
Exploiting Symbolic Techniques in Automated Synthesis of Distributed
Programs with Large State Space∗

Borzoo Bonakdarpour Sandeep S. Kulkarni
Department of Computer Science and Engineering

Michigan State University
3115 Engineering Building, East Lansing, MI 48824, USA

Email: {borzoo,sandeep}@cse.msu.edu
Web: http://www.cse.msu.edu/˜{borzoo,sandeep}

Abstract
Automated formal analysis methods such as program

verification and synthesis algorithms often suffer from time
complexity of their decision procedures and also high space
complexity known as the state explosion problem. Symbolic
techniques, in which elements of a problem are represented
by Boolean formulae, are desirable in the sense that they of-
ten remedy the state explosion problem and time complex-
ity of decision procedures. Although symbolic techniques
have successfully been used in program verification, their
benefits have not yet been exploited in the context of pro-
gram synthesis and transformation extensively. In this pa-
per, we present a symbolic method for automatic synthe-
sis of fault-tolerant distributed programs. Our experimen-
tal results on synthesis of classical fault-tolerant distributed
problems such as Byzantine agreement and token ring show
a significant performance improvement by several orders of
magnitude in both time and space complexity. To the best of
our knowledge, this is the first illustration where programs
with large state space (beyond 2100) is handled during syn-
thesis.

Keywords: Distributed programs, Fault-tolerance, Pro-
gram synthesis, Symbolic algorithms, Program transforma-
tion, Formal methods.

1. Introduction
Automated synthesis of programs has the potential to

provide high assurance for computing systems, as programs
are guaranteed to be correct-by-construction. In the context
of synthesis of fault-tolerant distributed programs, the com-
plexity of automated synthesis can be characterized in two
parts. The first part deals with questions such as which re-
covery transitions/actions should be added, and which tran-

∗This work was partially sponsored by NSF CAREER CCR-0092724,
DARPA Grant OSURS01-C-1901, ONR Grant N00014-01-1-0744, NSF
grant EIA-0130724, and a grant from Michigan State University.

sitions/actions should be removed to prevent safety viola-
tion in the presence of faults. The second part deals with
questions such as how quickly such recovery and safety vi-
olating transitions can be identified.

In our previous work [11], we focused on the first part,
where we have identified classes of problems where effi-
cient synthesis is feasible and developed different heuris-
tics, especially for dealing with the constraints imposed by
distributed nature of synthesized programs. Observe that
the solution to the first part is independent of issues such
as representation of programs, faults, specifications etc.
Hence, we utilized explicit-state (enumerative) techniques
to identify the heuristics. Explicit-state techniques are es-
pecially valuable in this context, as we can identify how
different heuristics affect a given program, and thereby en-
able us to identify circumstances where they might be use-
ful. Explicit-state techniques, however, are undesirable for
the second part, as they suffer from state explosion problem
and prevent one from synthesizing programs where the state
space is large. In other words, although the polynomial-time
complexity of the heuristics in [11] allows us to deal with
the problem of synthesis of distributed programs, which
is known to be NP-complete [10], their explicit-state im-
plementation is problematic with scaling up for large pro-
grams.

With this motivation, in this paper, we focus on the sec-
ond part of the problem to improve the time and space
complexity of synthesis. Towards this end, we focus on
symbolic synthesis (implicit-state) where programs, faults,
specifications etc., are modeled using Boolean formulae
represented by Bryant’s Ordered Binary Decision Diagrams
[6]. Although symbolic techniques have been shown to be
very successful in model checking [7] (e.g., model check-
ers SMV and SAL), they have not been greatly used in the
context of program synthesis and transformation in the lit-
erature. Thus, in this paper, our goal is to evaluate how
such symbolic synthesis can assist in reducing the time and

space complexity, and thereby permit synthesis of large(r)
programs. We would like to note that, just as with model
checking, this work does not imply that synthesis would be
feasible for all programs with large state space. However,
this work does illustrate that large state space by itself is not
an obstacle to permit efficient synthesis.
Related work. While there is an extensive line of research
in the area of symbolic model checking (e.g., [7,8,13]), little
work has been done in symbolic synthesis of programs. In
[5], Asarin, Maler, and Pnueli introduce a symbolic method
to synthesize discrete and timed controllers. At the seman-
tic level, in their approach, the controller is synthesized by
finding a winning strategy for either safety or reachability
games (but not both) defined by traditional finite state au-
tomata or by timed automata.
More recently, Wallmeier, Hütten, and Thomas [14] intro-
duce an algorithm for synthesizing finite state controllers by
solving infinite games over finite state spaces. In their work,
the winning constraint is modeled by safety conditions and
a set of request-response properties as liveness conditions.
They transform this game into a Büchi game which involves
an inevitable exponential blow-up. However, their approach
does not address the issue of distribution. Moreover, the re-
ported maximum number of variables in their experiments
is 23.
Contributions of the paper. Our contributions in this
paper are as follows:

1. We illustrate that our symbolic technique can signifi-
cantly improve the performance of synthesis in terms
of both time and space complexity. In particular, our
analysis shows that the growth of the total synthe-
sis time is sublinear in the state space. For exam-
ple, in case of Byzantine agreement for five processes,
the time for explicit-state synthesis was 15 minutes
whereas the time with symbolic synthesis was 1.2 sec-
onds on the same hardware setting.

2. Symbolic synthesis significantly assists in coping with
the space complexity. For example, we could synthe-
size a solution for Byzantine agreement with 25 pro-
cesses. The size of state space of such a program is
2102 and the size of reachable states is 260, whereas in
our implementation the amount of memory used dur-
ing synthesis was only 131 KB (< 218). To the best
of our knowledge, this paper is the first that can deal
with such large state space in the context of program
synthesis.

3. We analyze the cost incurred in different tasks dur-
ing synthesis. In particular, our analysis identifies
three bottlenecks that need to be overcome, namely,
(1) deadlock resolution, (2) computation of reach-
able states in the presence of faults, and (3) checking

whether a group of transitions violates the safety spec-
ification. We show that depending upon the structure
of distributed programs, a combination of these bottle-
necks may affect the performance of automated syn-
thesis.

Organization of the paper. In Section 2, we present
the formal definition of distributed programs, specifications,
and fault-tolerance. In Section 3, the formal statement of
the synthesis problem is presented. Then, in Section 4, we
model the heuristics introduced in [11] symbolically. In
Section 5, we present our experimental results on differ-
ent aspects and subtasks of symbolic synthesis of Byzantine
agreement and token ring. Finally, in Section 6, we make
concluding remarks and present future work.

2. Preliminaries
In this section, we formally define the notions of dis-

tributed programs, specifications, and fault-tolerance. The
notion of distributed programs is adapted from [10]. The
formal definition of specifications is due to Alpern and
Schneider [2]. Definition of faults and fault-tolerance are
based on the ones given by Arora and Gouda [3] and Kulka-
rni [9].

2.1. Program

Let V be a finite set of Boolean variables {v0, v1 · · · vn}.
A state is determined by the function s : V 7→
{true, false}, which maps each variable in V to either true

or false . Thus, we represent a state s by the conjunction
s =

∧n
j=0 l(vj) where l(vj) denotes a literal, which is ei-

ther vj itself or its negation ¬vj . In general, non-Boolean
variables (e.g., integers) with finite domain D can be repre-
sented by log(|D|) Boolean variables. Hence, our notion of
state is not restricted to Boolean variables.

A state predicate is a finite set of states. Formally, we
specify a state predicate S = {s0, s1 · · · sm} by the dis-
junction S =

∨m
i=0(si). Observe that although the resulting

formula is in disjunctive normal form, one can represent a
state predicate by any equivalent Boolean expression. The
state space is the set of all possible states obtained from the
associated variables. We denote the membership of a state s

in a state predicate S (i.e., truthfulness of s ⇒ S) by s |= S.
A transition is a pair of states of the form (s, s′) specified

as a Boolean formula as follows. Let V ′ be the set {v′ | v ∈
V } (called primed variables). We use these variables to
show the new value of variables assigned by a transition.
Thus, we define a transition (s, s′) by the conjunction: s ∧
s′. A transition predicate P is a finite set of transitions
{t0, t1 · · · tm} defined by P =

∨m
i=0(ti). We denote the

membership of a transition (s, s′) in a transition predicate
P (i.e., truthfulness of (s ∧ s′) ⇒ P) by (s, s′) |= P .
Notation. Let X be a state predicate. We use 〈X〉′ to
denote a state predicate equal to X whose variables are
primed. Let P be a transition predicate whose source and

target state predicates are X1 and X2, respectively. We use
〈P 〉′′ to denote the state predicate equal to X2 whose vari-
ables are unprimed. Also, we use Guard(P) to denote the
source state predicate of P (i.e., Guard(P) = X1).

A program is specified by a set of variables V and a
transition predicate P in its state space (denoted Sp). We
say that a state predicate S is closed in the program P iff∧

(s,s′)|=P ((s |= S) ⇒ (s′ |= S)) holds. A sequence
of states, c = 〈s0, s1 · · · 〉, is a computation of P iff the
following two conditions are satisfied: (1) ∀j | j > 0 :
(sj−1, sj) |= P , and (2) if c is finite and terminates in state
sl then there does not exist state s such that (sl, s) |= P .
We distinguish between a terminating computation and a
deadlocked computation. Precisely, when a computation c

terminates in state sl, we include the transition (sl, sl) in P ,
i.e., c can be extended to an infinite computation by stutter-
ing at sl. On the other hand, if there exists a state sd such
that there is no outgoing transition (or a self-loop) from sd

then sd is a deadlock state. The projection of program P

on state predicate S, denoted as P |S, is the program (i.e.,
transition predicate)

∨
(s,s′)|=P ((s |= S) ∧ (s′ |= S)).

2.2. Specification

A specification is a set of infinite sequences of states.
Following Alpern and Schneider [2], we let the specifica-
tion consist of a safety specification and a liveness speci-
fication. For our synthesis algorithm, the safety specifica-
tion of a program P is specified by a transition predicate
SPEC in the state space of P which represents a set of
“bad transitions” that should not occur in the program com-
putation. Regarding liveness specification, we show that the
synthesized program (i.e., the fault-tolerant program) satis-
fies the liveness specification iff the original program (i.e.,
the fault-intolerant program) satisfies the liveness specifica-
tion. Since the initial fault-intolerant program satisfies its
specification (including the liveness specification), the live-
ness specification need not be specified explicitly.

Given a program P , a state predicate S, and a specifica-
tion SPEC , we say that P satisfies SPEC from S iff (1)
S is closed in P , and (2) for all computations 〈s0, s1 · · · 〉
of P , where s0 |= S, (sj−1, sj) 6|= SPEC . If P satisfies
SPEC from S and S 6= false , we say that S is an invariant
of P for SPEC .

For a finite sequence (of states) α, we say that α main-
tains SPEC iff there exists a sequence of states β such that
no transition in αβ is in SPEC . Otherwise, we say that α

violates SPEC .
Notation. Whenever the specification is clear from the
context, we will omit it; thus, “S is an invariant of P ” ab-
breviates “S is an invariant of P for SPEC .

2.3. Faults and Fault-Tolerance

The faults that a program P is subject to are systemat-
ically represented by a transition predicate F in the state

space of P . We use P []F to denote the transitions obtained
by taking the union of the transitions in P and the transi-
tions in F . We say that a state predicate T is an F -span
(read as fault-span) of P from S iff the following two con-
ditions are satisfied: (1) S ⇒ T and (2) T is closed in
P []F .

Just as we defined the computation of P , we say that a
sequence of states, 〈s0, s1 · · · 〉, is a computation of P in the
presence of F iff the following three conditions are satis-
fied: (1) ∀j > 0 : (sj−1, sj) |= (P ∨ F), (2) if 〈s0, s1 · · · 〉
is finite and terminates in state sl then there does not exist
state s such that (sl, s) |= P , and (3) ∃n ≥ 0 : (∀j > n :
(sj−1, sj) |=P).

Using the above definitions, we now define what it
means for a program to be fault-tolerant. We say that P

is F -tolerant (read as fault-tolerant) to SPEC from S iff
the following two conditions hold: (1) P satisfies SPEC

from S, and (2) there exists T such that T is an F -span of
P from S, P []F maintains SPEC from T , and every com-
putation of P []F that starts from a state in T has a state in
S. Notice that our definition of fault-tolerance includes self-
stabilizing systems as well where the system is not allowed
to violate the safety specification during stabilization.

2.4. Modeling Distributed Programs

To capture the notion that all variables cannot be
read/written simultaneously, we introduce the notion of pro-
cesses; a process j is specified by (1) a set Vj of variables,
(2) a transition predicate Pj , (3) a set Rj of variables it can
read, and (4) a set Wj of variables it can write. We now
describe how read/write restrictions on a process affect its
transitions.
Write restrictions. Let v(s) denote the value of a variable
v in state s. If process j can only write the variables in the
set Wj then j cannot use the transitions of the following
transition predicate:

NW j =
∨

(s,s′)|=Sp×Sp
(
∨

v/∈Wj
(v(s) 6= v(s′))).

Likewise, we define the transition predicate in which pro-
cess j changes the value of one of the variables in Wj as
follows:

WW j =
∨

(s,s′)|=Sp×Sp
((v(s) 6= v(s′)) ⇒ v ∈ Wj).

Read restrictions. Unlike write-restrictions that create no
new difficulties, read restrictions are difficult to deal with.
In this paper, for simplicity, we consider the case where
Wj ⊆ Rj , i.e., we assume that j cannot blindly write a vari-
able. Consider the case where (s0, s

′
0), s0 6= s′0, is included

in the transitions of j. If j cannot read variable v, then j

must include a corresponding transition from s1 where s1

and s0 differ only in the value of v. Let this transition be
(s1, s

′
1). Now, it must be the case that s′0 and s′1 are iden-

tical except for the value of v. And, value of v must be the
same in s1 and s′1.Thus, if (s0, s

′
0) is a transition of process

j whose set of readable variables is Rj , the corresponding
group predicate is defined as follows:

Group(j, Rj)(s0, s
′
0) =∨

(s1,s′

1
)|=Sp×Sp

(
∧

v∈Rj
(v(s0)=v(s1) ∧ v(s′0)=v(s′1)) ∧∧

v 6∈Rj
(v(s0) = v(s′0) ∧ v(s1) = v(s′1)))

Likewise, one can define the group predicate corresponding
to a transition predicate P as the union of group predicates
of each transition in P .

3. Problem Statement
We now formally present the problem of synthesizing a

fault-tolerant program by starting from its fault-intolerant
version. This problem [11] requires that the synthesized
fault-tolerant program is not allowed to exhibit new compu-
tations in the absence of faults. Thus, the synthesis problem
is as follows.
Synthesis problem. Given P , S, F , and SPEC such that
P satisfies SPEC from S. Identify P ′ and S′ such that:

(C1) S
′

⇒ S,
(C2) (P

′

|S
′

) ⇒ (P |S
′

), and
(C3) P ′ is F -tolerant to SPEC from S ′. �

4. The Symbolic Synthesis Algorithm
In this section, we present a symbolic pseudo-code for

the set of heuristics introduced in [11] with some minor
modifications. The symbolic representation of the heuris-
tics in terms of Boolean formulae will later enable us to
implement them using Ordered Binary Decision Diaragms
(OBDD) [6].

Intuitively, the algorithm Symbolic Add FT (cf. Figure
1) consists of five steps. The first step is initialization, where
we identify state and transition predicates from where exe-
cution of faults alone violate the safety specification. In the
later steps, we ensure that such state and transition predi-
cates will remain unreachable. In Step 2, we identify the
fault-span by computing the state predicate reachable by
program and fault transitions starting from the program in-
variant. In Step 3, we identify and rule out transitions whose
execution violates the safety specification. Then, in Step 4,
we resolve deadlock states. Finally, in Step 5, we recom-
pute the invariant predicate to ensure that it is closed in the
program. We repeat steps 2-3, 2-4, and 2-5 until a fixpoint
is reached. The fixpoint computations are represented by
three nested loops in the algorithm. Thus, the algorithm
terminates when no progress is possible in all the steps de-
scribed above. For details, we refer the reader to [11].

5. Experimental Results
In this section, we present the experimental results of

implementation of the Algorithm Symbolic Add FT pre-
sented in Section 4. In particular, we describe the results in
the context of two classical examples in the literature of dis-
tributed computing, namely, Byzantine agreement [12] and
token ring [4]. In both case studies, we find a considerable

Algorithm Symbolic Add FT(P, F,SPEC : transition predicate,
S: state predicate, R1 . . . Rn, W1 . . . Wn : set of variables){

Step 1: ms :=BackwardReachableStates(Guard(SPEC ∧ F), F);
S1 := S − ms; mt := (〈ms〉′ ∨ SPEC) ∧ ¬ms;
repeat

S2,ne := S1, false;
repeat

T1, P2 := S1, P1;
repeat

T2 := T1;
Step 2: T1 := ForwardReachableStates(S1 , P1 ∨ F , ne);

mt := mt ∧ T1 ;
Step 3: P1 := CheckGroupSafety(P1 , R1 . . . Rn);

until (T1 = T2);
lyr := S1;

Step 4: repeat
ds := T1 ∧ ¬Guard(P1);
rt := ds ∧ 〈lyr〉′ ∧ ¬mt ;
P1 := P1∨ CheckGroupSafety(rt , R1 . . . Rn);
lyr := ds ∧ ¬(T1 ∧ ¬Guard(P1));

until (lyr = false);
P1 := Eliminate(ds, T1, S1, false, P1, F);

until (P1 = P2);
Step 5: P1, S1 := ConstructInvariant(P1 , S1,ne);

until (S1 = S2);
return S1 , P1;}

Procedure CheckGroupSafety(P : transition predicate,
R1 . . . Rn: set of variables){

for each process j ∈ 1 . . . n:
Witness = Guard(Group(P ∧ mt, Rj));
Pj := (¬Witness) ∧ Pj ;

P := ∨n
j=1

Pj ;
return P ;}

Procedure ConstructInvariant(P : transition predicate,
S,ne: state predicate){

OffendingStates := S ∧ BackwardReachableStates(ne, F);
repeat

S := S ∧ ¬OffendingStates ;
tmp := (S ∨ OffendingStates) ∧ P ∧ ¬〈S〉′;
P := P ∧ ¬Group(tmp);
OffendingStates := 〈tmp〉′′;

until (OffendingStates = false);
return S, P ;}

Procedure Eliminate(ds, T, S,Visited : state predicate,
P, F : transition predicate){

ds := ds ∧ ¬Visited ;
if (ds = false) then return P ;
Visited := Visited ∨ ds ;
Old := P ;
tmp := T ∧ ¬S ∧ P ∧ 〈ds〉′;
P := P ∧ ¬Group(tmp);
fs = Guard(T ∧ f ∧ 〈ds〉′ ∧ ¬S) ∧

¬ ForwardReachableStates(S, F , false);
P := Eliminate(fs, T, S,Visited , P, F);
New := Guard(T ∧ Group(tmp) ∧ ¬Guard(P));
ne := ne ∨ ¬〈Old ∧ ¬P ∧ T ∧ 〈ds〉′〉′′;
P := P ∨ (Group(tmp) ∧ New);
New := New ∧ Guard(tmp);
P := Eliminate(New ∧ ¬S, T, S,Visited , P, F);
return P ;}

Figure 1. Symbolic algorithm for synthesiz-
ing fault-tolerant distributed programs.

improvement in both time and space complexity as com-
pared to the corresponding implementation in the explicit-
state model.

Throughout this section, all experiments are run on a Sun
Fire V40z with a dual-core Opteron processor and 16 GB
RAM. The OBDD representation of the Boolean formulae
has been done using the C++ interface to the CUDD pack-
age developed at University of Colorado [1].

To concisely write the transitions in a program, we use

actions. An action is of the form g −→ st, where g is a state
predicate (called guard), and st is a statement that describes
how the program state is updated. Thus, an action g −→ st

denotes the transition predicate {(s, s′) | s |= g and s′ is
obtained by changing s as prescribed by st}.

5.1. Case Study 1: Byzantine Agreement

In this subsection, we present our experimental results
on automated synthesis of the Byzantine generals problem
due to Lamport, Shostak, and Pease [12]. We use a canon-
ical version of the problem modeled by Kulkarni, Arora,
and Chippada [11] as follows. The program consists of a
“general” (g) and three (or more) “non-general” processes
(j, k, l). Each process maintains a decision d; for the gen-
eral, the decision can be either 0 or 1, and for the non-
general processes, the decision can be 0, 1 or ⊥, where ⊥
denotes that the corresponding process has not yet received
the value from the general. Each non-general process also
maintains a boolean variable f that denotes whether that
process has finalized its decision.

To represent a Byzantine process, we introduce a vari-
able b for each process; if b.j is true then j is Byzantine.
Also, at most one process (from g, j, k and l) may be Byzan-
tine. A non-general process can read the d values of other
processes and update its d and f values. Thus, the state
space for the problem consists of the following variables:

• d.g : {0, 1}

• d.j, d.k, d.l : {0, 1,⊥}

• b.g, b.j, b.k, b.l : {true, false}

• f.j, f.k, f.l : {true, false}

The set of variables that j is allowed to read, Rj , is
{b.j, d.j, f.j, d.k, d.l, d.g}. The set of variables that j is al-
lowed to write, Wj , is {d.j, f.j}. If b.j is true then fault
transitions can change d.j and f.j.
Fault-intolerant program. If no process were Byzantine,
an algorithm that copies the value from the general and then
finalizes that value will be sufficient to satisfy the specifi-
cation of Byzantine agreement. Thus, the fault-intolerant
program consists of the following two actions for process j.

(d.j = ⊥) ∧ ¬f.j −→ d.j := d.g

(d.j 6= ⊥) ∧ ¬f.j −→ f.j := true

Fault actions. A fault transition can cause a process to
become Byzantine if no process is initially Byzantine. Also,
a fault can change the d and f values of a Byzantine process.
Thus, the fault transitions that affect j are as follows:

¬b.g ∧ ¬b.j ∧ ¬b.k ∧ ¬b.l −→ b.j := true

b.j −→ d.j, f.j := 0|1, false|true

Safety specification. The safety specification requires
that validity and agreement be satisfied. Validity requires
that if the general is non-Byzantine then the final decision

of a non-Byzantine process must be the same as that of the
general. And, the agreement requires that the final decision
of two non-Byzantine processes cannot be different.

Ssf = (∃p, q : ¬b.p ∧ ¬b.q ∧ (d.p 6= ⊥) ∧ (d.q 6= ⊥)
∧ (d.p 6= d.q) ∧ f.p ∧ f.q)

∨ (∃p : ¬b.g ∧ ¬b.p ∧ (d.p 6= ⊥) ∧ (d.p 6= d.g) ∧ f.p)

Moreover, a transition violates safety if it reaches a
state where Ssf is true. Also, once a process fi-
nalizes its decision it cannot change that decision.

SPEC = Ssf∨
W

(s,s′)|=Sp×Sp
¬b.j(s) ∧ ¬b.j(s′) ∧ f.j(s)

∧ (d.j(s) 6= d.j(s′) ∨ f.j(s) 6= f.j(s′))}

Fault-tolerant program. The output of our implementa-
tion is a program that tolerates the Byzantine faults identi-
fied above, i.e., it never violates its safety specification and
it does not deadlock when faults occur. Intuitively, the fault-
tolerant program consists of (1) strengthened actions of the
intolerant program, making deadlock states and states from
where safety may be violated unreachable, and (2) new safe
recovery actions. Notice that, our synthesized program is
the same as the canonical Byzantine agreement program
manually designed in [12].

(d.j = ⊥) ∧ ¬f.j

−→ d.j := d.g

(d.j 6= ⊥) ∧ ¬f.j ∧ (d.k=⊥ ∨ d.k = d.j) ∧
(d.l=⊥ ∨ d.l = d.j) ∧ (d.k 6= ⊥ ∨ d.l 6= ⊥)

−→ f.j := true

(d.j = 1) ∧ (d.k = 0) ∧ (d.l = 0) ∧ ¬f.j

−→ d.j, f.j := 0, false|true
(d.j = 0) ∧ (d.k = 1) ∧ (d.l = 1) ∧ (f.j = 0)

−→ d.j, f.j := 1, false|true
(d.j 6=⊥) ∧ ¬f.j ∧
((d.j =d.k ∧ d.j 6= d.l) ∨ (d.j=d.l ∧ d.j 6= d.k))

−→ f.j := true

Analysis of implementation results. We now present the
results of our experiments using the implementation of the
Algorithm Symbolic Add FT. For our analysis, we present
three graphs based on (1) total synthesis time (cf. Figure
2), (2) deadlock resolution time (cf. Figure 3), and (3) the
amount of required memory (cf. Figure 4) all versus the
size of explicit state space. We choose to analyze our data
versus the size of explicit state space rather the number of
processes since the size of explicit state space shows the ex-
ponential blow up of both time and space more clearly if an
enumerative approach is applied. Based on the results pre-
sented in this section, we argue that automated synthesis of
fault-tolerant distributed programs certainly has the poten-
tial to be used in practice with comparable scaling factor to
that of model checking of such programs.

• (Total synthesis time) Figure 2 illustrates the time
spent to synthesize fault-tolerant non-general pro-
cesses versus the size of explicit state space. The

0.001

0.01

0.1

1

10

100

1000

10000

100000

1e+06

1 100000 1e+10 1e+15 1e+20 1e+25 1e+30

Ti
m

e
(S

ec
on

ds
) (

lo
g

sc
al

e)

State Space (log scale)

Total Synthesis Time vs State Space

Byzantine Agreement
Token Ring

Figure 2. Total synthesis time versus the size
of explicit state space in synthesis of Byzan-
tine agreement and token ring for 3-25 pro-
cesses.

number of processes synthesized in our experiments
ranges over 3 to 25. Although it is feasible to syn-
thesize programs with more number of processes in
a reasonable amount of time, the trend of the graph
with maximum 25 processes is clear enough to make
sound judgments. First, observe that it takes 1.2 sec-
onds to synthesize 5 non-general processes. Surpris-
ingly, a previous enumerative implementation of the
heuristics of [11] takes 15 minutes to synthesize the
same number of processes on the same hardware set-
ting. Moreover, the previous enumerative implementa-
tion could not handle more than 5 processes due to the
large size of state space. By contrast, using symbolic
techniques, we were able to synthesize up to 25 pro-
cesses in a reasonable amount of time, which is indeed
a significant improvement. Note that the size of state
space of the Byzantine agreement with 25 processes is
1027 times larger than the size state space of Byzantine
agreement with 5 processes.

Moreover, the graph in Figure 2 shows that the growth
rate of total time spent to synthesize Byzantine agree-
ment is sublinear to the size of explicit state space.
In particular, our analysis shows that the fraction

Time
StateSpace0.15 remains constant as the number of non-
general processes grows. Sublinearity of total synthe-
sis time to the size of state space is important in the
sense that the exponential blow-up of state space does
not affect the time complexity of our synthesis algo-
rithm.

• (Deadlock resolution) Figure 3 shows the time spent
to resolve deadlock states versus the size of explicit
state space. Surprisingly, in case of Byzantine agree-
ment the graph is almost identical to the graph of total
synthesis time. In fact, in the range of 3-25 processes,
in average, 94% of the total synthesis time is spent to
resolve deadlock states, namely, in adding recovery ac-

0.001

0.01

0.1

1

10

100

1000

10000

100000

1 100000 1e+10 1e+15 1e+20 1e+25 1e+30

D
ea

dl
oc

k
R

es
ol

ut
io

n
Ti

m
e

(s
) (

lo
g

sc
al

e)

State Space (log scale)

Deadlock Resolution Time vs. State Space

Byzantine Agreement
Token Ring

Figure 3. Deadlock resolution time versus the
size of explicit state space in synthesis of
Byzantine agreement and token ring for 3-25
processes.

tions and in the Procedure Eliminate. In other words,
only 6% of the total synthesis time is spent to com-
pute the fault-span of the program, checking safety of
groups of transitions, and recomputing the program in-
variant. Note that deadlock resolution is a problem that
exists in the context of program synthesis and trans-
formation and, hence, has not been addressed by the
model checking community. Note that the existence
and diversity of deadlock states directly depends on the
structure of the given fault-intolerant program. In fact,
later in this subsection, we show that unlike Byzantine
agreement, in case of the token ring problem, deadlock
resolution is not a crucial issue.

Figure 3 also shows that in case we are not required to
resolve deadlocks states, synthesis of programs such as
Byzantine agreement can be done considerably faster.
In other words, synthesis of distributed failsafe pro-
grams, where a program only guarantees to satisfy its
safety specification in the presence of faults and is not
required to recover to its invariant after occurrence of
faults, can be done more efficiently.

• (Memory usage) Figure 4 shows the amount of vir-
tual memory that the Algorithm Symbolic Add FT
requires (in KB) versus the size of explicit state space.
As can be seen, the amount of memory that the algo-
rithm requires to synthesize 25 processes (131 KB) is
not considerably greater than the amount of memory
required to synthesize 3 processes (16 KB) as com-
pared to the size of explicit state space in case of 3
and 25 processes. This is certainly due to efficient rep-
resentation of Boolean formulae by OBDDs and par-
tially due to the size of “reachable” states in the fault-
span of Byzantine agreement. To illustrate the issue of
size of reachable states let us consider the Byzantine
agreement program with 25 processes. Since we repre-
sent the decision value of each process by two Boolean

10

100

1000

10000

1 100000 1e+10 1e+15 1e+20 1e+25 1e+30

M
em

or
y

(K
B

) (
lo

g
sc

al
e)

State Space (log scale)

Required Virtual Memory vs. State Space

Byzantine Agreement
Token Ring

Figure 4. Required memory versus the size of
explicit state space in synthesis of Byzantine
agreement and token ring for 3-25 processes.

variables, as the size of their respective domain is 3,
each non-general processes has 4 variables. Also, the
general has 2 variables. Hence, the program has 102
Boolean variables in total and the size of explicit state
space is 2102. In order to compute the size of reach-
able states approximately, observe that non-general
processes are either undecided (i.e., d.j = ⊥), or they
are decided (i.e., d.j = 0|1) and their decision is either
finalized or not yet finalized (i.e., f.j = false |true).
Hence, each non-general can have 5 different combi-
nations. Furthermore, the general can have either de-
cision value (i.e., d.g = false |true) and be Byzantine
or non-Byzantine (i.e., b.g = 0|1). Hence, the size of
reachable states is at least 525 ∗ 4 ' 260. Thus, the
size of reachable states is considerably less than the
size of entire explicit state space, but still considerably
greater than the amount of memory that the Algorithm
Symbolic Add FT requires.

5.2. Case Study 2: Token Ring

In a token ring program, the processes 0..N are orga-
nized in a ring and the token is circulated along the ring in a
fixed direction. Each process, say j, maintains a variable
with the domain {0, 1,⊥}, where ⊥ denotes a corrupted
value. Process j, j 6= 0, has the token iff x.j differs from its
successor x.(j + 1) and process N has the token iff x.N is
the same as its successor x.0. Each process can only write
its local variable (i.e., x.j). Moreover, a process can only
read its own local variable and the variable of its predeces-
sor.
Fault-intolerant program. The program, consists of two
actions for each process j. Formally, these actions are as
follows (where +2 denotes modulo 2 addition):

(j 6= 0) ∧ (x.j 6= x.(j − 1)) −→ x.j := x.(j − 1)
(j = 0) ∧ (x.j 6= (x.N +2 1)) −→ x.j := x.N +2 1

Fault action. Faults can restart at most N − 1 processes.
Thus, the fault action for process j is as follows:

∃i, k | (i 6= k) : (xi 6= ⊥) ∧ (xk 6= ⊥) −→ x.j := ⊥

Safety specification. The safety specification requires
that a process whose state is uncorrupted should not copy
the value of a corrupted process. Formally, the safety spec-
ification is the following set of bad transitions:

SPEC =
∨N

j=0(x.j 6= ⊥ ∧ x′.j = ⊥)

Note that in token ring (unlike Byzantine agreement), we
require that the safety specification can only be violated by
execution of program actions. In other words, when a fault
action restarts a process, safety is not violated.
Fault-tolerant program. The output of our implemen-
tation is a program that tolerates the above fault actions.
Intuitively, a process in the synthesized program is allowed
to copy the value of its predecessor, if this value in not cor-
rupted. Note that the actions of the synthesized program
stipulate recovery actions that start from outside program
invariant as well. The actions of the synthesized program
are as follows:

(j 6= 0) ∧ (x.j 6= x.(j − 1)) ∧ (x.(j − 1) 6= ⊥)
−→ x.j := x.(j − 1)

(j = 0) ∧ (x.j 6= (x.N +2 1)) ∧ (x.N 6= ⊥)
−→ x.j := x.N +2 1

Analysis of implementation results. Similar to Byzan-
tine agreement, our analysis is based on three criteria,
namely, (1) total synthesis time, (2) deadlock resolution
time, and (3) memory usage, presented in Figures 2-4, re-
spectively. Although token ring has a less complex structure
than Byzantine agreement, the experimental results surpris-
ingly show that token ring exhibits features that Byzantine
agreement does not. One of these features is the structure of
its fault-span in the sense that unlike Byzantine agreement,
the fault-span of token ring is almost equal to its entire state
space.

• (Total synthesis time) Similar to Byzantine agree-
ment, in our experiments with token ring, the number
of processes ranges over 3 to 25. As can be seen in Fig-
ure 2, in case of token ring the graph has sharper slope
as compared to Byzantine agreement. In particular, the
total synthesis time for 3..20 processes in token ring is
less than the total synthesis time with the same number
of processes in Byzantine agreement. However, in to-
ken ring with 21..25 processes, the total synthesis time
increases dramatically. We explain the reason as we
proceed. Notice that the total synthesis time to the size
of state space is still sublinear.

• (Deadlock resolution) Unlike Byzantine agreement,
in synthesis of token ring, our algorithm does not en-
counter a diverse set of deadlock states. In fact, in case
of token ring, all deadlock states can be easily resolved
by adding safe recovery transitions and, thus, our syn-
thesis algorithm does not need to eliminate any states.
As can be seen in Figures 2 and 3, the amount time
spent for resolving deadlock states is considerably less
than the total synthesis time. In fact, in average, 92%
of the total time is spent in computing the fault-span.

• (Memory usage) Figure 4 completes the chain of
premises to conclude our explanation on the counter-
intuitive behavior of synthesis of token ring. As men-
tioned earlier, in case of token ring, the total synthe-
sis time increases dramatically beyond 20 processes.
The same pattern occurs in Figure 4 more clearly; the
slope of the graph increases rapidly where we synthe-
size more than 20 processes. This is due to the fact
that the program can reach almost the entire state space
in the presence of faults. Since the algorithm recom-
putes the fault-span in all iterations by starting from
the program invariant and using a (possibly) modi-
fied set of program transitions, the size of intermediate
fault-spans (during recomputation) becomes crucial in
memory usage. Moreover, in case of of token ring
the number of iterations to recompute the fault-span
is proportional to the number of processes, whereas in
Byzantine agreement, this number is independent of
the number of processes. In this situation, the size of
state space of token ring with more than 20 processes is
large enough to increase the size of intermediate faults-
spans and iterations, which in turn affects the overall
performance of synthesis.

6. Conclusion and Future Work
In this paper, we demonstrated that using techniques

from symbolic analysis, the state of art in synthesis could be
significantly improved. In particular, we showed that sym-
bolic techniques could assist in overcoming state space ex-
plosion encountered during synthesis. Using the symbolic
analysis and heuristics for addition of fault-tolerance [11],
we demonstrated that synthesis of distributed programs with
a large state space (2102 in case of Byzantine agreement
with 25 processes, 250 in case of the token ring with 25
processes) can be achieved in reasonable amount of time.
Moreover, this analysis shows that the growth of the time
complexity is sublinear in the state space.

Furthermore, we showed that the symbolic approach also
has the potential to significantly reduce the space complex-
ity. In particular, the state space used during synthesis of
Byzantine agreement program with 25 processes was 131
KB whereas the actual size of state space (with explicit state
space approach) of that program is 2102. Hence, we expect

this work to demonstrate that similar to model checking, the
explosion of state space by itself is not an impediment in the
context of automated synthesis.

Based on the analysis of our algorithm and experimental
results, we identified three different bottlenecks (depend-
ing upon the structure of the program being synthesized),
namely, (1) deadlock resolution, (2) computation of fault-
span, and (3) checking safety of groups of transitions. In
particular, we observed that in case of Byzantine agreement,
in average, 94% of the total synthesis time is spent to re-
solve deadlocks. Also, in case of token ring, in average,
92% of the total time is pent to compute the fault-span of
the program. Backed by this analysis, we are planning to
focus on resolving the above bottlenecks to improve our ap-
proach so that we can synthesize distributed programs with
larger state space.

References

[1] CUDD: Colorado University Decision Diagram Pack-
age. http://vlsi.colorado.edu/˜fabio/CUDD/
cuddIntro.html.

[2] B. Alpern and F. B. Schneider. Defining liveness. Informa-
tion Processing Letters, 21:181–185, 1985.

[3] A. Arora and M. G. Gouda. Closure and convergence: A
foundation of fault-tolerant computing. IEEE Transactions
on Software Engineering, 19(11):1015–1027, 1993.

[4] A. Arora and S. S. Kulkarni. Component based design of
multitolerant systems. IEEE Transactions on Software Engi-
neering, 24(1):63–78, 1998.

[5] E. Asarin, O. Maler, and A. Pnueli. Symbolic controller
synthesis for discrete and timed systems. In Hybrid System,
1995.

[6] R. E. Bryant. Graph-based algorithms for boolean function
manipulation. IEEE Transactions on Computers, 35(8):677–
691, 1986.

[7] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and
L. J. Hwang. Symbolic model checking: 1020 states and be-
yond. Information and Computation, 98(2):142–170, 1992.

[8] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Sym-
bolic model checking for real-time systems. Information and
Computation, 111(2):193–244, 1994.

[9] S. S. Kulkarni. Component-based design of fault-tolerance.
PhD thesis, Ohio State University, 1999.

[10] S. S. Kulkarni and A. Arora. Automating the addition of
fault-tolerance. In Formal Techniques in Real-Time and
Fault-Tolerant Systems (FTRTFT), volume 1926 of Lecture
Notes in Computer Science, pages 82–93, Pune, India, 2000.
Springer.

[11] S. S. Kulkarni, A. Arora, and A. Chippada. Polynomial time
synthesis of Byzantine agreement. In Symposium on Reliable
Distributed Systems (SRDS), pages 130–140, 2001.

[12] L. Lamport, R. Shostak, and M. Pease. The Byzantine gener-
als problem. ACM Transactions on Programming Languages
and Systems, 4(3):382–401, 1982.

[13] K. L. McMillan. Symbolic Model Checking. Kluwer Aca-
demic Publishers, 1993.

[14] N. Wallmeier, P. Hütten, and W. Thomas. Symbolic syn-
thesis of finite-state controllers for request-response speci-
fications. In Implementation and Application of Automata
(CIAA), pages 11–22, 2003.

