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The Discretizable Molecular Distance Geometry Problem (DMDGP) consists in a subset
of instances of the distance geometry problem for which some assumptions allowing for
discretization are satisfied. The search domain for the DMDGP is a binary tree that can
be efficiently explored by employing a Branch & Prune (BP) algorithm. We showed in
recent works that this binary tree may contain several symmetries, which are directly
related to the total number of solutions of DMDGP instances. In this paper, we study the
possibility of exploiting these symmetries for speeding up the solution of DMDGPs, and
propose an extension of the BP algorithm that we named symmetry-driven BP (symBP).
Computational experiments on artificial and protein instances are presented.

1. Introduction

We consider the Molecular Distance Geometry Problem3,24 (MDGP), which consists

in finding the three-dimensional conformation of a molecule by exploiting some

information about the relative distances between pairs of its atoms. In particular,

we are working on a discretization for this problem that allows us to transform

the search space from a continuous to a discrete domain. We refer to the class of

problems that can be discretized as the Discretizable MDGP (DMDGP). Both the

MDGP and the DMDGP are NP-hard problems8,23. In the field of biology, instances

of the MDGP/DMDGP can be obtained by Nuclear Magnetic Resonance (NMR)

experiments, which provide estimates of distances between pairs of atoms of a given

molecule. In this context, we are particularly interested in protein conformations.

The scientific community is very active on this topic2,4,17,25; some recent surveys
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are available7,9,14.

Instances of the MDGP and of the DMDGP can be represented by weighted

undirected graphs G = (V, E, d). Each vertex in V corresponds to an atom of

the molecule, whereas each edge in E indicates that the distance between the two

corresponding vertices (atoms) is known. The weight associated to each edge is the

numerical value of the distance. The DMDGP class contains instances that satisfy

the two following assumptions. There exists an ordering of V = {1, . . . , n} such that

(1) ∀v ∈ {4, . . . , n} ∀j, k ∈ {v − 3, . . . , v} {j, k} ∈ E ,

(2) ∀v = 2, . . . , n − 1, d(v − 1, v + 1) < d(v − 1, v) + d(v, v + 1) .

The idea behind the discretization is the following. By the first assumption, for

each atom v > 3, the distances between v and the three immediate preceding atoms

v− 3, v− 2 and v− 1 are known. If we suppose that these atoms are already placed

somewhere in space, then 3 spheres centered in the Cartesian coordinates xv−3, xv−2

and xv−1, respectively, and having as radii the distances d(v − 3, v), d(v − 2, v) and

d(v − 1, v), can be defined. Their intersection consists of the set of atomic positions

for xv satisfying these distances, which, by our assumptions, contains at most 2

points with probability one. This suggests a recursive procedure which defines a

binary tree of atomic coordinates containing all possible positions for each vertex

v on the vth layer of the tree. Each solution can therefore be represented as a path

from the root to a leaf node at level n. Each of such paths can be seen as a list of

choices (left branch, right branch) on each layer of the tree. Therefore, each solution

can also be represented by a binary vector of length n.

In order to efficiently explore this binary tree with the aim of finding solutions

to the DMDGP, we employ the Branch & Prune (BP) algorithm13. The basic idea is

to exploit the information regarding the distances considered in our assumptions for

building the binary tree, and to use additional information regarding other available

distances for checking the feasibility of the computed atomic positions. Distances

in DMDGP instances can therefore be divided in two subgroups: the discretization

distances, which are used for building the binary tree, and the pruning distances.

When a position is not feasible, it makes the corresponding branch infeasible as

well, and hence such a branch can be removed from the tree. This pruning phase in

the BP algorithm allows to focus the search on the feasible parts of the binary tree.

One important feature of the BP algorithm is that it is potentially able to enu-

merate all solutions for any given DMDGP instance. Differently from heuristics and

deterministic methods based on a continuous representation of the problem7,9,14,

this algorithm is based on a binary tree search, whose exploration can identify the

complete set of solutions for each instance. This feature has important biological

consequences. Most importantly, NMR data could bring to the definition of differ-

ent protein conformations, that all satisfy the distance constraints, but only one of

them may be the energically stable conformation. As a consequence, finding only

one solution to the problem does not imply that the actual molecular conformation
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has been identified.

We developed a software tool called MD-jeep which implements the BP

algorithm21. Computational experiences which we performed during these years

and published in various papers showed that the BP algorithm is very efficient

in solving this combinatorial problem, in terms of CPU time and quality of the

solutions, in comparison to other existing algorithms6,8,10,11,12,20.

Our computational experiments, moreover, also allowed us to make some impor-

tant observations. Even if the BP algorithm is based on a binary tree search that,

in the worst case, can have an exponential number of leaf nodes, the CPU time

appears to be linear in n. More recently, we noticed that this behavior is due to

particular properties of protein instances, for which we can prove that the binary

tree has a bounded width15. As a consequence, the branches of the tree cannot

drastically increase in number, and BP executions are very efficient, specially when

only one solution is required. If, instead, all solutions need to be computed (and the

instance at hand has several solutions), then the execution of BP can be expensive

and the computational time can be strongly dependent on the number of solutions.

One way for enhancing the performances of BP is to exploit the information

regarding all symmetries that may appear in DMDGP instances having several

solutions16. Since the beginning of our work on the DMDGP, we noticed that BP

trees are symmetric, so that exploring half of the tree is enough for recontructing

the solutions contained in the whole tree8. Immediate consequence of this result is

the fact that all DMDGP instances have an even number of solutions. However,

our computational experiments showed a stronger law: all DMDGP instances we

considered have a number of solutions which is equal to 2s, with s > 0. While we

conjectured the relationship between this law and the presence of other symmetries

in BP trees, we could not prove formally this result for a long time. It is therefore

a very recent theoretical result the one we are going to exploit in this paper16.

We present a variant of the BP algorithm which is able to exploit the presence

of symmetries in BP trees, to which we will refer as symBP (symmetry-driven BP).

Once the first solution is found by employing the basic BP approach, indeed, all

other solutions can be computed by applying symmetry rules. Moreover, symmetries

allow us to know in advance which branches of the binary tree are feasible or not,

so that the search can be efficiently driven toward feasible branches only. For this

reason, symBP can manage problems with several solutions more efficiently than

the basic BP.

The rest of the paper is organized as follows. In Section 2, we discuss the symme-

try properties of the DMDGP, while, in Section 3, we present the symBP algorithm.

Computational experiments on protein instances and comparisons to the basic BP

are presented in Section 4. Conclusions are given in Section 5.
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2. Symmetry properties of the DMDGP

Let us consider an instance of the DMDGP represented by the graph G = (V, E, d).

As explained in the Introduction, part of the known distances (represented by the

edges in E) are used for generating the candidate atomic positions, for a given

atom, by intersecting 3 spheres, while the others are exploited for verifying the

feasibility of such candidates. Let us therefore split E in two disjoint subsets: Ed,

which contains all distances used for performing the discretization, and Ep, which

contains all distances used for pruning purposes.

There can be two extreme situations. If Ep is empty, then the feasibility of any

of the computed atomic positions cannot be verified, and all of them are therefore

considered. In such a case, pruning never occurs, and a full binary tree is constructed

during the execution of the BP algorithm. As a consequence, the considered instance

has 2n−3 solutions, which correspond to the 2n−3 leaf nodes of the BP tree (n = |V |).

In this situation, the execution of the BP algorithm is exponential, and it provides

as solution the full search space, because there is no information to be used for

discarding any of the solutions.

Let us suppose now that Ep is not empty. The presence of a pruning distance

allows us to select some of the candidate atomic positions, and hence to select a

subset of branches on which we can focus our search. If there is a distance (u, v) ∈

Ep, with u 6∈ {v − 3, v − 2, v − 1}, then it can be easily proved that there is no

branching on the tree at layer v. By the first assumption of the DMDGP, indeed,

{v − 3, v}, {v − 2, v} and {v − 1, v} belong to Ed. Moreover, if {u, v} ∈ Ep, the

possible positions for v can be found by intersecting 4 spheres (not only 3) which

are centered in u, v−3, v−2 and v−1 and having radii d(u, v), d(v−3, v), d(v−2, v)

and d(v − 1, v), respectively. Supposing that the 4 distances are compatible, this

intersection can give one point only with probability one. Therefore, only one of the

two positions generated by applying the discretization process is actually feasible.

As a consequence, for each branch on the layer v − 1 of the tree, there is only one

branch on the layer v. The total number of branches on the two layers v − 1 and v

is thus the same.

The second extreme situation is therefore the following. Let us suppose that,

for each layer v > 4 of the binary tree, there is a pruning distance {u, v} ∈ Ep. In

such a case, branching is only allowed at layer 4, because, for all other atoms v, we

do have a pruning distance. There are only 2 leaf nodes, and so the total number

of solutions is 2, which is an even number, as well as a power of 2. The only two

feasible branches of the tree are also symmetric8. We will refer to the symmetry at

layer 4 of the binary tree as first symmetry. This symmetry is present in all DMDGP

instances.

The most interesting situation is naturally the one in which Ep is not empty

and pruning distances are not available on each layer. At a given layer v, branching

is not possible if there is a pruning distance {u, v} ∈ Ep (u 6∈ {v − 3, v − 2, v − 1}).

If there is no pruning distance, however, the number of branches on this layer is
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Fig. 1. A small binary tree related to an instance containing 9 atoms. B = {4, 6, 8}.

duplicated with respect to the number of branches on the previous layer v− 1. It is

important to remark that this phenomenon does not imply that all such branches

are feasible. For each branch at layer v − 1, there are two child branches at layer v,

but one of the two (or even both) can be pruned later on at a futher layer if there

is a pruning distance16. A pruning distance does not have to directly concern v for

making a branch rooted at v infeasible: a distance between two atoms u and w such

that u+3 < v < w is indeed sufficient. In other words, there is a feasible branching

on layer v (i.e. a branching defining two branches of length |V |) in the only case in

which there is no pruning distance {u, w} passing over the layer v. More formally,

the layers of the binary tree where there is feasible branching are the ones contained

in the set:

B = {v ∈ V :6 ∃(u, w) s.t. u + 3 < v ≤ w} .

Since v = 4 is always contained in B, pruning can never occur at this layer,

and this reflects the presence of the first symmetry in all BP trees. In general, for

each v ∈ B, there is a duplication of feasible branches of the tree. Let us suppose

for a moment that our molecule starts with the atom v − 3 and that we consider

the corresponding BP tree T ′. By construction, T ′ is a subtree of the tree T which

corresponds to the full molecule. Since all trees have the first symmetry, T ′ has a

symmetry at layer v. This intuitively proves that there is also a symmetry at layer

v of T . We recently published a formal proof of this result16. The same idea cannot

be applied to v 6∈ B, because the presence of the pruning distance for v implies the

possibility to prune at least one of the two newly generated branches.

Fig. 1 shows the BP tree for a small instance formed by 9 atoms. There are

3 symmetries in this tree. The first one is given by the first symmetry, at layer

4. As in all DMDGP instances, two symmetric branches start at layer 4. Then,

other two symmetries are also present in this particular tree. One is at layer 6:

4 symmetric branches are rooted at positions belonging to layer 6. Similarly, 8
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symmetric branches start from atomic positions belonging to layer 8, where another

symmetry is present. In this case, therefore, B = {4, 6, 8}. The total number of

solutions for this instance is 2|B| = 8.

As mentioned in the Introduction, solutions for this instance can be represented

in different ways. First of all, if we consider Fig. 1, we can represent each solution

as a path that goes from the root position x1 to one of the feasible leaf nodes. Since

there are, in this particular case, 8 solutions in total, there are 8 feasible paths that

can be identified on the binary tree.

Another efficient way to represent solutions is through a vector of binary vari-

ables. On the generic layer of the tree, each path/solution can either pick the left

or the right branch. This information can be coded in a binary variable (0/1), so

that a binary vector of length n = |V | can represent a solution to the DMDGP. It

is important to remark that solutions sharing symmetric branches of the tree have

symmetric local binary representations. Let us consider for example the solution in

Fig. 1 corresponding to the second leaf node (from left to right). The binary vector

corresponding to this solution is

s2 = (0, 0, 0, 0, 0, 0, 0, 1, 1),

where we suppose that 0 represents the choice left, and 1 represents right (the first

three zeros are associated to the first three fixed atoms of the molecule). Since there

is a symmetry at layer 6, another solution to the problem can be easily computed

by repeating all choices from the root node until the layer 5, and by inverting all

other choices. On the binary vector, repeating means copying, and inverting means

flipping. So, another solution to the problem is

s3 = (0, 0, 0, 0, 0, 1, 1, 0, 0).

This solution corresponds to the third leaf node in Fig. 1.

This procedure can be exploited for speeding up the solution to DMDGPs, where

the generation of any solution to the problem can be performed by exploiting one

precomputed solution and the information concerning the set B (and the corre-

sponding symmetries). The set B is able to provide a priori information on the

quantity and on the location of the symmetries in BP trees. If the current layer

is related to an atom v ∈ B, then, for each xv−1 on the previous layer, both the

newly generated atomic positions for xv are feasible. If v 6∈ B, instead, only one of

the two positions can be part of a branch leading to a solution. The other position

is either infeasible or it defines a branch that will be pruned later on at a further

layer v, in correspondence with a pruning distance whose graph edge {u, w} is such

that u + 3 < v ≤ w. Therefore, we can exploit such information for performing

the selection of the branches that actually define a solution to the problem. When

v 6∈ B (only one position is feasible), it is not known which of the two branches is

the correct one. This is the reason why at least one solution must be obtained before

having the possibility of exploiting the symmetries for computing all the others.
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Let us suppose that the solution s1 to the DMDGP has already been computed

(by applying the BP algorithm, for example), and that it is the leftmost feasible

branch in Fig. 1:

s1 = (0, 0, 0, 0, 0, 0, 0, 0, 0).

Recall that B = {4, 6, 8} in this example. Let us consider the last symmetry in

this tree, which is present at layer 8. By applying the procedure detailed above (we

copy the binary variables from 0 to 7 and we flip all the others), we can obtain the

solution:

s2 = (0, 0, 0, 0, 0, 0, 0, 1, 1).

At this point we consider the last but one symmetry on layer 6, and, by applying

the same procedure to both solutions s1 and s2, we obtain:

s3 = (0, 0, 0, 0, 0, 1, 1, 0, 0), s4 = (0, 0, 0, 0, 0, 1, 1, 1, 1),

where s3 is symmetric to s2, and s4 is symmetric to s1. Finally, by considering the

first symmetry on layer 4, we obtain the remaining solutions:

s5 = (0, 0, 0, 1, 1, 0, 0, 0, 0), s6 = (0, 0, 0, 1, 1, 0, 0, 1, 1),

s7 = (0, 0, 0, 1, 1, 1, 1, 0, 0), s8 = (0, 0, 0, 1, 1, 1, 1, 1, 1).

During this phase, pruning distances in Ep do not need to be verified, because all

branches constructed by symmetry are feasible.

3. The symmetry-driven BP (symBP)

Algorithm 1 is a sketch of the BP algorithm13, which is at the basis of the symBP

algorithm that is the focus of this paper. In the BP call, v is the current vertex to

be positioned in space, n = |V | and d represents the full set of known distances.

Once the positions for the first three atoms have been fixed by using the available

information, BP can be invoked by setting v = 4, because the search on the tree

actually starts on this tree layer. Then, BP recursively calls itself for a complete

exploration of the binary tree. In each call, the two possible positions for the vertex

v, x0
v and x1

v, are computed, and their feasibility is verified. If, for example, x0
v is

feasible, then this position could be part of a solution, and therefore the branch

of the binary tree rooted at x0
v needs to be explored. In this case, the algorithm

invokes itself for computing the possible positions for the next vertex. Instead, if

x0
v is not feasible, then the current branch does not contain any solution and must

be pruned. In this case, the algorithm does not invoke itself. BP behaves similarly

when the feasibility of x1
v is verified.

The computation of the two positions x0
v and x1

v can be performed by computing

the intersection among three spheres. Once obtained, their feasibility is checked by

applying the Direct Distance Feasibility (DDF) pruning device, which is based on
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Algorithm 1 The BP algorithm.

1: BP(v, n, d)

2: compute x0
v;

3: if (x0
v is feasible) then

4: if (v = n) then

5: let nsols = nsols + 1;

6: else

7: BP(v + 1, n, d);

8: end if

9: end if

10: compute x1
v;

11: if (x1
v is feasible) then

12: if (v = n) then

13: let nsols = nsols + 1;

14: else

15: BP(v + 1, n, d);

16: end if

17: end if

the idea of verifying whether the pruning distances are satisfied (for a certain toler-

ance). We remark that other pruning devices can be added to the BP algorithm20.

Algorithm 2 is a sketch of symBP. In the symBP call, there are the input argu-

ments necessary to BP, as well as some new ones. First of all, symBP also needs the

set B containing the BP tree symmetries. Moreover, the parameter nsols is used

for monitoring the number of found solutions, whereas prev is a vector of binary

variables (0/1), which contains the last found solution in binary format.

At the beginning, symBP checks if the last atom (xn) of the molecule has been

placed during the previous call. In such a case, nsols is updated (a solution has just

been found) and all the branches rooted at v 6∈ B and not defining a solution are

removed from the tree. If at least one solution is known, indeed, the 0/1 choices are

already available for each v 6∈ B. Since, on each layer, one of the choices brought

to the identification of a solution, the other one needs to be discarded. Only partial

branches rooted at v ∈ B are kept, i.e. we only consider pairs of symmetric branches.

As explained in Section 2, the symmetric branches of the tree have their roots

on the layers v − 1 such that v ∈ B. Therefore, if v ∈ B, the two atomic positions

obtained by intersecting the three spheres are both feasible (the feasibility cannot

be checked because there are no pruning distances at this level). At each call of the

symBP algorithm, it is verified whether v belongs to B, and, in such a case, the

algorithm simply computes the two positions x0
v and x1

v, increases v and invokes

itself twice.

If instead v 6∈ B, it is important to distinguish between two situations. If no

solutions have been found so far (nsols = 0), then the information regarding the
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Algorithm 2 The symBP algorithm.

1: symBP(v, n, d, B, nsols, prev)

2: if (v > n) then

3: let nsols = nsols + 1;

4: remove all branches such that:

4: · their root is u 6∈ B;

4: · their leaf nodes vf < n.

5: return nsols;

6: end if

7: if (v ∈ B) then

8: compute x0
v;

9: let prev(v) = 0;

10: symBP(v + 1, n, d, B, nsols, prev);

11: compute x1
v;

12: let prev(v) = 1;

13: symBP(v + 1, n, d, B, nsols, prev);

14: end if

15: if (v 6∈ B and nsols = 0) then

16: compute x0
v;

17: if (x0
v is feasible) then

18: let prev(v) = 0;

19: symBP(v + 1, n, d, B, nsols, prev);

20: end if

21: if (nsols = 0) then

22: compute x1
v;

23: if (x1
v is feasible) then

24: let prev(v) = 1;

25: symBP(v + 1, n, d, B, nsols, prev);

26: end if

27: end if

28: end if

29: if (v 6∈ B and nsols > 0) then

30: compute x
¬prev(v)
v ;

31: let prev(v) = ¬prev(v);

32: symBP(v + 1, n, d, B, nsols, prev);

33: end if

34: return nsols;

symmetries of the problem cannot be exploited yet, and the basic BP procedure

must be performed. During this phase, the binary vector prev is kept updated so

that it will contain the first found solution coded in binary format. Note that, if a

solution is found when considering the position x0
v of v, it is useless to consider the
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position x1
v (recall v 6∈ B).

Finally, if v 6∈ B and at least one solution has already been found, symBP simply

reconstructs such solutions by exploiting the symmetries on the tree and the last

computed solution coded in binary format. There is no branching anymore, because

only x
¬prev(v)
v can be feasible if x

prev(v)
v was feasible for the previous solution. There

is no pruning neither, because all generated positions are feasible. This way, the

computational cost needed for computing all solutions (exception made for the first

one) is drastically decreased.

We point out that the symBP algorithm is intrinsically parallel. Let us suppose

that an instance of the DMDGP is divided in as many subinstances as the number p

of processors which are available on a parallel computer. Each subinstance contains

a group a consecutive atoms of the original instance, as well as the corresponding

distances. With this setup, local solutions to the problem can be obtained by solving

the p subinstances in parallel by using the basic BP19. After this parallel phase, the

local solutions can be exchanged among the processors and the final set of solutions

can therefore be generated by combining all of them.

The parallelization of symBP by using the same strategy is potentially able

to improve the speed-up. On each processor, indeed, the complete enumeration

of the solutions of the subinstances is not necessary: once one solution is found,

the others can be obtained by applying the symmetry rules reported above. This

allows to drastically reduce the computational time for the parallel solution of each

subinstance. Moreover, once the first complete solution is obtained by combining

the local ones, the final set of solutions can be computed by using the first complete

solution and the information on the set B related to the original instance.

4. Computational results

We compare in this section the basic BP algorithm13 to the symBP algorithm

described in Section 3. All codes were written in C programming language and all

the experiments were carried out on an Intel(R) Xeon(TM) CPU 3.40GHz with

4GB RAM, running Linux. The codes have been compiled by the GNU C compiler

v.4.1.1 with the -O3 flag.

We recently proved that the BP algorithm (and so symBP as well) can be applied

for solving instances of the problem containing real NMR data20, but the theory of

the symmetries that we developed so far only concerns instances containing exact

distances. Therefore, we consider two sets of DMDGP instances: Lavor instances

and artificial protein instances.

Lavor instances are artificially generated instances that only simulate the general

structure of proteins. However, they may contain several solutions, representing the

ideal instances for stressing the differences between the two compared algorithms.

Moreover, we also consider another set of instances (protein instances), which are

generated from known protein conformations. For this set of instances, distances are

computed from known atomic coordinates and used for generating instances simu-
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instance BP symBP

name n |E| #Sol #DDF time #Sol #DDF time

lavor 10 10 29 4 44 0.00 4 2 0.00

lavor 20 20 77 64 86 0.00 64 7 0.00

lavor 30 30 161 64 592 0.01 64 18 0.00

lavor 40 40 194 2048 30720 0.05 2048 19 0.01

lavor 50 50 203 1024 46728 0.07 1024 49 0.01

lavor 60 60 357 256 71352 0.12 256 89 0.01

lavor 70 70 591 16 232 0.00 16 67 0.00

lavor 100 100 605 2 4460924 7.55 2 815010 1.37

lavor 200 200 1844 32 35298 0.09 32 394 0.01

lavor 300 300 2505 4 38364 0.07 4 9378 0.03

Table 1. Some experiments with BP and symBP on a subset of Lavor instances.

lating realistic data (the only non-realistic assumption is given by the precision of

the distances). Protein instances generally correspond to BP trees having a bounded

width15, so that they do not usually admit as many symmetries as Lavor instances.

However, the interest in solving protein instances by symBP still remains, because

the experiments here presented show that its performances can still be improved

when interval data will be considered.

We begin our comparison by using the so-called Lavor instances5,22. In the

generation of this set of instances, a molecule is simply represented as a linear chain

of atoms. Bond lengths and angles are kept fixed, and a set of likely torsion angles

is generated randomly. Depending on the initial choice of bond lengths and angles,

Lavor instances give rather more realistic models of proteins than other randomly

generated instances do. We labeled the Lavor instances by lavorn, where n is the

number of atoms in the molecule. Only one random instance is considered for each

size.

Table 1 shows some experiments with a subset of 10 Lavor instances. Each

instance is described by its own name, the number n of atoms forming the molecule,

and the number of known distances, which corresponds to the cardinality of the edge

set E. For both algorithms, we monitor the number #Sol of found solutions (which

should be method-invariant), the number #DDF of times the pruning device DDF

prunes away infeasible branches, and the CPU time (in seconds).

As explained in details in Section 3, once the first solution is found, symBP

is able to avoid recursive calls to itself that would produce an infeasible atomic

position. Therefore, one way to evaluate the performances of this algorithm w.r.t.

the performances of the basic BP is to compare the corresponding values for #DDF.

These experiments show that the symBP algorithm is actually able to find the same

set of solutions by applying the pruning device fewer times, because many of the
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calls where DDF would have pruned are suppressed in advance. This reduction in

the number of recursive calls is naturally reflected on the total CPU time. Other

Lavor instances having a larger dimension can also be considered. Such instances

(with n ∈ {400, . . . , 700}) contain so many symmetries that both the basic BP and

symBP are not able to obtain the full set of solutions in a reasonable amount of

time18.

We present in the following some experiments on a set of instances generated

from real protein conformations. We generated some instances of the DMDGP

by considering some protein conformations of different size downloaded from the

PDB1,8. For each downloaded protein, we selected the backbone atoms of the

molecule (the chain of atoms N , Cα and C, and the hydrogens of the backbone),

and we computed the distances between all pairs of such atoms. In order to simu-

late distances obtained by experiments of NMR, we removed all distances shorter

than a certain threshold δ. Moreover, since protein instances generally contain a few

symmetries15, we also removed a certain number of pruning distances (randomly

chosen) in order to increase the total number of solutions for each instance. For all

instances, the threshold δ is set to 7Å.

Table 2 presents some experiments on the generated set of protein instances. For

all instances, there is an evident gain in CPU time when symBP is applied. In most

cases, the BP trees contain 2 or 4 symmetries (4 or 16 solutions, respectively); there

is also a particular case in which the symmetries are 14, so that the total number of

solutions is 16384 (instance 1dv0). Naturally, the CPU time generally depends upon

the size of the instance (cardinality of the vertex set V , as well as cardinality of the

edge set E), but also upon the number of symmetries that are present in the binary

trees. When there are more symmetries, the gain in CPU time when considering

symBP is more evident.

5. Conclusions

We presented the symBP algorithm, an extension of the BP algorithm which is

able to exploit a priori information about the symmetries in BP trees in order to

speed up the solution of DMDGPs. Once one solution to the problem is found by

applying the basic BP procedure, all the others can be obtained by using symmetry

rules, which drastically decrease the computational cost of experiments related to

instances where the number of solutions is large. Computational experiments on

Lavor instances and protein instances showed the efficacy of this approach.

We are starting to work on DMDGPs in which some of the distances are repre-

sented by intervals10,20, which is a more realistic situation, specially in the context of

biology. When intervals are available, instead of exact distances, DMDGP instances

are much more expensive to solve and symBP is potentially able to decrease the

total computational cost. The extension of symBP to interval data is however not

trivial. When a pruning distance is represented by an interval, there are subsets

of atomic positions that are able to satisfy the constraints (not a single position



April 9, 2012 17:14 WSPC/INSTRUCTION FILE symbp-jbcb

Exploiting symmetric properties of the DMDGP 13

instance BP symBP

name n |E| #Sol #DDF time #Sol #DDF time

1brv 128 623 128 3280 0.01 128 140 0.00

1a11 174 844 32 3152 0.00 32 64 0.00

1acw 201 1003 16 3456 0.01 16 93 0.01

1bbl 252 1228 16 34448 0.09 16 1293 0.02

1erp 259 1331 16 1053392 2.39 16 46326 0.11

1aqr 275 2500 4 1096 0.01 4 172 0.00

1k1v 278 1337 16 609488 1.94 16 32755 0.10

1h1j 300 1481 256 21264 0.09 256 235 0.02

1ed7 305 1520 16 4477376 19.44 16 158768 0.74

1jkz 315 3137 4 1260 0.01 4 116 0.00

1dv0 316 1621 16384 1741312 8.83 16384 231 2.04

1ahl 328 1586 16 5528480 23.84 16 181443 0.80

1brz 368 3831 4 1464 0.01 4 218 0.00

1ccq 406 2060 16 5381728 23.52 16 264723 1.19

1bqx 521 5170 4 2064 0.01 4 288 0.01

2hsy 715 7425 4 2872 0.03 4 423 0.02

1acz 724 7741 4 4668 0.04 4 823 0.02

1a2s 615 3349 16 1917840 12.44 16 33051 0.24

1ag4 694 7400 4 2768 0.03 4 383 0.02

1itm 892 9374 4 3576 0.04 4 546 0.02

1ngl 1206 11701 4 4828 0.07 4 704 0.04

1la3 1281 7027 16 1691360 22.68 16 98954 1.50

1a23 1287 13250 4 5168 0.09 4 766 0.05

1oy2 1293 12718 4 5192 0.08 4 741 0.05

2ron 1649 16566 4 22324 0.43 4 2779 0.12

1d8v 1787 17937 4 7440 0.19 4 1142 0.09

1ezo 2523 25040 4 17936 0.51 4 2608 0.23

Table 2. Experiments on protein instances.

only), and ad-hoc strategies need to be developed for exploiting the symmetries in

a more general case. This extension, together with an efficient parallel version of the

symBP, could allow us to solve very difficult biological problems in a short amount

of time. This will be the focus of our research in the near future.
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