
Exploiting symmetry in SMT problems

David Déharbe1, Pascal Fontaine2,
Stephan Merz2, and Bruno Woltzenlogel Paleo3

1 Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
david@dimap.ufrn.br

2 University of Nancy and INRIA, Nancy, France
{Pascal.Fontaine,Stephan.Merz}@inria.fr

3 Technische Universität Wien
bruno.wp@gmail.com

Abstract. Methods exploiting problem symmetries have been very suc-
cessful in several areas including constraint programming and SAT solv-
ing. We here present a technique to enhance the performance of SMT-
solvers by detecting symmetries in the input formulas and use them to
prune the search space of the SMT algorithm. This technique is based
on the concept of (syntactic) invariance by permutation of constants.
An algorithm for solving SMT taking advantage of such symmetries
is presented. The implementation of this algorithm in the SMT-solver
veriT is used to present the practical benefits of this approach. It results
in a significant amelioration of veriT’s performances on the SMT-LIB
benchmarks that place it ahead of the winners of the last editions of the
SMT-COMP contest in the QF UF category.

1 Introduction

While the benefit of symmetries have been recognized for the satisfiability prob-
lem on propositional logic [?] and in the area of constraint programming [?], to
our knowledge, SMT solvers (see [?] for a detailed accounting of techniques used
in SMT solvers) do not yet fully exploit symmetries. Symmetries in formulas
naturally arise while modeling problems that essentially contain symmetries. In
the context of SMT solving, a frequent cause for symmetries to appear is when
some terms take their value in a finite, given set of totally symmetric elements.

The idea here is very simple: given a formula G left unchanged by all per-
mutations of some uninterpreted constants c0, . . . cn, for any model M of G,
if t does not contain these constants and M makes t = ci true, there should
be a model that set t equal to c0. While checking for unsatisfiability, it is thus
sufficient to look for models assigning t and c0 to the same value. This simple
idea is very effective, especially on formulas generated by finite instantiations of
quantified problems. As an example, it allows to transform a moderately efficient
SMT solver (veriT [?]) into a state of the art solver, placing it ahead of the win-
ners of the last editions of the SMT-COMP contest in the QF UF category. We
however do not consider this as a breakthrough in the art of SMT solving, but

rather as an advocacy for ways to specify the symmetries of the problem to au-
tomatic provers, just like it is possible to specify symmetries to some constraint
programming solvers. Provers may then take the best use of this information to
reduce the search space.

2 Notations

A many-sorted first-order language is a tuple L = 〈S,V,F ,P, d〉 such that S is
a countable non-empty set of disjoint sorts (or types), V is the (countable) union
of disjoint countable sets Vτ of variables of sort τ , F is a countably infinite set
of function symbols, P is a countably infinite set of predicate symbols, predicate
symbol in P, and d assigns a sort in S+ to each function symbol f ∈ F and a
sort in S∗ to each predicate symbol p ∈ P . Nullary predicates are propositions,
and nullary functions are constants. The set of predicate symbols is assumed to
contain a binary predicate =τ for every sort τ ∈ S; since the sort of the equality
can be deduced from the sort of the arguments, the symbol = will be used for
equality of all sorts. Terms and formulas over the language L are defined in the
usual way.

An interpretation for a first-order language L is a pair I = 〈D, I〉 where D
assigns a non-empty domain Dτ to each sort τ ∈ S and I assigns a meaning to
each variable, function, and predicate symbol. As usual, the identity is assigned
to the equality symbol. By extension, an interpretation I defines a value I[t] in
Dτ for every term t of sort τ , and a truth value I[ϕ] in {⊤,⊥} for every formula
ϕ. A model of a formula ϕ is an interpretation I such that I[ϕ] = ⊤. The
notation Is1/r1,...,sn/rn stands for the interpretation that agrees with I, except
that it associates the elements ri of appropriate sort to the symbols si.

For convenience, we will consider that a theory is a set of interpretations
for a given many-sorted language. The theory corresponding to a set of first-
order axioms is thus naturally the set of models of the axioms. A theory may
leave some predicates and functions uninterpreted: a predicate symbol p (or a
function symbol f) is uninterpreted in a theory T if for every interpretation I in
T and for every predicate q (resp., function g) of suitable sort, Ip/q belongs to
T (resp., If/g ∈ T). It is assumed that variables are always left uninterpreted in
any theory, with a meaning similar to uninterpreted constants. Given a theory
T , a formula ϕ is T -satisfiable if it has a model in T . A formula ϕ is a logical
consequence of a theory T (noted T |= ϕ) if every interpretation in T is a model
of ϕ.

3 Defining symmetries

We now formally introduce the concept of formulas invariant w.r.t. permuta-
tions of uninterpreted symbols and study the T -satisfiability problem of such
formulas. Intuitively, the formula ϕ is invariant w.r.t. permutations of uninter-
preted symbols if, modulo some syntactic normalization, it is left unchanged
when the symbols are permuted. Formally, the notion of permutation operators

2

depends on the theory T for which T -satisfiability is considered, because only
uninterpreted symbols may be permuted.

Definition 1. A permutation operator P on a set R ⊆ F ∪P of uninterpreted
symbols of a language L = 〈S,V,F ,P, d〉 is a sort preserving bijective map from
R to R, that is, for each symbol s ∈ R, the sorts of s and P [s] are equal.
A permutation operator homomorphically extends to an operator on terms and
formulas on the language L.

As an example, a permutation operator on a language containing the three con-
stants c0, c1, c2 of identical sort, may map c0 to c1, c1 to c2 and c2 to c0.

To formally define that a formula is left unchanged by a permutation oper-
ator modulo some rewriting, the concept of T -preserving rewriting operator is
introduced.

Definition 2. A T -preserving rewriting operator R is any transformation op-
erator on terms and formulas such that T |= t = R[t] for any term, and
T |= G ⇔ R[G] for any formula G. Moreover, for any permutation operator
P , for any term and any formula, R ◦ P ◦ R and P ◦ R should yield identical
results.

This last condition will be useful in Lemma 6. Notice that R is idempotent, since
R ◦P ◦R and P ◦R should be equal for all permutation operators, including the
identity permutation operator.

To better capture the notion of T -preserving rewriting operator, assume that
the formula contains a clause t = c0 ∨ t = c1. Obviously this clause is symmetric
if t does not contain the constants c0 and c1. However, a permutation operator
on the constants c0 and c1 would rewrite the formula into t = c1 ∨ t = c0, which
is not, strictly speaking, syntactically equal to the original one. Assuming the ex-
istence of some ordering on terms and formulas, a typical T -preserving rewriting
operator would reorder arguments of all commutative symbols according to this
ordering. With appropriate data structures to represent terms and formulas, it is
possible to build an implementation of this T -preserving rewriting operator that
runs in linear time with respect to the size of the DAG or tree that represents
the formula.

Definition 3. A permutation operator P on a language L is a symmetry oper-
ator of a formula ϕ (a term t) on the language L if there exists a T -preserving
rewriting operator R for P such that R[P [ϕ]] and R[ϕ] (resp. R[P [t]] and R[t])
are identical.

Notice that, given a permutation operator P and a linear time T -preserving
rewriting operator satisfying the condition of Def. 3, it is again possible to check
in linear time if P is a symmetry operator of a formula.

Symmetries could also have been defined semantically, stating that a permu-
tation operator P is a symmetry operator if P [ϕ] is T -logically equivalent to
ϕ. The above syntactical symmetry implies of course the semantical symmetry.
But the problem of checking if a permutation operator is a semantical symmetry

3

operator has the same complexity as the problem of unsatisfiability checking.
Indeed, consider the permutation P such that P [c0] = c1 and P [c1] = c0, and a
formula ψ defined as c = c0 ∧ c 6= c1 ∧ψ

′ (where c, c0 and c1 are new constants).
Formulas ψ and Pψ are logically equivalent, that is, P is a semantical symmetry
operator of ψ, if and only if ψ′ is unsatisfiable.

Definition 4. A term t (a formula ϕ) is invariant w.r.t. permutations of un-
interpreted constants c0, . . . cn if any permutation operator P on c0, . . . cn is a
symmetry operator of t (resp. ϕ).

Theorem 5. Assume given a theory T , uninterpreted constants c0, . . . cn, a for-
mula ϕ that is invariant w.r.t. permutations of ci, . . . cn, and a term t that is
invariant w.r.t. permutations of ci, . . . cn. If ϕ |=T t = c0 ∨ . . . t = cn then ϕ is
T -satisfiable if and only if

ϕ′ =def ϕ ∧ (t = c0 ∨ . . . t = ci)

is also T -satisfiable. Clearly, ϕ′ is invariant w.r.t. permutations of ci+1, . . . cn.

Proof : Let us first prove the theorem for i = 0.
Assume that ϕ ∧ t = c0 is T -satisfiable, and that M ∈ T is a model of

ϕ ∧ t = c0; M is also a model of ϕ, and thus ϕ is T -satisfiable.
Assume now that ϕ is T -satisfiable, and that M ∈ T is a model of ϕ. By

assumption there exists some j ∈ {0, . . . , n} such that M |= t = cj , hence
M |= ϕ ∧ t = cj . In the case where j = 0, M is also a model of ϕ ∧ t = c0. If
j 6= 0, consider the permutation operator P that swaps c0 and cj . Notice (thisSM: maybe state as

separate fact

PF: this seems so triv-

ial I am a bit relunctant

to it. What do the other

thinks?

can be proved by structural induction on formula ϕ) that, for any formula ψ,
M |= ψ if and only if Mc0/dj ,cj/d0

|= P [ψ], where d0 and dj are respectively
M[c0] and M[cj]; choosing ψ =def ϕ ∧ t = cj , Mc0/dj ,cj/d0

|= P [ϕ ∧ t = cj],
and thus Mc0/dj ,cj/d0

|= P [ϕ] ∧ t = c0 since t is invariant w.r.t. permutations
of c0, . . . , cn. Furthermore, since ϕ is invariant w.r.t. permutations of c0, . . . cn,
there exists some T -preserving rewriting operator R such that R[P [ϕ]] is ϕ. Since
R is T -preserving, Mc0/dj ,cj/d0

|= P [ϕ] if and only if Mc0/dj ,cj/d0
|= R[P [ϕ]],

that is, if and only if Mc0/dj ,cj/d0
|= ϕ. Finally Mc0/dj ,cj/d0

|= ϕ ∧ t = c0,
and Mc0/dj ,cj/d0

belongs to T since c0 and cj are uninterpreted. The formula
ϕ ∧ t = c0 is thus T -satisfiable.

For the general case, notice that ϕ′′ =def ϕ ∧ ¬(t = c0 ∨ . . . t = ci−1) is
invariant w.r.t. permutations of ci, . . . cn, and ϕ

′′ |=T t = ci ∨ . . . t = cn. By the
previous case (applied to the set of constants ci, . . . , cn instead of c0, . . . , cn), ϕ

′′

is T -equisatisfiable to ϕ ∧ ¬(t = c0 ∨ . . . t = ci−1) ∧ t = ci. Formulas ϕ and

(

ϕ ∧ ¬(t = c0 ∨ . . . t = ci−1)
)

∨
(

ϕ ∧ (t = c0 ∨ . . . t = ci−1)
)

are T -logically equivalent. Since A∨B and A′∨B are T -equisatisfiable whenever
A and A′ are T -equisatisfiable, ϕ is T -equisatisfiable to

(

ϕ ∧ ¬(t = c0 ∨ . . . t = ci−1) ∧ t = ci
)

∨
(

ϕ ∧ (t = c0 ∨ . . . t = ci−1)
)

.

4

This last formula is T -logically equivalent to

ϕ ∧ (t = c0 ∨ . . . t = ci−1 ∨ t = ci)

and thus the theorem holds. ⊓⊔

Checking if a permutation is syntactically equal to the original can be done
in linear time. And checking if a formula is invariant w.r.t. permutations of given
constants is also linear: only two permutations have to be considered instead of
the n! possible permutations.

Lemma 6. A formula ϕ is invariant w.r.t. permutations of constants c0, . . . cn
if both permutation operators

– Pcirc such that Pcirc[ci] = ci−1 for i ∈ {1, . . . , n} and Pcirc[c0] = cn,
– Pswap such that Pswap[c0] = c1 and Pswap[c1] = c0

are symmetry operators for ϕ with the same T -preserving rewriting operator R.

Proof : First notice that any permutation operator on c0, . . . cn can be written
as a product of Pcirc and Pswap, because the group of permutations of c0, . . . cn
is generated by the cyclic permutation and the swapping of c0 and c1. Any
permutation P of c0, . . . cn can then be rewritten as a product P1◦. . .◦Pm, where
Pi ∈ {Pcirc, Pswap} for i ∈ {1, . . . ,m}. It remains to prove that any permutation
operator P1 ◦ . . . ◦ Pm is indeed a symmetry operator. This is done inductively.
For m = 1 this is trivially true. For the other case, assume P1 ◦ . . . ◦ Pm−1 is a
symmetry operator of ϕ, then

R[(P1 ◦ . . . ◦ Pm)[ϕ]] ≡ R[Pm[(P1 ◦ . . . ◦ Pm−1)[ϕ]]]

≡ R[Pm[R[(P1 ◦ . . . ◦ Pm−1)[ϕ]]]]

≡ R[Pm[ϕ]]

≡ R[ϕ]

where ≡ stands for syntactical equality. The first equality simply expands the
definition of the composition operator ◦, the second comes from the definition of
the T -preserving rewriting operator R, the third uses the inductive hypothesis,
and the last uses the fact that Pm is either Pcirc or Pswap, that is, also a symmetry
operator of ϕ. ⊓⊔

4 SMT with symmetries: an algorithm

Algorithm 1 applies Theorem 5 in order to exhaustively add symmetry break-
ing assumptions on formulas. First, a set of set of constants is guessed (line 1)
from the formula ϕ by the function guess permutations; each one of those sets
{c0, . . . cn} of constants will be successively considered (line 2), and invari-
ance of ϕ w.r.t. permutation of {c0, . . . cn} will be checked (line 3). Function

5

P := guess permutations(ϕ);1

foreach {c0, . . . cn} ∈ P do2

if invariant by permutations(ϕ, {c0, ...cn}) then3

T := select terms(ϕ, {c0, ...cn}) ;4

cts := ∅ ;5

while T 6= ∅ ∧ |cts| ≤ n do6

t := select most promising term(T, ϕ) ;7

T := T \ {t} ;8

cts := cts ∪ used in(t, {c0, ...cn}) ;9

let c ∈ {c0, ...cn} \ cts;10

cts := cts ∪ {c};11

if cts 6= {c0, ...cn} then12

ϕ := ϕ ∧
(
∨

ci∈cts
t = ci

)

;13

end14

end15

end16

end17

return ϕ;18

Algorithm 1: A symmetry breaking preprocessor.

guess permutations(ϕ) gives an approximate solution of the problem of parti-
tioning constants of ϕ into classes {c0, . . . cn} of constants such that ϕ is in-
variant by permutations. If the T -preserving rewriting operator R is given, this
is a decidable problem. However we have a feeling that, while the problem is
still polynomial (it suffices to check all permutations with pairs of constants),
only providing an approximate solution is tractable. Function guess permutations
should be such that a small number of tentative sets are returned. Every ten-
tative set will be checked in function invariant by permutations (line 3); with
appropriate data structures the test is linear with respect to the size of ϕ (as a
corollary of Lemma 6).

As a concrete implementation of function guess permutations, partitioning
the constants in classes that all give the same values to some functions f(ϕ, c)
works well in practice: f should then be unaffected by permutations i.e. f(Pϕ, Pc)
and f(ϕ, c) should yield the same results. Obvious examples of such functions
would be the number of appearances of c in ϕ, or the maximal depth of c within
an atom of ϕ, The classes of constants could also take into account the fact
that, if ϕ is a large conjunction, with c0 6= c1 as conjunct (c0 and c1 in the same
class), it should have ci 6= cj or cj 6= ci as a conjunct for every different constants
ci, cj , of the class of c0 and c1.

Lines 4 to 15 concentrate on breaking the symmetry of {c0, . . . cn}. First a
set of terms

T ⊆
{

t | ϕ |= t = c0 ∨ . . . t = cn}

is computed. Again, function select terms(ϕ, {c0, ...cn}) solves an approximation
of the problem of getting all terms t such that t = c0 ∨ . . . t = cn; an omission

6

in T would simply restrict the choices for a good candidate on line 7, but would
not jeopardize soundness.

The loop on lines 6 to 15 introduces a symmetry breaking assumption on
every iteration (except perhaps on the last iteration, where a subsumed assump-
tion would be omitted). A term t ∈ T to break symmetry is chosen by the call
select most promising term(T, ϕ). This efficiency of the SMT solver is very sen-
sitive to this selection function. If the term t is not important for unsatisfiability,
the assumption would simply be useless. In veriT, the term is chosen according
to

– the number of appearances in the formula (the higher, the better),
– the number of constants that it will be required to add to cts on line 11 (the

less, the better); so actually, select most promising term also depends on the
set cts,

with a preference for terms that do not contain any constant in {c0, . . . cn}.
Function used in(t, {c0, ...cn}) returns the set of constants in term t. If the

term contains constants in {c0, . . . cn}\cts, only the symmetries on the remaining
constants can used. On line 10, one of the remaining constant c is chosen non
deterministically: this may have a subtle effect on the decision heuristics (for
instance, because of arbitrary orderings) in the SMT solver but it is otherwise
totally equivalent to take one or another constant.

Finally, if the symmetry breaking assumption
∨

ci∈cts t = ci is not subsumed
(i.e. if cts 6= {c0, . . . cn}), then it is anded to the original formula.

Theorem 7. The formula ϕ obtained after running Algorithm 1 is T -satisfiable
if and only if the original ϕ is T -satisfiable.

Proof : For convenience, the original ϕ will be denoted ϕ0.
If the obtained ϕ is T -satisfiable then ϕ0 is T -satisfiable since ϕ is a con-

junction of ϕ0 and other formulas (the symmetry breaking assumptions).
Assume that ϕ0 is T -satisfiable, then ϕ is T -satisfiable, as a direct conse-

quence of Theorem 5. In more details, in lines 6 to 15, ϕ is always invariant
by permutation of constants {c0, . . . cn} \ cts, and more strongly, on line 13, ϕ
is invariant by permutations of constants in cts as defined in line 9. In lines 4
to 15 any term t ∈ T is such that ϕ |=T t = c0 ∨ . . . t = cn. On lines 10 to
14, t is invariant with respect to permutations of constants in cts as defined in
line 9. The symmetry breaking assumption anded to ϕ in line 13 is, up to the
renaming of constants, the symmetry breaking assumption of Theorem 5 and all
conditions of applicability of this theorem are fulfilled. ⊓⊔

5 SMT with symmetries: an example

A classical problem with symmetries is the pigeonhole problem. Using SMT or
SAT solvers to solve this problem will always be exponential; these solvers are

7

strongly linked with the resolution calculus, and an exponential lower bound
for the length of resolution proofs of the pigeon-hole principle was proved in
[?]. Polynomial-length proofs are possible in stronger proof systems, as shown
in [?] for Frege proof systems. An extensive survey on the proof complexity
of pigeonhole principles can be found in [?]. Polynomial-length proofs are also
possible if the resolution calculus is extended with symmetry rules (as in [?] and
in [?]).

We here recast the pigeonhole problem to SMT language and show that the
previous preprocessing transforms the series of problem solved in exponential
time with classical SMT-solvers into a series of problem solved in polynomial
time.

This toy problem states that it is impossible to put n+1 pigeons in n holes.
We introduce n uninterpreted constants h1, . . . hn for the n holes, and n + 1
uninterpreted constants p1, . . . pn+1 for the n+1 pigeons. Each pigeon is required
to occupy one hole:

pi = h1 ∨ . . . pi = hn

It is also required that distinct pigeons occupy different holes, and this is ex-
pressed by the clauses pi 6= pj for 1 ≤ i < j ≤ n + 1. Without necessity for the
unsatisfiability of the problem, one can also assume that the holes are distinct,
i.e., hi 6= hj for 1 ≤ i < j ≤ n.

 0.01

 0.1

 1

 10

 100

 4 6 8 10 12 14 16 18 20

tim
e

(in
 s

ec
on

ds
)

Number of pigeons

veriT
veriT w/o sym

CVC3
MathSAT
openSMT

Yices
Z3

Fig. 1. Some SMT solvers and the pigeonhole problem

The generated set of formulas is invariant by permutations of the constants
p1, . . . pn+1, and also by permutations of constants h1, . . . hn; very basic heuristics
would easily guess this invariance. It is not totally trivial however that hi = p1∨
. . . hi = pn+1 for i ∈ {1..n}, so a non-trivial function select terms in the previous
algorithm would fail to return any selectable term to break the symmetry; this

8

symmetry of p1, . . . pn+1 is not directly usable. It is however most direct to notice
that pi = h1 ∨ . . . pi = hn; select terms in the previous algorithm would return
the set of {p1, . . . pn+1}. The set of symmetry breaking clauses could be

p1 = h1
p2 = h1 ∨ p2 = h2
p3 = h1 ∨ p3 = h2 ∨ p3 = h3

...
pn−1 = h1 ∨ . . . ∨ pn−1 = hn−1

or any similar set of clauses obtained from these with by applying a permuta-
tion operator on p1, . . . pn+1 and a permutation operator on h1, . . . hn. With no
advanced theory propagation techniques4, (n + 1) × n/2 conflict clauses of the
form pi 6= hi ∨ pj 6= hi ∨ pj 6= pi with i < j suffice to transform the problem
into a purely propositional problem. With the symmetry breaking clauses, the
underneath SAT solver then concludes (in polynomial time) the unsatisfiability
of the problem using only Boolean Constraint Propagation.

Without the symmetry breaking clauses, the underneath SAT solver will
investigate all n! assignments of n pigeons in n holes, and conclude for each of
those assignments that the pigeon n+ 1 cannot find any unoccupied hole.

Unsurprisingly, the experimental results match this conclusion. As depicted
on Figure 1, all solvers (including veriT without symmetry heuristics) time-out5

on problems of relatively small size, with CVC3 performing however significantly
better. Using the symmetry heuristics allow veriT to solve much larger problems
in insignificant times. Not shown on the figure, veriT solves every problem with
less than 30 pigeons in less than 0.15 seconds.

6 Experimental results

In the previous section we showed that the technique can decrease the solving
time on a series of toy problems from exponential to polynomial. The technique
is however not restricted to those toy examples but can indeed improve efficiency
on many concrete problems.

Consider a problem on a finite domain of a given cardinality n, with a set of
arbitrarily quantified formulas specifying the properties for the elements of this
domain. A trivial way to encode this problem into quantifier-free first-order logic,
is to introduce n constants {c1, . . . cn}, add constraints ci 6= cj for 1 ≤ i < j ≤ n,
Skolemize the axioms and recursively replace in the Skolemized formulas the
remaining quantifiers Qx.ϕ(x) by conjunctions (if Q is ∀) or disjunctions (if Q
is ∃) of all formulas ϕ(ci) (with 1 ≤ i ≤ n). All terms should also be such that
t = c1 ∨ . . . ∨ t = cn. The set of formula obtained is naturally invariant w.r.t.

4 Theory propagation in veriT is quite basic: only equalities deduced from congruence
closure are propagated. pi 6= hi would never be propagated from pj = hi and pi 6= pj .

5 The time-out was set to 120 seconds, using Linux 64 bits on Intel(R) Xeon(R) CPU
E5520 at 2.27GHz, with 24 GBytes of memory.

9

permutations of c1, . . . cn. So the problem in its most natural encoding contains
symmetries, that should be exploited in order to decrease the size of the search
space. The QF UF category of the SMT library of benchmarks actually contains
many problems like these.

Figure 2 presents an scatter plot of the running time of veriT on each formula
in the QF UF category. On the x axis are the running times of veriT without
the technique presented in this paper, whereas the times reported on the y axis
are the running times of full veriT. It clearly shows a global improvement; this
improvement is even more striking when one restricts the comparison on unsatis-
fiable instances (see Figure 3); no significant behavior is observable on satisfiable
instances only. We understand this behavior as follow: for some (not all) satis-
fiable instances, adding the symmetry breaking clauses “randomly” influences
the decision heuristics of the SAT solver in such a way that it sometimes takes
more time to reach a satisfiable assignment; in any way, if there is a satisfi-
able assignment, all permutations of the uninterpreted constants (i.e. the ones
for which the formula is invariant) are also satisfiable assignments, and there
is no advantage to try one rather than an other. For unsatisfiable instances, if
terms breaking the invariance play a role in the unsatisfiability of the problem,
adding the symmetry breaking clauses always reduces the number of cases to
consider, potentially by a factor of nn/n! (where n is the number of constants),
and have a negligible impact if the symmetry breaking terms play no role in the
unsatisfiability.

Nb. of instances Instances within time range (in s) Total time
success timeout 0-20 20-40 40-60 60-80 80-100 100-120 T T ′

veriT 6633 14 6616 9 2 1 3 2 3447 5127
veriT w/o sym. 6570 77 6493 33 14 9 12 9 10148 19388
CVC3 6385 262 6337 20 12 7 5 4 8118 29598
MathSAT 6547 100 6476 49 12 6 3 1 5131 7531
openSMT 6624 23 6559 43 13 6 1 2 5345 8105
Yices 6629 18 6565 32 23 5 1 3 4059 6219
Z3 6621 26 6542 33 23 15 4 4 6847 9967

Table 1. Some SMT solvers on the QF UF category

To compare with the state of the art solvers, we selected all competing solvers
in SMT-COMP 2010, adding also Z3 (for which we took the most recent version
running on linux we could find, version 2.8), and Yices (which was competing
as the 2009 winner). The results are presented on Table 1. Times T and T ′ are
the total time on the QF UF library excluding timeouts and including timeouts
respectively. It is important to be aware that these results include the whole
QF UF library of benchmarks, that is, with the diamond benchmarks. These
benchmarks require some preprocessing heuristic [?] which does not seem to be
implemented in CVC3 and MathSAT. This accounts for 83 timeouts in CVC3

10

 0.1

 1

 10

 100

 0.1 1 10 100

ve
riT

 (i
n

s)

veriT w/o sym. (in s)

 0.1

 1

 10

 100

 0.1 1 10 100

ve
riT

 (i
n

s)

veriT w/o sym. (in s)

Fig. 2. Efficiency in solving individual instances: veriT vs. veriT without symmetries
on the QF UF category. Each point represents a benchmark, and its horizontal and
vertical coordinates represent the time necessary to solve it (in seconds). Points on the
rightmost and topmost edges represent a timeout.

 0.1

 1

 10

 100

 0.1 1 10 100

ve
riT

 (i
n

s)

veriT w/o sym. (in s)

 0.1

 1

 10

 100

 0.1 1 10 100

ve
riT

 (i
n

s)

veriT w/o sym. (in s)

Fig. 3. Efficiency in solving individual instances: veriT vs. veriT without symmetries
on the QF UF category (unsatisfiable instances only).

11

and 80 in MathSAT. According to this table, with a 120 seconds timeout, the
best solvers on QF UF without the diamond benchmarks are (by decreasing
order) veriT with symmetries, Yices, MathSAT, openSMT, CVC3. Exploiting
symmetries allowed veriT to jump from the forelast to the first place of this
rating. Within 20 seconds, it now solves more than 50 more benchmarks than
the second solver.

Figure ?? presents another view of the same experiment; it clearly shows that
veriT is always better (in the number of solved instances within a given timeout)
than the other solvers except Yices, but it even starts to be more successful
than Yices when the timeout is larger than 3 seconds. The scatter plots on
Figure ?? give another comparative view. Again the benefits on the zone with
a time smaller that 3 seconds is not always clear. Also, bear in mind that the
satisfiable instances do not benefit from the techniques and still exhibit on the
scatter plot the somewhat poor efficiency of veriT without symmetries. But the
zone between 3 and 120 seconds on the x axis is clearly more populated than
the zone between 3 and 120 seconds on the y axis.

 0.1

 1

 10

 100

 5000 5500 6000 6500 7000

tim
e

(in
 s

ec
on

ds
)

solved instances

veriT
veriT w/o sym.

CVC3
MathSAT5
opensmt

Yices
Z3

Fig. 4. Number of solved instances of QF UF within a time limit, for some SMT solvers.

12

 0.1

 1

 10

 100

 0.1 1 10 100

ve
riT

 (i
n

s)

CVC3 (in s)

 0.1

 1

 10

 100

 0.1 1 10 100

ve
riT

 (i
n

s)

CVC3 (in s)

 0.1

 1

 10

 100

 0.1 1 10 100

ve
riT

 (i
n

s)

MathSAT (in s)

 0.1

 1

 10

 100

 0.1 1 10 100

ve
riT

 (i
n

s)

MathSAT (in s)

 0.1

 1

 10

 100

 0.1 1 10 100

ve
riT

 (i
n

s)

OpenSMT (in s)

 0.1

 1

 10

 100

 0.1 1 10 100

ve
riT

 (i
n

s)

OpenSMT (in s)

 0.1

 1

 10

 100

 0.1 1 10 100

ve
riT

 (i
n

s)

Yices (in s)

 0.1

 1

 10

 100

 0.1 1 10 100

ve
riT

 (i
n

s)

Yices (in s)

 0.1

 1

 10

 100

 0.1 1 10 100

ve
riT

 (i
n

s)

Z3 (in s)

 0.1

 1

 10

 100

 0.1 1 10 100

ve
riT

 (i
n

s)

Z3 (in s)

Fig. 5. Efficiency in solving individual instances: veriT vs. some other solvers.

13

Note to the reviewers: the technique presented in this paper is a preprocessing
technique, and, as such, it is applicable to the other solvers mentioned here.
It would be informative because it would show if the technique interacts with
the other heuristics used in those solvers. However, due to time and computer
resources, we were unable to conduct this analysis for the submission deadline.
The analysis will be done before the notification for CADE, and will be ready
for the camera ready version (if any).

7 Conclusion

Symmetry breaking techniques have been used very successfully in the areas of
constraint programming and SAT solving. We here present a study of symmetry
breaking in SMT. It has been showed that the technique can account for an
exponential decrease of running times on some series of crafted benchmarks,
and showed that it significantly improves performances on the QF UF category
of the SMT library, a category for which last year’s winner was also the winner
of 2009.

The method presented here could be sarcastically qualified as a heuristic to
greatly improve efficiency on the pigeonhole problem and competition bench-
marks in the QF UF category. However we also think that in their most natural
encoding many concrete problems do contain many symmetries; provers in gen-
eral and SMT solvers in particular should be aware of those symmetries to avoid
unnecessary exponential blowup.

Although the technique is applicable in presence of quantifiers and inter-
preted symbols, it seems that symmetries in the other SMT categories are some-
what less trivial, and so, require cleverer invariance guessing heuristics, as well as
more sophisticated symmetry breaking tools. This is left for future works. Also,
this technique is inherently not incremental, that is, symmetry breaking assump-
tions should be retrieved, and checked against new assertions when the SMT
interacts in an incremental manner. This is not a major issue, but it certainly
requires a finer interaction within the SMT solver than simple preprocessing.

The veriT solver is open sourced under the BSD license and is available on
http://www.veriT-solver.org.6

6 Note to the reviewers: the current available version is outdated but an updated
version will be made available before CADE, with sources.

14

