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Exploiting Structure in Parallel Implementation

of Interior Point Methods for Optimization1
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December 18, 2004, revised July 4, 2005 and November 15, 2007

Abstract

OOPS is an object oriented parallel solver using the primal-dual interior point methods.
Its main component is an object-oriented linear algebra library designed to exploit nested
block structure that is often present is truly large-scale optimization problems such as those
appearing in Stochastic Programming. This is achieved by treating the building blocks of the
structured matrices as objects, that can use their inherent linear algebra implementations
to efficiently exploit their structure both in a serial and parallel environment. Virtually any
nested block-structure can be exploited by representing the matrices defining the problem
as a tree build from these objects. OOPS can be run on a wide variety of architectures and
has been used to solve a financial planning problem with over 109 decision variables.

We give details of supported structures and their implementations. Further we give
details of how parallelisation is managed in the object-oriented framework.

1 Introduction

The aim of this paper is to give a detailed description of the object-oriented linear algebra module
used inside our interior point code OOPS: Object-Oriented Parallel Solver. OOPS has been the
subject of several reports [20, 19, 18, 17]. However, while these papers mention the underlying
object-oriented design, their main concern is with practical applications without giving much
detail about the actual implementation. The purpose of this paper is to fill this gap.

The prime motivation behind the development of OOPS is our interest in truly large-scale
optimization: problems with upwards of one million variables and constraints. In our observa-
tion these large-scale optimization problems are not merely sparse, but also (block-)structured.
Structure is not merely a byproduct of sparsity, but an essential feature of such problems: truly
large-scale problems are by necessity generated by some repeated process. Stochastic Program-
ming is an obvious example where structure is introduced by the discretisation of the underlying
probability space[19, 20]. Other examples include discretisation in time or space for control prob-
lems or repetitions of matrix blocks in reliability optimization for network problems [21, 16]. As
problem sizes grow, increasingly problems display a nested combination of these structures: such
as network reliability problems with uncertain demands where a stochastic programming struc-
ture is superimposed on the structure of the reliability problem. It is a fair assumption that the
knowledge of the process that generated the problem structure can be passed on to the solver,
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to be used to its advantage. Furthermore structure is usually nested: Matrices are made up of
sub-matrices, which themselves can be further divided.

The linear algebra operations to exploit all of these block-structures are well known and could
be exploited at every level in the problem. However this is hardly ever done to its full capacity
- except in special situations, like stochastic programming - due to the prohibitive coding effort
that would be needed.

OOPS provides a modular implementation of sparse, structured linear algebra operations that
can exploit such nested structure in an efficient way. Since linear algebra operations that exploit
block-structure lend themselves to parallelisation, emphasis has been placed on designing the
package in such a form that all operations will be efficiently performed in parallel, should more
than one processor be available for its computation. The design of OOPS follows object-oriented
principles, treating the blocks (and sub-blocks) of matrices as objects. We introduce a Matrix

interface that defines all linear algebra operations needed for an interior point method. Several
specialised classes provide concrete implementation of the Matrix interface, each exploiting
a different possible structure. The matrix blocks are represented by objects of these classes,
therefore every block of the matrix carries its own implementation of linear algebra routines,
specialised for the structure present in this block.

The advantage of this object-oriented approach over traditional linear algebra implementations
lies in its flexibility: It provides building blocks from which any (exploitable) combination of
nested block structures present in the problem can be constructed. The layout of the package
is such that this is only a concern at the modelling stage with minimum coding effort. The
exploitation of the structure in the various linear algebra routines and their parallelisation will
follow automatically. If additional “building bocks” representing new structures are needed they
can be added easily, extending the capabilities of the solver.

A different interpretation of the object-oriented approach can be gained by introducing the
concept of elimination trees: Elimination trees are a well known concept in the context of
parallelising linear algebra operations for symmetric matrices [12, 14]. They carry information
about dependencies between rows for elimination operations of a matrix and hence guide the
distribution of parts of a matrix among processors. Essentially it encodes the order of pivot
operations for factoring the matrix. A balanced elimination tree makes for a more efficient
exploitation of parallelism, however finding such a pivot order is a non-trivial task.

Elimination trees can be generalised to block-elimination trees, where each node in the tree
corresponds to a block of the matrix rows rather than a single row. The elimination tree now
encodes not only the “pivot” order but also what the applicable “pivoting” operation at each
step is. For block sparse matrices these are block pivot operations, but structures such as low-
rank updates require different operations. While finding an efficient elimination tree for blocks
is just as difficult as for sparse elements, knowledge of the process that generated the block-
structure can be easily exploited to this purpose. In fact every generating process will imply
a characteristic block-elimination tree. As outlined before nodes in the block-elimination tree
are treated as Matrix-objects, each of which carries information about how to best exploit the
particular structure (elimination order) at this node.

The linear algebra kernel is used inside a primal-dual interior point solver targeted at convex
optimization problems. Interior point methods (IPMs) are well suited to large-scale optimization
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since they feature a consistently small number of iterations needed to reach the optimal solution
of the problem as well as requiring fairly simple linear algebra. Indeed, modern IPMs rarely
need more than 20-30 iterations to solve a small quadratic program, and this number does not
increase significantly even for problems with many millions of variables. The linear algebra
requirements boil down to factorisations and solves with the augmented system matrix of the
problem. These can however be costly operations performed on huge matrices, so a highly
optimised linear algebra is paramount to the design of an efficient IPM solver.

As far as we are aware our approach to an object-oriented linear algebra library is unique. There
are various object-oriented implementations of IPMs and more general optimization algorithms
reported in the literature: OOQP[15], TAO[4], OPT++[26] to name but a few (also see [15]
for a summary of various ongoing efforts). However all of these use object-oriented concepts
on the level of the interior point method: They aim to separate the logic of the interior point
method from the used data-types and linear algebra implementation. The linear algebra used in
these codes is still a traditional problem dependent implementation. On the other hand several
developments deal specifically with exploiting stochastic programming structure in IPM [7, 30].
The advantage of OOPS is added flexibility to exploit nested structures that do not fit into the
usual stochastic programming frame such as stochastic network optimization.

Throughout this paper we will use Java vocabulary to explain object-oriented terminology such
as classes, interfaces and methods. We also use syntax such as object.method to refer to a
method associated with a certain object. Generally the typewriter font is used to refer to
methods and structures actually present in the implementation.

The paper is organised as follows: In the following Section 2 we briefly review the linear algebra
needed in interior point methods. Section 3 clarifies the concept of nested block-structured
matrices and consequences to the design of OOPS. Section 4 is concerned with the details of
the object-oriented implementation of the linear algebra routines, while section 5 gives details
of the implementations of supported matrix structures. Finally Section 6 is concerned with
parallelisation aspects of OOPS and Section 7 summarises some key numerical results achieved
by OOPS.

2 Linear Algebra in Interior Point Methods

Interior point methods provide a unified framework for optimization algorithms for linear, quad-
ratic and nonlinear programming. The reader interested in interior point methods may consult
[33] for an excellent explanation of their theoretical background and [2] for a discussion of imple-
mentation issues. We show in this section that all these algorithms require similar linear algebra
operations. Consequently, subject to minor modifications, the same linear algebra kernel may
be used to implement interior point methods for all three classes of optimization problems.



Exploiting Structure in IPMs 4

2.1 Linear and Convex Quadratic Programming

Consider the quadratic programming problem

min cT x + 1

2
xT Qx

s.t. Ax = b,

x ≥ 0,

where Q ∈ Rn×n is a positive semi-definite matrix, A ∈ Rm×n is a full rank matrix of linear
constraints and vectors x, c and b have appropriate dimensions (for linear programming set
Q = 0). The usual transformation in interior point methods consists in replacing inequality
constraints with the logarithmic barriers to get

min cT x +
1

2
xT Qx − µ

n
∑

j=1

lnxj

s.t. Ax = b,

where µ ≥ 0 is a barrier parameter. The Lagrangian associated with this problem has the form:

L(x, y, µ) = cT x +
1

2
xT Qx − yT (Ax − b) − µ

n
∑

j=1

lnxj

and the conditions for a stationary point are thus

∇xL(x, y, µ) = c − AT y − µX−1e + Qx = 0
∇yL(x, y, µ) = Ax − b = 0,

where X−1 = diag{x−1

1
, x−1

2
, . . . , x−1

n }. Denoting

s = µX−1e, i.e. XSe = µe,

where S = diag{s1, s2, . . . , sn} and e = (1, 1, . . . , 1)T , the first order optimality conditions (for
the barrier problem) are:

Ax = b,

AT y + s − Qx = c,

XSe = µe

(x, s) ≥ 0.

(1)

The interior point algorithm for quadratic programming [33] applies Newtons method to this
system of nonlinear equations and gradually reduces the barrier parameter µ to guarantee the
convergence to the optimal solution of the original problem. The Newton direction is obtained
by solving the system of linear equations:





A 0 0
−Q AT I

S 0 X









∆x

∆y

∆s



 =





ξp

ξd

ξµ



 , (2)

where

ξp = b − Ax, ξd = c − AT y − s + Qx, ξµ = µe − XSe.
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By elimination of

∆s = X−1(ξµ − S∆x) = −X−1S∆x + X−1ξµ,

from the second equation we get the symmetric indefinite augmented system of linear equations

[

−Q − Θ−1

P AT

A 0

] [

∆x

∆y

]

=

[

ξd − X−1ξµ

ξp

]

. (3)

where ΘP = XS−1 is a diagonal scaling matrix. By eliminating ∆x from the first equation we
can reduce (3) further to the form of normal equations

(A(Q + Θ−1

P )−1AT )∆y = bQP .

2.2 Nonlinear Programming

Consider the convex nonlinear optimization problem

min f(x)

s.t. g(x) ≤ 0,

where x ∈ Rn, and f : Rn 7→ R and g : Rn 7→ Rm are convex, twice differentiable. Having
replaced inequality constraints with an equality g(x) + z = 0, where z ∈ Rm is a non-negative
slack variable we can formulate the associated barrier problem

min f(x) − µ
m
∑

i=1

ln zi

s.t. g(x) + z = 0

Following the same derivations as for the convex quadratic case we arrive at the (reduced)
Newton system

[

−Q(x, y) A(x)T

A(x) ΘD

] [

∆x

−∆y

]

=

[

∇f(x) + A(x)T y

−g(x) − µY −1e

]

(4)

∆z = µY −1e − Ze − ZY −1∆y,

where ΘD = ZY −1 is a diagonal scaling matrix and

A(x) = ∇g(x) ∈ Rm×n

Q(x, y) = ∇2f(x)+
m
∑

i=1

yi∇
2gi(x) ∈ Rn×n.

The matrix involved in this set of linear equations is symmetric and indefinite. For convex
optimization problem (when f and g are convex), the matrix Q(x) is positive semi-definite and
if f is strictly convex, Q(x) is positive definite. Similarly to the case of quadratic programming
by eliminating ∆x from the first equation we could reduce this system further to the form of
normal equations

(

A(x)Q(x, y)−1A(x)T + ZY −1
)

∆y = bNLP .
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2.3 Indefinite Systems in Interior Point Methods

The two systems (3) and (4) have many similarities. In (3) only the diagonal scaling matrix ΘP

changes from iteration to iteration; in the case of nonlinear programming the matrix ΘD = ZY −1

and the matrices Q(x, y) and A(x) in (4) change in every iteration. To simplify notation in the
following sections we will assume that A and Q are constant matrices as if we were concerned
with the quadratic optimization problems.

Every iteration of the interior point method for linear, quadratic or nonlinear programming
requires the solution of a possibly large and almost always sparse linear system

[

−Q − Θ−1

P AT

A ΘD

] [

∆x

∆y

]

=

[

b1

b2

]

. (5)

In this system, ΘP ∈ Rn×n and ΘD ∈ Rm×m are diagonal scaling matrices with strictly positive
elements. Depending on the problem type one or both matrices ΘP and ΘD may be present in
this system. For linear and quadratic programs with equality constraints ΘD = 0. For nonlinear
programs with inequality constraints (and variables without sign restriction) Θ−1

P = 0. For ease
of presentation we assume that we deal with convex programs hence the Hessian Q ∈ Rn×n

is a symmetric positive definite matrix. A ∈ Rm×n is the matrix of linear constraints (or the
linearization of nonlinear constraints); we assume it has a full rank.

Note that the matrix in (5) changes numerically but not structurally at every iteration. It is
therefore advantageous to separate the symbolic factorisation phase that determines a sparsity
preserving pivot order from the numerical factorisation phase. The symbolic factorisation phase
only needs to be done once at the beginning of the interior point algorithm. However the matrix
in (5) is indefinite. The factorisation of a general indefinite matrix into LDLT form requires
the use of 2 × 2 block pivots which appear on the diagonal of D [3, 12]. The pivot order and
appearance of 2×2 pivots strongly depend on the numerical values of the pivots, preventing the
separation of symbolic and numerical factorisation.

However the augmented system matrix can be transformed into a quasi-definite matrix. A

quasi-definite matrix has the form

[

−E AT

A F

]

, where E and F are symmetric positive definite

matrices and A has full rank. As shown in [32], quasi-definite matrices are strongly factorisable,
i.e., a Cholesky-like factorisation LDLT with a diagonal D exists for any symmetric row and
column permutation of the quasi-definite matrix.

We achieve this transformation by the use of a regularisation approach as in [1]. Namely, when-
ever a close-to-zero pivot is encountered we add a small perturbation to the pivot. Consequently,
we deal with the matrix

HR =

[

−Q − Θ−1

P AT

A ΘD

]

+

[

−RP 0
0 RD

]

,

which is quasi-definite. The diagonal positive definite matrices RP ∈ Rn×n and RD ∈ Rm×m

can be interpreted as adding proximal terms (regularisations) to the primal and dual objective
functions, respectively. In the method of [1] the entries of the regularising matrices are chosen
dynamically: negligibly small terms are used for all acceptable pivots and the stronger regu-
larisation terms are used whenever a dangerously small pivot candidate appears. The use of
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Figure 1: Matrix Φ, its Cholesky factor L and the associated elimination tree T .
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Figure 2: Matrix Φ, its Cholesky factor L and the associated elimination tree T .

dynamic regularisation introduces little perturbation to the original system because the reg-
ularisation concentrates uniquely on potentially unstable pivots. The use of primal and dual
regularisations makes the factorisation of quasi-definite matrix numerically stable and therefore
viable for application in the context of interior point methods.

3 Exploiting Nested Block-Structure

3.1 Elimination Tree

Consider a sparse triangular matrix L ∈ R`×`. Following [12, 14] we associate with this matrix
an elimination tree T , a graph with ` nodes {1, 2, . . . , `} and `− 1 arcs connecting a given node
j with its ancestor node:

a = min{i > j | lij 6= 0}.

If L is irreducible then T is indeed a tree; for a reducible matrix (decomposable to block-diagonal
form) T is a forest of trees associated with each irreducible diagonal block. An example in Fig 1
displays the sparsity patterns of a symmetric 8 × 8 matrix Φ, its Cholesky factor L and the
associated elimination tree T . The nonzero elements in the matrix are denoted with x and the
fill-in elements in the Cholesky factor with f .

The tree defines a precedence of elimination operations: if a is an ancestor of j then column j has
to be processed before column a. By analysing the elimination tree one may deduce the best way
to exploit parallelism in the computation of Cholesky factor. For the matrix presented in Fig 1
the decomposition can be performed independently for three buckets of columns: {3}, {1, 5} and
{2, 4} corresponding to independent branches of the tree. Then the last two contribute to the
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T
VV

Figure 3: Different exploitable structures: primal- and dual block-angular, bordered block-
diagonal, block-banded and rank-corrector.

column 6 and this column together with the first bucket contribute to column 7, and eventually
to column 8.

The elimination tree changes when the matrix is re-ordered using symmetric row and column
permutations. Obviously a balanced elimination tree where all branches have a similar length is
better suited to parallelism, than one where most nodes are in one long branch. However finding
a re-ordering of the matrix that leads to a balanced elimination tree is a non-trivial task.

In many situations however information about how to create a balanced elimination tree is
readily available. As a motivating example we display the nested bordered diagonal matrix in
Figure 2 with its corresponding elimination tree. No fill-in is created by factoring this matrix
and furthermore its eliminations tree is balanced. Nodes {1, 2, 3} can be eliminated independent
of {4, 5, 6, 7} and then each of the leaf nodes {1, 2, 4, 5, 6} is independent of the others. While
recognising such a structure in an anonymous sparse matrix might require a considerable effort,
many real life problems possess a block structure of this pattern which is known at modelling
time and could hence be passed to the solver to exploit. OOPS is an interior point solver aimed
at exploiting known block elimination trees.

3.2 Nested Block-Structured Matrices

By a block-structured matrix we understand a matrix that is composed of sub-matrices. This
could be a matrix whose sub-blocks form a particular sparse pattern, such as a bordered block-
diagonal or block-banded matrix (see Figure 3). Alternatively, this matrix could be a structured
sum of two matrices, such as the rank-corrector matrix

Ã = A + V V T

where V ∈ IRn×k has a small number of columns, so that V V T is a low-rank correction to A.

By a nested block-structured matrix we understand a matrix where each sub-matrix is a block-
structured matrix itself. The particular structure of the sub-matrix might well be different from
the structure of the parent matrix. There is no limit on the depth to which this nesting can be
extended.

Nested block-structured matrices occur frequently in applications. Multistage stochastic pro-
gramming, where every modelled stage corresponds to one level of nesting in the resulting system
matrix is just one example. Other examples are various network problems (joint optimal syn-
thesis of base and spare network capacity, multi-commodity network flow problems, etc) solved
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Figure 4: Nested Block-Structured Constraint Matrix with its Tree Representation.

in telecommunications applications [21, 16]. Some formulations of Support Vector Machines
[10, 13] have system matrices of rank-corrector structure, as have some convex reformulations of
Markowitz-type financial planning problems [19, 20]. Rank-corrector structure also occurs when
the Hessian matrix of a nonlinear programming problem is not known explicitly but estimated
by a quasi-Newton scheme. Adding uncertainty to an already structured problem such as in
stochastic network optimization also leads to nested structure[18, 9]. In most cases the structure
of the problem (or at least the process generating the structure) is known to the modeller. We
therefore assume that the structure is also known to the solver, we do not try to automatically
detect the structure.

The nested block-structure of a matrix can be thought of as a tree. Its root is the whole matrix
and every block of a particular sub-matrix is a child node of the node representing this sub-
matrix. Leaf nodes correspond to the elementary sub-matrices that can no longer be divided
into blocks. With every node of the tree we associate information about the type of structure
this node represents. Figure 4 shows an example of a nested block-structured matrix together
with the tree that represents it. The partitioning of the constraint matrix A into blocks induces
a partitioning of associated primal and dual vectors into subvectors. The tree representation of
the matrix therefore implies a tree representation of vectors in the primal and dual spaces (see
Figure 4). OOPS uses VectorTree and StructuredVector classes to represent the vector tree
and a vector defined on this tree. We will discuss in detail the relations between the matrix tree
and the associated vector trees in Section 4.4.

3.3 Node-oriented linear algebra

Efficient linear algebra routines to exploit a certain known block-structure of a problem are
well known and a multitude of different implementations exist [6, 8, 22, 23, 24, 25, 29, 31].
The reader interested in other parallel developments for optimization should consult [11, 28,
27] and the references therein. Every different structure however needs its own linear algebra
implementation. In principle nested structures could be exploited in the same way, however
the coding effort involved is tremendously magnified, as is the multitude of different combined
structures that would need to be covered. Indeed we do not know of any such effort.

The design of OOPS is based on the fact that any method supported by our linear algebra library
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Figure 5: Primal and dual vector tree derived from structured matrix.

can be performed by working through the tree: At every node evaluating the required linear
algebra operation for the matrix corresponding to this node can be broken down into a sequence
of operations performed on its sub-blocks (i.e. child nodes in the tree). The exact sequence of
these operations does of course depend on the type of structure present at this node. The crucial
observation is that at this particular node the type of its child-node is of no importance, as long
as they can perform the operations they are asked to do. How the operations are performed on
the children nodes is of no concern to the parent.

This is the basis of the object-oriented design of OOPS: We introduce a Matrix interface, a
collection of linear algebra routines (methods) that need to be implemented for all supported
structures. Every node of the matrix tree is then represented by an object of Matrix-type.
When an implementation of a particular method needs access to its subnodes, it does so by
calling its subnodes Matrix methods, which will then invoke an efficient way of performing the
required operation on the child.

Clearly only one implementation of each method is needed for each type of structure that we
want to exploit: For every such structure we have one implementation of the Matrix interface.
A nested block-structured matrix is represented in OOPS as its tree (as in Figure 4), where each
node is an object of one of the classes that implement the Matrix interface (see Figure 6).

3.4 Structured Augmented System Matrices

Since our library is designed for use in IPMs for quadratic or nonlinear programming our main

interest is in exploiting structure in the augmented system matrix Φ =

[

−Q − Θ−1

P AT

A ΘD

]

.

The question of whether an exploitable nested block-structure of the matrices A and Q can be
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Figure 7: Dual Block-Angular A and implied structure of Q and Φ.

combined into an exploitable structure of Φ seems non-trivial at first. However this can always
be done in a generic way. To see this, note that since A and Q by necessity have the same
column dimension, we can force the use of the column vector tree implied by the nested block
division of A onto Q. This implies a nested block division of Q, i.e. the division of the rows and
columns of Q into blocks and sub-blocks is given by the division used for the columns of A. It is
conceivable that this process might lead to an undesirable block-structure in Q, at worst every
sub-block of Q might contain non-zero elements. However it is often possible to move non-zeros
of Q into a more convenient block by changes of the model (see e.g. [19]). Note that these
are changes that improve the sparsity pattern of the augmented system matrix: they would be
beneficial for any algorithm employed to solve the system and are not a peculiar requirement of
our design approach.

Figures 7-9 give examples of how a certain block structure of A would impose a structure on Q

and Φ. In these examples the shaded part of the Q matrix indicates blocks in which nonzeros
would not harm the structure of Φ that is imposed by A. Should nonzeros occur in other blocks
of Q then either the problem would have to be re-modelled, or Q could be represented as a
superimposition of several structures (i.e. if Q had entries in the border blocks in Figure 9, Q

could be represented as a bordered block-diagonal matrix with one diagonal block, which would
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Figure 8: Primal Block-Angular A and implied structure of Q and Φ.

Figure 9: Banded A and implied structure of Q and Φ.

then be of banded structure).

Combining the structured A and Q matrices into a structured augmented system matrix is
equivalent to re-ordering the rows and columns of Φ. The result of this procedure is a matrix

tree whose leaf nodes are generalised augmented system blocks of the form

[

−Q BT

A 0

]

where

A, Q, B are unstructured sparse matrices (with B = A in case of a diagonal block). We use a
sub-interface AugSysMatrix of Matrix to represent these blocks.

This combining procedure is generic: it does not depend on the types of the matrices in question.
It simply combines a block of the Q matrix with the blocks at the corresponding position in the
A and AT part. While the combining is generic, the type of Matrix that is used to represent
the structured augmented system depends on the types of A and Q. The combining is therefore
performed by a method makeAugSystem of the Matrix class. It will do the following operations:

From the input A, Q, B (=A if diagonal block):

• Determine the best combined Matrix-type given the types of A, Q and B.

• Create this block of the augmented System matrix, by combining the constituent matrices.

This combining of the blocks is done by recursively calling the makeAugSystem method for the
sub-blocks of A,B and Q. This way sub-augmented system blocks (like the ones in Figures 7-
9) that consists themselves of structured matrices will be further re-ordered, until the whole
augmented system matrix is a nested block-structured matrix. In [19] we give an example of
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how a block-structured augmented system with three levels of nesting is re-ordered by this
process.

It is worth noting that this procedure requires no further memory to store the reordered aug-
mented system matrix Φ. Its leaf node matrices are identical to those already present in A and
Q. No physical re-ordering of memory entries is done, the procedure merely creates a new tree
of matrix blocks re-using the already existing leaf-nodes.

4 Implementation

The primal-dual interior point method needs to access the system matrices A, Q and the
augmented system matrix Φ. In our implementation access to these matrices is provided
through two interfaces: SimpleMatrix representing a simple matrix such as A or Q and
AugSysMatrix representing an augmented system matrix Φ. The difference between these
two classes is that SimpleMatrix in essence only provides matrix-vector operations, whereas
AugSysMatrix provides factorisation and back-solve routines in addition to the matrix-vector
operations. AugSysMatrix is assumed to have SimpleMatrix components A B and Q and a
StructuredVector component Θ = (ΘP ,ΘD) in the form

[

−Q − Θ−1

P BT

A ΘD

]

.

An AugSysMatrix can either be a diagonal block (in which case it is symmetric and B = A)
or non-diagonal in which case Θ is not present. Both the SimpleMatrix and AugSysMatrix

interfaces are sub-interfaces of Matrix.

4.1 Flow of Control

The user of our library is expected to call the constructor routines for different implementa-
tions of SimpleMatrix to build the matrices A and Q from their constituting blocks. After that
A.makeAugSystem(Q,B,Theta) is called to create the augmented system matrix. makeAugSystem
determines from the types of its two input SimpleMatrix the appropriate type of the AugSysMatrix
and construct a corresponding object by calling its constructor recursively with the appropriate
children of A and Q. Note that this process merely sets up pointer structures: The actual
SparseMatrix leaf nodes that make up Φ are identical to those that make up A and Q; these
leaf nodes are re-used when building Φ.

It would be possible and worthwhile to automate the construction by the use of a modelling
language that allows the modeller to encode information about the problem structure into the
model. The modelling language would need to support the creation of leaf node matrices (proba-
bly from a common core matrix), and provide support for various structure generating processes,
such as stochasticity and discretisations over time and space. Further it would need to support
nonlinear problems. We are not aware of any modelling language that satisfies these conditions.
SMPS[5] (the stochastic programming extension of MPS) goes some way towards it, and an
SMPS interface to our solver exists.
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4.2 The SimpleMatrix interface

The SimpleMatrix interface provides routines to construct the structured problem matrices
A and Q and to do simple matrix-vector-type operations on them. The interface defines the
following methods

• SimpleMatrix Constructor(...)

• StructuredVector matrixTimesVector/matrixTransTimesVector(StructuredVector)

• StructuredVector getColumn/Row(int)

• StructuredSparseVector getSparseColumn/Row(int)

• VectorTree getPrimal/DualTree(void)

• AugSysMatrix makeAugSystem(SimpleMatrix Q, SimpleMatrix B, StructuredVector

theta)

It thus includes the capability of performing matrix-vector products, retrieving a dense or sparse
row or column from the matrix and setting up further structures like the primal/dual and
the augmented system matrix. In OOPS the following classes implement the SimpleMatrix

interface:

SimpleSparseMatrix general sparse matrix
SimpleDenseMatrix general dense matrix
SimpleNetworkMatrix arc-node incidence matrix for networks
SimpleBlockDiagonalMatrix block-diagonal
SimpleBorderedBlockDiagonalMatrix block-diagonal with dense rows and columns
SimplePrimalBlockAngularMatrix block-diagonal with dense rows
SimpleDualBlockAngularMatrix block-diagonal with dense columns
SimpleRankCorrectorMatrix A + V V T , where V has small number of columns

4.3 The AugSysMatrix interface

The AugSysMatrix interface is intended to represent an augmented system matrix of the form

Φ =

[

−Q − Θ−1

P BT

A ΘD

]

. It consists of references to its constituting parts A, Q, Θ and B

(identical to A if symmetric). The interface supports the same methods as SimpleMatrix but
in addition also factorisation and back-solve routines (the latter in sparse and dense modes):

• void symbolicFactorization(void)

• void computeCholesky(void)

• StructuredVector solveCholesky(StructuredVector)

• StructuredVector solveL/D/Lt(StructuredVector)

• StructuredVector solveSparseCholesky(StructuredSparseVector)
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• StructuredSparseVector solveSparseL/D/Lt(StructuredSparseVector)

Generally the implementations of this interface breaks down the computations of matrix-vector
type methods into computations on its sub-parts, calling the appropriate method of the Sparse-
Matrix representing A, B and Q. symbolicFactorization determines a sparsity preserving
row/column re-ordering and creates data-structures to store the re-ordered augmented-system
matrix and its factorisation. computeCholesky performs the numerical phase of the factorisa-
tion: building the (re-ordered) augmented system matrix and finding a representation of its Cho-
lesky factors. Not all implementing classes use an implicit factorisation that can be represented
in the LDLT format. Therefore some classes might not implement the solveL/D/Lt-methods.
Accordingly some of the implementations of the methods might offer different alternatives de-
pending on whether its children support the solveL/D/Lt-methods. In addition some imple-
mentations (such as those using an iterative solver) might not use a Cholesky-type factorisation
at all. In this case computeCholesky builds a preconditioner for the system and solveCholesky

performs the PCG iterations.

The AugSysMatrix interface is implemented in OOPS by

SparseAugSysMatrix sparse leaf node augmented system matrix
DenseAugSysMatrix dense leaf node augmented system matrix
BlockDiagonalAugSysMatrix block-diagonal
BorderedBlockDiagonalAugSysMatrix block-diagonal with dense rows and columns

RankCorrectorAugSysMatrix Q of the form Q̃ + V V T

For both the SimpleMatrix and AugSysMatrix interface, the implementing classes can be classi-
fied as either leaf node classes such as Dense, Sparse or Network or the complex classes, such as
BorderBlockDiagonal or RankCorrector. The latter are constituted from sub-matrices which
themselves are of type SimpleMatrix or AugSysMatrix. The crucial idea on which the design
of our library is based is that an efficient implementation of all methods for a complex class can
be reduced to a sequence of methods performed on its constituents. The top-level class here
does not need to know the exact type of its constituent objects nor whether they themselves
are of leaf-node-type or complex, it merely needs to know that they support the methods of the
interface and assumes that they do so in a way most efficient for their particular structure.

4.4 The VectorTree and StructuredVector Classes

Most of the Matrix operations need to be performed on (or with) vectors. In this section when
talking about vectors we generally mean the primal/dual iterates (xk, yk, sk) of the interior point
method. These will be dense vectors, hence we present this section as applicable to dense vectors
(represented by the StructuredVector class) For certain sub-tasks of the factorisation or back-
solve routines, sparse vectors are preferable: hence we have also a mirror implementation of a
StructuredSparseVector class.

Since the implementations of the Matrix-methods generally break operations down to a sequence
of operations on sub-blocks of matrices, we need to be able to break vectors down into sub-vectors
in a compatible fashion. This is further complicated by the requirement that the implementation
should also work in parallel, where each processor only knows (and has memory allocated for)
a part of the vector.
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       Layer 1: Dense Vector Elements

Layer 2: StructuredVector Elements with Tree
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Figure 10: The two layers of the vector representation: The ovals represent the
StructuredVector nodes together with a pointer to the start of this nodes dense elements in
memory

The information of what is a compatible vector to a particular block-structured matrix is carried
in the VectorTree class. The VectorTree class is constructed from the corresponding Matrix by
its getPrimal/DualTree method. Note that rectangular matrices usually have different primal
and dual VectorTrees. Figure 5 gives an example of the primal and dual tree corresponding to
a block-structured matrix. Every node of the VectorTree carries information on the structure
of this node and on how this node fits into the complete vector:

• number of children, array of children (array of VectorTrees),

• start and end of this node in absolute indices,

• index number (of this node in the tree).

The StructuredVector class represents a vector corresponding to a given VectorTree. That is
it supports the necessary operation to access the sub-vector corresponding to every node of the
VectorTree. Note that this is true even if the actual values of the vector are distributed among
several processors. The representation of a vector as a StructuredVector consists essentially
of two layers. The bottom layer is simply an array of doubles storing all the vector elements
that are known on this processor. Keeping all the dense elements of the vector consecutively in
memory has obvious cache advantages. The second layer has the necessary information to access
these elements by nodes of the VectorTree. An example of the primal VectorTree associated
with the structured matrix in Figure 5 is displayed in Figure 10. This second layer is an array
of StructuredVector objects (one corresponding to each node of the tree). Note that the sub-
vector corresponding to a particular node of the VectorTree is a StructuredVector as well,
so it is sensible to represent it by the same structure that represents the complete vector. Each
StructuredVector object in the second layer has the following instance variables

• node in VectorTree corresponding to this StructuredVector,
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Augmented System Tree

Primal Tree Dual Tree

Figure 11: Building the augmented system tree from primal and dual Tree: solid lines show the
augmented system tree and dashed lines the primal/dual trees.

• pointer to dense element information (if on this processor),

• pointer to the complete array of StructuredVectors.

Note that all other information (such as data on this processor, length of data corresponding to
this subvector, children if any, and indices of these children in the StructuredVectors array)
can be obtained from the corresponding node in the VectorTree.

Since the interior point solver OOPS is working with the augmented system we need to be able to
access the primal and dual vectors together as one vector structure. In this case the subvectors
of the augmented system vector should not be the primal and dual vectors, but again augmented
system vectors corresponding to submatrices of the augmented system consisting of interleaved
primal and dual vector parts. This layout can be achieved by combining the equivalent nodes
of the primal and dual VectorTrees into augmented system nodes and building a separate
augmented system VectorTree from these (see Figure 11). Note that in our implementation we
go the opposite route (for reasons of cache efficiency): The VectorTree corresponding to the
augmented system is created first - by calling the appropriate method of the Matrix interface.
During this process nodes are labelled depending on whether they belong to the primal or dual
part of the vector. Based on this information separate VectorTrees can be created later to
access only the primal or dual nodes of the augmented system vector when needed.
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4.5 Implementation Details

OOPS is written largely in C/C++. Some bottom level routines that implement the elementary
sparse matrix factorisation and back-solves are written in FORTRAN for efficiency reasons.

The parallel implementation of OOPS is targeted at a distributed memory architecture and uses
message passing via MPI. This choice offers flexibility concerning the choice of platform. OOPS
has been run on a variety of platforms ranging from a network of PCs to dedicated massively
parallel machines.

5 Implementations of the Matrix Interface

In this section we give details of some classes that implement the Matrix interface.

5.1 The BorderedBlockDiagonalAugSysMatrix class

This class represents an augmented system matrix with symmetric bordered block-diagonal
structure:

Φ =















Φ1 BT
1

Φ2 BT
2

. . .
...

Φn BT
n

B1 B2 · · · Bn Φ0















, (6)

where Φi ∈ Rni×ni , i = 0, ..., n and Bi ∈ Rn0×ni , i = 1, ..., n. Note that since this is a complex
class it does not use references to its constituent A, Q and Θ blocks. It therefore can represent
any matrix of the above form. Matrix Φ has N =

∑n
i=0

ni rows and columns. Blocks of this
structure are created when merging the components A and Q of mixed block-diagonal and/or
block-angular structure. We can obtain a block-Cholesky type decomposition of the matrix

Φ = LDLT

by employing the Schur-complement mechanism as

L =
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(7a)

where

Φi = LiDiL
T
i (7b)

Ln,i = BiL
−T
i D−1

i (7c)

C = Φ0 −
n

∑

i=1

BiΦ
−1

i BT
i (7d)

= LcDcL
T
c (7e)
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Formula (7b) needs some additional comments. As will become clear further down, Li and
Di are only ever accessed in the form L−1

i b,D−1

i b, L−T
i b, that is through Φi’s solveL/D/Lt

methods. The only constraint placed on the form of Li, Di is that the sequence of calls solveL,
solveD, solveLt is equivalent to a call to solveCholesky (i.e. formula (7b) holds). Should
the class representing Φi use an implicit factorisation that does not support a solveL method,
we can simply set Di = Φi and Li = I. With these settings the rest of the analysis below
stays correct. For the implementation, a class (such as RankCorrectorAugSysMatrix) that
does not support solveL can set solveD as a synonym for solveCholesky and solveL/Lt as
do-nothing (i.e. return the input vector). If solveL is supported the back-solve routine below
is slightly more efficient (requiring 3 calls to Φi.solveL/Lt rather than the equivalent of 4 (2
times solveCholesky) otherwise.

Representation (7) can be used to compute the solution to the system

Φx = b,

where x = (x1, . . . , xn, x0)
T , b = (b1, . . . , bn, b0)

T as follows

zi = L−1

i bi, i = 1, . . . , n (8a)

z0 = L−1

c (b0 −
n

∑

i=1

Ln,izi) (8b)

yi = D−1

i zi, i = 0, . . . , n (8c)

x0 = L−T
c y0 (8d)

xi = L−T
i (yi − LT

n,ix0), i = 1, . . . , n. (8e)

Note that the matrices Ln,i are only used in (8b, 8e) for two matrix-vector multiplications each.
On the other hand the computation of Ln,i by (7c) would require ni solves with matrix LT

i . In
certain situations it is more efficient not to compute Ln,i explicitly, but evaluate (8b, 8e) as

z0 = L−1

c (b0 −

n
∑

i=1

BiL
−T
i D−1

i zi) (8b’)

xi = L−T
i (yi − D−1

i L−1

i BT
i x0), i = 1, . . . , n (8e’)

replacing the matrix-vector product with a back-solve involving Li. Because of this Li, Di, Lc, Dc

can be seen as an implicit Cholesky factorisation of Φ.

Further the sum to compute C in (7d) is often best calculated from terms (L−1

i BT
i )T D−1

i (L−1

i BT
i ),

which in turn are best calculated as sparse outer products of the sparse rows of L−1

i BT
i .

All these computations can be done naturally in our object-oriented environment: (7b) requires
a call to computeCholesky for each of the diagonal parts Φi of Φ. The sum in (7d) is formed by
B[i].getSparseRow(...) followed by Φ[i].solveSparseL/D(...) and an outer product of
StructuredSparseVector objects to create C as a SimpleDenseMatrix. The back-solves can
be similarly broken down into AugSysMatrix methods performed on Φi, Bi and C.

5.2 The RankCorrectorAugSysMatrix class

This class represents a matrix Φ = Φ̃+ V V T that is a combination of an (easily invertible) part
Φ̃ ∈ IRn×n plus a low rank update V V T , where V ∈ IRn×k and k is small. Its implementation
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is based on the Sherman-Morrison-Woodbury formula

Φ−1 = Φ̃−1 − Φ̃−1V (I + V T Φ̃−1V )−1V T Φ̃−1

which implies that the system Φx = b can be alternatively solved by

W = Φ̃−1V (9a)

C = I + V T W (9b)

y = Φ̃−1b (9c)

x = y − WC−1V T y (9d)

W and C−1 can be seen as an implicit representation of the inverse of Φ. The factorisation and
back-solve routine therefore consist of the following steps:

computeCholesky:

C = DenseMatrix.identity(k,k)

Φ.computeCholesky
for i=1,k

u = V.getSparseColumn(i)

W[i] = Φ.solveCholesky(u)
for j=1,k

v = V.getSparseColumn(j)

C[i][j] += v.dotProd(W[i])

end

end

C.computeCholesky

solveCholesky(b):

y = Φ.solveCholesky(b)
tmp1 = V.matrixTransTimesVector(y)

tmp2 = C.solveCholesky(tmp1)

tmp3 = W.matrixTimesVector(tmp2)

y.subtract(tmp3)

As pointed out above, the implicit factorisation in this class does not support the concept of
separate solveL/D/Lt methods. As suggested solveD is therefore equivalent to solveCholesky

and solveL/Lt are empty methods.

5.3 Sparse Elementary Matrices: The SparseAugSysMatrix class

In any sparse nested block-structured matrix the leaf nodes are eventually represented by sparse
matrices. It is therefore important to include an efficient implementation of a SparseMatrix

class in our linear algebra library. The implementation of this class follows very closely tra-
ditional sparse linear algebra implementations for interior point methods including separation
of symbolic and numerical factorisation and regularisation to avoid two-by-two pivoting for
augmented systems (see Section 2.3).

6 Parallelisation

Due to the block-structure of many of the classes implementing the Matrix interface, their
methods lend themselves naturally to parallelisation. There are two main advantages in paral-
lelisation. Firstly there is a speed gain by distributing computations among several processors.
This is especially the case with block structured operations where the computations break down
into sub-tasks that can be computed independently. The second advantage concerns memory
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requirement: If computations are shared between different processors, a significant amount of
problem data is only required on a subset of processors. This leads to less memory needed on
each processor (thereby enabling the solution of problems that might otherwise not fit into the
memory of a single machine). Spreading the data between processors further leads to more
efficient caching on every processor and hence a further speed gain.

In OOPS parallelism is implemented as follows: Every node i of the matrix tree has a set of
processors P(i) assigned to it. These processors between them share all the work needed to
perform any of the Matrix methods on this node and its children. Data is organised in memory
in such a manner that the processors in P(i) between them have all the data necessary to
perform these operations. How to split the work and the data between the processors (and
which processors to assign to the child nodes) is the responsibility of each class implementing
the Matrix interface.

Consider the example of the computeCholesky and solveL methods from the BorderedBlock-

DiagonalAugSysMatrix class discussed in Section 5.1.

Φ.factorise:

Φ1.factorise V1 = Φ1.solveL(B
T
1
) C1 = V T

1
D−1

1
V1 C1.add(Φ0)

...
...

... idle

Φn.factorise Vn = Φn.solveL(B
T
n ) Cn = V T

n D−1
n Vn idle C

=
∑

C
i

C
.
f
a
c
t
o
r
i
s
e

x = Φ.solveL(b):

x1 = Φ1.solveL(b1) v1 = −Φ1.solveLt(D
−1

1
x1) c1 = B1.times(v1) c1.add(b0)

...
...

... idle

xn = Φn.solveL(bn) vn = −Φn.solveLt(D
−1

n
xn) cn = Bn.times(vn) idle c

=
∑

c i

x
0
=

C
.
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v
e
L
(c

)

The factorisations of the diagonal blocks Φi and the subsequent computations of matrices
Ci = BiL

−T
i D−1

i L−1

i BT
i are independent of each other, and are distributed among available

processors. The computation of the Schur complement C = Φ0 −
∑

i Ci requires communica-
tions between the processors and the result of the final factorisation of C needs to be known
on all processors allocated to the node. To save on communications the factorisation of C is
computed on all processors, implying that the forming of C from the Ci’s and Φ0 requires a
global reduce operation.

Once the computation tasks are assigned to processors, the appropriate distribution of problem
data and child nodes can be derived on a ’need-to-know’ basis. In the above example diagonal
blocks Φi are distributed among the processors. The same holds for the border blocks Bi. Φ0 is
strictly speaking only needed on one processor, however it shares the same spatial location as the
Schur complement C which is needed everywhere, hence Φ0 is also allocated to all processors.
The distribution of VectorTree nodes follows the distribution of the corresponding matrix nodes.
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Figure 12: Allocating matrix and vector blocks to processors.

Nodes xi are distributed, whereas the node corresponding to the border blocks x0 is stored on
all processors.

If the number of processors allocated to a node does not exactly match the number of blocks/children
the Matrix object in question will decide on how to pool resources and computations in an op-
timal way for the required tasks. If several processors are allocated to a task they need to know
if they should share in performing this task or each work on it separately. This information is
provided by setting up appropriate MPI Communicators on the nodes as part of the Matrix

interface.

The distribution of processors to child nodes is performed by a method allocateProcessors

which is part of the Matrix interface. allocateProcessors(int[] procs) allocates a set P(i)
of processors to node i. It takes a range of processors and allocates them to its children in
whatever way is sensible for the matrix-type that the implementing class represents by calling
the child’s allocateProcessorsmethod. Where the parent can allocate more processors than it
has children (nodes high up in the tree), fairly sophisticated strategies can be used that determine
which child can benefit most from additional processors. Allocation of nodes to processors in a
nested-structure can therefore also be performed by working recursively on the tree.

Figure 12 illustrates the allocation of problem data to processors for a nested bordered block-
diagonal matrix. It should be read by comparing it with the matrix and vector tree represen-
tations from Figures 4 and 5. Each level of Figure 12 corresponds to one level of nodes in the
trees. The bottom-most layer corresponds to the whole matrix (vector), the root node of each
of the trees which is allocated to all processors. The topmost layer corresponds to the leaf nodes
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describing elementary matrices and vector parts. Since the matrix and vector data is held only
in the leaf nodes this layer also indicates on which processors different parts of the problem data
are kept.

The complete matrix tree is kept on all processors. The Matrix object containing the implemen-
tations of the linear algebra methods and pointers to the child nodes is present on all processors
in P(i). On all processors not in P(i), node i in the matrix tree is represented by a FakeMatrix

object. FakeMatrix is an implementation of the SimpleMatrix and AugSysMatrix interfaces,
that defines all methods to be empty. It has no data associated with it and no children. It is a
dummy node in the tree that causes all tree operations to stop at this point.

Using this setup most of the parallelisation of the linear algebra methods is done automatically.
A computation such as (7) and (8) is coded on every processor as written (indeed as it would be in
a serial implementation). Due to the FakeMatrix every processor only does those computations
for which it has the required data. In effect a sum such as (8b) or (7d) is distributed among
all processors that can perform a part of it. All that is needed differently from the serial
implementation, is to sum up processor contributions using the provided MPI Communicators.
When working on complex matrix trees, this layout ensures that complete branches that are
allocated to a different processor are skipped, since already the top-node of the branch is a
FakeMatrix. Occasionally, in summations such as C = Φ0 +

∑n
i=1

Ci we need to add an explicit
test to make sure that the matrix Φ0 is only added on one processor.

6.1 Loading the matrix: Parallel program flow

The nodes of the trees representing problem matrices A and Q are distributed among the pro-
cessors. Clearly node-specific problem data should only be held on processors that work with
this data. On the other hand allocation of nodes to processors is done by a Matrix-method:
that is the tree of Matrix objects needs to be in place on all processors before the allocation of
processors to nodes can take place. To overcome this conflict we use the following bootstrapping
method:

1. Build the Matrix-tree on all processors. Data for sparse leaf matrices is not generated yet.

2. Call allocateProcessors recursively to allocate nodes in the tree to processors. On
processors not in P(i) the Matrix object is replaced by FakeMatrix.

3. Create primal and dual VectorTree recursively. They inherit their processor allocation
from the corresponding Matrix object in the associated augmented system tree.

4. Another recursive call to Matrix method fillLeafNodes generates the data describing
matrix and vector parts in the leaf nodes on the appropriate processors only.

5. Start interior point algorithm.
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7 Numerical Results

The power of the structure exploiting interior point solver has been demonstrated in a wide
range of applications. OOPS has been used to solve multistage stochastic portfolio optimization
problem on the UK High Performance computing facility HPCx and the BlueGene/L machine
at EPCC, Edinburgh with 1280 and 1024 processors respectively. The largest of these problems
solved had over 12 million scenarios and 1.01 ∗ 109 decision variables[17].

Good parallel scaling and superiority over commercial non structure exploiting solver CPLEX
has been demonstrated on a range of nonlinear variants of the portfolio optimization problem[19,
20]. Further OOPS has been used to solve stochastic utility distribution problems[18] and
stochastic network optimization problems[9].

References

[1] A. Altman and J. Gondzio, Regularized symmetric indefinite systems in interior point methods
for linear and quadratic optimization, Optimization Methods and Software, 11-12 (1999), pp. 275–
302.
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