without sacrificing the quality of generated query plans. A 

relaxed notion of plan equivalence is exploited to make this selec- 

tion. In particular, two plans Pl and p2 are t-Optimizer-Cost equiv- 

alent if  the query optimizer predicts that the execution costs of pl 

and p2 are within t percent of each other, where t reflects the degree 

of rigor used to enforce equivalence. 

For a given a workload, the MNSA algorithm incrementally iden- 

tifies and builds new statistics over the base tables until it deter- 

mines that no additional statistic is needed. To test whether the cur- 

rent subset of statistic is enough for estimation purposes, MNSA 

considers how the presence of such statistics would impact opti- 

mization of queries without building statistics first. For this pur- 

pose, MNSA replaces the magic selectivity numbers, which are 

used by the optimizer in absence of statistics, with extremely small 

and large values (in practice, e and 1 - e, with e = 0.0005). It 

then verifies whether the optimized query plans are insensitive, i.e., 

t-Optimizer-Cost equivalent, to those changes. Under reasonable 

7This step is analogous to the magic number replacements in MNSA. 
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assumptions, if the query plans obtained by using these extreme 

predicted selectivities for all attributes without statistics are cost 

equivalent, then all actual plans for which the actual selectivities 

lie between those extremes will be t-Optimizer-Cost equivalent as 

well, and therefore the impact of materializing new statistics will 

be rather limited. 

In our scenario, we assume that all needed base-table statistics 

were already materialized, either by using MNSA or some other 

equivalent procedure. However, we cannot apply directly MNSA 

to the problem of selection of SITs since the query optimizer does 

not rely on magic numbers for cardinality estimation of non-leaf ex- 

pressions, i.e., simple variations of MNSA are not suitable for this 

generalized scenario. To overcome this limitation, in the next sec- 

tion we generalize the main ideas of MNSA by introducing novel 

estimation strategies that propagate cardinality information through 

query plans by making extreme assumptions about the distribution 

of attribute values. 

4.2 Extreme Cardinality Estimation 

We now introduce two new strategies to estimate cardinalities of 

SPJ query plans. As explained in Section 4, these estimation strate- 

gies make use of extreme hypothesis on the attribute distributions, 

and are the building blocks of our main algorithm for selecting a 

small set of SITs. In particular, we will focus on SPJ input queries 

and histograms as the choice for SITs, but the general ideas can be 

extended to other queries and statistical structures as well. 

As explained in Section 2.2.2, cardinality estimation routines 

assume independence between attributes and propagate statistics 

through query plans. We now illustrate this technique using the 

following query: 

SELECT * FROM R,S 

WHERE R.r=S.s AND S.a<lO 

Suppose that the cardinality of predicate S.a < 10 is estimated 

before the cardinality of the join (as in Figure 5(b)). In this case, 
histogram S.s is uniformly scaled down so that the total number of 

tuples equals to the estimated cardinality of S.a. That is, if  N is 

the number of tuples in table S, and N~ is the number of tuples 

that verify predicate S.a < 10, each bucket frequency from S.s's 
Na histogram is multiplied by the factor W-. After this transformation, 

R.r  and S.s 's  histograms are used to estimate the cardinality of the 

join, as explained in Section 2.2.2.  We call this default estimation 

strategy Ind with respect to S.a since we use the independence as- 

sumption for attribute S.a. In this section we introduce two new es- 

timation techniques, Min and Max (with respect to some attribute), 

which make "extreme" assumptions about the statistical distribu- 

tion of such attribute. In particular, instead of uniformly reducing 

the frequency of all tuples in histogram S.s, we selectively choose 

the N~ tuples in S.s that survive the filter condition, so thatthe re- 

sulting join cardinality is the smallest (largest) possible under the 

containment assumption, as illustrated in the following example. 

EXAMPLE 4. Consider the already aligned histograms on at- 

tributes R .r  and S.s for the query above, which are denoted in 

Figure 9 as HR and Hs,  respectively. For instance, there are three 

groups o f  20 tuples each in the first bucket of  histogram Hs,  and 

two groups o f  lO tuples each in the first bucket o f  histogram HR. 

At the bottom of  the figure we show the number of  tuples that can 

be joined from each pair of  buckets. For instance, the expression 

40S x 10R below the first pair o f  buckets specifies that 40 tuples in 

S (two groups of  20 tuples each) can be joined with 10 tuples in R 

each. In the same way, the expression 20S × OR specifies that for 

20 tuples in S (the remaining group o f  tuples) there is no tuple in R 

that matches them. Now suppose that we know that only 30 tuples 

in S veri y the filter predicate S.a < 10. Using the Max strategy, 

we choose the 8 tuples in Hs  's third bucket (since each tuple in that 

bucket joins with the largest number o f  tuples in R) and 22 out o f  

the 40 tuples in Ha 's first bucket that join with 10 tuples in R. The 

estimated cardinality for the join is then: 8 .50  + 22.10 = 620. In 

contrast, using the Min strategy, we choose the 20 tuples in S.s's 

first bucket that do not join with any tuple in R, and 10 out of  the 

200 tuples in S.s's middle bucket. The estimated cardinality for 

the join is: 20 • 0 + 10 • 5 : 50. For completeness, the Ind strat- 

egy scales down the densities for S.s by the factor 30/268 (268 

is the cardinality o f  S), and therefore the estimated cardinality is 

2 . 2 3 . 1 0 + 1 1 . 1 9  5 + 0 . 4 4 . 5 0 =  100.1 

. T  d= o = , , - IF  
J L  JL 

• i " J L  
d=lO 

ff d=4 
= ' ° , ° T  i I ; 

i' * ] F  ¢ 
JL  =so 
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J L  
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JL " 

4 0 S x  10R 2 0 0 S x 5  R 8 S x 5 0 R  

20Sx OR 

Figure 9: Extreme cardinality estimation routines selectively 

choose the matching tuples. 

As hinted in the previous example, a simple procedure to select 

the appropriate tuples for strategy Min (Max) is to sort the list of 

pairs at the bottom of Figure 9 by increasing number of tuples in 

R, and select the first (last) Na tuples in S from that sorted list. 

It can be proved that this procedure effectively chooses the set of 

tuples in S that minimize (maximize) the number of tuples in the 

join. These strategies are not limited to just one join predicate, but 

they can be easily extended to cope with multiple joins. Since both 

the Min and Max strategies return a cardinality value, we can use 

the output cardinality of one join as the input to the next join, in 

the same way as the traditional Ind strategy, to get an extreme car- 

dinality estimation for the complete join. Consider the 5-way join 

represented in Figure 10, where each edge represents a join predi- 

cate between two tables, and suppose we want to get the Max car- 

dinality estimation with respect to attribute U.a. To do so, we first 

get the cardinality ofau.~< lo using traditional techniques (suppose 

N1 is such cardinality). We then apply the Max strategy for the join 

T t~ U, selecting the N1 tuples in U so that the number oftuples in 

the result is maximized (suppose the new cardinality estimation for 

T ~ U is N2). We repeat the procedure by selecting the N2 tuples 

in (T ~ U) that maximize the cardinality result o f S  t~ (T  t~ U). 

We continue in this way (joining the accumulated result first with 

R and finally with V) to obtain the extreme cardinality estimation 

for the whole join. Of course, instead of the join order used in this 

example, any order that is consistent with the topological order in 

the join graph is possible. 

R S V 

\T u 
(U.a<10) 

Figure 10: Chained extreme cardinality estimation. 
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The scheme described above works for join queries with a single 

filter predicate. In the general case, consider a SPJ query of  the 

form ap~^...^pk (R1 t~ . . .  t~ Rn),  and suppose we assign to each 

column attribute a ~ , . . . ,  ak an estimation strategy (Min, Max, or 

Ind). We can get the final cardinality estimation as follows: 

Ol Get the cardinality C of the join sub-query 

(R1 ~ . . .  ~ Rn) 
02 For each f i l t e r  Pi with a t t r i b u t e  ai, get the 

"partial" extreme selectivity si of query 

~rpi(Rl ~ ...~ Rn) as explained above. 

03 Assuming independence multiply all "partial" 

selectivities with the join cardinality and 

re tu rn  C • Hisi.  

Note that in step 3 above we assume independence, but that is 

the best we can do in the absence of  multi-column statistics. In the 

next section, we use these techniques in our algorithm for selecting 

SITs. 

4.3 Selecting SITs 
In this section we present our algorithm to choose a small subset 

of  SITs in such a way that it does not compromise the quality of 

plans chosen by the optimizer. In particular, we will consider in 

turn each attribute ai present in a query filter predicate, and obtain 

the estimated execution costs when ai propagates through the query 

plan using the Min and Max strategies, and the remaining attributes 

use the Ind strategy (see Section 4.2). Intuitively, i f  for attribute ai 

the difference in estimated cost between the two extreme strategies 

is close to zero, the introduction of  any SIT on a~ will result in 

little or no effect on the quality of plans produced by the optimizer. 

In contrast, i f  the cost difference is significant, chances are that a 

SIT over attribute ai can provide relevant information and help the 

optimizer to choose better quality query plans. Besides, this very 

difference in estimated execution cost is a good estimator of  the 

relative importance of  the different attributes, and can be used to 

rank the candidate SITs. 

However, once we identified a promising attribute to build a SIT 

on, we still need to choose which generating query to use for such 

SIT. As an example, consider again Figure 10, and suppose we 

obtain a large difference in estimated execution cost for the Min 

and Max strategies with respect to attribute U.a. This difference 

in estimated execution cost might come from correlation between 

attribute U.a and another attribute in an intermediate join. In other 

words, we need to determine which SIT over U.a to build among 

several candidates, such as SIT(U.alT ~ U) or SIT(U.aIS 

T t~ U),  among others. 

For this purpose, we will exploit the Min and Max extreme car- 

dinality estimation strategies as follows. Consider the query q = 

aU.a<lo(R txl S ~ T ~ U). When estimating the cardinality of  

q using the Max and Min strategies with respect to U.a, we also 

get for free the partial approximate cardinalities of  the interme- 

diate queries au.a<lo(U), o'u.a<lo(T ~ U), and au.~,<lo(S 

T t~ U) (this sequence is based on the join order used in the ex- 

treme cardinality estimation strategies). At no extra cost, we can 

also obtain the cardinality of  the pure join queries U, T ~ U . . . . .  

R ~ S ~ T ~ U. Combining these cardinalities, we obtain 

the minimal and maximal partial selecfivities of  the join predicates, 

which are graphically represented in the example of  Figure 11 (each 

point in the x-axis corresponds to a different join, and we assume a 

fixed natural join order). For instance, for the base table U, both the 

minimal and maximal estimated selectivities are 0.55, since they 

are taken from the base-table statistic for U.a. However, each join 

increments the possible range of  selectivities, and consequently, 

the propagated estimation error. The estimated selectivity for the 

whole join ranges between 0.25 and 0.85. However, most of  this 

range is inherited from the previous join S ~ (T ~ U). In effect, 

the last join does not introduce large variations in selectivity when 

using the Min and Max strategies. 

ldax strategy 

>~ 0.8 

~ 0.6 

0.4 

0.2, I~'Ii1'~ Strategy 
I I I I 
U T ~  U S ~ T ~  U R~S ~ T ~ U  Joins 

Figure 11: Selectivity estimation of the partial join queries for 

the Min and Max strategies. 

We make the simplifying assumption that for a fixed attribute, 

the relative importance of  a join query (and therefore the impor- 

tance of  a candidate SIT) is proportional to the increase of  uncer- 

tainty of  the selectivity estimation with respect to the previous join 

in the sequence. That is, i f  for some particular operator the mini- 

mal and maximal selectivity estimations change significantly, it is 

more likely that this particular operator has some correlation with 

the filter predicate for which we are considering building statis- 

tics. Using that assumption, the effect of  building and exploiting 

SIT(U.aIR ~ S ~ T ~ U) would be limited in Figure 11. In 

contrast, since T ~ U substantially increases the range of  possible 

selectivities for the query, so SIT(U.alT ~ U) should be one of  

the first candidates to build. 

We now make these ideas concrete, starting with the simplest 

case of a single SPJ query, and then generalizing the results for 

workloads consisting of  multiple SPJ queries. Consider the input 

query q = O'plA...Ap, ~ (R1  t:~ . . .  t:<l R n )  and assume that predicate 

pi references attribute a~. For simplicity, further assume that the 

attribute ai we are interested in belongs to table R1 and the join 

order that the Min and Max strategies consider is R 1 , . . . ,  Rn. In 

this case, the candidate SITs for attribute ai are S I T ( a i l R a ) , . . . ,  

SIY(ai[R1 t~ . . .  t~ R,~). We define the score of SIT(ai[Ra t~ 

• . .  t~ Rj  ) relative to query q as: 

Scoreq (SIT(a/I na  t ~ . . .  ~ R3)) = 

0 i f j  = 1 
~ a i  _ h a l  

a i  a i  • • (EM~ ~ _ EMi~ ) . --j . "~j-i otherwise 
L3~n ~ 

a i  a i  where EMi n and EMa x are the estimated execution times for query 

q when using the Min (respectively, Max) strategy with respect to 

attribute ai, and A~. i --- SeIMax~. i - Se IMin~ '  is the difference 

in selectivity of  a m (Re t~ . . .  t~ R j )  when using the Max and 

Min strategies with respect to attribute ai. The quantity (A~ ~ - 
a i  a i  A j _ i ) / A  ~ varies from 0 to l and simply represents the fraction 

of  selectivity, relative to the final selectivity range for the whole 

query, that is introduced by the j - th join (the shaded regions in 

Figure 11). Clearly, the larger the score of a candidate SIT, the 

more likely that it makes a difference during query optimization. 

Now we generalize this procedure to a workload that consists of  
several queries. In this situation, we maintain a hash table of SITs 

and we add to each SIT the partial scores obtained from each query 
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in the workload. Therefore, for a given workload W, the score 

Score (SIT(a/IQ)) is defined as EqEw Scoreq (SIT(ai IQ)). Af- 

ter processing all queries, we select the top SITs according to the 

Score value that fit in the available space. The following pseu- 

docode summarizes these steps: 

01 f o r  e a c h  q i n  W a n d  a t t r i b u t e  ai r e f e r e n c e d  i n  

a f i l t e r  c o n d i t i o n  Pi i n  q u e r y  q 

02 E M i n , E M a  ~ : e s t i m a t e d  c o s t  f o r  q u s i n g  t h e  

Min, Max strategies with respect to al 

03 Let Ri,... Rn be the join order used by the 

extreme strategies 
• a. a, 

04 SeIMznj',SeIMaxj' ---- selectivity of predicate 

a p i ( R  1 ~ . . .  tx~ R j )  u s i n g  M i n ,  M a x  w . r . t .  

ai for j E 1. . .  n (see pseudocode in Section 4.2) 
05 for j = 2 to n 

Score[SIT(ailR1 ~ . . . ~  Rj)] += 
Eai  __ E e l  A ai _Aai  

( Max M i n ) "  "-2"-7-a~J-1 
Z~n a 

w h e r e  A j  = SelMax~.  i - S e I M i n ?  i 

06  S e l e c t  t h e  t o p  s t a t i s t i c s  SIT (a i l Jk )  t h a t  f i t  i n  

the available space 

Discarding non-essential statistics. The algorithm that we de- 

scribe above only predicts which statistics can be useful to the 

query optimizer. In practice, SITs with large scores can be false 

positives, i.e., the independence assumption might work fine. A 

post-processing step to discard SITs whose cardinality distributions 

are similar to those from which they were generated would be ben- 

eficial. In those cases, the independence assumption used by tradi- 

tional optimizers is accurate, and we can use the resulting available 

space to build other (more useful) SITs. This task can be done 

with similar adaptations to our algorithm as in the MNSA/D tech- 

nique [6], but in this paper we do not make use of such extensions. 

5. EXPERIMENTAL STUDY 

In this section, we present experimental results of an implemen- 
tation of the framework proposed in this paper over Microsoft SQL 

Server 2000, and the algorithm for selecting a subset of SITs. We 

used as SITs the native statistics provided by Microsoft SQL Server 

for base tables: a variant of MaxD/ffhistograms which minimize 

intra-bucket frequency variance. The changes we made in the server 

were minimal: less than 20 lines in the optimizer's code needed 

to be modified to use our proposed wrapper. The wrapper itself 

is around 4,000 lines of code and is incorporated in the server as a 

new module. Finally, the algorithm to select SITs was implemented 

as a client connecting to the server via ODBC. 

5.1 Setup 

Database: We created a synthetic database with the star schema 

of Figure 12. Each node in the figure represents a table that consists 

of 500,000 tuples and each edge represents a foreign-key join. Each 

table is composed of four to eight attributes. Some attributes are 

uniformly distributed and others follow a zipfian distribution (with 

parameter z varying from 0.1 to 1). To verify the effectiveness of 

our algorithms, some attribute distributions are generated indepen- 

dently of the join attribute (so that the independence assumption 

is accurate), and others are correlated with the join attribute in a 

similar way as the t o t a l p r i c e  attribute in Section 3.3 (so that the 

independence assumption could result in large estimation errors). 

We also used a database ten times larger than the original one, i.e., 

in which each table in Figure 12 contains 5,000,000 tuples. The 

results are almost identical to those we already presented, and are 

omitted for lack of space. 

• S * T  

IR U , V  

W * X  * Y  

Figure 12: Star schema used in the experiments. 

Workloads: For each experiment we generated two 100-query 

workloads, denoted training and validation workloads, taken from 

the same distribution. Each query in a given workload consists 

of three to seven joined tables and one to three filter predicates. 

The selectivity and attributes used in the filter predicates were ran- 

domly generated. For each experiment, we used our algorithm of 

Section 4.3 with the training workload, and built 100KB of SITs 

(that roughly corresponds to the top-25 SITs). We then optimized 

each query in the training workload using the following three opti- 

mization frameworks: 

1. Base: The unmodified query optimizer that uses only base- 

table statistics. 

2. SITs: The modified optimizer that also uses the SITs identi- 

fied by our algorithm. 

3. All-SITs: The modified optimizer for which we made avail- 

able all possible SITs. This framework is used to evaluate 

the effectiveness of our algorithm for selecting SITs. 

For each optimization framework described above, we evalu- 

ated the resulting query plans three times and averaged the elapsed 

times. Finally, we repeated the optimization and evaluation steps 

above for all the queries in the validation workload. 

5.2 Results 

No indexes available: In this experiment we used the database 
described in Section 5.1 with no indexes available. Figure 13(a) 

shows the reduction in execution time for the whole workload when 

using SITs. The total execution time when using SITs is around 

25% of that for Base. Also, when using All-SITs (in our case, more 

than 180 SITs were built) we obtain only marginal improvement in 

execution time (around 5%). This result validates our algorithm of 

Section 4.3 for selecting a subset of SITs. Figure 13(b) presents 

a histogram of the improvements in execution time for the queries 

in the validation workload. As an example, 12 queries reduced 

in half their execution times, and 6 queries had between 10- and 

22-fold improvements. For the 4 queries that performed slightly 

worse in the SITs framework (with execution times less than 5% 

larger than those for Base), we checked the corresponding query 

plans and found out that they were the same for both the Base and 

SITs frameworks, so even in those situations SITs did not force 

the query optimizer to choose worse query execution plans. For 

two thirds of the workload there was a 2- to 22-fold improvement 

in execution time. In those situations, the chosen query plans varied 

considerably between the different optimization frameworks. 

Indexes available. The Index Tuning Wizard in Microsoft SQL 

Server is a tool that automatically selects appropriate indexes for 

a given workload. We used such tool with our training work- 

load and materialized the combination of indexes it suggested. We 

then repeated the experiment in the previous section but using the 

richer set of execution plans derived by using the new indexes. Fig- 

ures 14(a) and 14(b) show the results for this case. We can see that 
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Figure 13: Using SITs in a database with no indexes. 
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database with indexes. 

for the whole workload, the relative improvements are similar to 

those of  the no-indexes case. A closer inspection of Figure 14(b), 

however, shows that some queries had two orders of magnitude im- 

provements when using SITs. 

6. RELATED W O R K  

Virtually all optimization frameworks [10, 11, 12, 14, 20] rely on 

statistics over the tables in the database to choose the most efficient 

execution plan in a cost-based manner. There is a large body of  

work that studies representation of  statistics on a given column [16, 

17, 18] or combination of  columns [3, 13, 15, 17]. In this paper we 

present techniques to effectively use SITs for query optimization, 

and we study the orthogonal problem of deciding which columns 

over intermediate query plans to build SITs on. 

Reference [6] presents the MNSA technique to select which sub- 

set of  base-table statistics needs to be built without sacrificing the 

quality of the generated query plans. In this paper we present a 

non-trivial generalization of  the techniques in [6] for the case of 

statistics over intermediate nodes of  query plans. Similar to our 

work in self-tuning statistics [1, 3], LEO (DB2's LEarning Opti- 

mizer) [21] is a framework that repairs incorrect statistics and car- 

dinality estimates of  a query execution plan. By monitoring pre- 

viously executed queries, LEO computes adjustments to cost esti- 

mates and statistics that may be used during fiature query optimiza- 

tions. In this work we take a closer look at the particular case of  

error propagation in query plans. We believe that some of our ideas 

(specifically those discussed in Section 3) are relevant for LEO's 

framework as well. 

The idea of  building statistics over non base-tables was intro- 

duced in [2] by using join synopses, which are precomputed sam- 

ples of  a small set of distinguished joins. The main focus of this 

work is approximate query processing, and the generating queries 

are restricted to be foreign-key joins. In contrast, we present an 

effective framework to incorporate SITs to existing query optimiz- 

ers. Application of  SITs to a given query leverages materialized 

view matching algorithms [5, 9, 19]. However, as pointed out in 

Section 3.2.2, our need to detect auxiliary SITs differs from tra- 

ditional view matching. Furthermore, note that we do not need to 

store and maintain materialized views, but instead we just need to 

build statistics over those views. 

Finally, the identification and use of  SITs has great relevance to 

the problem of selecting the right indexes of  a database, e.g., [7]. 

Specifically, current index tuning tools use existing (and build new) 

statistics to determine the appropriate choice of  indexes. Such tools 

will benefit from the techniques proposed in this paper. 

7. C O N C L U S I O N S  

In this paper, we showed how to extend a traditional query op- 

timizer so that it exploits statistical information on query expres- 

sions. In many cases, the quality of  the resulting plans could be 

much better than when only base-table statistics are available. Ex- 

tending and evaluating our methodology for more complex queries 

(such as aggregations and nested queries) and more complex statis- 

tics (such as multidimensional histograms) is an important next 

step. We introduced a workload-driven algorithm to select con- 

servatively a small subset of  SITs to build that can significantly im- 

prove quality of  query plans compared to using statistics on base- 

tables only. Our implementation and experimental evaluation on 

Microsoft SQL Server 2000 showed the promise of  our techniques, 

but more extensive experimental study is necessary to validate our 

approach. 
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