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Abstract—This work investigates several ways to exploit scene
depth information, implicitly available through the modality of
stereoscopic disparity in 3D videos, with the purpose of augment-
ing performance in the problem of recognizing complex human
activities in natural settings. The standard state-of-the-art activity
recognition algorithmic pipeline consists in the consecutive stages
of video description, video representation and video classification.
Multimodal, depth-aware modifications to standard methods are
being proposed and studied, both for video description and for
video representation, that indirectly incorporate scene geometry
information derived from stereo disparity. At the description
level, this is made possible by suitably manipulating video interest
points based on disparity data. At the representation level, the
followed approach represents each video by multiple vectors
corresponding to different disparity zones, resulting in multiple
activity descriptions defined by disparity characteristics. In both
cases, a scene segmentation is thus implicitly implemented, based
on the distance of each imaged object from the camera during
video acquisition. The investigated approaches are flexible and
able to cooperate with any monocular low-level feature descriptor.
They are evaluated using a publicly available activity recognition
dataset of unconstrained stereoscopic 3D videos, consisting in
extracts from Hollywood movies, and compared both against
competing depth-aware approaches and a state-of-the-art monoc-
ular algorithm. Quantitative evaluation reveals that some of the
examined approaches achieve state-of-the-art performance.

Keywords—Human Activity Recognition, Stereoscopic Video De-
scription, Bag of Features, Disparity Zones

I. INTRODUCTION

Human activity recognition, also known as human action
recognition, refers to the problem of classifying the activities
of people, typically captured in spatiotemporal visual data, into
known action types. It is an active research field at the inter-
section of computer vision, pattern recognition and machine
learning, where significant progress has been made during the
last decade. Depending on the application scenario, several
approaches have been proposed, ranging from the recognition
of simple human actions in constrained environments [1], [2],
[3], [4], to the recognition of complex actions (also referred
to as activities) in unconstrained environments [5] [6] [7] [8]
[9] [10].

The methods proposed for the first scenario aim at the
recognition of simple human actions (usually referred to as
Actions of Daily Living - ADL). According to this scenario,
action recognition refers to the classification of one, or multiple
videos captured from multiple viewpoints, depicting a person

performing an instance of a simple action (e.g., a walking
step) in a scene containing a relatively simple background. The
assumption of a simple background is vital for the methods
of this category, in the sense that video frame segmentation
is usually required in order to determine the video locations
depicting the performed action (e.g., in order to obtain human
body silhouettes).

Regarding the second scenario, despite recent advances,
recognition of complex actions from completely unconstrained
videos in natural settings, also called activity recognition in
the wild [5], remains a highly challenging problem. Unknown
camera motion patterns, dynamic backgrounds, partial subject
occlusions, variable lighting conditions, inconsistent shooting
angles and multiple human subjects moving irregularly in and
out of the field of view, greatly increase the difficulty of
achieving high recognition performance.

Recently, the rise in popularity of 3D video content has
reoriented research towards the exploitation of scene depth in-
formation, in order to augment activity recognition capability.
A distinction must be made, however, between 3D data coming
from depth sensors, such as the popular Kinect peripheral
device, and stereoscopic 3D video content derived from filming
with stereo camera rigs (matched pairs of cameras). In the first
case, a depth map is provided along with each color (RGB)
video frame, assigning a depth value, i.e., distance from the
camera, to each pixel. In the second case, two images of the
scene are available for each video frame, taken at the same
time from slightly different positions in world space. From
every such stereo-pair, a disparity map may be derived using a
disparity estimation algorithm [11]. Thus, a binocular disparity
value (also called stereo disparity) is assigned to each color
video pixel, that indicates relative distance from the stereo rig.
Using a parallel camera setup, the less distance an imaged
object has from the cameras, the larger is the disparity of
its pixels in absolute value. Objects far from the cameras are
projected to pixels with near-zero disparity.

In this paper, several flexible, multimodal modifications
to standard video description and representation approaches
are investigated, that integrate stereo disparity-derived scene
relative-depth information into the typical algorithmic frame-
work for activity recognition in the wild. The presented meth-
ods / video description schemes, may be used in conjunction
with any existing monocular interest point detector or local
feature descriptor. They may also be combined with the
most common local feature-based video representation scheme,
i.e., Bag-of-Features (BoF) [12], and with any classification
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algorithm. In order to avoid possible issues relating to sparse
activity representations, we exploit information appearing in
densely sampled interest points for activity description [7],
along with a kernel SVM classifier. Experiments conducted on
the Hollywood 3D dataset denote that, when compared to the
monocular case, some of the proposed modifications enhance
activity classification performance, while others reduce the
computational cost. In addition, state-of-the-art performance
on the Hollywood 3D dataset is achieved.

The remainder of this paper is organized in the following
way. Section II discusses existing work on the field of human
activity recognition in the wild, with a focus on the current
state-of-the-art and on the exploitation of stereoscopic data.
Section III presents in detail the proposed relative-depth-aware
modifications and discusses their key differences from existing
approaches. Section IV describes experiments conducted in
order to test their performance in human activity recognition.
In Section V conclusions are drawn from the preceding dis-
cussion.

II. RELATED WORK

Most of the research regarding the exploitation of 3D data
for activity recognition has focused on depth maps produced
with Kinect, e.g., for recognition of simple actions and gestures
[13]. The capabilities of Kinect, as well as of other depth
sensors like Time of Flight (ToF) sensors, are limited. For
example, Kinect provides depth maps at 640× 480 pixels and
of range around 0.8 - 3.5 meters. The resolution of depth maps
produced by ToF cameras is between 64× 48 and 200× 200
pixels, while their range varies from 5 to 10 meters. Finally, but
most importantly, both Kinect and ToF sensors are saturated by
outdoor lighting conditions. This is why the use of such devices
is restricted only in indoor application scenarios with important
constraints imposed during the acquisition of visual data (e.g.,
static cameras). Activity recognition in the wild, however, is
actually a different problem, concerning recognition scenarios
significantly more demanding than the restricted experimental
setups typically employing Kinect [14], with completely dif-
ferent suitable algorithmic solutions than those used in simple
action / gesture recognition under constraints (e.g., [15]).

The exploitation of stereoscopic 3D data is currently being
examined as a promising research avenue towards the goal of
achieving high recognition performance in such scenarios. The
resolution of the obtained disparity maps can vary from low
to high, depending on the resolution of the cameras used. In
addition, the range of the stereo camera rig can be adjusted
by changing the stereo baseline, i.e., the distance between the
two camera centers. Thus, stereo cameras can be used in both
indoor and outdoor settings.

Stereo-enhanced activity recognition has mainly been ap-
proached by extending monocular local video description
methods. This is achieved by considering stereoscopic videos
as 4-dimensional data and detecting on them interest points,
through the joint exploitation of spatial, temporal and disparity
information. Finally, appropriate vectors describing local shape
and motion information in space, time and disparity are com-
puted on these interest points. Popular spatial or spatiotemporal

Fig. 1. An illustration of the typical Bag-of-Features approach.

low-level feature descriptors include the Histogram of Oriented
Gradient (HOG), the Histogram of Optical Flow (HOF) [6], the
Motion Boundary Histogram (MBH) [7] and features obtained
by adopting a data-driven learning approach employing deep
learning techniques [16].

The resulting feature set exploits information derived from
sparsely sampled video locations and can subsequently be
summarized, by employing a video representation scheme
such as the Bag-of-Features (BoF) model [12]. According to
BoF, each video is initially described by a set of low-level
feature vectors, from which a histogram-like representation,
called action vector hereafter, is obtained through quantization.
The quantization process assigns each video feature to its
most similar among a set of representative features, the so-
called codebook. The elements of the codebook are typically
cluster centroids, precomputed by clustering the set of all
feature vectors of all training videos. Thus, an action vector
summarizes the distribution of features across an entire video,
discarding information regarding the temporal succession of
frames or the spatial placement of objects within each frame.
Thus, unavoidable variations among videos of the same action
class, such as different temporal rates of action execution or
relative location of the human subjects, are ignored to a degree.
The resulting action vectors subsequently serve as input to a
classifier, e.g., an SVM. The process is illustrated in Figure
1. For each video, multiple fixed-size action vectors, derived
from different low-level feature types, may be computed
separately and combined during classification using a multi-
channel kernel [17].

Such video representations have been shown to provide
good classification performance, taking into account all the
above mentioned issues relating to the unconstrained activity
recognition problem. Furthermore, they do not suffer from
background subtraction problems [18], as is the case when
employing silhouette-based activity recognition methods [2]
[19] [20] [21], and there is no need to track particular body
parts, e.g., arms or feet [22], for activity recognition.

In [23] two state-of-the-art descriptor types and their
disparity-enhanced proposed extensions, combined with two
state-of-the-art spatiotemporal interest point detectors and their
disparity-enhanced proposed extensions, are evaluated. The
results denote that the incorporation of stereo disparity infor-
mation for activity description increases recognition perfor-
mance. In [24], a biologically-inspired deep learning approach
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is employed to simultaneously derive motion and relative-depth
cues from stereoscopic videos, within a single framework
that unifies disparity estimation and motion description. By
exploiting such a stereoscopic video description within a
typical algorithmic pipeline for activity recognition, state-of-
the-art performance has been achieved.

Experimental results conducted on the recently introduced
Hollywood 3D dataset [23] [24] denote that, by using
disparity-enriched activity descriptions in a BoF-based classifi-
cation framework, enhanced activity recognition performance
can be obtained. However, sparse activity descriptions have
proven to provide inferior performance, when compared to
activity descriptions evaluated on densely sampled interest
points [7]. This is due to the fact that sparse activity descrip-
tions exploit information appearing in a small fraction of the
available video locations of interest and, thus, they may not be
able to capture detailed activity information enhancing activity
discrimination. The adoption of 4D sparse stereoscopic video
descriptions, either engineered [23] or learnt [24], that are
computed jointly along the spatial, temporal and relative-depth
video dimensions, may further decrease the number of interest
points employed for activity video representation, reducing the
ability of such representations to properly exploit the additional
available information.

III. DEPTH-AWARE VIDEO DESCRIPTION AND

REPRESENTATION

A. Description Stage

Let us denote by V a set of N stereoscopic videos. Each
element vi, i = 1, ..., N , is comprised of a left-channel
RGB video vli and a right-channel RGB video vri . By vli,j
and vri,j , j = 1, ...,M , we denote the j-th frame of vli
and vri , respectively. Alternatively, vi can be considered as a
sequence of M stereo-pairs, with the j-th stereo-pair produced
by concatenating vli,j and vri,j . By employing a disparity

estimation algorithm, for each vi a disparity video vdi can also
be computed, consisting of the ordered (with respect to time)
disparity maps derived from the consecutive stereo-pairs in vi.
It must be noted that a disparity map may come in one of two
forms, a left disparity or a right disparity, which can be used
in conjunction with the left or the right image of a stereo-pair,
respectively. To simplify our description, in the following we
assume that vdi is composed of right disparity maps. Finally, we
can say that the stereoscopic video dataset is a set consisting
of 3N videos, i.e., V = {vli, v

r
i , v

d
i }

N
i=1

.
Let us also denote by Cr

i a set of descriptors calculated on
locations of interest identified on vri , according to a chosen
interest point detection (e.g. STIPs [25], Dense Trajectories
[7], etc.) and local feature description (e.g., HOG, HOF, etc.)
algorithms. Thus, Cr is the set of feature sets for all vri , i =
1, ..., N , and Cr

i,j refers to the j-th descriptor of the i-th video.

For each Cr
i , a corresponding interest point set C′r

i can be
defined. Thus, Cr

i contains the descriptors calculated on the
right RGB channel of the i-th video and C′r

i the corresponding
interest points. Additionally, C′r can be defined as the set of

all C′r
i , i = 1, ..., N . Similar sets Cl

i , C
′l
i, C

l and C′l can be
defined by computing interest points and descriptors on the

(a)

(b)

Fig. 2. Interest points of a video frame, contained in the Hollywood 3D
dataset, detected: (a) on the right color channel and (b) on the stereo disparity
channel.

left-channel RGB videos vli. In the same manner, sets Cd
i , C′d

i ,

Cd and C′d can be constructed, by computing interest points
and descriptors on the stereo disparity videos vdi .

Using this approach, several different stereoscopic video
description schemes can be obtained by manipulating sets of
interest points and descriptors. For instance, employing the
feature set Cr

i or Cl
i for video description of the i-th video is

a formulation equivalent to standard, monocular local feature
approaches, where only spatial or spatiotemporal video interest
points in color are taken into account. Such locations are video
frame regions containing abrupt, either in space or space-
time, color changes. This scheme is actually the typical video
description method, which lacks robustness in the presence
of image texture variance that does not contribute to activity
discrimination.

Alternatively, one may use the combined feature set:

Crl
i = Cr

i ∪ Cl
i, (1)

in order to exploit the redundant data of two color channels
and, hopefully, achieve higher recognition performance. How-
ever, such an approach would not be beneficial for human
activity recognition, since the two color channels, typically,
are almost identical and do not convey information different
or complimentary enough to facilitate discrimination between
activities. In contrast, the relative-depth information conveyed
by stereo disparity and associated with scene geometry, can be
considered as an independent modality and is more likely to
contribute to the discrimination of activities. Such data can be
more explicitly exploited by using the combined feature set:

Crd
i = Cr

i ∪ Cd
i , (2)
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Fig. 3. Illustration of the proposed relative-depth-aware modification on the BoF video representation approach, using 2 disparity zones. During the representation
stage, video descriptors derived from the right RGB frames are spatially partitioned into 2 zones, according to their corresponding stereoscopic disparity. The 2

zones are transformed into separate action vectors.

for stereoscopic video description of the i-th video. However,
the experiments presented in Section IV indicate that the
recognition performance achieved when employing disparity-
derived features is inferior to that achieved with RGB-derived
features, possibly due to the significant amount of noise present
in the disparity estimations and to the lower informational
content with regard to video aspects other than the scene
geometry. Therefore, the feature descriptors coming from Cd

i

are more likely to contaminate the video description with
noise and, thus, reduce the overall recognition performance
compared to a typical monocular approach that only employs
Cr
i or Cl

i .
Another method oriented towards more indirect exploitation

of stereo disparity-derived scene relative-depth information can
be devised, by implicating the interest point sets in the process.
That is, a stereo-enriched feature set Er

i can be constructed
to achieve relative-depth-aware video description of the i-th
video, by computing descriptors on vri at the video interest
points contained in the set:

E ′r

i = C′d

i ∪ C′r

i . (3)

In practice, to avoid duplicate computations, Er
i can be con-

structed in two steps, first by calculating the feature set Êr
i ,

composed of descriptors computed at the interest points in the
set:

Ê ′
r

i = C′d

i \C
′r

i , (4)

where the symbol \ denotes the relative complement of two
sets. Subsequently, the stereo-enriched feature set Er

i is ob-

tained by the union of Êr
i and Cr

i :

Er
i = Êr

i ∪ Cr
i . (5)

Thus, local shape and motion information is calculated on
points corresponding to video locations holding interest either
in color or disparity, therefore, incorporating data regarding

the scene geometry without sacrificing information of possibly
high discriminative power that is unrelated to depth character-
istics. This way, an enriched and relative-depth-aware feature
set is produced that may subsequently be adopted by any video
representation scheme.

Alternatively, descriptors can be computed on vri only at the

interest points within C′d
i , i.e., solely at the disparity-derived

interest points, instead of employing the enriched interest point
set E ′r

i . This scheme has the advantage of increased texture
invariance, since the final feature set is more tightly associated
with the scene geometry and less with the scene texture.
However, information unrelated to depth characteristics is
not ignored, since the descriptors are computed on the color
channel. In Figure 2, an example of RGB-derived interest
points is shown and contrasted against stereo disparity-derived
interest points on the same video frame. As can be seen, the
stereo-derived interest points are more relevant to the depicted
activity “Run” and the background water surface, which is
characterized by high variance in texture but not in disparity,
is mostly disregarded.

Additionally, the computational requirements of the last
approach are significantly reduced in comparison to the pre-
viously presented methods, since the only sets that need to be

constructed are C′d
i and the RGB-derived feature set Dr

i based

on it. Moreover, our experiments indicate that C′d
i is typically

smaller in size than C′l
i or C′r

i , an advantage with regard to the
computational requirements of the entire recognition process,
when employing a BoF video representation model. This is
to be expected, since all interest point detectors operate by
considering video locations with locally high intensity vari-
ance, either spatially or spatiotemporally, and abrupt disparity
variations are significantly less frequent than color variations,
since they are caused solely by scene geometry and not by the
texture characteristics of the imaged objects.
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Fig. 4. Distribution of disparity values in the training set of the Hollywood
3D dataset.

B. Representation Stage

To enhance video representation in a relative-depth-aware
manner, we employ the disparity videos vdi , i = 1, . . . , N in
order to determine disparity zones that will be subsequently
used for activity description. In order to do this, we would like
to estimate the probability of observing each disparity value in
a stereoscopic video. Assuming that all the stereoscopic videos
appearing in V (as well as the stereoscopic videos that will be
introduced in the test phase) have been captured by using the
same camera parameters, i.e., the same stereo baseline and
focal length, this probability can be estimated by computing
the distribution of the disparity values of the disparity videos
in V . In Figure 4, we illustrate the distribution of the disparity
values in the training set of the Hollywood 3D dataset. As can
be seen in this Figure, we can define two disparity zones: one
corresponding to low-disparity values, i.e., 0 − 20, and one
corresponding to the disparity values in the interval 50− 160.

Clearly, the stereoscopic video locations having a disparity
value appearing in the first zone correspond to background,
while those having a disparity value in the second zone
may correspond either to background or to foreground. The
locations having a disparity value equal to zero may correspond
either to background, or to locations where the disparity
estimation algorithm failed. These two cases are not being
distinguished, therefore any video locations where disparity es-
timation has failed are regarded as background locations which
do not convey information relevant to activity discrimination.

In order to automatically determine the disparity zones, we
compute the cumulative distribution of the disparity values in
V . Let us denote by f(dj) the probability of appearance for the
disparity value dj , j = 0, . . . , 255. The cumulative distribution

of the disparity values is given by F (dj) =
∑j

k=0
f(dk). That

is, F (·) is the CDF of the disparity values in the training set.
The cumulative distribution of disparity values in the training
set of the Hollywood 3D dataset is illustrated in Figure 5. Let
us assume that we would like to determine D disparity zones.
By using F (·), we can define D−1 threshold values by equally
segmenting the CDF of the disparity values. An example of

Fig. 5. Cumulative distribution of disparity values in the training set of the
Hollywood 3D dataset.

this process for the case of D = 3 is illustrated in Figure 5.
Finally, in order to allow fuzzy segmentation of the disparity
values, the disparity zones are determined so as to overlap by
0.25.

After the calculation of the D disparity zones, we use them
in order to compute D action vectors for each stereoscopic
video in V , in a modified BoF setting, by employing any
low-level feature descriptor. We denote the calculated activity
descriptors by Si. By exploiting the previously determined
disparity zones, Si can be split to D activity descriptor sets,
i.e., Si = {Si,1, . . . ,SiD}. Subsequently, we can evaluate D
action vectors in a BoF setting, each one evaluated by using the
descriptors appearing in the corresponding activity descriptor
set. The process is illustrated in Figure 3 for D = 2.

It should be noted here that, since the distances of each
descriptor in Si to the codebook vectors need to be calculated
only once, the computational cost of the proposed stereoscopic
video representation is the same with that of the standard,
monocular BoF-based video representation. In the case where
the adopted activity description approach employs multiple
descriptor types, e.g., HOG, HOF, etc, the above described
process is performed for each descriptor type independently
and the stereoscopic video is, finally, represented by C =
DQ action vectors, where Q is the number of the available
descriptor types. In this approach, during the representation
stage, the scene is implicitly segmented based on relative-depth
information.

Alternatively, the i-th action vector, where i ∈ N, i ∈
[1, D], can be selected for each descriptor type and the others
be discarded. Thus, only a specific disparity zone is exploited
for video representation, resulting in an implicit relative-depth-
aware scene filtering. In this scenario, the video is represented
by Q action vectors and the computational cost may be reduced
in comparison to the monocular case, since the action vectors
corresponding to the ignored disparity zones do not need to
be computed at all. The preferred value for i may depend
on known characteristics of the video data and on whether
the foreground or the background is considered to be more
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Fig. 6. Monocular dense trajectories detected on a frame from a video
depicting the activity “Run”. Red dots show interest point locations in the
current frame.

important.

IV. EVALUATION

In this section we describe experiments conducted in order
to evaluate the performance of the proposed stereoscopic video
description and representation methods.

We have adopted a state-of-the-art monocular video de-
scription [7], [10], [9], [8], called Dense Trajectories, which
performs temporal tracking on densely sampled video frame
interest points across L sequential frames and computes several
local spatial descriptors along each such trajectory. The L
descriptor vectors computed for each spatial descriptor type
are concatenated into a spatiotemporal trajectory descriptor.

The densely sampled interest points are essentially the
pixels of each frame coinciding with the nodes of a fixed
superimposed grid, although a subset of them are filtered out
based on criteria assessing local video frame properties. That
is, a node is removed from the process if it corresponds to
an interest point that is already being tracked from previ-
ous frames, or if it is contained in a homogeneous video
frame region, since local luminance homogeneity influences
tracking negatively and implies scarcity of useful information.
Additionally, trajectories with too large spatial displacements
between consecutive frames are considered erroneous and are
also removed. Tracking is achieved simply by calculating the
dense optical flow among sequential frames [26].

The employed low-level spatial descriptor types are HOG,
which is a normalized histogram of gradient orientations in a
video frame block centered on an interest point, HOF, which
is a similar histogram computed not on the video frame itself,
but on the corresponding optical flow map, and MBH, where
the gradient of the optical flow is used instead, in order to
compensate for locally constant camera motion. Moreover, the
L horizontal and the L vertical spatial displacements (in pixels)
between all temporally consecutive trajectory locations, are
concatenated into a vector that is subsequently normalized,
to form an additional trajectory descriptor. An illustration of
spatiotemporal feature trajectories detected using the standard
monocular approach in [7], is shown in Figure 6.

Let us assume that the number of action classes appearing
in V is equal to A and that the codebooks size parameter
is denoted by Kc. Each video vi is represented by C ac-

Fig. 7. Example frames from the Hollywood 3D stereoscopic dataset for
activity recognition in the wild. The respective activities are “Kick” (top left),
“Kiss” (bottom left), “Eat” (top right) and “Hug” (bottom right).

tion vectors x
c
i ∈ R

Kc , c = 1, . . . , C, one for each low-
level descriptor type. In order to evaluate the proposed video
description methods, monocular Dense Trajectories (where
C = 5) has been suitably modified and adapted. Additionally,
we have followed the standard classification pipeline used in
[7], where classification is performed by using the BoF model
(assuming Kc = 4000 codebook vectors per descriptor type)
and one-versus-rest SVM classifiers employing a multi-channel
RBF-χ2 kernel [17]:

[K]i,j = exp

(

−
1

Ac

Kc
∑

k=1

(xc
ik − xc

jk)
2

xc
ik + xc

jk

)

. (6)

Ac is a parameter scaling the χ2 distances between the c-th
stereoscopic video representations. We set this parameter equal
to the mean χ2 distance between the training action vectors
x
c
i . This kernel has proven to yield high performance when

applied on histogram data and allows an efficient fusion of
information derived from multiple descriptor types.

In the case of the proposed video representation method, the
standard monocular Dense Trajectories description method and
the above-mentioned SVM classifier were employed, while the
BoF model was appropriately modified and adapted.

The experiments have been conducted on the recently
introduced Hollywood 3D activity recognition dataset [23].
It contains 643 training and 308 testing stereoscopic videos
of short duration (2.5 seconds on average) originating from
14 recent stereoscopic Hollywood films. Training and test
videos come from different movies. They are spread across
13 action classes: “Dance”, “Drive”, “Eat”, “Hug”, “Kick”,
“Kiss”, “Punch”, “Run”, “Shoot”, “Sit down”, “Stand up”,
“Swim”, “Use phone”. In addition, a class containing videos
not belonging to these 13 activities is provided and referred to
as “No action”. Example frames from the dataset are shown
in Figure 7.

Disparity map videos derived from synchronized left and
right color video channels were used. The maps were produced
by employing the disparity estimation method presented in
[27], followed by a final median filtering step for de-noising.
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TABLE I. A COMPARISON OF DIFFERENT VIDEO DESCRIPTION

APPROACHES ON THE HOLLYWOOD 3D DATASET.

Method mAP CR

[23] 15.0% 21.8%

[24] 26.11% 31.79%

Cd 14.46% 17.86%

Cl 28.96% 31.82%

Cr 29.44% 34.09%

Cr + Cl 29.29% 29.54%

Cr + Dr 29.80% 31.49%

Er 30.10% 32.79%

Dr 28.67% 35.71%

Performance is measured by computing the mean Average
Precision (mAP) over all classes and the correct classification
rate (CR), as suggested in [23].

A. Experimental Results for the Description Stage

The various proposed video description methods will be
referred to by the feature set each one employs, according
to the discussion in Section III.

Three independent video descriptions of the Hollywood 3D
video dataset were computed, based on the feature sets Cr, Er

and Dr, respectively. For comparison purposes, descriptions
were also computed on Cl and Cd. Additionally, a combination
of the action vectors calculated on the left and right channels,
denoted by Cr + Cl, was evaluated, as well as a similar
combination for Cr + Dr. Thus, on the whole, 7 different
video description schemes were evaluated: Cd, Cl, Cr, Cr +
Cl, Cr + Dr, Er, Dr. The performance obtained for each of
them is shown in Table I.

The performance achieved by exploiting only color infor-
mation equals 34.09% (CR) and 29.44% (mAP). In the case
of Dr, the performance achieved is 35.71% (CR) and 28.67%
(mAP), while Er leads to a performance equal to 32.79% (CR)
and 30.10% (mAP). In Table I we also provide the currently
published performance results in Hollywood 3D [23] [24]. As
can be seen, the proposed method outperforms the state-of-
the-art approach presented in [24], by 3.92% (CR) and 3.99%
(mAP), respectively.

Table II shows the average precision measured per action
class, for the best-performing monocular method (Cr), the best-
performing stereoscopic schemes (Dr and Er) and the best
method reported in [24]. These results indicate that the benefit
of exploiting stereo disparity-derived scene geometry informa-
tion, with regard to augmenting recognition performance, is
evident mainly in outdoor scenes, such as the ones dominating
action classes ”Drive”, ”Run” or ”Swim”, where interest point
detection using disparity data implicitly facilitates segmen-
tation of foreground objects from background by focusing
attention on object boundaries in relative-depth. This intuition
explains the gap in classification rate between methods Er and
Dr: with Er no such filtering takes place and the modest gains

TABLE II. AVERAGE PRECISION PER CLASS IN HOLLYWOOD 3D.

Action Cr Er Dr [24]

Dance 42.07% 41.79% 30.88% 36.26%

Drive 59.30% 61.66% 63.54% 59.62%

Eat 9.04% 8.76% 7.31% 7.03%

Hug 10.83% 14.22% 16.63% 7.02%

Kick 19.43% 20.52% 17.44% 7.94%

Kiss 46.28% 46.32% 34.88% 16.40%

No action 11.78% 11.82% 11.60% 12.77%

Punch 26.95% 28.01% 34.41% 38.01%

Run 45.96% 49.51% 53.15% 50.44%

Shoot 37.95% 37.43% 36.25% 35.51%

Sit down 11.61% 10.67% 9.84% 6.95%

Stand up 53.19% 52.79% 39.82% 34.23%

Swim 23.18% 23.08% 31.27% 29.48%

Use phone 14.54% 14.86% 14.35% 23.92%

mean AP 29.44% 30.10% 28.67% 26.11%

in mean average precision, in comparison to the monocular
approach, may simply be attributed to the more dense video

description, since E ′r
i = C′d

i ∪ C′r
i . It also confirms the

conclusions reached in [28], regarding the use of stereoscopic
data to exploit video background-foreground segmentation for
activity recognition. However, contrary to [28], the proposed
method Dr operates along these lines only implicitly, through
increasing texture invariance and scene geometry content of
the video description, as well as in a generic manner, not
associated with any specific feature descriptor.

For most indoor scenes, average precision is either unaf-
fected or reduced by employing Dr. Therefore, the proposed
method seems to be more suitable for outdoor activities,
where object boundaries in relative-depth play a significant
discriminative role and the background is located at a distance
from the cameras large enough for its disparity values to be
relatively homogeneous. Additionally, as one would expect,
our experiments indicated a strong link between the quality of
the detected interest points in disparity videos and the disparity
estimation characteristics.

It should also be noted that, due to the automatic reduction
in feature set size when employing Dr before the application
of the BoF video representation scheme, in comparison both
to the monocular approach of Cl or Cr and the stereoscopic
approach employing Er, the total running time of the entire
recognition pipeline in our experiments on the Hollywood
3D dataset was significantly smaller for the stereoscopic Dr

scheme. More specifically, Dr ran for approximately 70% of
the time needed by Cl or Cr, while Er ran for approximately
115% of the time needed by the monocular schemes.
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TABLE III. A COMPARISON OF DIFFERENT VIDEO REPRESENTATION

APPROACHES ON THE HOLLYWOOD 3D DATASET.

Method mAP CR

[23] 15.0% 21.8%

[24] 26.11% 31.79%

D = 1, i = 0 28.56% 33.77%

D = 2, i = 0 28.98% 31.12%

D = 3, i = 0 25.88% 31.12%

D = 4, i = 0 25.17% 31.79%

D = 2, i = 1 28.56% 33.77%

D = 2, i = 2 29.52% 32.78%

D = 3, i = 1 22.75% 29.47%

D = 3, i = 2 29.83% 33.77%

D = 3, i = 3 29.15% 32.12%

D = 4, i = 1 22.60% 27.48%

D = 4, i = 2 25.45% 28.14%

D = 4, i = 3 31.81% 32.45%

D = 4, i = 4 27.78% 31.79%

B. Experimental Results for the Representation Stage

The proposed modification on the traditional BoF video
representation, based on disparity zones segmentation, is reg-
ulated by two integer parameters: the number of disparity
zones D and the preferred zone i, 1 ≤ i ≤ D. In the case
where all zones are simultaneously employed for the video
representation, i is hereafter considered, by convention, to be 0.
As a baseline approach, we employ the monocular formulation
that uses only one disparity zone, i.e., for D = 1 and i = 0.
The experiments were re-executed, thus the quantitative results
for D = 1, i = 0 slightly differ from the results for the
monocular Cr method, due to the inherently stochastic nature
of the BoF approach. The performance obtained for each
method formulation is shown in Table III, along with the
currently published performance results in Hollywood 3D [23]
[24].

The performance achieved by exploiting only color infor-
mation equals 33.77% (CR) and 28.56% (mAP). In the case
of D = 4, i = 3, the performance achieved is 32.45%
(CR) and 31.81% (mAP), while D = 3, i = 2 leads to a
performance equal to 33.77% (CR) and 29.83% (mAP). As
can be seen, the proposed method outperforms the state-of-
the-art approach presented in [24], by 1.98% (CR) and 5.70%
(mAP), respectively.

As it is evident from these results, employing action vectors
computed from all disparity zones in order to represent a video
does not augment the recognition performance. In contrast,
selecting the middle disparity zone in the case of D = 3, i = 2
leads to an identical CR and a simultaneous increase of 1.27%
in mAP, when compared to the monocular case. In the case of
D = 4, i = 3, an even larger increase of 3.25% in mAP can
be observed, at the cost of a simultaneous decrease of 1.32%

TABLE IV. AVERAGE PRECISION PER CLASS IN HOLLYWOOD 3D.

Action
D = 1

i = 0

D = 3

i = 2

D = 4

i = 3
[24]

Dance 42.26% 41.71% 44.24% 36.26%

Drive 57.51% 60.83% 61.52% 59.62%

Eat 8.55% 8.50% 6.52% 7.03%

Hug 11.32% 11.56% 16.49% 7.02%

Kick 19.08% 20.37% 18.52% 7.94%

Kiss 44.43% 46.49% 42.98% 16.40%

No action 18.33% 27.42% 29.11% 12.77%

Punch 45.92% 47.92% 52.77% 38.01%

Run 38.25% 44.36% 44.43% 50.44%

Shoot 11.62% 11.36% 14.14% 35.51%

Sit down 51.98% 49.25% 53.02% 6.95%

Stand up 24.39% 22.07% 30.60% 34.23%

Swim 14.40% 13.83% 18.84% 29.48%

Use phone 11.80% 12.00% 12.10% 23.92%

mean AP 28.56% 29.83% 31.81% 26.11%

in CR. This outcome is compatible with the intuition that, in
most videos, the depicted activity is most likely located at a
medium distance from the camera during video acquisition.
Additionally, the potential of stereoscopic data in segmenting
background from foreground for enhancing activity recognition
performance, as indicated in [28], is validated once more.

Table IV shows the average precision measured per action
class, for the typical, monocular BoF representation method
(D = 1, i = 0), the best-performing stereoscopic schemes
(D = 3, i = 2 and D = 4, i = 3) and the best method reported
in [24]. As can be seen, the stereoscopic formulations of
the proposed representation method outperform the monocular
variant and the stereoscopic method [24] in 8 out of 14
action classes. These findings can be partly explained by
“Shoot” and “Use phone” video segments not containing much
motion, therefore such videos cannot be described success-
fully by motion-oriented activity descriptors (such as Dense
Trajectories). On the other hand, [24] exploits information
regarding motion in 4D space, which typically introduces
problems due to feature sparsity, but in this case it probably
facilitates the capture of visually small motion displacements.
In action class “Eat” the monocular approach performs better
than the stereoscopic ones, but the gain over D = 3, i = 2
is negligible. The reason the stereoscopic approaches fail to
augment performance for this class, is probably related to
peculiarities of the Hollywood 3D dataset, i.e., most “Eat”
videos are static close-up shots where almost no motion is
present other than a person’s hand near the camera, therefore
disparity zone-based segmentation is either inconsequential
(D = 3, i = 2) or deteriorates recognition (when a more
distant disparity zone is selected, as in D = 4, i = 3).

Similarly to the case of the proposed video description
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methods, it should be noted that the best-performing stereo-
scopic video representation method D = 3, i = 2 also
comes with a lower computational cost when compared to
the typical monocular BoF approach, since only the action
vectors corresponding to the second disparity zone need to be
computed for each video.

A combined approach, that would employ both the most
promising description (Dr) and representation (D = 3, i = 2)
relative-depth-aware methods, might also have been of interest,
but it was not evaluated in the context of this work. This
is because the resulting video representations would, most
likely, have been too sparse, due to heavy disparity-based
scene filtering, therefore the aforementioned combination is not
expected to perform better than a typical monocular approach.

As a final note, the negative impact of the disparity esti-
mation noise on the proposed methods was not investigated
thoroughly. This is an interesting avenue for future research,
where less noisy and more accurate disparity videos might be
employed.

V. CONCLUSIONS

We have proposed methods to describe and represent stereo-
scopic videos in ways that exploit disparity-derived scene
relative-depth information. At the description stage, such
an approach seems to facilitate the determination of video
interest points relevant to scene geometry and to enhance
texture invariance of the process. At the representation stage,
the investigated method summarizes the description of each
video as a collection of multiple histograms defined based
on disparity characteristics and, thus, on scene geometry. In
both cases, the imaged scene is thus implicitly segmented
using a criterion of relative-depth. This allows a reduction
in the overall computational time and memory requirements
of the activity recognition algorithmic pipeline, if the video
features belonging to background locations are ignored, while
increasing recognition performance in certain cases.
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