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Abstract

In order to model the tail of a distribution, one has to define the threshold above or below which

an extreme value model produces a suitable fit. Parameter stability plots, whereby one plots maximum

likelihood estimates of supposedly threshold-independent parameters against threshold, form one of the

main tools for threshold selection by practitioners, principally due to their simplicity. However, one

repeated criticism of these plots is their lack of interpretability, with pointwise confidence intervals

being strongly dependent across the range of thresholds. In this article, we exploit the independent-

increments structure of maximum likelihood estimators in order to produce complementary plots with

greater interpretability, and a suggest simple likelihood-based procedure which allows for automated

threshold selection.

Keywords: diagnostic plots; extreme value modelling; maximum likelihood; threshold selection.

1 Introduction

When faced with the problem of making inferences on the tail of a distribution, one usually invokes the

extreme value modelling paradigm. In this article we will focus on upper tails; theory for lower tails is

symmetric in generality. Suppose that we are able to assume a sequence of identically distributed random

variables, {Xi ∼ F}ni=1, satisfying a long-range weak dependence condition (Leadbetter et al., 1983, Ch. 3),

and let xF := inf{x : F (x) > 0} and xF := sup{x : F (x) < 1} be the lower and upper endpoints of the

support. For a wide variety of F , the distribution of appropriately scaled excesses, Xi−u, over the threshold

u, converges to the generalized Pareto (GP) distribution, with distribution function (d.f.)

H(x) = 1− [1 + ξx/σ]
−1/ξ
+ , x > 0, σ > 0, ξ ∈ R, a+ = max(a, 0),
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as u→ xF (Pickands, 1975; Davison and Smith, 1990). At a practical level this leads to the approximation

P(Xi > x|Xi > u) ≈ [1 + ξ(x− u)/σu]
−1/ξ
+ for a high threshold u, with ξ ∈ R a shape parameter and σu > 0

a threshold-dependent scale parameter to be estimated; the case ξ = 0 is to be interpreted in the limiting

sense.

For a given F , if scaled threshold excesses follow a limiting GP distribution, then appropriately normalized

maxima Mn := max{X1, . . . , Xn} converge to following the generalized extreme value (GEV) distribution

as n→∞, with d.f.

G(x) = exp
{
−[1 + ξ(x− µ)/σ]

−1/ξ
+

}
, µ ∈ R, σ > 0, ξ ∈ R,

with the shape parameter ξ being the same in both G and H. Again the GEV is treated as the approximate

distribution of Mn for a large but finite sequence length n. However, if all data are available then a threshold-

based modelling approach is usually preferred due to efficiency gains from an increased sample size.

These two results can be derived from a unifying point process representation due to Pickands (1971). If

there exist normalization sequences {an > 0}, {bn ∈ R} such that the sequence of point processes,

Pn =

{(
i

n+ 1
,
Xi − bn
an

)
: i = 1, . . . , n

}
d→ P, n→∞, (1)

with P a non-trivial limit on (0, 1)× (bl = limn→∞(xF − bn)/an,∞), then P is a non-homogeneous Poisson

process (NHPP) with integrated intensity measure

Λ{(a, b)× (x,∞)} = (b− a) [1 + ξ(x− µ)/σ]
−1/ξ
+ , µ ∈ R, σ > 0, ξ ∈ R, 0 ≤ a < b ≤ 1.

The link between the point process result and the GP and GEV distributions is explained in Coles (2001,

Sect. 7.4), for example. In the convergence (1), only points for which Xi is extreme are retained in the limit,

and at a statistical level this motivates the use of the NHPP model for data exceeding a high threshold. The

parameters (µ, σ, ξ) are respectively location, scale and shape parameters to be estimated, with ξ as in G

and H. The NHPP model has the advantage over the GP model of accounting for the rate of exceedances

over the threshold, and having a threshold-independent parameterization; we thus focus on this modelling

strategy.

The first task in inference is to decide upon a threshold for which the approximation is adequate, taking

into account the familiar bias-variance trade-off: lower thresholds induce higher bias but lower estimation

variance, and vice versa. There is a growing wealth of literature devoted both to the problem of fixed

threshold selection, and incorporating uncertainty in threshold selection into the inference; a recent review
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Figure 1: Traditional parameter stability plots for (µ, σ, ξ) in the NHPP model.

is provided by Scarrott and MacDonald (2012). In this article, we treat only the first of these issues, whilst

acknowledging the importance of the latter. One of the main tools used in fixed threshold selection is the

parameter stability plot: if suitable convergence has been achieved towards the limit model, then estimates

of parameters (µ, σ, ξ) should be stable across a range of thresholds. The parameter stability plot consists

of parameter estimates plotted against a range of thresholds, with pointwise confidence intervals. One then

selects as a threshold the lowest value above which the parameters are deemed to be constant, attempting to

take into account the uncertainty in their estimation. An example is presented in Figure 1; the difficulty in

interpretation is evident. Of these three plots, those for σ and ξ tell a similar story, whilst that for µ offers

little information. In the following, we thus focus mainly on plots for ξ; some further comments on this are

given in Section 5.

In spite of the complaint that dependent confidence intervals are difficult to account for (as mentioned

for instance by Scarrott and MacDonald (2012), Wadsworth and Tawn (2012) and Northrop and Coleman

(2014)), the simplicity of parameter stability plots still renders their use commonplace. To produce them, one

simply needs to fit the model above a range of thresholds. By contrast, to use any of the more “sophisticated”

methods proposed in the literature (e.g. Beirlant et al., 1999; Ferreira et al., 2003; Wadsworth and Tawn, 2012;

Northrop and Coleman, 2014, to list only a few), one needs to study more complicated methodology and / or

implement bespoke code. Our aim in this article is to address the interpretability issue of parameter stability

plots by exploiting the asymptotic distributional theory of the joint distribution of maximum likelihood

estimators (MLEs) from overlapping samples of data, to produce diagnostics which do not require any

further modelling assumptions. Furthermore, a simple testing procedure is suggested, to allow automated

threshold selection if desired.

The issue of threshold selection is most commonly associated to univariate extreme value theory. However,

when one wants to model the extremal dependence between two or more variables, there is typically a choice of

dependence threshold as well. In the bivariate setting, an assessment of the level of dependence between two

variables can be made through the coefficient of tail dependence, η ∈ (0, 1] (Ledford and Tawn, 1996), defined
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as follows. Suppose that random variables (XE , YE) have been transformed to have standard exponential

margins. Then a widely-applicable regular variation assumption yields

P{min(XE , YE) > x+ t | min(XE , YE) > t} =
L(ex+t)

L(et)
exp(−x/η), (2)

with L slowly-varying at infinity, i.e., limt→∞ L(tx)/L(t) = 1, for x > 0. Values of η > 1/2, and η <

1/2 indicate positive and negative extremal association respectively, whilst η = 1/2 corresponds to near

independence. The case η = 1 is of special importance as this is implied by the variables being asymptotically

dependent, whilst η < 1 implies asymptotic independence. Different modelling strategies can be applicable

to these two scenarios; see Coles (2001, Ch. 8), or Beirlant et al. (2004, Ch. 9) for further details. To

estimate η, equation (2) implies an approximate exponential model for large x > u: P{min(XE , YE) > x |

min(XE , YE) > u} ≈ exp{−(x−u)/η}. A suitable dependence threshold u may again be determined through

parameter stability plots for the exponential distribution inverse rate parameter η. We will also consider this

problem in the sequel. Threshold selection for multivariate problems is also considered in Lee et al. (2013),

but starting from an assumption of asymptotic dependence.

The remainder of the article is as follows. In Section 2 we give details of the asymptotic joint distribution

of the MLEs, and use this to suggest alternative diagnostic plots. In Section 3 we outline a simple testing

procedure that would allow for automated threshold selection on multiple datasets; properties and perfor-

mance are assessed through simulation. Finally we consider the performance of the methods on a variety

of freely-available datasets, so that the reader can compare easily with their own assessment. R code is

available as supplementary material.

2 Asymptotic joint distribution of MLEs

2.1 Set-up and notation

Let us denote by θ ∈ Θ ⊆ Rp the parameters of our model, with θ0 an assumed true value. We wish

to estimate θ0 from data X, which follow a probability model with density fθ0
; we assume that sufficient

regularity conditions for asymptotic consistency and normality of the maximum likelihood estimators hold.

Suppose that the observations Xi are mutually independent, and that each Xi ∈ R, for some interval or

region R. For our purposes, R can usually be considered as (u1,∞), though the theory applies more generally.

The joint distribution of score functions from overlapping samples is known and used in the area of sequential

analysis (e.g. Siegmund (1985, p.65), or Cook and DeMets (2008, Sect. A.5)), but to our knowledge has not

been exploited in this context. Since we have not found a derivation suited to our objectives, and in order
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to provide a reference on the topic, the key results will be stated here, whilst simple derivations are given as

supplementary material.

If X is of random length N and (X, N) represent realizations from a NHPP, with intensity λθ(x) and

integrated intensity Λθ(R) =
∫
R
λθ(x) dx, then the likelihood function on the region R is

LR(θ) := fθ(x) =

{
N∏
i=1

λθ(xi)

}
exp{−Λθ(R)}. (3)

Alternatively, if X is of fixed length n, consisting of independent random variables each with marginal

density fθ,1, then the likelihood function is simply

LR(θ) =

n∏
i=1

fθ,1(xi). (4)

Now suppose that we partition R into R1, . . . , Rk, allowing us to define several nested regions

R̄i :=

k⋃
j=i

Ri,

so that R = R̄1 ⊃ R̄2 ⊃ · · · ⊃ R̄k = Rk. For our purposes, these regions will be (u1,∞), (u2,∞), . . . , (uk,∞),

with u1 < u2 < · · · < uk. Denote by θ̂i the MLE derived from observations on R̄i = (ui,∞), and let Ii be

the Fisher information matrix on R̄i, with I−1
i its inverse.

2.2 Joint distribution

For notational convenience, we firstly state the results for a Poisson process, then detail the modifications

required for likelihoods of the form (4). Since asymptotic results require that the number of points tends to

infinity, but the parameters remain fixed, consider a superposition of m Poisson processes. Then, with the

above set-up and notation, as m→∞



m1/2(θ̂1 − θ0)

m1/2(θ̂2 − θ0)

...

m1/2(θ̂k − θ0)


d→ Npk (0,Σ) , Σ =

(
{I−1}min(i,j)

)
1≤i≤k,1≤j≤k . (5)
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The pk × pk covariance matrix Σ therefore has a block structure, with the blocks being the inverse Fisher

information matrices. Here the Fisher information is

Ii = E{−∇2 logLR̄i(θ0)} = −Λθ0
(R̄i)E{∇2 log λθ0

(X)}+∇2Λθ0
(R̄i),

the final expectation being with respect to the density λθ0
/Λθ0

(R̄i).

The result is essentially the same for a likelihood of the form (4), where, given m1 points on R̄1, the

number of points on R̄i is Mi ∼ Binomial(m1,P(X ∈ R̄i|X ∈ R̄1)). In (5) above, replacing m in the ith row

by E(Mi) = m1P(X ∈ R̄i|X ∈ R̄1) yields the same convergence, with

Ii = −E{∇2 log fθ0,1(X)},

expectation being with respect to the density fθ0,1.

2.3 Consequences of the joint distribution

We consider two consequences of the asymptotic distribution (5). The first of these is an independent

increments structure to the MLEs, the second is a sequence of independent estimators, centered around θ0.

From this point onwards, distributions are assumed to hold approximately for finite m,mi etc., and these

values appear in the variances.

2.3.1 Independent increments

An immediate consequence of (5) is



(θ̂1 − θ̂2)

(θ̂2 − θ̂3)

...

(θ̂k−1 − θ̂k)


.∼ Np(k−1)

(
0,

1

m
BlockDiag

(
I−1
i+1 − I

−1
i

)
1≤i≤k−1

)
. (6)

It is clear from (6) that, with estimates of the Fisher information matrices, pre-multiplication by the Cholesky

factor of the covariance matrix would yield approximately independent normal random variables. In partic-

ular, if we isolate a parameter of interest, ξ in our case, and denote by m−1{(I−1
i+1− I

−1
i )ξ,ξ} the asymptotic
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variance of ξ̂i − ξ̂i+1, then the standardized increments



ξ∗1

ξ∗2
...

ξ∗k−1


:= m1/2



(ξ̂1−ξ̂2)

{(I−1
2 −I

−1
1 )ξ,ξ}1/2

(ξ̂2−ξ̂3)

{(I−1
3 −I

−1
2 )ξ,ξ}1/2
...

(ξ̂k−1−ξ̂k)

{(I−1
k −I

−1
k−1)ξ,ξ}1/2


.∼ Nk−1 (0, 1k−1) ,

with 1n denoting the n-dimensional identity matrix. That is, asymptotically, ξ∗ = (ξ∗1 , . . . , ξ
∗
k−1)T is a

sequence of independent standard normal random variables, hence we shall refer to ξ∗ as the white noise

process. This distribution is valid on an assumption that ξ > −1/2, since Smith (1985) showed that this is

necessary for maximum likelihood estimators from extreme value models to behave regularly.

One often expects that MLEs from furthest into the data, ξ̂1, ξ̂2, . . ., are larger or smaller than those

estimated using the most extreme data, with a gradual move towards stability around a constant value from

estimates derived from further into the tail. This is explained by the so-called penultimate theory of extremes,

described by Gomes (1994) or Smith (1987); a brief summary of the latter is also given in Wadsworth and

Tawn (2012). As a consequence, one might anticipate that departures from the null assumption of the white

noise process for ξ∗ are manifested as too many large or small values from estimates furthest into the body

of the data. This is indeed often the case, and is the motivation for the likelihood-based automated selection

procedure introduced in Section 3.

2.3.2 Independent estimators of θ0

A second use of (5) is to create a sequence of independent estimators that are still centered around θ0.

Let i : j denote the sequence of indices {i, i + 1, . . . , j}; θ̂i:j denote the p(j − i + 1)-vector of estimators

(θ̂i, . . . , θ̂j)
T ; Jk−j,p be the p(k− j)×p matrix composed of k− j vertically stacked copies of 1p, and let Σs,t

denote the submatrix of Σ with rows and columns indexed by sequences s and t, respectively. Then, using

well-known properties of the multivariate normal, one has

θ̂j−Σj,j+1:kΣ−1
j+1:k,j+1:kθ̂j+1:k

.∼ Np
(
θ0 − Σj,j+1:kΣ−1

j+1:k,j+1:kJk−j,pθ0,
1

m
(Σj,j − Σj,j+1:kΣ−1

j+1:k,j+1:kΣj+1:k,j)

)
,

and this variable is independent of θ̂j+1:k. Therefore, defining

θ̃j := (1p − Σj,j+1:kΣ−1
j+1:k,j+1:kJk−j,p)

−1(θ̂j − Σj,j+1:kΣ−1
j+1:k,j+1:kθ̂j+1:k), j = 1, . . . , k − 1,
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and θ̃k = θ̂k, the sequence of estimators (θ̃1, . . . , θ̃k) is asymptotically normal, centered around θ0, with

Var(θ̃j) equal to

(1p−Σj,j+1:kΣ−1
j+1:k,j+1:kJk−j,p)

−1 1

m
(Σj,j−Σj,j+1:kΣ−1

j+1:k,j+1:kΣj+1:k,j)(1p−Σj,j+1:kΣ−1
j+1:k,j+1:kJk−j,p)

−T ,

and Cov(θ̃i, θ̃j) = 0, j 6= i. This suggests a plot of the adjusted estimates of our parameter of interest, ξ̃,

or η̃, against threshold. We include an example of such a plot in Section 3.2.3, but we have found the use of

the null white noise process ξ∗ more useful in practice, and thus we focus mainly on that.

3 Likelihood ratio test and simulation results

3.1 Likelihood ratio testing for white noise

As detailed in Section 2.3.1, the null (i.e., when the data arise from the assumed extreme value model)

asymptotic distribution of the increment process ξ∗ is a sequence of independent standard normal random

variables, and due to the structure of extreme value theory problems, we expect departures from this null

distribution to be more frequent from estimates derived further into the body of the distribution. That is,

we expect that ξ∗1:j is less likely to be white noise than ξ∗j+1:k−1. With this in mind, consider the following

simple changepoint model for ξ∗:

ξ∗i ∼ N(β, γ) iid, i = 1, . . . , j,

ξ∗i ∼ N(0, 1) iid, i = j + 1, . . . , k − 1,

(7)

based on a simplistic assumption that below an appropriate threshold, ξ∗1:j might be better approximated

by a N(β, γ) distribution than a N(0, 1) distribution. Some motivation for this is provided by the fact that

under model misspecification, estimators are often still asymptotically normal, but with adjusted means and

covariances (White, 1982). The likelihood function associated to (7) is:

L(β, γ, j) =

k−1∏
i=1

φ(ξ∗i ;β, γ)1(i≤j)φ(ξ∗i ; 0, 1)1(i>j), β ∈ R, γ > 0, j ∈ {2, . . . , k − 1}, (8)

with φ(·;β, γ) the N(β, γ) probability density function. To identify a threshold that provides the best fit

to the likelihood (8), we maximize the profile likelihood Lp(j) = L(β̂j , γ̂j , j), with (β̂j , γ̂j) the MLEs for a

fixed j. Let j∗ = arg maxj Lp(j). The question of interest is then: “does L(β̂j∗ , γ̂j∗ , j
∗) give a significantly

better fit to ξ∗ than L(0, 1, 0)?”, where L(0, 1, 0) =
∏k−1
i=1 φ(ξ∗i ; 0, 1). This question may be answered via a
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likelihood ratio test, with test statistic

T =
L(β̂j∗ , γ̂j∗ , j

∗)

L(0, 1, 0)
. (9)

The null distribution of T is calculated easily by simulation. If the value of T is significant at some user-

defined level α, then there is evidence against a hypothesis of white noise, and we select as a threshold

that which provides the best fit to (8), u∗ = uj∗+1. (The indexing means that we associate ξ∗j = (ξ̂j −

ξ̂j+1)/{(I−1
j+1 − I

−1
j )ξ,ξ}1/2 with the higher of the two thresholds involved.) Otherwise there is no evidence

that the sequence ξ∗ is different from white noise, and we take the lowest threshold in contention. This

procedure echoes maximum likelihood changepoint estimation (Eckley et al., 2011, Section 10.2.1).

One possible criticism of this approach is that we approximate what we suppose may often be smooth

change towards white noise with a simpler changepoint model. However, since the departures from white

noise are generally unknown, this approach at least provides a parsimonious approximation to reality. The

lowest threshold that one entertains, u1, may also have an impact upon the selected threshold, and might

thus be regarded as a tuning parameter. To counteract any effect of this, the testing procedure could be

iterated if desired by re-defining j∗ + 1 = 1, but we do not consider this further here.

A natural question that arises is how many thresholds k one should choose. There should be some link to

the sample size of the data: if k is too large compared to the sample size n, then the asymptotic theory will

not provide a good approximation to the distribution. One way to test this is to examine the distribution

of p-values associated to T under the null hypothesis for a variety of n and k; the distribution should be

uniform when the approximation is adequate.

Table 1 offers some insight into reasonable ranges of k and n, displaying approximate p-values from

Kolmogorov–Smirnov tests of uniformity of the p-value distribution, when the LR test was applied under

the null hypothesis. The three different sections of the table correspond to two different parameterizations of

the exponential model, and the NHPP model. Interestingly, the picture is slightly different between the two

exponential cases: for the inverse rate (η) parameterization, n generally needs to be larger for a given k for

the distributional results to be accurate. The table is intended as a guide only, as the Kolmogorov–Smirnov

test produces only approximate p-values in the presence of ties, which occur here due to p-values being

derived from simulated distributions. Furthermore, the algorithm used is such that k may be reduced in

case of numerical failure as described in Section 3.2.1. In Section 3.2 we take k = 25 for n = 5000, which

appears adequate. In the case of measured data, which are inherently less smooth than simulated data, the

choice of k may give more variable results; some further comments on this are made in Section 5.

It is also worth noting that many other tests are possible for departures from white noise; that which we

9



k | n: 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10 0.78 0.80 0.20 0.98 0.85 0.55 0.76 0.97 0.46 0.24
20 0.00 0.06 0.08 0.35 0.63 0.23 0.12 0.53 0.44 0.23

(a) 30 0.00 0.38 0.06 0.15 0.21 0.01 0.06 0.64 0.14 0.79
40 0.00 0.00 0.02 0.05 0.00 0.03 0.01 0.28 0.46 0.95
50 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.52 0.52 0.10
10 0.02 0.27 0.12 0.95 0.62 0.84 0.98 0.45 0.41 0.31
20 0.00 0.00 0.06 0.02 0.28 0.01 0.08 0.78 0.20 0.12

(b) 30 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.68 0.10 0.31
40 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.16 0.01
50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00
10 0.00 0.08 0.16 0.62 0.88 0.85 0.15 0.86 0.29 0.50
20 0.00 0.00 0.01 0.15 0.33 0.03 0.02 0.91 0.38 0.31

(c) 30 0.00 0.00 0.00 0.00 0.03 0.14 0.00 0.16 0.56 0.07
40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.06
50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00

Table 1: Approximate p-values from Kolmogorov–Smirnov tests for uniformity of the p-value distribution
of the LR test, under the null hypothesis, using (a) the exponential distribution with rate parameterization;
(b) the exponential distribution with inverse rate parameterization (η); (c) the NHPP model.

have detailed here is motivated by the structure of an extreme value problem, and the kind of departures we

expect to see from the null distribution, but we make no claim of optimality. Nonetheless, performance in

simulation studies appears adequate, and broadly in agreement with values suggested by reasonable inter-

pretation of traditional parameter stability plots. Thus the testing procedure could be used for automated

threshold selection on multiple datasets if desired.

3.1.1 Contrast with other approaches

Two recent approaches to improving threshold diagnostic plots and / or threshold selection rules under

relatively few assumptions on the main body of the data are found in Northrop and Coleman (2014) and

Lee et al. (2013). Northrop and Coleman (2014) begin with an assumption of multiple shape parameters

at different thresholds, motivated by penultimate extreme value theory. Following this, they apply a score

test to assess whether all shape parameters are equal, plotting p-values versus threshold: rejection of the

hypothesis suggests that a higher threshold is required. They suggest two alternative methods for automating

threshold selction: either taking the lowest threshold such that the associated p-value is non-significant (at

some level α), or the lowest threshold such that all p-values associated to that and all higher thresholds are

non-significant. One drawback of this approach is that under the null hypothesis, there are approximately

α × 100% rejections at each threshold (cf. Figure 2 in Northrop and Coleman (2014)), so that in applying

such selection rules under the null, more than α× 100% of repetitions will select a threshold higher than the

minimum.
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Lee et al. (2013) describe threshold diagnostic plots based on Bayesian measures of “surprise”. Their

plots consist of posterior predictive p-values of certain test statistics in an attempt to diagnose departures

from the assumed model. In contrast to frequentist p-values, posterior predictive p-values should be close

to 0.5, and failure of the model is indicated by departures from this. However it does not seem clear how to

choose a good automated selection rule whose properties can be established.

The method described here also has a subjective element, in the selection of the particular testing

procedure for white noise. However, an attractive feature of the approach is that the behaviour can be easily

understood under the asymptotic regime and null hypothesis: for a test of size α, we should select the lowest

threshold in contention (1− α)× 100% of the time.

3.2 Simulation Results

Here we detail the performance of the likelihood ratio test suggested in Section 3 for automated threshold

selection in a variety of scenarios. Aside from the univariate case, on which we have largely focussed, we will

also consider the methodology for the coefficient of tail dependence, η, described in Section 1. We firstly

describe the calculation of the information matrices used.

3.2.1 Information matrices

The simplest way to estimate the information matrix from the NHPP model is to use a numerically dif-

ferentiated Hessian, readily available in many standard optimization routines. In order to find the white

noise process ξ∗, we require that the elements (I−1
i+1 − I

−1
i )ξ,ξ, i = 1, . . . , k − 1, are positive. In most sit-

uations this is the case, however when it is not, we can either change the threshold values, or change the

number of thresholds k. Here we used fixed empirical quantiles for u = (u1, . . . , uk), with associated non-

exceedance probabilities equi-spaced on an interval [p1, p2]. If the covariance matrix for (ξ̂1, . . . , ξ̂k)T is not

positive-definite for the selected thresholds, then we reduce k until it is.

A further problem arises when some values of (I−1
i+1 − I

−1
i )ξ,ξ are simply too small, giving rise to much

larger values than one would expect to see under the null for elements of ξ∗. This leads to far too many small

p-values when data is simulated from a NHPP, which should yield a uniform distribution for the p-values.

To address this issue, we replaced numerically-differentiated Hessians by the expected information matrices,

calculated by numerical integration of the analytically differentiated negative log-likelihoods, and evaluated

at the MLEs. We also considered the analytically differentiated observed information, but this continued to

give rise to similar problems, whilst the use of expected information largely rectifies the issue.

For the bivariate case, the exponential model with rate (θ) and inverse rate (η) parameterization have
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Figure 2: Density of the NHPP with changepoint at 4.57 (distribution (a)).

expected information for a single observation of 1/θ2 and 1/η2. For mi observations on R̄i we thus use total

information of mi/θ̂
2
i or mi/η̂

2
i , which is also an estimate of m1P(X ∈ R̄i|X ∈ R̄1)/θ2 (cf. Section 2.2), and

similarly for η.

3.2.2 Univariate case: ξ

We simulated 200 datasets of size / expected size 5000 according to the following distributions:

(a) NHPP on (4.15,∞) with a changepoint in intensity at 4.57;

(b) NHPP on (4.27,∞) with no changepoint (true parameters µ = 10, σ = 1, ξ = 0.1);

(c) Truncated (at zero) standard normal (theoretical ξ = 0);

(d) Truncated (at zero) tν-distribution, with ν = 3 degrees of freedom (theoretical ξ = 1/3).

In case (a) there were an expected number of 2500 points either side of the changepoint at 4.57; parameters

(µ, σ, ξ) changed from (21.4, 1.4,−0.05) below the changepoint, to (10, 1, 0.1) above the changepoint, with

the intensity constrained to be continuous at the change; the density of this is plotted in Figure 2. We

apply the likelihood ratio (LR) testing procedure to the datasets to assess the quality of the inference when

using this to automatically select a threshold. In each case, there were k = 25 estimates considered ranging

from the 0 to 96% quantiles. For comparison we also consider the method of Northrop and Coleman (2014)

(denoted NC), taking as the selection criterion “the lowest threshold above which the p-value is larger than

0.05 and remains larger than 0.05 at all higher thresholds”. If no threshold satisfied this rule then the highest

threshold was used.

Table 2 details summaries of (i) the distribution of thresholds selected by the two methods, with signif-

icance level α = 0.05; (ii) the distribution and accuracy (as measured by root mean squared error, RMSE)

of the estimates of ξ; and (iii) the accuracy of the estimates of three high quantiles, or return levels, as

measured by RMSE.
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For all distributions the proposed method yields an improvement in RMSE. For case (a), the threshold at

which the changepoint occurs is 4.57, thus the mean threshold taken by the LR test, at 4.51, is slightly too

low, and leads to a small negative bias in the estimation of ξ. However, the range of thresholds selected is

quite narrow, suggesting that the change is being identified. The mean threshold taken by the NC method is

slightly too high and there is more variability in the selection, leading to worse overall performance. A similar

comment applies to the thresholds selected for (b). For the LR method the lowest threshold was selected

89.5% of the time (i.e., 10.5% of the p-values were less than 0.05), whilst for the NC method the lowest

threshold was selected 69% of the time. This is due to the way this procedure is calibrated, as discussed in

Section 3.1.1. For (c) and (d), the LR procedure tends to select slightly higher thresholds leading to smaller

bias.

Threshold Shape Parameter Return Level RMSE
Mean Q0.05 Q0.5 Q0.95 Mean Q0.05 Q0.5 Q0.95 RMSE RL1 RL2 RL3

LR-(a) 4.51 4.42 4.51 4.60 0.09 0.05 0.09 0.14 0.03 0.99 1.87 3.21
NC-(a) 4.65 4.38 4.48 5.81 0.08 0.02 0.08 0.14 0.05 1.52 3.37 7.00
LR-(b) 4.31 4.27 4.27 4.31 0.09 0.07 0.10 0.12 0.04 0.88 1.61 2.69
NC-(b) 4.54 4.27 4.27 5.86 0.10 0.02 0.10 0.16 0.05 1.37 3.10 6.47
LR-(c) 1.10 0.52 1.01 2.06 -0.15 -0.22 -0.16 -0.02 0.16 0.41 0.67 0.95
NC-(c) 0.96 0.41 0.85 2.00 -0.17 -0.24 -0.18 -0.06 0.18 0.46 0.73 1.02
LR-(d) 1.21 0.51 1.11 2.20 0.25 0.14 0.24 0.38 0.12 20.01 68.91 228.06
NC-(d) 1.26 0.46 0.94 3.43 0.23 0.14 0.21 0.41 0.14 22.03 73.52 234.74

Table 2: Summaries of the thresholds and parameter estimates from the simulations. Qa stands for the
100a% quantile; RL1–RL3 correspond respectively to the 0.9, 0.99, and 0.999 quantiles of the distribution of
the maximum point in the set of observations. LR-(a) denotes the LR method used on distribution (a), etc.

Example diagnostic plots are displayed in Figure 3; each is composed of three vertically stacked plots. The

uppermost of the three plots gives the values of the log-likelihood ratio 2{logL(β̂j , γ̂j , j)− logL(0, 1, 0)} ≥ 0

versus threshold, on a quantile scale. This is maximized in j at the same point as L(β̂j , γ̂j , j), and the value

at the maximum is equal to 2 log T , as defined in (9). The title of this plot displays the p-value associated

to T . The central plot is of the white noise process, with a horizontal line at 0, whilst the lower plot is

the traditional parameter stability plot with pointwise approximate 95% CIs. The selected thresholds are

displayed by vertical lines on the central and lower plots. The likelihood ratio procedure can be seen to

generally select a threshold where there are too many positive / negative points in the white noise process

to the left of the threshold, and much more plausible white noise values to the right of the threshold. Of

course, if preferred one could simply use these plots as a more informative and more interpretable version of

the existing parameter stability diagnostic plot.
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Figure 3: Example diagnostic plots for dataset (a) (top left); (b) (top right); (c) (bottom left); (d) (bottom

right). The top panel in each plot shows the 2{logL(β̂j , γ̂j , j)− logL(0, 1, 0)} versus threshold; the central
panel shows the white noise process ξ∗; the bottom panel shows the traditional parameter stability plot.
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3.2.3 Bivariate case: η

For estimation of η, we simulated 200 datasets of size 5000 from the following dependence structures; for (b)

and (c), marginal distributions were transformed to be standard exponential via the empirical probability

integral transform:

(a) Independence (theoretical η = 0.5)

(b) Bivariate normal with dependence parameter ρ = 0.8 (theoretical η = 0.9)

(c) Bivariate tν-distribution, with dependence parameter ρ = 0.8 and ν = 2 degrees of freedom (theoretical

η = 1)

Owing to the investigations in Section 3.1 that suggest the asymptotic multivariate normal distribution

generally holds better for the rate parameterization of the exponential distribution, we use this for the

simulation study, transforming to η by exploiting equivariance of MLEs. Table 3 provides details of the

distribution of thresholds selected by the likelihood ratio test rule with α = 0.05, along with summaries of

parameter estimates, end estimates of probabilities of lying in extreme sets. These probabilities are calculated

by exploiting the relation

P{(XE , YE) ∈ c+ t+A} ∼ e−c/ηP{(XE , YE) ∈ t+A}, c > 0, t→∞,

for A ⊂ (0,∞)2, with addition applied componentwise. The set A′ = t + A is taken to be such that

P{(XE , YE) ∈ A′} can be estimated empirically. For case (a), min(XE , YE) is exactly exponential, but

for (b) and (c), the quality of the approximation depends on the rate convergence of the ratio of slowly-

varying functions in equation (2) to unity. For reference, values obtained by taking the threshold as the 90%

quantile are also included. The method of Northrop and Coleman (2014) is not directly applicable here as

their model assumes multiple shape parameters, whereas here it is a change in exponential rate parameter

that is being sought. One could develop a procedure in the spirit of their idea for these purposes, but we do

not consider this further here.

In case (a), where the data are exactly exponential, the RMSEs are smaller for the thresholds selected by

the LR rule, since the test is well calibrated and hence the lowest possible threshold is usually selected (in

this case 94.5% of the time); this is reflected in the quantiles of the threshold distribution. Both dependence

structures (b) and (c) exhibit fairly slow rates of convergence, inducing bias in estimation of η, though the

problem is worse for the bivariate normal. This bias is still present at the 90% quantile, but RMSEs are

typically larger for the LR method with the extra uncertainty of the threshold incorporated.
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Threshold Inverse Rate Parameter Probabilities
Mean Q0.05 Q0.5 Q0.95 Mean Q0.05 Q0.5 Q0.95 RMSE p1 p2 p3

LR-(a) 0.01 0.00 0.00 0.04 0.50 0.49 0.50 0.51 0.01 0.23 0.25 0.20
90%-(a) 0.50 0.47 0.50 0.53 0.02 0.46 0.48 0.41
LR-(b) 0.46 0.05 0.32 1.41 0.81 0.78 0.81 0.86 0.09 0.21 0.33 1.77

90%-(b) 0.84 0.80 0.84 0.88 0.06 0.24 0.17 1.57
LR-(c) 1.41 0.86 1.26 2.66 0.94 0.89 0.93 1.00 0.07 0.27 0.32 0.43

90%-(c) 0.95 0.91 0.96 0.99 0.05 0.17 0.21 0.34

Table 3: Summaries of the thresholds and estimates of η from the simulations. Columns labelled p1–p3
give the MSEs of all log probabilities of the pair (in standard exponential margins) lying in extreme sets
(7, 8) × (7, 8), (6.5, 7.5) × (7.5, 8.5), (5.5, 6.5) × (8, 9), respectively. LR-(a) denotes the LR method used on
distribution (a), etc.
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Figure 4: Diagnostic plots for the inverse rate parameter η, for dependence structures: (a) (left), (b) (centre)
and (c) (right).

Example threshold diagnostic plots based on the exponential inverse rate parameter, η, are provided in

Figure 4, with the same interpretation as described in Section 3.2.2 for Figure 3. Figure 5 shows an example

plot based on the idea of independent estimators η̃ outlined in Section 2.3.2, for the same data as in the right-

hand panel of Figure 4. The confidence intervals in Figure 5 become slightly wider as the quantile decreases

for two reasons: (i) the uncertainty in η̃j does not decrease much for smaller j, in contrast with that for η̂j ;

(ii) the confidence intervals are calibrated such that each hypothesis test of the form “H
(j)
0 : ηi = η0 for all

i ≥ j” has a size of 0.05, thus increasingly large normal quantiles are used moving from right to left. Due

to the size of the confidence intervals, plots of this form do not seem to add much to the suite of threshold

diagnostics, and this is why we have not pursued this line further.

4 Applications

Here we consider the use of the diagnostic plots from Figures 3 and 4 on some freely-available data. Code

to produce these plots, written in R (R Core Team, 2014), is available online as detailed in Section 1.
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Figure 5: Alternative diagnostic plot based on the independent estimators of Section 2.3.2.

4.1 Share Price Data

The R package evir (Pfaff and McNeil, 2012) contains data on daily log returns of the share prices of BMW

and Siemens from January 1973 until July 1996. Returns such as these typically exhibit periods of volatility,

which can often be dealt with by fitting a GARCH model to the data and using the standardized residuals.

For these data we applied a GARCH(1,1) model, as is common in the literature (e.g. Hilal et al., 2011);

the resulting standardized log returns appear much closer to stationarity. The marginal diagnostic plots for

the positive returns are displayed in the leftmost two panels of Figure 6. In each case the lowest threshold

considered in the plot was chosen as the lowest point above which the density appeared to be decreasing,

by an inspection of the histogram of the data. The number of thresholds used was k = 20. In the case of

the BMW data, the likelihood (8) for the threshold is maximized at roughly 1.47 (94% quantile), and the

evidence against white noise is significant at the 5% level. For the Siemens data, the likelihood is maximized

around 1.27 (91% quantile), and the evidence to reject a null hypothesis of white noise is even stronger.

The right-hand plot of Figure 6 displays the diagnostic for the coefficient of tail dependence between these

two variables. To produce this plot, any days on which the returns are given as exactly zero for either BMW

or Siemens were removed, and the remaining data were transformed to be marginally standard exponential

using the empirical probability integral transform. All remaining data were used, and thus we took k = 30

thresholds. At the selected threshold, the estimated value of η of about 0.72 (standard error 0.01) suggests

that these data are positively dependent in the extremes, but asymptotically independent.

4.2 Fort Collins Precipitation Data

The Fort Collins precipitation dataset, available in the R package extRemes (Gilleland and Katz, 2011),

consists of daily measurements of precipitation, in inches, over a 100 year period. The data were analyzed

by Katz et al. (2002); Scarrott and MacDonald (2012) also considered these data as an illustration of the

difficulty of threshold selection. Although these data are available to the nearest 0.01 inch, there are many

less extreme measurements which take the same value and cause the data to appear discrete in the body
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Figure 6: Marginal diagnostic plots for BMW standardized returns (left) and Siemens standardized returns
(centre). Diagnostic plot for the coefficient of tail dependence (right).

and lower tail in particular. The left-hand plot in Figure 7 shows data considered above the 0.64 quantile of

positive values, where there are 197 unique values out of 2916; the right-hand plot shows data above the 0.72

quantile of positive values, where there are 191 unique values out of 2171. We used k = 20 thresholds for

the left-hand plot, and the upper 15 of those thresholds for the right-hand one. In the first case the selected

threshold is 0.23 inches, lower than the 0.4 inches taken by Katz et al. (2002), but the shape parameter

estimate of ξ̂ = 0.21 (standard error 0.03) is consistent with their estimate of 0.18. In the second case,

the selected threshold is 0.32 inches, and the estimate ξ̂ = 0.18 (standard error 0.03) is consistent with the

others. The likelihood (8) increases again at the highest threshold of roughly 1.2, and indeed Scarrott and

MacDonald (2012) also identified 1.2 inches as a candidate threshold. We discuss repeated application of

the test in Section 5.

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

0.2 0.4 0.6 0.8 1.0 1.2

150

160

170

180

p−value: 0

Threshold

LR
 s

ta
tis

tic

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

0.2 0.4 0.6 0.8 1.0 1.2

0
2
4
6
8

10
12

Threshold

W
hi

te
 n

oi
se

●

●
● ●

● ● ●

● ● ● ●

● ● ●
●

● ● ●

●

●

0.2 0.4 0.6 0.8 1.0 1.2

−0.1

0.0

0.1

0.2

0.3

Threshold

ξ̂

●

●

●

●

●

●

●

●

●

●

●
●

●

0.2 0.4 0.6 0.8 1.0 1.2
12
13
14
15
16
17
18
19

p−value: 0.018

Threshold

LR
 s

ta
tis

tic

●

●

●

●

●

●

●

●

●

●

● ●

●

●

0.2 0.4 0.6 0.8 1.0 1.2
−1

0

1

2

3

4

Threshold

W
hi

te
 n

oi
se

● ●

● ● ● ●

● ●
●

●

● ● ●

●

●

0.2 0.4 0.6 0.8 1.0 1.2

−0.1

0.0

0.1

0.2

0.3

Threshold

ξ̂

Figure 7: Threshold diagnostic plots for the Fort Collins precipitation data.
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4.3 Loss-ALAE Data

Data on the indemnity payments (Loss) and allocated loss adjustment expense (ALAE) relating to 1500

general liability claims from insurance companies are available in the R package evd (Stephenson, 2002). The

data were transformed to have standard exponential margins by the empirical probability integral transform,

and we concern ourselves only with the estimation of their extremal dependence structure. Figure 8 displays

the diagnostic plots for dependence threshold assessment, with k = 15 thresholds used. At the selected

threshold, the MLE η̂ = 0.79 (standard error 0.035), indicates moderately strong positive dependence, but

asymptotic independence of the pair. However, as pointed out by Beirlant et al. (2004, p.351) the uncertainty

in assessment of η is most likely underestimated by procedures such as this one, which do not account for

the uncertainty of the marginal transformations.
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Figure 8: Dependence threshold diagnostics for the Loss-ALAE data.

5 Discussion

We have advocated the use of the asymptotic joint distribution of MLEs to offer a more interpretable

threshold diagnostic plot. Based on the properties of this joint distribution we also suggested a likelihood-

based method for selecting a threshold, with significance assessed by simulation; performance has been

assessed on both simulated data, and a variety of different measured datasets. As has been widely observed in

the literature, there is rarely an obvious choice for a threshold, and methods to account for the uncertainty in

threshold estimation (see e.g. MacDonald et al., 2011; Wadsworth and Tawn, 2012; Scarrott and MacDonald,

2012, and references therein), are clearly important in dealing with this. However, each such piece of

methodology naturally comes with advantages and disadvantages, with none representing a panacea for the

problem. As such, common applied practice remains to use fixed thresholds chosen via threshold diagnostic
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plots. The ideas proposed in this article are intended to augment this “simple” end of the threshold selection

technique spectrum.

Although formulation of the white noise process ξ∗ requires no more fits or assumptions than the for-

mulation of a parameter stability plot, it can be the case that the estimated joint covariance matrix for

(ξ̂1, . . . , ξ̂k)T is not always positive definite. This has not proved to be a big problem for simulated data, but

is more of an issue for measured data. One issue with environmental data in particular is rounding, such

that, particularly for less extreme values, data appear discrete. The correct way to overcome this is to use

a multinomial likelihood, as the true measurement could lie anywhere within the rounding limits. We have

not considered this, but have noted that adding uniform noise within rounding limits tends to produce much

better performance, so that such issues do seem largely attributable to the rounding. It is also noteworthy

that the ideas in this paper rely on asymptotic results for the joint distribution of MLEs, and, as suggested

by Table 1, may not prove useful in small samples.

We have not considered the multiple testing aspects of applying the likelihood ratio test sequentially,

but one could investigate this in principle. Informally, we comment that in the Fort Collins example of

Section 4.2, considering only data above 0.74 (the 95% threshold) there appears to be some evidence that

a higher threshold is to be preferred, but there is some sensitivity to the number of thresholds taken. The

values of the white noise process will naturally differ when different candidate thresholds are considered, and

thus may sometimes suggest different selected thresholds u∗. This is a disadvantage not just of the proposed

method, but fixed threshold selection in general, and often an uncomfortable feature of real data. Methods

for incorporating threshold uncertainty are necessary to cope with this. The plots that we advocate here do

at least help to elucidate the features of the data in this respect.

Whilst we have focussed on the white noise process for the shape parameter ξ∗, equation (6) suggests that

we could have combined information from all three parameters (µ, σ, ξ) across thresholds. We investigated

this, but found that in general the 3×3 covariance matrix I−1
i+1− I

−1
i is rarely estimated as positive-definite.

As mentioned in an asymptotic context in Section 2, one can consider the NHPP as a superposition of a

number of Poisson processes, and one can in fact select a number arbitrarily for convenience. If this is chosen

as, say, N , then the estimated parameters (µ, σ, ξ) correspond to the parameters for the GEV distribution

for block maxima over N blocks (e.g. Coles, 2001, p.133). The relationship between this tuning parameter

and the number of threshold exceedances has a substantial effect on the correlations between (µ̂, σ̂, ξ̂) (e.g.

Wadsworth et al., 2010), and may be related to this phenomenon.
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A Derivation of joint distribution of MLEs

A.1 Poisson Process Likelihood

Consider a Poisson process on a space X , with intensity λθ(x), and denote the integrated intensity over a region

R, by Λθ(R) =
∫
R
λθ(x) dx. The likelihood function for a sample (X1, . . . , XN , N), with (X1, . . . , XN ) observed on

R, is given in (3). Define R1, . . . , Rk and R̄1, . . . , R̄k as in Section 2. Then we can equally write the likelihood (3)

as

LR(θ) =

{ ∏
i:xi∈R1

λθ(xi)

}
exp{−Λθ(R1)} × · · · ×

{ ∏
i:xi∈Rk

λθ(xi)

}
exp{−Λθ(Rk)},

since Λθ(R) =
∑k

i=1 Λθ(Ri). The array of likelihoods for θ on R̄1, . . . , R̄k is

LR̄1
(θ) =

{ ∏
i:xi∈R1

λθ(xi)

}
e−Λθ(R1) ×

{ ∏
i:xi∈R2

λθ(xi)

}
e−Λθ(R2) × · · · ×

{ ∏
i:xi∈Rk

λθ(xi)

}
e−Λθ(Rk)

LR̄2
(θ) =

{ ∏
i:xi∈R2

λθ(xi)

}
e−Λθ(R2) × · · · ×

{ ∏
i:xi∈Rk

λθ(xi)

}
e−Λθ(Rk)

· · · · · · · · · · · ·

LR̄k
(θ) =

{ ∏
i:xi∈Rk

λθ(xi)

}
e−Λθ(Rk).

To consider asymptotic behaviour, we suppose that the data arise from m superpositions of such Poisson processes.

Let θ̂1, . . . , θ̂k be the MLEs from LR̄1
, . . . , LR̄k

, respectively. Denoting the log-likelihoods by `R̄1
, . . . , `R̄k

, which

we now suppose to be functions of the random data, we can write

m1/2(θ̂j − θ0) = {−∇2`R̄j
(θ̂j)/m}−1m−1/2∇`R̄j

(θ0) + op(1),

1



as m→∞, giving the usual asymptotic normal distribution, N(0, I−1
j ), for j = 1, . . . , k, and Ij := E{−∇2`R̄j

(θ0)},

expectation being both over the number of points on R̄j for a single Poisson process, and their locations on R̄j .

By the properties of the Poisson process, the data Xi and numbers Nj on each region are mutually independent,

and from the above, we observe that we can write each ∇`R̄j
(θ0) as a sum of independent contributions

∇`R̄j
(θ0) =

k∑
i=j

∇`Ri
(θ0).

Using the fact that {−∇2`R̄j
(θ̂j)/m}−1 = E{−∇2`R̄j

(θ0)}−1 + op(1), we have

m1/2(θ̂1 − θ0) = I−1
1 m−1/2

k∑
i=1

∇`Ri
(θ0) + op(1)

m1/2(θ̂2 − θ0) = I−1
2 m−1/2

k∑
i=2

∇`Ri
(θ0) + op(1)

· · ·

m1/2(θ̂k − θ0) = I−1
k m−1/2∇`Rk

(θ0) + op(1).

As m→∞, the above array converges in distribution to



T1

T2

...

Tk


=



I−1
1 {Z1 + Z2 + · · · + Zk}

I−1
2 {Z2 + · · · + Zk}
...

. . .
...

I−1
k Zk


= Diag1≤i≤k(I−1

i )



1p 1p · · · 1p

0 1p · · · 1p
...

. . .
...

0 0 · · · 1p





Z1

Z2

...

Zk


,

with 1p the p-dimensional identity matrix, and Zj ∼ N(0, IRj
) independent for j = 1, . . . , k. Noting that

Cov





1p 1p · · · 1p

0 1p · · · 1p
...

. . .
...

0 0 · · · 1p





Z1

Z2

...

Zk




= {Imax(i,j)}1≤i≤k,1≤j≤k,

one can easily verify that the covariance matrix of (T1, . . . ,Tk)T is equal to ({I−1}min(i,j))1≤i≤k,1≤j≤k.

A.2 Likelihood with nonrandom number of points

We now suppose that there is a nonrandom total of m1 observations on R̄1, and without loss of generality, P(X ∈

R̄1) = 1. Let f(x;θ) be the density of a single observation on R̄1, and fR̄j
= f/P(X ∈ R̄j), PR̄j

(X ∈ ·) = P(X ∈

2



·)/P(X ∈ R̄j) etc., be the density and probability measure normalized over R̄j . Dependence of the probability

measure on θ is made implicit. We consider likelihoods of the form

LR̄j
(θ) =

m1∏
i=1

fR̄j
(xi;θ)1(Xi∈R̄j) =

∏
i:xi∈R̄j

fR̄j
(xi;θ).

As in Section A.1, let `R̄j
(θ) = logLR̄j

(θ), and let `
(1)

R̄j
(θ) be a single component of the sum. In Section A.1, we

used k-dimensional arrays for exposition. However, we could have noted that the concatenated vector of scores

(∇`R̄1
(θ0), . . . ,∇`R̄k

(θ0))T (A.1)

is a sum of mean-0 iid random vectors, and thus as long as the covariance matrix of the iid components of the

sum, Cov{(∇`(1)

R̄1
(θ0), . . . ,∇`(1)

R̄k
(θ0))T } = Σ has finite entries then a multivariate normal limit holds when (A.1) is

multiplied by m
−1/2
1 , m1 → ∞. The entries of the covariance matrix can be established by pairwise arguments,

which is what we focus on here.

Consider two regions, say R̄j , R̄j+1, so that R̄j = Rj ∪ R̄j+1. Their indexing need not be consecutive, but will

reduce clutter in notation. Then

1(Xi ∈ Rj) ∼ Bernoulli(P(X ∈ Rj)), 1(Xi ∈ R̄j+1) ∼ Bernoulli(P(X ∈ R̄j+1)).

The likelihood for a single point on R̄j can be written

L
(1)

R̄j
(θ) =

{
fR̄j

(xi;θ)

PR̄j
(X ∈ Rj)

}1(Xi∈Rj){
fR̄j

(xi;θ)

PR̄j
(X ∈ R̄j+1)

}1(Xi∈R̄j+1)

PR̄j
(X ∈ Rj)

1(Xi∈Rj)PR̄j
(X ∈ R̄j+1)1(Xi∈R̄j+1),

(A.2)

and on R̄j+1

L
(1)

R̄j+1
(θ) =fR̄j+1

(xi;θ)1(Xi∈R̄j+1) =

{
fR̄j

(xi;θ)

PR̄j
(X ∈ R̄j+1)

}1(Xi∈R̄j+1)

.

The score function for a single point on R̄j is

∇`(1)

R̄j
(θ) = ∇`(1)

Rj
(θ) +∇`(1)

R̄j+1
(θ) + 1(Xi ∈ Rj)

∇PR̄j
(X ∈ Rj)

PR̄j
(X ∈ Rj)

+ 1(Xi ∈ R̄j+1)
∇PR̄j

(X ∈ R̄j+1)

PR̄j
(X ∈ R̄j+1)

, (A.3)

with ∇`(1)
Rj

(θ) = 1(Xi ∈ Rj)∇fRj
(X;θ)/fRj

(X;θ). Noting that E{∇`(1)
Rj

(θ0)} = E{∇`(1)

R̄j+1
(θ0)} = 0, and using

3



conditional expectation,

Cov{∇`(1)

R̄j+1
(θ0),1(Xi ∈ R̄j+1)} = Cov{∇`(1)

R̄j+1
(θ0),1(Xi ∈ Rj)} = Cov{∇`(1)

R̄j+1
(θ0),∇`(1)

Rj
(θ0)} = 0,

so that ∇`(1)

R̄j+1
(θ0) is uncorrelated with all components of ∇`(1)

R̄j
(θ0) except itself; i.e. Cov{∇`(1)

R̄j+1
(θ0),∇`(1)

R̄j
(θ0)}

= Var{∇`(1)

R̄j+1
(θ0)} = P(X ∈ R̄j)Ij , with Ij = E{−∇2 log fR̄j

(X;θ0)}.

By extension to any pair of indices, Cov{∇`(1)

R̄i
(θ0),∇`(1)

R̄j
(θ0)} = Var{∇`(1)

R̄max(i,j)
(θ0)}, so that normalizing the

true scores by the square root of the expected number of points on the appropriate region gives the central limit

convergence

(
∇`R̄1

(θ0)

m
1/2
1 P(X ∈ R̄1)1/2

, . . . ,
∇`R̄k

(θ0)

m
1/2
1 P(X ∈ R̄k)1/2

)T

d→ Npk(0,Ω), m1 →∞, (A.4)

with Ω = {Imax(i,j)}1≤i≤k,1≤j≤k. The covariance matrix of the MLEs as opposed to the score follows as in Sec-

tion A.1.

In practice one may select R̄1, . . . , R̄k in order to fix a certain number of points m1, . . . ,mk in each. In this

case the regions, rather than the number of points falling in each region, become random. At a practical level, with

only a single sample, this does not alter the exploitation of the above results. At a theoretical level, expectations

would change from being over random numbers to random regions.
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