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Abstract—Analog-to-information converters and Compressed
Sampling (CS) sensor front-ends try to only extract the rele-
vant, information-bearing elements of an incoming data stream.
Information extraction and recognition tasks can run directly
on the compressed data stream without needing full signal
reconstruction.The accuracy of the extracted information or
classification is strongly determined by the front-end settings and
tolerated level of hardware impairments. Exploiting this, allows
to dynamically tune accuracy for power consumption. This paper
discusses this trade-off and introduces a theoretical framework
to guide the selection of optimal hardware settings under given
power or accuracy constraints. This is illustrated with two
circuit realizations: 1) an analog-to-information converter for
voice activity detection (VAD), and 2) a CS photopletysmographic
(PPG) heart rate (HR) extraction application.

I. INTRODUCTION

Reactive sensing applications on portable devices, such

as phones or smart-watches, need a variety of always-on

integrated sensors. Existing sensor front-ends immediately

translate the observed physical analog signals into the digital

domain after only basic analog signal conditioning as shown

in Fig.1(a). Such a system generates raw digital data at the

rate (> 2 · sigBW · 2
nbits) bits/sec, where sigBW is the raw

signal bandwidth. With multiple sensors on every device, this

analog to digital translation of raw sensory signals generates a

huge amount of data to be stored, processed and transmitted.

Continuous information extraction from this sensory data

deluge reduces the battery life of the device, prohibiting thus

its continuous always-on operation. Analog-to-information

converters [1] or CS front-ends [2] overcome this by only

extracting a relevant feature subset from the incoming sensory

stream. In such systems, early data discrimination is ensured

by extracting features/information as close to the sensor as

possible, as highlighted in Fig.1(b). Such approach results in

a rate of 2 · infoBW · 2
nbits bits/sec, where infoBW is the

information bandwidth which is normally much lower than

sigBW [1]. The power consumption of the sensing system, as

well as the information content of the retained data stream,

strongly depend on the computational precision of extracted

features. Tuning this precision enables an interesting, dynamic,

trade-off between system power consumption and information

or classification accuracy.

This work strives to maximize the relevance of extracted

information under a given operating context through a sensing
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Fig. 1: (a) Nyquist sensor systems (b) Information sensing

systems.

architecture that dynamically trades off feature extraction

power against classification accuracy, as presented in Section

II. This trade-off is then illustrated with a context aware VAD

system in Section III and a CS based heart-rate extraction from

PPG signals in Section IV.

II. FEATURE TUNABLE SENSING SYSTEMS

Fig. 2 shows the proposed feature tunable sensing system.

The features generated by the extraction unit are fed to a

classifier or information extractor that performs the application

specific information estimations, i.e. speech identification or

HR estimation. Confidence on resulting estimations strongly

depends on environmental conditions such as signal dynamics

or signal interference. A feedback loop is thus required to

dynamically tune the specifications of the feature extraction

unit under given power or performance constraints. In the

system highlighted by Fig. 2, a control logic block that dictates

the feature subset’s properties to the extraction unit is inserted

in the loop. This block trades application performance for

power savings to determine the feature requirements. The

remainder of this section describes how to enable the dynamic

tunability of the feature extraction unit. Secondly, it describes

how this tunability allows dynamic power scaling.

A. Feature extraction unit

The feature extraction unit in Fig. 2 reduces the generated

data rate by decomposing the raw signal into a set of useful

features. This unit is dynamically tunable in terms of the num-

ber of features sampled, their precision (Section III) and their

sampling frequency (Section IV). As Sections III and IV detail,

varying computational precision and selectively computing a

context-aware feature subset allows to continuously scale the
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Fig. 2: Self-tunable variable precision sensing systems.

systems’ power consumption, achieving 10−50× savings over

existing state-of-the-art implementations [3].

B. System performance evaluation and dynamic power scaling

Aforementioned power saving opportunities present an

interesting trade-off against extracted information accuracy.

Among other aspects, task accuracy is determined by the

environmental (i.e. ambient noise) and computational noise

(i.e. data resolution) that features are subjected to. Our frame-

work allows to dynamically assess this impact and tune the

associated computational noise in favor of power scaling.

The VAD application discussed in Section III exploits this

flexibility by means of a Bayesian Network based framework

that enables feature subset selection and feature precision tun-

ability. In its turn, the Lomb-Scargle periodogram (LSP) based

HR estimation application illustrated in Section IV exploits

signal acquisition rate reduction opportunities provided by CS.

Both applications will demonstrate how the sensor front-end’s

adaptiveness allows to dynamically tune the confidence in the

extracted information with its power consumption in order to

efficiently deal with the stochastic nature of ambient noise and

external interference.

III. FEATURE PRECISION TUNABILITY FOR VAD

Always-awake VAD systems must operate continuously to

identify speech under changing ambient noise conditions,

which results in a significant power budget restriction. A

mixed-signal, highly tunable VAD front-end was introduced

and proved in silicon in [4]. This system enables power-

scalable feature extraction by 1) extracting information bearing

features in the analog domain, 2) enabling individual feature

(de)activation and 3) enabling individual feature-precision

scaling. The VAD system’s top-level block diagram is shown

in Fig. 3(a). The analog feature-extractor described in Section

III-A translates the input signal to a set of features which

are discretized by a slow ADC for subsequent processing.

In this work we exploit the tunability of the VAD’s feature

extractor by means of a Bayesian Network classifier and a

feature precision selection block, detailed in Section III-B.

The Pareto-optimal feature extraction power vs classification

accuracy trade-off resulting from this scheme is then presented

in Section III-C. An example of a confidence metric that can

be used by the Control Logic block in Figure 2 to dynamically

reconfigure the feature extraction’s properties is also described

in this Section.
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A. Variable-precision feature extraction

Analog features are computed by decomposing the acoustic

signal into different frequency bands and estimating the power

in each frequency band. Fig. 3(b) shows the feature extractor’s

schematic for one of the 16 bands. The amplified signal

from a passive microphone is fed to a Band Pass Filter

(BPF), whose output is rectified and averaged to obtain the

analog feature [4]. The center frequency of the BPF increases

exponentially from 75 Hz to 5 kHz from band 1 to band 16.

Further, each band has variable amplification for precision-

tunability. Each band is capable of extracting the feature

set Fi = {Fi,8b, Fi,4b, Fi,2b, Fi,1b}, where the subscript nb
denotes precision (expressed in number of effective bits) of

the feature and i ranges from 1 to 16. Barring the overhead

for low noise amplification for passive microphone, the feature

extractor’s power consumption scales: a) exponentially from

feature 1 to 16, and b) proportionally with each additional bit

of resolution [4], [5].

B. Context and feature precision aware Bayesian Network

classifier

To enable dynamically-scalable VAD, the tunable feature

extraction unit is interfaced with a Bayesian Network classifier.

This classifier assigns a ‘voice’/‘no voice’ class label c to

a class variable C that maximizes the posterior probability

Pr(C|F1, . . . , Fn) where U = {F1, . . . , Fn} are observed

features. For the Naive Bayes (NB) classifier in Fig. 4(a),

this computation is efficient due to the feature conditional

independence assumption [6]. We will here extend the NB

classifier with variable precision children of the feature nodes,

as in [7], to build a dynamically tunable VAD classifier. As

shown in Fig. 4(b), every feature is represented with a high

precision (8b) node, as well as with lower precision nodes

(4b, 2b, 1b), and a feature pruning node (0b). The resulting

graph hence allows to infer the joint probability over a subset

of observed features Fi,nb at various precisions expressed in

number of bits (nb), marginalized over all higher precision

non-observed nodes:

Pr(C,F1,8b, ..., F16,0b) =
16
∏

i=1

4b
∏

nb=0b

Pr(Fi,nb|Fi,nb+1) · Pr(Fi,8b|C) · Pr(C),(1)
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Fig. 4: (a) Naive Bayes Classifier (b) Precision scalable naive

Bayes classifier.

where the probabilistic relations Pr(Fi,nb|Fi,nb+1) are de-

terministic and the relations Pr(Fi,8b|C) are modeled as

discretized Gaussian distributions. This model moreover al-

lows to individually assess feature usefulness in accordance

to the computational and ambient noise they bear. This is

of particular relevance to applications such as VAD, where

the features’ relative information content is highly context-

dependent (e.g. background noise). The wide power vs accu-

racy trade-off space resulting from the extended NB model can

be traversed with a heuristic that iteratively prunes a Pareto-

optimal feature precision set Uselect, as proposed in [7]. At

each iteration, a greedy neighborhood search is performed over

n pruning candidates, each with a feature precision reduction

of one level (Ucandidatei ← Uselect \ Fi,nbi ∨ {Fi,nbi−1}).
The candidates’ impact on classification accuracy is estimated

from the correctly classified instances in a validation set and

its impact on power consumption is estimated from the hard-

ware’s characteristics defined in Section III-A. The selected

feature set maximizes the cost function

CF = log

(

∆power

max(power)

)

− log(∆accuracy), (2)

where the term ∆ is the predicted state difference between

each candidate i and the currently selected set. Hence, the

greedy neighborhood search in this heuristic enforces maximal

power consumption reduction in return for accuracy loss.

C. VAD system results

Fig. 5 presents the feature extraction power vs accuracy

trade-off achieved by this framework for the VAD applica-

tion subjected to the noise inside a train under three SNR

environments. The results show potential power consumption

savings in the feature extraction unit of more than three orders

of magnitude for an estimated accuracy degradation of less

than 5% in each setting. Note that the optimal settings are

strongly dependent on the current environmental conditions.

For example, assume that the application requires a perfor-

mance between 80% and 82% accuracy. When environmental

conditions are not favorable (+3dB SNR), 11 features must

be extracted at the precision specified in Table I resulting in

the consumption of 2.16 µW . When the conditions improve

to +9dB and +15 dB SNR, power savings of one and three
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Fig. 5: Power vs accuracy trade-off for the train context under

different SNR conditions.

TABLE I: Selected feature sets for train context

Feature number Number of bits

3dB SNR 9dB SNR 15dB SNR
1 to 5 - - -

6 1 bit - -
7 4 bits 4 bits -
8 8 bits 8 bits 4 bits

9 and 10 8 bits - -
11 1 bit - -
12 8 bits 1 bit -
13 2 bits - -

14 and 15 8 bits - -
16 8 bits 1 bit -

Power 2.16 µW 0.30 µW 0.0004 µW

orders of magnitude can be achieved by extracting the feature

subsets specified in Table I.

The aforementioned trade-off analysis determines the local

optimal operating points available to the feature extractor. At

run-time, the Control Logic block described in Figure 2 must

make decisions in function of environmental variations which

result in different levels of prediction confidence. We define

such confidence metric as a variation of the log odds ratio:

Confidence = 10 · log10

(

Pr(C = cmax|F )

Pr(C = cmin|F )

)

, (3)

where Pr(C=cmax|F ) and Pr(C=cmin|F ) are the posterior

probabilities for each of the two class labels. Fig. 6 shows

that, although for some settings estimated accuracy (blue) stays

within the same range, confidence (red) differs significantly,

again indicating the importance of the feedback loop that

dynamically controls the feature extraction unit.

IV. PERFORMANCE SCALABILITY FOR CS PPG BASED HR

ESTIMATION

A PPG is a volumetric measure of an organ commonly

obtained by illuminating the skin and measuring changes

in light absorption. The LED stimulation of such systems

dominates the overall power consumption [8], leading to the

desire for early data rate reduction. Therefore, PPG greatly

benefits from CS techniques, which acquire the signal at a rate

proportional to infoBW rather than the Nyquist bandwidth [2],

as illustrated in Figure 1. To circumvent the intensive signal

reconstruction associated to CS based acquisition systems,

Section IV-B presents an algorithm capable of estimating the
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Fig. 6: Power vs accuracy and confidence trade-off for differ-

ent environment settings at +3dB SNR.

average HR directly from CS PPG signal [9]. The confidence

over such estimation is then be used to implementation the

self-tunable system of Fig. 2. Finally, Section IV-C presents

the trade-offs relevant to the CS based PPG acquisition system

with integrated feature extraction.

A. Tunable CS in analog domain

For systems where power consumption is dominated by

the sensor, like PPG acquisition, CS for reducing power

consumption is possible only when implemented in the analog

domain, as previously reported in the context of biomedical

signal acquisition [10]. The signal’s information rate, which

determines the acquisition rate in CS, depends on its sparsity

on a given basis Ψ. In practice, CS for PPG signals is

equivalent to randomly sub-sampling the signal in time domain

since PPG signals are sparse on frequency basis [9]. For

an N-dimensional signal vector X that is K-sparse of a

given basis Ψ, near exact information sampling is possible

by acquiring a projected M-samples, provided the projection

transform Φ satisfies the restricted isometry property (RIP)

and is maximally incoherent with the basis Ψ. The number of

samples required for faithful information sampling is given by

M = O

(

K log
N

K

)

. (4)

To quantify the data reduction, compression ratio, CR = N/M ,

is used. A configurable CR enables dynamic information

extraction as in Figure 2.

B. Compressed domain information extraction for PPG read-

out

When implemented in hardware, signal recovery techniques

can consume up to 10 mWs of power [11], offsetting the

savings obtained by compressively acquiring the signal. It is

therefore desirable to extract the features of interest directly

from CS data as proposed in [9] and shown in Fig. 7.

This approach relies on least square spectral fitting technique
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Fig. 7: Compressively sampled photopletysmographic (PPG)

readout with integrated feature extraction.

through LSP to estimate the power spectral density (PSD) of

the randomly sub-sampled signal. The average HR can then

be estimated from the frequency corresponding to the peak in

the PSD. In practice, LSP is evaluated over a finite frequency

range which is discretized. Associated with each frequency

bin is a confidence or significance interval 1 − α. For the

normalized periodogram, α is given by α = 1 − (1− e−η)
k
,

where k is the number of bins and η the desired frequency

value. A higher value of 1 − α for a bin indicates a higher

likelihood of the true presence of the frequency bin in the

signal, similarly to the confidence in (3). As described in

III-C, tuning the information extraction block’s properties

(via configurable CR in this case) provides the means to

trade off estimation confidence for system power consumption.

The details of such a trade-off under different operational

conditions are given next.

C. CS system results

The system’s configuration determines the power consump-

tion and the confidence on the HR estimation. While some

of the configuration parameters are determined during the

design phase (number of frequency bins for LSP, signal input

frequency etc.), other parameters can be modified at run-

time (CR). The number of bins to be computed for LSP

determine the minimum resolvable HR and the complexity of

the hardware. While reducing the number of bins is favorable

for reduced latency and energy consumption, the accuracy and

minimum resolvable HR are affected. For a typical frequency

range of 0.5Hz −3.5Hz, which encompasses a HR range of

30bpm− 210bpm, a 32 point LSP gives a resolution of 6

bpm, which is higher than the requirement of 5 bpm specified

by ANSI-AAMI standards for HR monitors [12]. A 64 point

LSP was therefore chosen for the implementation. To quantify

the accuracy of HR detection with respect to number of bins,

an input sinusoid, which serves as a proxy for PPG signal,

with a frequency of 1.2 Hz (corresponding to 72 bpm) is

randomly sub-sampled with varying CR (8x, 10x and 30x). An

LSP is then performed to estimate the HR from the acquired

signal with number of bins varying from 32 to 512. Fig.

8(a) shows that a higher number of bins does not lead to

significant improvement in the accuracy of estimated HR. The

performance of HR estimation for different CRs is simulated

by randomly sub-sampling a sinsusoid, whose frequency is

swept from 0.5 Hz - 3.5 Hz, with CRs 8x, 10x and 30x. A 64

bin, fixed point LSP is then performed on the randomly sub-
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sampled signal and HR is estimated from the resulting PSD.

Fig. 8(b) shows the extracted HR for different CRs, which

indicates that the maximum error in estimated HR is less than

7 bpm at 30x compression for a nominal HR of 120 bpm.

This error is well within the accuracy requirements specified

in [12].

In order to implement the dynamically controlled loop

of Figure 2, the effect of CR on the confidence of the

estimated HR must be closely analyzed. Fig. 9 shows how

the significance of the estimated peak in the PSD depends

on CR. The LED driver power consumption of the CS PPG

acquisition system presented in [13] at different CRs is also

shown. The significance on HR estimation is high (> 90%)

for low CRs but it drops significantly at higher CRs. This

translates to uncertainty over the true presence of the tone

at a specific frequency in the signal and hence uncertainty

over the HR estimation. It should however be noted that the

power required to drive the LED scales linearly with CR, from

1200 µW to 43 µW for CR of 1x and 40x respectively. Under

such scaling opportunities the system is capable of preventing

significant losses in the confidence of HR estimation for a

LED drive power savings of more than 30×. This allows

the self-tunable system (Fig. 2) to dynamically optimize the

power consumption with respect to the required accuracy and

confidence.

V. CONCLUSION

The feature-tunable information extraction paradigm pro-

posed in this work targets the operational limitations of power

constrained always-awake sensing systems, by dynamically

computing only the relevant information bearing elements

in the incoming data stream. In this system, a feedback

loop selects the optimal set of feature/extracted information

specifications in function of environmental conditions and ap-

plication accuracy constraints. Two circuit realizations present

significant energy savings. 1) Up to 3 orders of magnitude

in the feature extraction unit of a VAD analog-to-information

with precision-scalable NB classifier. 2) Up to 30x in the LED

driver power consumption of a variable rate CS PPG readout,

without significant accuracy losses.
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