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Abstract

Many man-made objects have intrinsic symmetries and

Manhattan structure. By assuming an orthographic projec-

tion model, this paper addresses the estimation of 3D struc-

tures and camera projection using symmetry and/or Man-

hattan structure cues, which occur when the input is single-

or multiple-image from the same category, e.g., multiple dif-

ferent cars. Specifically, analysis on the single image case

implies that Manhattan alone is sufficient to recover the

camera projection, and then the 3D structure can be recon-

structed uniquely exploiting symmetry. However, Manhat-

tan structure can be difficult to observe from a single image

due to occlusion. To this end, we extend to the multiple-

image case which can also exploit symmetry but does not

require Manhattan axes. We propose a novel rigid structure

from motion method, exploiting symmetry and using multi-

ple images from the same category as input. Experimental

results on the Pascal3D+ dataset show that our method sig-

nificantly outperforms baseline methods.

1. Introduction

Many objects, especially these made by humans, have in-

trinsic symmetry [43, 25] and Manhattan properties (mean-

ing that 3 perpendicular axes are inferable on the object

[9, 10, 13]), such as cars, aeroplanes, see Fig 1. The pur-

pose of this paper is to investigate the benefits of using

symmetry and/or Manhattan constraints to estimate the 3D

structures of objects from one or more images. As a key

task in computer vision, numerous studies have been con-

ducted on estimating the 3D shapes of objects from mul-

tiple images [23, 47, 52, 48, 4, 17, 21, 11, 12, 1]. There

is also a long history of research on the use of symmetry

[16, 30, 49, 40, 25, 45, 32, 28] and a growing body of work

on Manhattan world [9, 10, 13]. There is, however, little

work that combines these cues.

This paper aims at estimating the 3D structure of an ob-

Figure 1. Left Panel: Illustration of symmetry and Manhattan

structure. The car has a bilateral symmetry with respect to the

plane in red. There are three Manhattan axes. The first is normal

to the symmetry plane of the car (e.g., from left wheels to right

wheels). The second is from the front to the back of the car (e.g.,

from back wheels to front wheels) while the third is in the vertical

direction. Right Panel: Illustration of the 3 Manhattan directions

on a real aeroplane image, shown by Red, Green, Blue lines. These

3 Manhattan directions can be obtained directly from the labeled

keypoints.

ject class, taking a single or multiple intra-class instances as

input, e.g., different cars from various viewpoints. Follow-

ing [50, 29, 15], we use 2D positions of keypoints as input to

estimate the 3D structure and the camera projection, leav-

ing the detection of the 2D keypoints to methods such as

[8]. In this paper, different combinations of the three cues,

i.e., symmetry, Manhattan and multiple images, are investi-

gated and two algorithms/derivations are proposed (assum-

ing orthographic projection), i.e., single image reconstruc-

tion using both symmetry and Manhattan constraints, and

multiple-image reconstruction using symmetry1.

Specifically, we start with the single image reconstruc-

tion case, using the symmetry and Manhattan constraints,

see Fig. 1. Our derivation is inspiring that a single image is

sufficient for reconstruction when the symmetry and Man-

hattan axes can be inferred. Specifically, our analysis shows

that using Manhattan alone is sufficient to recover the cam-

era projection (up to several axis-sign ambiguities) by a sin-

gle input image, then the 3D structure can be reconstructed

uniquely by symmetry thereafter. We show these results on

1We experimented with using Manhattan for the multiple-image case,

but found it gave negligible improvement. Please see the derivations of us-

ing Manhattan for the multiple-image case in the supplementary material.
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aeroplane in Pascal3D+. But we note that all the 3 Manhat-

tan axes are hard to observe from a single image sometimes,

particularly if the keypoints we rely on are occluded.

Hence, we extend the use of symmetry to the multiple-

image case using structure from motion (SfM). The input

is different intra-class object instances with various view-

points. We formulate the problem in terms of energy min-

imization (i.e., MLE) of a probabilistic model, in which

symmetry constraints are included. The energy also in-

volves missing/latent variables for unobserved keypoints

due to occlusion. These complications, and in particular

symmetry, implies that we cannot directly apply singular

value decomposition (SVD) (as in the previous SfM based

work [31, 46]) to directly minimize the energy function. In-

stead we must rely on coordinate descent (or hard EM meth-

ods if we treat the missing points are latent variable) which

risk getting stuck in local minimum. To address this issue

we define a surrogate energy function which exploits sym-

metry, by grouping the keypoints into symmetric keypoint

pairs, and assumes that the missing data are known (e.g.,

initialized by another process). We show that the surrogate

energy can be decomposed into the sum of two indepen-

dent energies, each of which can be minimized directly us-

ing SVD. This leads to a two-stage strategy where we first

minimize the surrogate energy function as initialization for

coordinate descent on the original energy function.

Recall that the classic SfM has a “gauge freedom” [39]

because we can rotate the object and camera pose by equiv-

alent amounts without altering the observations in the 2D

images. This gauge freedom can be thought of as the free-

dom to choose our coordinate system. In this paper, we

exploit this freedom to choose the symmetry axis to be in

the x axis (and the other two Manhattan axes to be in the y
and z directions). In the following, we group keypoints into

keypoint pairs and use a superscript † to denote symmetry,

e.g., Y and Y † are symmetric keypoint pairs.

The rest of the paper is organized as follows: firstly, we

review related work in Section 2. In Section 3, we describe

the common experiment design for all our methods. Then

the mathematical details and evaluations on the single im-

age reconstruction are given in Section 4, followed by the

derivation and experiments on the multiple-image case, i.e.,

the symmetric rigid structure from motion (Sym-RSfM), in

Section 5. Finally, we give our conclusions in Section 6.

2. Related Works

Symmetry has been studied in computer vision for sev-

eral decades. For example, symmetry has been used as

a cue in depth recovery [16, 30, 40] as well as for rec-

ognizing symmetric objects [49]. Grossmann and Santos-

Victor utilized various geometric clues, such as planarity,

orthogonality, parallelism and symmetry, for 3D scene re-

construction [19, 20], where the camera rotation matrix

was pre-computed by vanishing points [18]. Recently, re-

searchers applied symmetry to scene reconstruction [25],

and 3D mesh reconstruction with occlusion [45]. In addi-

tion, symmetry, incorporated with planarity and compact-

ness priors, has also been studied to reconstruct structures

defined by 3D keypoints [32]. By contrast, the Manhat-

tan world assumption was developed originally for scenes

[9, 10, 13], where the authors assumed visual scenes were

based on a Manhattan 3D grid which provided 3 perpen-

dicular axis constaints. Both symmetry and Manhattan can

be straightforwardly combined, and adapted to 3D object

reconstruction, particularly for man made objects.

The estimation of 3D structure from multiple images

is one of the most active research areas in computer vi-

sion. Classic SfM for rigid objects built on matrix factor-

ization methods [31, 46]. Then, more general non-rigid de-

formation was considered, and the rigid SfM in [31, 46]

was extended to non-rigid case by Bregler et al. [6]. Non-

rigid SfM was shown to have ambiguities [52] and various

non-rigid SfM methods were proposed using priors on the

non-rigid deformations [52, 48, 41, 3, 17, 4]. Gotardo and

Martinez proposed a Column Space Fitting (CSF) method

for rank-r matrix factorization and applied it to SfM with

smooth time-trajectories assumption [17]. A more general

framework for rank-r matrix factorization was proposed in

[24], containing the CSF method as a special case2. More

recently, it has been proved that the ambiguities in non-rigid

SfM do not affect the estimated 3D structure, [2] which

leaded to prior free matrix factorization methods [11, 12].

SfM methods have been used for category-specific object

reconstruction, e.g., estimating the structure of cars from

images of different cars under various viewing conditions

[29, 50], but these did not exploit symmetry or Manhattan.

We point out that in [7], the repetition patterns have been

incorporated into SfM for urban facades reconstruction, but

[7] focused mainly on repetition detection and registration.

3. Experimental Design

This paper discusses 2 different scenarios to reconstruct

the 3D structure: (i) reconstruction from a single image

using symmetry and the Manhattan assumptions, (ii) re-

construction from multiple images using symmetric rigid

SfM. The experiments are performed on Pascal3D+ dataset.

This contains object categories such as aeroplane and car.

These object categories are sub-divided into subtypes, such

as sedan car. For each object subtype, we estimate an 3D

structure and the viewpoints of all the within-subtype in-

stances. The 3D structure is specified by the 3D keypoints

in Pascal3D+ [51] and the corresponding keypoints in the

2However, the general framework in [24] cannot be used to SfM di-

rectly, because it did not constrain that all the keypoints within the same

frame should have the same translation. Instead, [24] focused on better

optimization of rank-r matrix factorization and pursuing better runtime.
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2D images are from Berkeley [5]. These are the same ex-

perimental settings as used in [29, 15].

For evaluation we report the rotation error eR and the

shape error eS , as in [11, 12, 3, 17, 15]. The 3D groundtruth

and our estimates may have different scales, so we normal-

ize them before evaluation. For each shape Sn we use its

standard deviations in X,Y, Z coordinates σx
n, σ

y
n, σ

z
n for

normalization: Snorm
n = 3Sn/(σ

x
n + σy

n + σz
n). To deal with

the rotation ambiguity between the 3D groundtruth and our

result, we use the Procrustes method [44] to align them. As-

suming we have 2P keypoints, i.e., P keypoint pairs, the

rotation error eR and the shape error eS are calculated as:

eR =
1

N

N
∑

n=1

||Raligned
n −R∗

n||F ,

eS =
1

2NP

N
∑

n=1

2P
∑

p=1

||Snorm aligned
n,p − Snorm∗

n,p ||F , (1)

where Raligned
n and R∗

n are the recovered and the groundtruth

camera projection matrix for image n. Snorm aligned
n,p and

Snorm∗
n,p are the normalized estimated structure and the nor-

malized groundtruth structure for the p’th point of image n.

These are aligned by the Procrustes method [44].

4. 3D Reconstruction of A Single Image

In this section, we describe how to reconstruct the 3D

structure of an object from a single image using its symme-

try and Manhattan properties. Theoretical analysis shows

that this can be done with a bilateral symmetry and three

Manhattan axes, but the estimation is ambiguous if less than

three Manhattan axes are visible. Specifically, the three

Manhattan constraints alone are sufficient to determine the

camera projection up to sign ambiguities (e.g., we cannot

distinguish between front-to-back and back-to-front direc-

tions). Then, the symmetry property is sufficient to estimate

the 3D structure uniquely thereafter.

Let Y, Y † ∈ R
2×P be the observed 2D coordinates of

the P symmetric pairs, then the orthographic projection im-

plies:

Y = RS, Y † = RS†, (2)

where S, S† ∈ R
3×P are the 3D structure and R ∈ R

2×3 is

the camera projection matrix. We have eliminated transla-

tion by centralizing the 2D keypoints.

Remark 1 We first estimate the camera projection matrix

using the Manhattan constraints. Each Manhattan axis

gives us one constraint on the camera projection. Hence,

three axes give us the well defined linear equations to esti-

mate the camera projection. We now describe this in detail.

Consider a single Manhattan axis specified by 3D points

Sa and Sb. Without loss of generality, assume that these

points are along the x-axis, i.e., Sa − Sb = [x, 0, 0]T . It

follows from the orthographic projection that:

Ya−Yb = R(Sa−Sb) =

[

r11, r12, r13
r21, r22, r23

]





x
0
0



 =

[

r11x
r21x

]

.

(3)

where R =

[

r11, r12, r13
r21, r22, r23

]

. Setting Ya = [y1a, y
2
a]

T ,

Yb = [y1b , y
2
b ]

T , yields r21/r11 = (y2a−y2b )/(y1a−y1b ). With

other Manhattan axes, e.g., if Sc, Sd are along the y-axis,

Se, Sf are along the z-axis, we can get similar constraints.

Let µ1 = r21/r11, µ2 = r22/r12, µ3 = r23/r13, we

have:

µ1 = (y2a − y2b )/(y
1
a − y1b ),

µ2 = (y2c − y2d)/(y
1
c − y1d),

µ3 = (y2e − y2f )/(y
1
e − y1f ), (4)

Now, consider the orthogonality constraint on R, i.e.,

RRT = I , which implies:

r211 + r212 + r213 = 1,

r221 + r222 + r223 = 1,

r11r21 + r12r22 + r13r23 = 0. (5)

Replacing r21, r22, r23 by the known values µ1, µ2, µ3

of Eq. (4) indicates the following linear equations:




1, 1, 1
µ2
1, µ2

2, µ2
3

µ1, µ2, µ3









r211
r212
r213



 =





1
1
0



 (6)

These equations can be solved for the unknowns r211, r212
and r213 provided the coefficient matrix (above) is invert-

ible (i.e., has full rank). This requires that (µ1 − µ2)(µ2 −
µ3)(µ3 − µ1) 6= 0. Because µ1, µ2, µ3 are the slopes of

the projected Manhattan axes in 3D space, this constraint is

violated only in the very special case when the camera prin-

cipal axis and two Manhattan axes are in the same plane.

Note that there are sign ambiguities for solving

r11, r12, r13 from r211, r
2
12, r

2
13. But these ambiguities do not

affect the estimation of the 3D shape, because they are just

choices of the coordinate system. Next we can calculate

r21, r22, r23 directly based on r11, r12, r13 and µ1, µ2, µ3.

This recovers the projection matrix.

Remark 2 We have shown that the camera projection ma-

trix R can be recovered if the three Manhattan axes are

known. Next we show that the 3D structure can be estimated

using symmetry (provided the projection R is recovered).

Assume, without loss of generality, the object is along

the x-axis. Let Y ∈ R
2×P and Y † ∈ R

2×P be the P sym-

metric pairs, S ∈ R
3×P and S† ∈ R

3×P be the correspond-

ing P symmetric pairs in the 3D space. Note that for the
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p’th point pair in the 3D space, we have Sp = [xp, yp, zp]
T

and S†
p = [−xp, yp, zp]. Thus, we can re-express the cam-

era projection in Eq. 2 by:

L =
Y − Y †

2
= R





x1, ..., xP

0, ..., 0
0, ..., 0



 =

[

r11x1, ..., r11xP

r21x1, ..., r21xP

]

,

(7)

M =
Y + Y †

2
= R





0, ..., 0
y1, ..., yP
z1, ..., zP





=

[

r12y1 + r13z1, ..., r12yP + r13zP
r22y1 + r23z1, ..., r22yP + r23zP

]

. (8)

Finally, we can solve Eqs. (7) and (8) to estimate the com-

ponents (xp, yp, zp) of all the points Sp (since R is known),

and hence, recover the 3D structure. Observe that we have

only just enough equations to solve (yp, zp) uniquely. On

the other hand, the xp is over-determined due to symmetry.

We also note that the problem is ill-posed if we do not ex-

ploit symmetry, i.e., it involves inverting a 2× 3 projection

matrix R if not exploiting symmetry.

4.1. Experiments on 3D Reconstruction Using A
Single Image

We use aeroplanes for this experiment, because the 3

Manhattan directions (e.g., left wing → right wing, nose

→ tail and top rudder → bottom rudder) can be obtained

directly on aeroplanes, see Fig. 1. Also aeroplanes are gen-

erally far away from the camera, implying orthographic pro-

jection is a good approximation.

We selected 42 images with clear 3 Manhattan directions

and with no occluded keypoints from the aeroplane cate-

gory of Pascal3D+ dataset, and evaluated the results by the

Rotation Error and Shape Error (Eq. (1)). The shape error

is obtained by comparing the reconstructed structure with

their subtype groundtruth model of Pascal3D+ [51].

The average rotation and shape errors for aeroplane us-

ing the Manhattan and symmetry constraints on the single

image case are 0.3210 and 0.6047, respectively. These re-

sults show that using the symmetry and Manhattan proper-

ties alone can give good results for the single image recon-

struction. Indeed, the performance is better than some of

the structure from motion (SfM) methods which use multi-

ple images, see Tables 1 and 2 (on Page 8). But this is not a

fair comparison, because these 42 images are selected to en-

sure that all the Manhattan axes are visible, while the SfM

methods have been evaluated on all the aeroplane images.

Some reconstruction results are illustrated in Fig. 2.

5. Symmetric Rigid Structure from Motion

This section describes symmetric rigid structure from

motion (Sym-RSfM). We start by defining the a full energy

Figure 2. Illustration of the reconstruction results for aeroplane

using the symmetry and Manhattan constraints on a single image.

For each subfigure triplet, the first subfigure is the 2D image with

input keypoints, the second and third subfigures are the 3D struc-

ture from the original and rectified viewpoints. The gauge freedom

of sign ambiguities can also be observed by comparing the recti-

fied 3D reconstructions, i.e., the third subfigures. The Red, Green,

Blue lines represent the three Manhattan directions we used.

function for the problem, see Section 5.1, and the coordinate

descent algorithm to minimize it, see Section 5.2. Then, the

missing points are initialized in Section 5.3. After that, we

describe the surrogate energy and the algorithm to minimize

it, see Section 5.4, which serves to initialize coordinate de-

scent on the full energy function.

For consistency with our baseline methods [46], we as-

sume orthographic projection and the keypoints are central-

ized without translation for the Sym-RSfM. Note that due to

the iterative estimation and recovery of the occluded data,

the translation has to be re-estimated to re-centralize the

data during each iteration. The update of the translation is

straightforward and will be given in Section 5.2.

5.1. Problem Formulation: The Full Energy

We extend the image formation model from a single im-

age to multiple images indexed by n = 1, ..., N . The key-

points are grouped into P keypoint pairs, which are sym-

metric across the x-axis. We introduce noise in the im-

age formation, and the translation is removed as discussed

above.

Then, by assuming that the 3D structure S is symmetric

along the x-axis, the 2D keypoint pairs for image n, i.e.,

Yn ∈ R
2×P and Y †

n ∈ R
2×P , are given by:

Yn = RnS +Nn ⇒ P (Yn|Rn, S) ∼ N (RnS, 1)

Y †
n = RnAS +Nn ⇒ P (Y †

n |Rn, S) ∼ N (RnAS, 1)
(9)

where Rn ∈ R
2×3 is the projection matrix, S ∈ R

3×P

is the 3D structure, and A is a matrix operator A =
diag([−1, 1, 1]), by which AS changes the sign of the first

row of S, making S† = AS. Nn is zero mean Gaussian

noise with unit variance Nn ∼ N (0, 1)3.

Observe that the noise is independent for all keypoints

and for all images. Hence, the 2D keypoints are indepen-

3Note that we experimented with another model which treated the vari-

ance as an unknown parameter σ2
n and estimated it during optimization,

but found this made negligible difference to the experimental results.
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dent when conditioned on the 3D structure S and the cam-

era projections Rn. Therefore, the problem is formulated

in terms of minimizing the following energy function with

unknown Rn, S:

Q(Rn, S) = −
∑

n

lnP (Yn, Y
†
n |Rn, S)

= −
∑

n

(

lnP (Yn|Rn, S)− lnP (Y †
n |Rn, S)

)

∼
∑

n

||Yn −RnS||22 +
∑

n

||Y †
n −RnAS||22.

(10)

This formulation relates to the classic structure from mo-

tion problems [31, 46], but those classic methods do not im-

pose symmetry, and therefore, they have only the first term

in Eq. (10), i.e., Q(Rn, S) =
∑

n ||Yn − RnS||22. If all the

data is fully observed then S is of rank 3 (assuming the 3D

points do not lie in a plane or a line) and so the energy can be

minimized by first stacking the keypoints for all the images

together, i.e., Y = [Y T
1 , ..., Y T

N ]T ∈ R
2N×P , then applying

SVD to Y. The solution is unique up to some coordinate

transformations, i.e., the rotation ambiguities [31, 46].

Remark 3 Our problem is more complex than the classic

rigid SfM because of two confounding issues: (i) some key-

points will be unobserved in each image, (ii) we cannot di-

rectly solve Eq. (10) by SVD because it consists of two en-

ergy terms which are not independent (even if all data is

observed). Hence, we first formulate a full energy function

with missing points, where the missing points are initialized

in Section 5.3. After that, in Section 5.4, a surrogate energy

is defined, which exploits symmetry and can be minimized

by SVD, and therefore, can be used for initializing camera

projection and the 3D structure.

To deal with unobserved keypoints we divide them into

visible sets VS ,VS †and invisible sets IVS , IVS †. Then the
full energy function can be formulated as:

Q(R, S, {Yn,p, (n, p) ∈ IVS}, {Y †
n,p, (n, p) ∈ IVS

†})

=
∑

(n,p)∈VS

||Yn,p −RnSn,p||
2
2 +

∑

(n,p)∈VS†

||Y †
n,p −RnASn,p||

2
2+

∑

(n,p)∈IVS

||Yn,p −RnSn,p||
2
2 +

∑

(n,p)∈IVS†

||Y †
n,p −RnASn,p||

2
2.

(11)

Here {Yn,p, (n, p) ∈ IVS}, {Y †
n,p, (n, p) ∈ IVS

†} are the

missing points.

Note that it is easy to add the Manhattan constraints in

Eq. (11) as a regularization term for the Sym-RSfM on mul-

tiple images. But we found no significant improvement in

our experiments when we used Manhattan, perhaps because

it was not needed due to the extra images available as input.

Please see the supplementary materials.

Algorithm 1: Optimization of the full energy Eq. (11).

Input: The stacked keypoint sets (for all the N
images) Y and Y

† with occluded points, in

which each occluded point is set to 0 initially.

Output: The camera projection matrix Rn for each

image, the 3D structure S, and the keypoints

with recovered occlusions (Y)t and (Y†)t.
1 Initialize the occluded points by Algorithm 2.

2 Initialize the each camera projection Rn and the 3D

structure S by Algorithm 3.

3 repeat

4 Update S by Eq. (12) and update each Rn (see the

supplementary materials).

5 Calculate the occluded points by Eq. (13), and

update them in Yn, Y
†
n .

6 Centralize the Yn, Y
†
n by Eq. (14).

7 until Eq. (11) converge;

5.2. Optimization of The Full Energy Function

We now define a coordinate descent algorithm to esti-

mate the 3D structure, the camera projection, and the miss-

ing data. This algorithm is not guaranteed to converge to the

global minimum, so it will be initialized using the surrogate

energy function, described in Section 5.4.

We use a coordinate descent method to optimize Eq. (11)

by updating Rn, S and the missing points {Yn,p, (n, p) ∈
IV S}, {Y †

n,p, (n, p) ∈ IV S†} iteratively. Note that the en-

ergy in Eq. (11) w.r.t Rn, S, i.e., when the missing points

are fixed, is given in Eq. (10).

Firstly, we vectorize Eq. (10) and S to update it in matrix

form by S:

S =
(

∑N

n=1(G
T
nGn +AT

PG
T
nGnAP )

)−1 (
∑N

n=1(G
T
nYn +AT

PG
T
nY

†
n)
)

.

(12)

where S ∈ R
3P×1,Yn ∈ R

2P×1,Y†
n ∈ R

2P×1 are vector-

ized S, Yn, Y
†
n , respectively. Gn = IP ⊗ Rn and AP =

IP ⊗A. IP ∈ R
P×P is an identity matrix.

Each Rn is updated under the nonlinear orthogonality

constraints RnR
T
n = I similar to the idea in EM-PPCA

[48]: we first parameterize Rn to a full 3×3 rotation matrix

Q and update Q by its rotation increment. Please refer to the

supplementary materials for the details.

From Eq. (11), the occluded points of Y and Y
† (i.e.,

the p-th point Yn,p and Y †
n,p) can be updated by minimiz-

ing: Q(Yn,p, Y
†
n,p) =

∑

(n,p)∈IV S ||Yn,p − RnSp||22 +
∑

(n,p)∈IV S† ||Y †
n,p −RnASp||22, which implies the update

rule for the missing points:

Yn,p = RnSp, Y †
n,p = RnASp, (13)

where (n, p) ∈ IV S.
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Note that we do not model the translation explicitly

for the sake of consistency with the baseline method [46],

where the translation is assumed to be eliminated by cen-

tralizing the data. However, since the occluded points have

been updated iteratively in our method, we have to re-

estimate the translation and re-centralize the data during

each iteration. This can be done by:

Yn ← Yn − 1
T
2P ⊗ tn, Y †

n ← Y †
n − 1

T
2P ⊗ tn,

tn =
∑

p

(Yn,p −RnSp + Y †
n,p −RnASp). (14)

The algorithm to optimize Eq. (11) is summarized in Al-

gorithm 1, in which the initialization of the missing points,

the 3D structure and the camera projection, i.e., Algorithms

2 and 3, will be discussed in the following sections.

5.3. Initialization of The Missing Data

In this section, the missing data is initialized by the

whole input data ignoring symmetry. This will be used both

for coordinate descent of the full energy and for applying

singular value decomposition to the surrogate energy.

Let Y = [Y T
1 , ..., Y T

N ]T ,Y† = [(Y †
1 )

T , ..., (Y †
N )T ]T ∈

R
2N×P are the stacked keypoints for all the images, and

R = [RT
1 , ...R

T
N ]T ∈ R

2N×3 are the stacked camera pro-

jection. Thus, we have YAll = [Y, Y†] = R[S,AS]. It im-

plies that YAll has the same rank, namely 3, with R[S,AS]
given all the points of [S,AS] do not lie on a plane or a

line. Therefore, rank 3 recovery can be used to initialize

the missing points. Also, the same centralization as in the

previous section has to be done after each iteration of the

missing points, so as to eliminate the translations.

The occlusions initialization is shown in Algorithm 2.

5.4. The Surrogate Energy: Initialization of Cam-
era Projection and 3D Structure

Remark 4 We now define a surrogate energy function that

exploits the symmetry constraints, which enables us to de-

compose the energy into two independent terms and leads

to an efficient minimization algorithm using SVD.

To construct the surrogate energy, we first change the
coordinates to exploit symmetry, so that the problem breaks
down into two independent energy terms. Since S and S†

are symmetric along x-axis, we can decompose S by:

L =
Y −Y

†

2
= R





x1, ..., xP

0, ..., 0
0, ..., 0



 = R
1
Sx,

M =
Y +Y

†

2
= R





0, ..., 0
y1, ..., yP
z1, ..., zP



 = R
2
Syz, (15)

where R
1 ∈ R

2N×1,R2 ∈ R
2N×2 are the first sin-

gle column and second-third double columns of R, Sx ∈

Algorithm 2: The initialization of the occluded points.

Input: The stacked keypoint sets (for all the N
images) Y and Y

† with occluded points, in

which each occluded point is set to 0 initially.

The number of iterations T (default 10).

Output: The keypoints with initially recovered

occlusions (Y)t and (Y†)t.
1 Set t = 0, initialize the occluded points ignoring

symmetry by:

2 while t < T do

3 Centralize Y
All = [(Y)t, (Y†)t] by Eq. (14).

4 Do SVD on Y
All ignoring the symmetry, i.e.,

[A,Σ,B] = SVD
(

Y
All
)

.

5 Use the first 3 component of Σ to reconstruct the

keypoints (YAll)new.

6 Replace the occluded points in (Y)t, (Y†)t by

these in (YAll)new and set t← t+ 1.

7 end

R
1×P , Syz ∈ R

2×P are the first single row and second-

third double rows of S, respectively. Equation (15) gives us

the energy function on R, S to replace Eq. (10) into:

Q(R, S) = ||L−R
1Sx||22 + ||M−R

2Syz||22. (16)

This is essentially changing the coordinate system by ro-

tating Y,YT with 45◦ (except a scale factor of
√
2).

Remark 5 We have decomposed the energy into two inde-

pendent terms, and therefore, they can be solved separately

by SVD up to some ambiguities. Then we will combine them

to study and resolve the ambiguities. Note that we assume

the occluded keypoints are replaced by the initialization de-

scribed in the previous section.

Equation (16) implies that we can estimate R
1, Sx and

R
2, Syz by matrix factorization on L and M independently

up to ambiguities. Then we combine them to remove this

ambiguity by exploiting the orthogonality constraints on

each Rn: i.e., RnR
T
n = I . Applying SVD to L and M gives

us estimates, i.e., (R̂1, Ŝx) of (R1, Sx), and (R̂2, Ŝyz) of

(R2, Syz), up to ambiguities λ and B:

L = R
1Sx = R̂

1λλ−1Ŝx, M = R
2Syz = R̂

2BB−1Ŝyz,
(17)

here R1 and R
2 are the decomposition of the true projection

matrix R, i.e., R = [R1,R2], and R̂
1 and R̂

2 are the output

estimates from SVD. Equation (17) shows that there is a

scale ambiguity λ between R̂
1 and R

1, and a 2-by-2 matrix

ambiguity B ∈ R
2×2 between R̂

2 and R
2.

Remark 6 Next we show how to resolve the ambiguities λ
and B. This is done by using the orthogonality constraints,

namely RnR
T
n = I .
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Observe from Eqs. (17) that the ambiguities (i.e., λ and

B) are the same for the projection matrices of all the images.

In the following derivation, we analyze the ambiguity for

the n’th image, i.e., projection matrix Rn.

Using Eqs. (17), the true Rn can be represented by:

Rn = [R1
n, R

2
n] = [R̂1

n, R̂
2
n]

[

λ, 0

0, B

]

= R̂n

[

λ, 0

0, B

]

(18)

where R1
n ∈ R

2×1 and R2
n ∈ R

2×2 are the first single col-

umn and second-third double columns of the true projection

matrix Rn. R̂1
n ∈ R

2×1 and R̂2
n ∈ R

2×2 are the initial esti-

mation of R1
n and R2

n from the matrix factorization.

Let R̂n = [R̂1
n, R̂

2
n] =

[

r̂1,1n , r̂1,2:3n

r̂2,1n , r̂2,2:3n

]

∈ R
2×3, impos-

ing the orthogonality constraints RnR
T
n = I using Eq. (18)

gives:

RnR
T
n = R̂n

[

λ2, 0

0, BBT

]

R̂
T
n

=

[

r̂1,1n , r̂1,2:3n

r̂2,1n , r̂2,2:3n

] [

λ2, 0

0, BBT

] [

r̂1,1n , r̂1,2:3n

r̂2,1n , r̂2,2:3n

]T

= I (19)

Vectorizing BBT of Eq. (19) using vec(AXBT ) =
(B ⊗A)vec(X), we can get the following linear equations:




(r̂1,1n )2, r̂1,2:3n ⊗ r̂1,2:3n

(r̂2,1n )2, r̂2,2:3n ⊗ r̂2,2:3n

r̂1,1n r̂2,1n , r̂1,2:3n ⊗ r̂2,2:3n





[

λ2

vec(BBT )

]

=





1
1
0



 . (20)

Note that BBT is a symmetric matrix, the second and third

elements of vec(BBT ) are the same. Let vec(BBT ) =
[bb1, bb2, bb2, bb3]

T , we can enforce the symmetriy of BBT

by rewriting Eq. (20):





(r̂1,1n )2, r̂1,2:3n ⊗ r̂1,2:3n

(r̂2,1n )2, r̂2,2:3n ⊗ r̂2,2:3n

r̂1,1n r̂2,1n , r̂1,2:3n ⊗ r̂2,2:3n

















1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1





















λ2

bb1
bb2
bb3









= Aix =





1
1
0



 ,

(21)

where the constant matrix of the left term is a matrix opera-

tor to sum the third and forth columns of the coefficient ma-

trix with r’s, x is the unknown variables [λ2, bb1, bb2, bb3]
T ,

and Ai ∈ R
3×4 is the corresponding coefficients.

Stacking all the R̂’s together, i.e., let A =
[AT

1 , ..., A
T
N ]T ∈ R

3N×4 and b = 1N ⊗ [1, 1, 0]T , we have

a over-determined equations for the unknown x: Ax = b

(i.e., 3N equations for 4 unknowns), which can be solved

efficiently by LSE: x = (AT
A)−1

A
T
b.

Remark 7 The ambiguity of R1 and R̂
1, (i.e., in the sym-

metry direction), is just a sign change, which cause by cal-

culating λ from λ2. In other words, the symmetry direction

can be fixed as x-axis in our coordinate system using the

decomposition Eq. (15).

Algorithm 3: The initialization of the camera projec-

tion and structure.

Input: The keypoint sets Y and Y
† with initially

recovered occluded points by Algorithm 2.

Output: The initialized camera projection R and the

3D structure S.

1 Change the coordinates to decouple the symmetry

constraints by Eq. (15).

2 Get R̂1, R̂2, Ŝx, Ŝyz by SVD on L,M, i.e., Eq. (17).

3 Solve the squared ambiguities λ2, BBT by Eq. (21).

4 Solve for λ from λ2, and B from BBT , up to sign and

rotation ambiguities.

5 Obtain the initialized R and S by Eq. (22).

After obtained BBT , B can be recovered up to a ro-

tation ambiguity on yz-plane, which does not affect the re-

constructed 3D structure (See the supplementary materials).

Given λ,B, R̂, Ŝ, we can get the true R and S by:

R = R̂

[

λ, 0

0, B

]

, S =

[

λ, 0

0, B

]−1

Ŝ. (22)

5.5. Experiments on The Symmetric Rigid Struc-
ture from Motion

We estimate the 3D structures of each subtype and the

orientations of all the images within that subtype for aero-

plane, bus, car, sofa, train, tv in Pascal3D+ [51]. Note

that Pascal3D+ provides a single 3D shape for each subtype

rather than for each object. For example, it provides 10 sub-

types for the car category, such as sedan, truck, but ignores

the within-subtype variation [14]. Thus, we divide the im-

ages of the same category into subtypes, and then input the

images of each subtype for the experiments.

Following [29, 15], images with more than 5 visible key-

points are used. The rotation and shape errors are calculated

by Eq. (1). The rigid SfM (RSfM) [46] and a more recent

CSF method [17], which both do not exploit symmetry, are

used for comparison. Note that the CSF method [17] uti-

lized smooth time-trajectories as initialization, which does

not always hold in our application, as the input images here

are not from a continuous video. Thus, we also investigate

the results from CSF method with random initialization. We

report the CSF results with smooth prior as CSF (S) and the

best results with 10 random initialization as CSF (R).

The results (mean rotation and shape errors) are shown in

Tables 1 and 2, which indicate that our method outperforms

the baseline methods for most cases. The cases that our

method does not perform as the best may be caused by that

Pascal3D+ assumes the shapes from objects within the same

subtype are very similar to each other, but this might be vio-

lated sometimes. Moreover, our method is robust to imper-

fect annotations (i.e., result in imperfect symmetric pairs)
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aeroplane bus

I II III IV V VI VII I II III IV V VI

RSfM 0.52 1.17 1.99 0.28 0.94 1.77 1.74 0.32 1.05 0.27 0.27 1.13 0.51

CSF (S) 0.92 0.70 0.87 0.83 0.89 0.96 1.02 0.72 0.86 0.68 0.92 0.94 1.04

CSF (R) 0.93 0.82 0.80 0.91 0.99 1.02 1.37 0.69 0.88 0.81 0.93 0.88 1.08

Sym-RSfM 0.13 0.46 2.00 0.17 1.81 0.89 1.69 0.19 0.33 0.03 0.22 0.58 0.50

car sofa

I II III IV V VI VII VIII IX X I II

RSfM 0.58 0.71 0.54 1.10 0.67 1.51 0.67 1.41 0.97 0.37 1.18 0.75

CSF (S) 0.95 1.22 1.06 1.12 1.00 1.03 1.13 1.04 1.33 1.03 1.02 0.75

CSF (R) 0.95 1.32 1.08 1.06 1.09 0.98 1.22 1.05 1.29 1.17 0.85 0.76

Sym-RSfM 0.36 0.43 0.30 0.43 0.31 0.26 0.32 1.04 0.25 0.16 0.67 0.26

sofa train tv

III IV V VI I II III IV I II III IV

RSfM 1.90 1.00 1.99 1.90 1.95 1.44 1.33 1.01 0.86 0.38 0.39 1.38

CSF (S) 1.16 0.99 1.66 1.21 0.84 0.69 0.86 0.85 0.99 0.79 0.95 0.73

CSF (R) 0.87 0.86 0.98 1.70 0.92 0.67 0.84 0.82 1.00 0.82 0.91 0.84

Sym-RSfM 0.11 0.69 1.57 0.97 0.18 0.68 0.88 0.97 0.23 0.14 0.26 0.44

Table 1. The mean rotation errors for aeroplane, bus, car, sofa, train, tv, calculated using the images from the same subtype (denoted by

the Roman numerals) as input.

aeroplane bus

I II III IV V VI VII I II III IV V VI

RSfM 0.44 1.17 0.52 0.29 0.76 0.54 0.61 1.29 1.27 1.16 0.97 1.52 1.21

CSF (S) 1.25 0.36 1.42 0.84 0.33 0.47 0.59 1.11 0.39 0.56 0.16 3.02 0.44

CSF (R) 0.25 0.44 0.34 1.40 0.58 1.73 0.69 0.99 1.06 1.33 0.88 1.94 2.00

Sym-RSfM 0.19 0.88 0.27 0.34 0.33 0.30 0.62 0.68 0.58 0.35 0.24 0.76 0.47

car sofa

I II III IV V VI VII VIII IX X I II

RSfM 1.48 1.49 1.33 1.38 1.45 1.39 1.21 1.81 1.22 1.07 2.50 1.09

CSF (S) 1.06 2.33 1.15 1.17 1.36 1.17 1.03 1.10 2.03 0.99 1.78 0.24

CSF (R) 1.34 1.07 1.03 1.16 1.18 1.26 0.88 0.90 1.65 1.13 0.76 0.25

Sym-RSfM 1.03 0.96 0.95 1.07 0.89 1.00 0.81 1.66 0.88 0.71 2.27 0.22

sofa train tv

III IV V VI I II III IV I II III IV

RSfM 1.49 1.60 3.44 2.56 1.68 0.39 0.28 0.22 0.23 0.88 0.64 1.77

CSF (S) 3.14 1.54 2.74 1.55 0.83 0.85 0.25 0.26 0.66 0.77 0.34 0.34

CSF (R) 1.82 1.19 1.42 1.20 1.05 0.37 0.24 0.17 0.22 0.97 0.55 0.36

Sym-RSfM 0.40 1.07 0.87 1.14 0.73 0.61 0.13 0.24 0.09 0.29 0.32 0.14

Table 2. The mean shape errors for aeroplane, bus, car, sofa, train, tv, calculated using the images from the same subtype (denoted by the

Roman numerals) as input.

for practical use. This was simulated by adding Gaussian

noise to the 2D annotations in the supplementary material.

6. Conclusions

We show that symmetry, Manhattan and multiple-image

cues can be utilized to achieve good quality performance

on object 3D structure reconstruction. For the single image

case, symmetry and Manhattan together are sufficient

if we can identify suitable keypoints. For the multiple-

image case, we formulate the problem in terms of energy

minimization exploiting symmetry, and optimize it by a

coordinate descent algorithm. To initialize this algorithm,

we define a surrogate energy function exploiting symmetry,

and decompose it into a sum of two independent terms

that can be solved by SVD separately. We further study

the ambiguities of the surrogate energy and show that they

can be resolved assuming the orthographic projection. Our

results outperform the baselines on most object classes

in Pascal3D+. Future works involve using richer camera

models, like perspective [42, 22], and keypoints extracted

and matched automatically from images [8, 38, 36] with

outliers [35, 37, 34] and occlusions [27, 26, 33] handled.
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