
 Open access  Journal Article  DOI:10.1109/TSP.2009.2022003

Exploiting Structure in Wavelet-Based Bayesian Compressive Sensing
— Source link 

Lihan He, Lawrence Carin

Institutions: Duke University

Published on: 01 Sep 2009 - IEEE Transactions on Signal Processing (IEEE)

Topics: Wavelet packet decomposition, Stationary wavelet transform, Wavelet transform, Wavelet and Cascade algorithm

Related papers:

 Compressed sensing

 Model-Based Compressive Sensing

 Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information

 Bayesian Compressive Sensing

 Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit

Share this paper:    

View more about this paper here: https://typeset.io/papers/exploiting-structure-in-wavelet-based-bayesian-compressive-
4bd737zgyj

https://typeset.io/
https://www.doi.org/10.1109/TSP.2009.2022003
https://typeset.io/papers/exploiting-structure-in-wavelet-based-bayesian-compressive-4bd737zgyj
https://typeset.io/authors/lihan-he-3ebz5khqux
https://typeset.io/authors/lawrence-carin-4lzl8sodum
https://typeset.io/institutions/duke-university-2i50v772
https://typeset.io/journals/ieee-transactions-on-signal-processing-ei2rx4on
https://typeset.io/topics/wavelet-packet-decomposition-2aie70gi
https://typeset.io/topics/stationary-wavelet-transform-1yo8riwb
https://typeset.io/topics/wavelet-transform-32hfnsqb
https://typeset.io/topics/wavelet-3i6lm2x1
https://typeset.io/topics/cascade-algorithm-33hokyto
https://typeset.io/papers/compressed-sensing-3z461x7qos
https://typeset.io/papers/model-based-compressive-sensing-1t0b3di6if
https://typeset.io/papers/robust-uncertainty-principles-exact-signal-reconstruction-32lo4m4643
https://typeset.io/papers/bayesian-compressive-sensing-2t0mohjiq7
https://typeset.io/papers/signal-recovery-from-random-measurements-via-orthogonal-5adhd8dwmq
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/exploiting-structure-in-wavelet-based-bayesian-compressive-4bd737zgyj
https://twitter.com/intent/tweet?text=Exploiting%20Structure%20in%20Wavelet-Based%20Bayesian%20Compressive%20Sensing&url=https://typeset.io/papers/exploiting-structure-in-wavelet-based-bayesian-compressive-4bd737zgyj
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/exploiting-structure-in-wavelet-based-bayesian-compressive-4bd737zgyj
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/exploiting-structure-in-wavelet-based-bayesian-compressive-4bd737zgyj
https://typeset.io/papers/exploiting-structure-in-wavelet-based-bayesian-compressive-4bd737zgyj


1

Exploiting Structure in Wavelet-Based

Bayesian Compressive Sensing

Lihan He and Lawrence Carin

Department of Electrical and Computer Engineering

Duke University, Durham, NC 27708-0291 USA

{lihan,lcarin}@ece.duke.edu
EDICS: DSP-RECO, MAL-BAYL

Abstract

Bayesian compressive sensing (CS) is considered for signals and images that are sparse in a wavelet

basis. The statistical structure of the wavelet coefficients is exploited explicitly in the proposed model,

and therefore this framework goes beyond simply assuming that the data are compressible in a wavelet

basis. The structure exploited within the wavelet coefficients is consistent with that used in wavelet-

based compression algorithms. A hierarchical Bayesian model is constituted, with efficient inference via

Markov chain Monte Carlo (MCMC) sampling. The algorithm is fully developed and demonstrated using

several natural images, with performance comparisons to many state-of-the-art compressive-sensing

inversion algorithms.

Index Terms

Bayesian signal processing, wavelets, sparseness, compression

I. INTRODUCTION

Over the last two decades there has been significant research directed toward development of

transform codes, with the discrete-cosine and wavelet transforms [1] constituting two important

examples. The discrete cosine transform (DCT) is employed in the JPEG standard [2], with

wavelets employed in the JPEG2000 standard [3]. Wavelet-based transform coding [4] explicitly

exploits the structure [5] manifested in the wavelet coefficients of typical data. Specifically,

for most natural data (signals and images) the wavelet coefficients are compressible, implying
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that a large fraction of the coefficients may be set to zero with minimal impact on the signal-

reconstruction accuracy.

A discrete wavelet transform may be implemented via a series of high- and low-pass filters,

with decimation performed after each such filtering [1]. This naturally yields a quadtree structure

of the wavelet coefficients for an image [1], with each wavelet coefficient generally serving as

a “parent” for four “children” coefficients. The wavelet coefficients at the coarsest scale serve

as “root nodes” for the quadtrees, with the finest scale of coefficients constituting the “leaf

nodes”. For most natural images the negligible wavelet coefficients tend to be clustered together;

specifically, if a wavelet coefficient at a particular scale is negligible, then its children are also

generally (but not always) negligible. This leads to the concept of “zero trees” [4] in which a

tree or subtree of wavelet coefficients are all collectively negligible. The structure of the wavelet

coefficients, and specifically zero trees, are at the heart of most wavelet-based compression

algorithms, and specifically JPEG2000.

Transform coding, particularly JPEG and JPEG2000, are now widely used in digital media.

One observes, however, that after the digital data are measured and then transform compressed,

one often “throws away” a large fraction of the transform coefficients, while still achieving

accurate data reconstruction. This seems wasteful, since there are many applications for which

data collection is expensive. For example, the collection of magnetic-resonance imagery (MRI)

is time consuming and often uncomfortable for the patient, and hyperspectral cameras require

measurement of images at a large number of spectral bands. Since collection of such data is

expensive, and because after transform encoding a large fraction of the data are ultimately

discarded in some sense, this suggests the following question: Is it possible to measure the

informative part of the data directly, thereby reducing measurement costs, while still retaining

all of the informative parts of the data? This goal has spawned the new field of compressive

sensing (or compressed sensing) [6], [7], [8], in which it has been demonstrated that if the

signal of interest is sparse in some basis, then with a relatively small number of appropriately

designed projection measurements the underlying signal may be recovered exactly. If the data

are compressible but not exactly sparse in a particular basis (many coefficients are negligibly

small, but not exactly zero), one may still employ compressive sensing (CS) to recover the data

up to an error proportional to the energy in the negligible coefficients [9]. Two of the early

important applications of CS are in MRI [10] and in development of new hyperspectral cameras
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[11].

Details on how to design the compressive-sensing projection vectors, and requirements on the

(typically relatively small) number of such projections, may be found in [6], [7], [8], [9]. Assume

that the set of N CS projection measurements are represented by the vector v, and that these

measurements may be represented as v = Φθ, where θ represents an M ×1 vector of transform

coefficients, and Φ is an N ×M matrix constituted via the compressive-sensing measurements;

in CS it is desired that N ≪ M . Given θ, one may recover the desired underlying signal via

an inverse transform (e.g., an inverse DCT or wavelet transform, depending on which basis is

employed, in which θ is sparse or compressible). Note that in CS we do not measure θ directly,

but rather projections on θ. One must infer θ from v, this generally an ill-posed inverse problem

because N < M . To address this problem, many CS inversion algorithms seek to solve for θ

with the following ℓ1-regularized optimization problem:

θ = arg min
θ̃

‖θ̃‖ℓ1 s.t. v = Φθ̃. (1)

If θ is sparse, with S non-zero coefficients (S ≪ M ), then CS theory indicates that if Φ

is constructed properly (more on such constructions in Section III) then with “overwhelming

probability” [6], [7], [8], [9] one may recover θ exactly if N > O(S · log(M/S)); similar

relationships hold when θ is compressible but not exactly sparse. We note that there are many

CS inversion algorithms that do not explicitly solve an ℓ1-based inversion but that are similarly

motivated by sparseness; among these are [12], [13], [14].

The aforementioned ℓ1 inversion may be viewed as a maximum a posteriori estimate for θ

under the assumption that each component of θ is drawn i.i.d. from a Laplace prior [15]. This

i.i.d. assumption does not impose anticipated structure/correlation between transform coefficients.

While this leads to development of many algorithms for CS inversion (see [15], [16], [12], [14],

[17], among many others), such a formulation does not exploit all of the prior information

available about the transform coefficients θ. For example, as discussed above with respect to the

wavelet transform, there is anticipated structure in θ that may be exploited to further constrain

or regularize the inversion, ideally reducing the number of required CS measurements N . This

concept has been made rigorous recently for sparse θ [18], as well as for compressible θ

[19], [20], [21]; these papers demonstrate that one may achieve accurate CS inversions with

substantially fewer projection measurements (smaller N ) if known properties of the structure of
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θ are exploited properly.

The explicit use of the structure in wavelet coefficients has been used in many image analysis

and processing applications. As indicated above, this structure is employed in image compression

[4]. It is also employed in image denoising [22], as well as texture synthesis and image inpainting

[23]. More directly related to CS, the wavelet tree structure has been employed in non-statistical

CS inversion [24], and within more statistical settings via the hidden Markov tree (HMT) [25].

There have also been methods that augment the CS sensing structure, with linkage to the scales

in a wavelet decomposition [26].

In addition to imposing and exploiting prior knowledge about structure in a wavelet decomposi-

tion of images, other forms of prior knowledge have been exploited in CS. For example the use of

total variation (TV) [27] is generally a non-statistical approach that may be employed to account

for prior knowledge about the properties of images. Researchers have also developed techniques

that impose prior structure through learning the appropriate basis for sparse representation

[28], [29]. Therefore prior knowledge about images and the CS sensing process has been used

previously, with this prior knowledge not limited to wavelets.

While the above references impose various forms of prior information, in this paper that

information is explicitly employed within a Bayesian prior. This allows a statistical CS inversion,

unlike that in [24], [21], for example. As opposed to the work in [21], we do not make an explicit

(“hard”) imposition of the structure of the coefficients, but rather impose the structure statistically.

The proposed technique is most closely related to recent Bayesian CS approaches for imposing

prior belief about the signal of interest, usually in terms of a sparseness prior [15], [30] (this is

closely related to more general research on imposing sparseness in Bayesian priors [31]). None

of these previous Bayesian approaches explicitly imposed the known statistical structure of the

wavelet decomposition of images, this constituting an important contribution of this paper. While

a related statistical model was considered in [25], that framework required explicit a priori model

training based on representative images. The method proposed here requires no a priori training

imagery, and therefore it is robust to new image classes not observed previously. In addition, the

model in [25] has “high” and “low” states, with the low states corresponding to the negligible

wavelet coefficients; both the high and low states are characterized by Gaussian statistics. In the

model proposed here a different but related construction is employed, in terms of a “spike-slab”

prior [32], [33], [34], [35], [36], and here the coefficients in the “low” states are explicitly set
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to zero (sparseness is explicitly imposed). The proposed Bayesian approach yields “error bars”

on the recovered image, which is a unique advantage of Bayesian approaches [15], [30], relative

to all non-statistical approaches to CS inversion (the method in [25] also does not yield error

bars). For example the methods in [19], [20], [21] also impose structure in the signal, but not

in a Bayesian framework. In addition to developing the Bayesian model for exploiting wavelet

structure in CS, a fast algorithm is presented, with empirical computational cost that is quite

competitive (often superior) with existing CS algorithms.

The remainder of the paper is organized as follows. In Section II we review the structure

inherent to wavelet coefficients in natural images, and in Section III we describe how this

structure may be exploited in a Bayesian CS inversion framework. Example results are presented

in Section IV, with comparisons to many of the state-of-the-art CS algorithms. Conclusions and

discussions of future work are provided in Section V.

II. WAVELET TREE STRUCTURE

The discrete wavelet transform may be represented in matrix form as [1]

x = Ψθ (2)

where x is an M × 1 real vector of data, Ψ is an M × M matrix with columns corresponding

to orthonormal scaling and wavelet basis vectors, and θ represents the M ×1 vector of wavelet-

transform coefficients. The wavelet coefficients that constitute θ may be represented in terms of

a tree structure, as depicted in Figure 1 for an image. The coefficients at scale s = 1 correspond

to “root nodes”, and the coefficients at the largest scale s = L (L = 3 in Figure 1) correspond

to “leaf nodes”; the top-left block in Figure 1 corresponds to the scaling coefficients, denoted

as s = 0, which capture the coarse-scale representation of the image. Each wavelet coefficient

at scales 1 ≤ s ≤ L − 1 has four “children” coefficients at corresponding scale s + 1, and it is

the statistical relationships between the parent and children coefficients that is exploited in the

proposed CS inversion model.

The statistics of the wavelet coefficients may be represented via the hidden Markov tree (HMT),

in which the structure of the wavelet tree is exploited explicitly. In an HMT model [5] each

wavelet coefficient is assumed to be drawn from one of two zero-mean Gaussian distributions,

these distributions defining the observation statistics for two hidden states. One of the states is
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Fig. 1. Wavelet decomposition of an image, with the tree structure depicted across scales. The wavelet transform is performed

with three wavelet decomposition levels, and two wavelet trees are shown in the figure. The top-left block (s = 0) represents

scaling coefficients, and other regions are wavelet coefficients.

a “low” state, defined by a small Gaussian variance, and the “high” state is defined by a large

variance. Intuitively, if a wavelet coefficient is relatively small it is more likely to reside in the

“low” state; by contrast, a large wavelet coefficient has a high probability of coming from the

“high” state. The probability of a given state is conditioned on the state of the parent coefficient,

yielding a Markov representation across scales. The Markov transition property is represented

by a 2 × 2 matrix P , with P (i, j) representing the probability that children coefficients are in

state j given that the associated parent coefficient is in state i; i = 1 and j = 1 (arbitrarily)

correspond to the “low” state, and i = 2 and j = 2 correspond to the “high” state. Typically

P (1, 1) = 1− ǫ and P (1, 2) = ǫ, where ǫ > 0 satisfies ǫ ≪ 1. This form of P imposes the belief

that if a parent coefficient is small, its children are also likely to be small. We also note that

P generally varies between different scales and across different wavelet quadtrees. For the root

nodes, P is a 1 × 2 vector, representing an initial-state distribution.

When modeling the statistics of wavelet coefficients for a given signal, the observation is the

wavelet coefficient, and for each of the two states the observation is drawn from a zero-mean

Gaussian with associated variance (small variance for the “low” state and a relatively large

variance for the “high” state). In compressive sensing we do not observe the wavelet coefficients

directly, but rather observe projections of these coefficients. The form of the HMT will be

employed within the compressive-sensing inversion, thereby explicitly imposing the belief that
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if a given coefficient is negligible, then its children coefficients are likely to be so as well. This

imposes important structure into the form of the wavelet coefficients across scales, and it is

consistent with state-of-the-art wavelet-based compression algorithms that are based upon “zero

trees” (subtrees of wavelet coefficients that may all be set to zero with negligible effect on the

reconstruction accuracy) [4], [37]. The motivation for the HMT construct is discussed in detail

in [5].

III. TREE-STRUCTURED WAVELET COMPRESSIVE SENSING

A. Compressive Sensing with Wavelet-Transform Coefficients

Assume a discrete signal/image is represented by the M -dimensional vector x, and that it is

compressible in a wavelet basis represented by the M × M matrix Ψ (defined as above). The

CS measurements v = ΦΨ
T
x = Φθ, where Φ is an N × M dimensional matrix (N < M ),

and θ denotes an M -dimensional vector of wavelet-transform coefficients (θ = Ψ
T
x). The rows

of Φ correspond to randomly defined projection vectors [7], [8]. For most natural signals θ is

compressible, meaning that a large fraction of the coefficients in θ may be set to zero. Stated

mathematically, for most natural images ‖θ − θm‖ℓ2 is proportional to (m + 1)−1/2, where θm

corresponds to θ with all but the m largest coefficients set to zero [7], [8]. This compressibility

property makes it possible to infer θ based on a small number of projection measurements,

assuming that Φ is designed properly.

Assume only m transform coefficients in θ are significant, and the other M −m coefficients

are negligibly small. We rewrite θ = θm + θe, where θm represents the original θ with the

M −m smallest coefficients set to zero, and θe represents θ with the largest m coefficients set

to zero. We therefore have

v = Φθ = Φθm + Φθe = Φθm + ne, (3)

where ne = Φθe. According to Section II, each element of θe can be modeled by a zero-mean

Gaussian with small variance (as being drawn from a “low” state), and thus each element of

ne, which is a linear combination of elements in θe, can also be modeled by a zero-mean

Gaussian with appropriate variance. Further, if we also assume the CS measurements are noisy,

with zero-mean Gaussian noise n0, we have

v = Φθm + ne + n0 = Φθm + n, (4)

April 7, 2009 DRAFT



8

where the elements of n can be represented by a zero-mean Gaussian noise with unknown

variance σ2, or unknown precision αn = σ−2 (to be inferred in the CS inversion).

For the wavelet-based CS reconstruction problem, given measurements v and the random

projection matrix Φ, the objective is to estimate the values and the locations of the nonzero

elements in the transform coefficients θm. For simplicity we henceforth use θ to replace θm

in (4), with the understanding that θ is now sparse (a large fraction of coefficients are exactly

zero).

B. Tree-Structured Wavelet CS Model

Baraniuk et al. [21] demonstrate that it is possible to improve compressive-sensing reconstruc-

tion performance by leveraging signal models (structure within the transform coefficients), by

introducing dependencies between locations of the signal coefficients. Two greedy CS algorithms,

CoSaMP [13] and iterative hard thresholding (IHT) [38], are implemented in [21], with the

wavelet tree structure incorporated into the inversion models.

In this paper the proposed tree-structured wavelet compressive sensing (TSW-CS) model is

constructed in a hierarchical Bayesian learning framework. In this setting we infer a full posterior

density function on the wavelet coefficients, and therefore we may quantify our confidence in

the inversion (e.g., the variance about the mean inverted signal). Within the Bayesian framework

we impose a prior belief for the model parameters, represented in terms of prior distributions on

the model parameters. The posterior distribution for all model parameters and for the wavelet

coefficients are inferred based on the observed data v. The structural information embodied by

the wavelet tree (the parent-children relationship and the propagation of small coefficients across

scales) is incorporated in the prior, and is therefore imposed statistically.

We utilize a spike-and-slab prior, which has been used recently in Bayesian regression and

factor models [32], [33], [34], [35], [36]. The prior for the ith element of θ (corresponding to

the ith transform coefficient) has the form

θi ∼ (1 − πi)δ0 + πiN (0, α−1
i ), i = 1, 2, ...M, (5)

which is a mixture of two components. The first component δ0 is a point mass concentrated

at zero, and the second component is a zero-mean Gaussian distribution with (relatively small)
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precision αi; the former represents the zero coefficients in θ and the latter the non-zero coef-

ficients. This is a two-component mixture model, and the two components are associated with

the two states in the HMT. Related models of this type have been employed previously for

wavelet-based clustering [39]. The form of this model is different from an HMT [5] in that the

coefficient associated with the “low” state is now explicitly set to zero, such that the inferred

wavelet coefficients are explicitly sparse (many coefficients exactly zero). However, like in the

HMT, we impose the belief that if a parent coefficient is zero, its children coefficients are likely

to also be zero. To achieve this goal, the key to the model is imposition of dependencies in the

πi across scales, in the form discussed above.

The mixing weight πi, the precision parameter αi, as well as the unknown noise precision αn,

are learned from the data. The proposed Bayesian tree-structured wavelet (TSW) CS model is

summarized as follows:

v|θ, αn ∼ N (Φθ, α−1
n I), (6a)

θs,i ∼ (1 − πs,i)δ0 + πs,iN (0, α−1
s ), with πs,i =



















πr, if s = 1,

π0
s , if 2 ≤ s ≤ L, θpa(s,i) = 0,

π1
s , if 2 ≤ s ≤ L, θpa(s,i) 6= 0,

(6b)

αn ∼ Gamma(a0, b0), (6c)

αs ∼ Gamma(c0, d0), s = 1, ..., L, (6d)

πr ∼ Beta(er
0, f

r
0 ), (6e)

π0
s ∼ Beta(es0

0 , f s0
0 ), s = 2, ..., L, (6f)

π1
s ∼ Beta(es1

0 , f s1
0 ), s = 2, ..., L, (6g)

where θs,i denotes the ith wavelet coefficient (corresponding to the spatial location) at scale s,

for i = 1, ..., Ms (Ms is the total number of wavelet coefficients at scale s), πs,i is the associated

mixing weight, and θpa(s,i) denotes the parent coefficient of θs,i. In (6b) it is assumed that all the

nonzero coefficients at scale s share a common precision parameter αs. It is also assumed that

all the coefficients at scale s with a zero-valued parent share a common mixing weight π0
s , and

the coefficients at scale s with a nonzero parent share a mixing weight π1
s . We may also let each

coefficient maintain its own πs,i, but we found from the experiments that the performance is very
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similar to that from the model presented in (6) (sharing common π0
s and π1

s for each scale), and

(6) is much simpler because there are less parameters in the model. Gamma priors are placed

on the noise precision parameter αn and the nonzero coefficient precision parameter αs, and the

posteriors of these precisions are inferred from the data. The mixing weights πr, π
0
s and π1

s are

also inferred, by placing Beta priors on them. To impose the structural information, depending

on the scale and the parent value of the coefficients, different Beta priors are imposed. For

the coefficients at the root node, a prior preferring a value close to one is set in (6e), because

at the low-resolution level many wavelet coefficients are nonzero; for the coefficients with a

zero-valued parent, a prior preferring zero is considered in (6f), to represent the propagation of

zero coefficients across scales; finally, (6g) is for the coefficients with a nonzero parent, and

hence no particular preference is considered since zero or nonzero values are both possible (the

hyperparameters es1
0 and f s1

0 impose a uniform prior on π1
s ). The exact setting of hyper-parameters

on the priors is discussed below when presenting results. Note that the model presented in (6)

does not include the scaling coefficients (coefficients at scale s = 0); in Section III-D we extend

the model to also estimate the scaling coefficients.

The prior imposed in (6f) implies that if a parent node is zero, with high (but not unity)

probability its children coefficients will also be zero. The form of the model reduces the degrees

of freedom statistically in the solution space RM , since we impose the belief that particular

forms of wavelet coefficients are more probable. As opposed to the work in [21], we do not

make an explicit (“hard”) imposition of the structure of the coefficients, but rather impose the

structure statistically.

Concerning setting hyperparameters in the proposed TSW-CS algorithm, while there are many

parameters, their settings are relatively “standard”, and results were found to be quite robust to

reasonable variations in these parameters. The same settings were used in all examples considered

below, and no tuning was performed. As an example of how these parameters were selected,

a0, b0, c0 and d0 have been set in a non-informative manner consistent with related regression

models, such as the relevance vector machine (see [40]). Concerning setting the parameters on

the Beta distributions, our goal is to impose the belief that if a parent coefficient is zero, then

it is likely that its children will also be zero. As indicated above, this is done using parameters

like 1/M , which imposes that this assumption will be violated rarely, with probability linked

to the number of coefficients M in the data. Any other reasonable variation of this setting has
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been found to yield very similar results to those reported here.

The desired structural information is naturally integrated into the proposed TSW-CS model. It

can be seen that the two components in the spike-and-slab prior are analogous to the two states in

the HMT model, and the zero-mean Gaussian distributions are analogous to the observation func-

tions of the HMT. The transition-probability matrix P at scale s (s > 1) in the HMT is now repre-

sented by the mixing weights π0
s and π1

s , with P (1, 1) = 1 − π0
s , P (1, 2) = π0

s , P (2, 1) = 1 − π1
s ,

and P (2, 2) = π1
s (the initial-state distribution is represented by [1 − πr, πr]). Note that π0

s and

π1
s represent the summary of the overall (Markovian) statistical properties for all the wavelet

coefficients at scale s, while for each particular coefficient θs,i, an associated posterior of mixing

weight, π̃s,i, will be inferred (see Section III-C for the inference).

We also note that the HMT has recently been employed explicitly within CS inversion, for

wavelet-based CS [25]. In that previous work one must first train an HMT model on representative

example data, and then that model is used within the CS inversion. The difficulty of such an

approach is that one must have access to training data that is known a priori to be appropriate

for the CS data under test. By contrast, in the proposed inference engine, in addition to inferring

a posterior distribution on the wavelet coefficients, posterior distributions are jointly inferred on

the underlying model parameters as well. There is therefore no need for a priori training data. In

this sense the proposed method infers the wavelet coefficients and a statistical model for these

coefficients, with the model consistent with the expected statistical structure typically inherent

to the wavelet transform.

C. MCMC Inference

We implement the posterior computation by a Markov chain Monte Carlo (MCMC) method

[41] based on Gibbs sampling, where the posterior distribution is approximated by a sufficient

number of samples. These samples are collected by iteratively drawing each random variable

(model parameters and intermediate variables) from its conditional posterior distribution given

the most recent values of all the other random variables. The priors of the random variables are

set independently as

p(αn, {αs}s=1:L, πr, {π0
s , π

1
s}s=2:L) =

Gamma(a0, b0)

{

L
∏

s=1

Gamma(c0, d0)

}

Beta(er
0, f

r
0 )

{

L
∏

s=2

Beta(es0
0 , f s0

0 )Beta(es1
0 , f s1

0 )

}

. (7)
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Under this setting the priors are conjugate to the likelihoods, and the conditional posteriors used

to draw samples can be derived analytically. At each MCMC iteration, the samples are drawn

from the following conditional posterior distributions:

• p(θs,i|−) = (1 − π̃s,i)δ0 + π̃s,iN (µ̃s,i, α̃
−1
s,i ).

Assume θs,i is the jth element in the M -dimensional vector θ, denoted by θ(j), then

α̃s,i = αs + αnΦT
(j)Φ(j),

µ̃s,i = α̃−1
s,i αnΦT

(j)ṽ(j), with ṽ(j) = v −
M

∑

k=1
k 6=j

Φ(k)θ(k),

π̃s,i

1 − π̃s,i

=
πs,i

1 − πs,i

N (0|0, α−1
s )

N (0|µ̃s,i, α̃s,i)
,

where Φ(j) denotes the jth column of the N × M random projection matrix Φ.

• p(αs|−) = Gamma(c0 + 1
2

∑Ms

i=1 1(θs,i 6= 0), d0 + 1
2

∑Ms

i=1 θ2
s,i).

where 1(y) denotes an indicator function such that 1(y) = 1 if y is true and 0 otherwise.

• p(πr|−) = Beta(er
0 +

∑Ms

i=1 1(θs,i 6= 0), f r
0 +

∑Ms

i=1 1(θs,i = 0)), for s = 1.

• p(π0
s |−) = Beta(es0

0 +
∑Ms

i=1 1(θs,i 6= 0, θpa(s,i) = 0), f s0
0 +

∑Ms

i=1 1(θs,i = 0, θpa(s,i) = 0)),

for 2 ≤ s ≤ L.

• p(π1
s |−) = Beta(es1

0 +
∑Ms

i=1 1(θs,i 6= 0, θpa(s,i) 6= 0), f s1
0 +

∑Ms

i=1 1(θs,i = 0, θpa(s,i) 6= 0)),

for 2 ≤ s ≤ L.

• p(αn|−) = Gamma(a0 + N
2
, b0 + 1

2
(v − Φθ)T (v − Φθ)).

At each MCMC iteration, θ can be sampled in a block manner (all of the components of θ

sampled jointly); alternatively, θs,i can also be sampled sequentially for all s and i. We observed in

our experiments that sequential sampling typically achieves faster convergence, i.e., less iterations

are required to achieve MCMC convergence compared to block sampling. This is because in

block sampling, computing the conditional posterior of θ(j) uses all the other elements of θ

(θ(k) for k 6= j) from the last MCMC iteration; however, by sequential sampling, computing the

conditional posterior of θ(j) can use θ(k) for k < j from the current iteration (updated before θ(j)

in the current iteration) and θ(k) for k > j from the last iteration. We observed fast convergence

of this model for the problems considered; typically a burn-in period of 200 iterations is enough

for an image of size 128× 128, and the collection period corresponds to 100 samples (typically,

in an MCMC analysis of a model of this complexity, one runs thousands of burn-in iterations,
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with thousands or tens of thousands collection iterations, to yield an accurate representation of

the full posterior [39], [35]). It is very unlikely that this small number of MCMC iterations is

sufficient to accurately represent the full posterior on all model parameters; however, based on

many experiments, the mean wavelet coefficients have been found to provide a good practical CS

inversion, and the collection samples also provide useful “error bars” (discussed further below).

Figure 2 shows the convergence curve for a 128 × 128 image with 5000 measurements, for the

example considered in detail in Section IV; we employed the sequential sampling approach in

this example, as well as in all results presented below.
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Fig. 2. Example of an MCMC convergence curve for an image of size 128×128. The vertical axis is evaluated as ‖θ−θ̂‖2/‖θ‖2,

where θ̂ denotes the reconstructed wavelet coefficients.

The variational Bayesian (VB) method [42] is often considered for fast but approximate

Bayesian inference. The MCMC solution employed here was found to be relatively accurate

and fast, and therefore we did not implement VB inference. Given the fast MCMC convergence

for the problems considered, with non-optimized programming in MatlabTM , we feel that this

may be a practical inference engine for the applications of interest. Specifically, as indicated

below, the computational requirements of the TSW-CS model are competitive with many of the

existing compressive-sensing inversion algorithms in the literature.

D. Extension with Scaling Coefficients

The TSW-CS model presented in (6) only performs inversion for the wavelet coefficients,

assuming that the scaling-function coefficients are measured separately (this has been assumed
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in many previous compressive-sensing studies [14]). However, it is also of interest in many

applications to also infer the scaling coefficients. We may readily extend our TSW-CS model to

include reconstruction of the scaling coefficients as follows. Specifically, the model is the same

as (6), except with

θs,i ∼ (1 − πs,i)δ0 + πs,iN (0, α−1
s ), with πs,i =



























πsc, if s = 0,

πr, if s = 1,

π0
s , if 2 ≤ s ≤ L, θpa(s,i) = 0,

π1
s , if 2 ≤ s ≤ L, θpa(s,i) 6= 0,

(8a)

πsc ∼ Beta(esc
0 , f sc

0 ). (8b)

Compared to (6), the extended model in (8) includes the scale s = 0 for the scaling coefficients,

with an associated mixing weight πsc, which is drawn from a prior distribution Beta(esc
0 , f sc

0 ).

Considering that the scaling coefficients are usually nonzero, the hyperparameters esc
0 and f sc

0

are specified such that πsc = 1 is almost always true (since πsc is only one more parameter, we

perform inference on it, but our experience is that it may be set πsc = 1 with minimal change

on the results, for the examples considered). All scaling coefficients share a common precision

parameter α0, which is learned from the inference.

IV. EXPERIMENTAL RESULTS

We compared the performance of TSW-CS to seven recently developed CS reconstruction

algorithms: basis pursuit (BP) [16], Bayesian compressive sensing (BCS) [15], fast-BCS1 [15],

orthogonal matching pursuit (OMP) [12], stagewise orthogonal matching pursuit (StOMP) [14],

Lasso-modified least angle regression (LARS/Lasso) [17], and total variation (TV) [10]. For the

TV and BP implementations, we used solvers from the ℓ1-Magic toolbox2; for the OMP, StOMP

and LARS/Lasso algorithms, we use the solvers SolveOMP, SolveStOMP, and SolveLasso,

respectively, from the SparseLab toolbox3. The BCS algorithm can be implemented via the

relevance vector machines (RVM) [15]; we implemented it using a variational RVM [43]. All

software are written in MATLABTM , and run on PCs with 3.6GHz CPU and 4GB memory.

1Code at http : //www.ece.duke.edu/ ∼ shji/BCS.html

2http : //www.acm.caltech.edu/l1magic/

3http : //sparselab.stanford.edu/
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As is often done in such tests, below we assume in all cases that the scaling coefficients are

measured separately and are known. However, we note that using the approach discussed in

Section III-D, in all examples considered, the TSW-CS results were essentially unchanged when

scaling coefficients are inferred as well. The BP results were found to yield errors significantly

larger than those associated with the other methods, with much larger CPU times, and therefore

they are not explicitly presented in the results below.

The hyperparameters for the priors in the TSW-CS model are as follows: a0 = b0 = c0 = d0 =

10−6, [er
0, f r

0 ] = [0.9, 0.1] × M1, [es0
0 , f s0

0 ] = [ 1
M

, 1 − 1
M

] × Ms, and [es1
0 , f s1

0 ] = [0.5, 0.5] × Ms.

Note that the form [u, 1 − u] × V is used to represent the hyperparameters e0 and f0 in the

Beta priors, where u represents the prior mean of the mixing weight π, and V represents the

confidence of the prior (larger V means more confidence). We set as 1
M

the prior probability

of the rare event that a child is not zero given that its parent is zero (recall that M is the total

number of estimated wavelet coefficients), and use Ms (number of coefficients at scale s) for

the confidence so that the strength of the prior is comparable to the likelihood. For the other CS

algorithms, default parameters (if required as input arguments) are used. The StOMP algorithm

with CFDR thresholding is not stable; consequently, we use the StOMP algorithm with CFAR

thresholding, with the false-alarm rate specified as 0.01.

All examples considered below are for 128 × 128 images. The scaling coefficients constitute

a block of size 8 × 8, and we here assume the scaling coefficients are measured directly. Our

objective is to estimate the wavelet coefficients of size 1282 − 82 = 16320, based on a given

number of CS measurements. We use the Haar wavelet in all examples considered below (but

similar results are found with other wavelet families).

For each CS algorithm we produce a curve of relative reconstruction error as a function of

number of measurements N . The relative reconstruction error is defined as ‖x − x̂‖2/‖x‖2,

where x is the original image, and x̂ is the recovered image based on the wavelet coefficients

reconstructed by a particular CS algorithm.

We considered a subset of images from Microsoft Research in Cambridge4. Five image classes

have been selected: flowers, cows, buildings, urban, and office; ten images were selected at

random from each class. The images are depicted in Figure 3. In Figure 4 a comparison is

4Available at http : //research.microsoft.com/en − us/projects/objectclassrecognition/
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performed for all algorithms discussed above, using the left-most “flowers” image in Figure 3;

for brevity we only plot such a figure for this example image, with results for all other images

in Figure 3 quite similar (average results for all images in Figure 3 are tabulated below). Each

evaluated point in the curves in Figure 4 is computed based on the average of five trials. For

each trial, a random projection matrix Φ is generated. For an experiment with N measurements,

the N rows of Φ are selected at random from an M × M matrix of DCT basis vectors, with

the entry in row i and column j expressed as C(i) cos[π(i − 1)(2j − 1)/2M ], where C(i) is a

normalization constant such that C(i) = 1/
√

M for i = 1 and C(i) =
√

2/M for 2 ≤ i ≤ M .

Note that the indexes of the row selection and the random permutation are stored, but the Φ

matrix itself is not stored.

Fig. 3. Natural images from five classes. Each row represents one class, with ten images selected randomly from each class.

From top to bottom, the five classes are flowers, cows, buildings, urban, and office.

In Table I is presented average performance of all algorithms, based on all of the images

in Figure 3, for N = 2000 and N = 6000 CS measurements. Based on Figure 4, N = 2000

corresponds to a relatively small number of measurements and N = 6000 a large number

of measurements. The utility of exploiting prior knowledge about the structure of the wavelet

coefficients is particularly valuable with a small number of CS measurements, as predicted by

the theory in [21].

To provide a better feel for why accounting for structure is valuable in the CS inversion,

Figure 5 presents an example of the reconstructed wavelet coefficients θ̂ for all CS algorithms
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Fig. 4. Performance comparisons for the left-most “flowers” image in Figure 3. (a) Relative reconstruction error as a function

of number of CS measurements, (b) associated CPU time.

(a) Number of measurements N=2000

       Algorithm

Class
TSW-CS VB BCS fast-BCS OMP

StOMP-

CFAR

LARS/

Lasso
TV

MEAN 0.2296    0.3075    0.3921    0.4082    0.3465    0.2870    0.2908
Flowers

STD 0.0736    0.0914    0.1251    0.1313    0.1038    0.0868    0.0840

MEAN 0.1631    0.2162    0.2663    0.2776    0.2391    0.1988    0.2053
Cows

STD 0.0556    0.0683    0.0920    0.0963    0.0758    0.0649    0.0609

MEAN 0.2178    0.2814    0.3559    0.3723    0.3173    0.2618    0.2655
Buildings

STD 0.0606    0.0778    0.1031    0.1063    0.0878    0.0735    0.0722

MEAN 0.2003    0.2556    0.3254    0.3389    0.2885    0.2377    0.2463
Urban

STD 0.0252    0.0341    0.0475    0.0492    0.0376    0.0321    0.0309

MEAN 0.2360    0.3164    0.3969    0.4187    0.3553    0.2920    0.2958
Office

STD 0.0448    0.0642    0.0780    0.0842    0.0708    0.0592    0.0579

(b) Number of measurements N=6000

       Algorithm

Class
TSW-CS VB BCS fast-BCS OMP

StOMP-

CFAR

LARS/

Lasso
TV

MEAN 0.1616    0.2120    0.2478    0.2794    0.2264    0.1874    0.1927
Flowers

STD 0.0717    0.0874    0.1102    0.1209    0.0941    0.0774 0.0708

MEAN 0.1082    0.1414    0.1556    0.1799    0.1454    0.1233    0.1356
Cows

STD 0.0499    0.0605    0.0717    0.0810    0.0639    0.0541 0.0456

MEAN 0.1475    0.1903 0.2187    0.2465    0.2014    0.1668    0.1729
Buildings

STD 0.0578    0.0705    0.0850    0.0954    0.0742    0.0623 0.0575

MEAN 0.1334    0.1728    0.1981    0.2238    0.1834    0.1508    0.1600
Urban

STD 0.0204    0.0251    0.0305    0.0343    0.0268    0.0226 0.0192

MEAN 0.1271    0.1788    0.1937    0.2258    0.1882    0.1573    0.1651
Office

STD 0.0283    0.0378    0.0415    0.0499    0.0378    0.0327 0.0276

TABLE I

MEAN AND STANDARD DEVIATION OF THE RECONSTRUCTION ERROR FOR EACH CLASS. THE BOLD NUMBER REPRESENTS

THE BEST AMONG ALL THE CS ALGORITHMS UNDER COMPARISON.

under comparison, for the example in Figure 4 and 2000 measurements. We observe that when

the number of measurements is relatively small, the TSW-CS model concentrates more energy

on the low-resolution scales, and so estimates the coefficients in the low-resolution bands better.

To make this point clearer, Figure 5(b) shows zoom-in plots of the first 960 coefficients at the

low-resolution scales s = 1 and s = 2. When the number of measurements increases, details

of an image are then revealed. With the δ0 component and the parent-child relationships in the

prior setting, the TSW-CS model provides a much sparser solution, in the sense of less high
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frequency noise in the reconstruction compared to the other algorithms, and so estimates large

coefficients at higher-resolution scales more accurately. Figure 6 shows the comparisons of the

reconstructed θ̂ for the situation of more measurements, for the example in Figure 4 with 6000

measurements. It can be seen that in the regions of zero or small coefficients in the “truth”

(usually at high-resolution scales), the TSW-CS model infers exact zero values, while the other

algorithms often infer noisy estimations (small non-zero values). These noisy values impair the

accurate estimation of large coefficients at high-resolution scales.

Recall that the TV algorithm also exploits known structure about natural images, and from

Figures 5 and 6 we note that the TV results are also relatively good. However, TV does not

infer the structured sparseness as well as TSW-CS. Further, TV is not a statistical method, and

therefore it does not provide a measure of confidence in the CS inversion, this representing the

principal advantage of the Bayesian formulation.

The Bayesian learning framework provided by TSW-CS infers a posterior distribution for

the wavelet coefficients (and other model parameters), so it yields “error bars” for the estimated

wavelet coefficients, indicating the confidence for the current estimation. This level of confidence

may be of interest for placing confidences on inferences made from particular portions of the

image. Further, if the TSW-CS may be constituted in fast software or (better) in hardware, it

may be fast enough to adaptively infer when a sufficient number of CS measurements have

been performed. As an example, Figure 7 plots the error bars of the first 50 estimated wavelet

coefficients for the example in Figure 4; this subset of coefficients are selected to make the

figure easy to read, with error bars inferred for all coefficients. From Figure 7 one observes that

the error bars on the reconstructed wavelet coefficients become tighter (and the reconstructed

coefficients approach the “truth”) as the number of measurements N increases.

V. CONCLUSIONS AND FUTURE WORK

A new statistical model has been developed for Bayesian inverse compressive sensing (CS),

for situations in which the signal of interest is compressible in a wavelet basis. The formulation

explicitly exploits the structure in the wavelet coefficients of typical/natural signals [5], and

related structure is exploited in conventional wavelet-based compression algorithms [4]. The

advantage of CS, relative to conventional measure-and-then-compress approaches [4], is that

the number of (projection) measurements may be significantly smaller than the number of
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Fig. 5. Comparison of the reconstructed wavelet coefficients by the CS algorithms, for the example in Figure 4 and 2000

measurements. (a) All the wavelet coefficients, M = 16320. (b) A zoom-in version of (a), showing the first 960 wavelet

coefficients (i.e., coefficients at scales s = 1, 2).
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Fig. 6. Comparison of the reconstructed wavelet coefficients by the CS algorithms, for the example in Figure 4 and 6000

measurements.

measurements in traditional sampling methods.

Conventional CS research has assumed that the signal of interest is sparse or compressible in a

particular basis (e.g., wavelets), but it assumes no further structure in the transform coefficients.

Recent research has demonstrated that if one exploits the structure in the transform coefficients

characteristic of typical data or imagery, one often may significantly reduce the number of

required CS measurements [18], [21]. In this paper we have assumed the signals of interest are

compressible in a wavelet basis. The structure associated with typical wavelet coefficients has

been utilized in a statistical setting, building on recent research on Bayesian CS [15].

The proposed method utilizes ideas related to the hidden Markov tree statistical representation

of wavelet coefficients [5], and an efficient MCMC inference engine has been constituted. On all

examples considered to date, considering real imagery, we have observed very fast convergence

of the MCMC algorithm; the inference yields an estimate of the wavelet-transform coefficients

as well as “error bars” on the coefficients, reflecting a level of confidence in the inference based

on the available CS measurements. In this paper, using a set of canonical images that are widely

used in the literature, the proposed method has demonstrated competitive computational cost,
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Fig. 7. Error bars of the first 50 estimated wavelet coefficients for the example in Figure 4. The error bars are computed as

the standard deviation of the posterior distribution approximated by the MCMC samples for each estimated coefficient.

while consistently providing superior performance, as compared to traditional CS algorithms that

do not exploit the structure inherent to the wavelet coefficients.

Concerning future research, there has recently been interest in the simultaneous inversion of

multiple distinct CS measurements [44], [45] (by sharing information between these different

measurements, the total number of CS measurements may be reduced). The Bayesian setting

proposed here is particularly amenable to the joint processing of data from multiple images [46],

and this will be investigated in future research. It is also of interest to examine the statistical

leveraging of structure in other popular transforms, such as the DCT.
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