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EXPLOITING TABU SEARCH MEMORY IN CONSTRAINED PROBLEMS 

 

Abstract:  This paper puts forth a general method to effectively optimize 
constrained problems when using tabu search.  An adaptive penalty approach that 
exploits the short term memory structure of the tabu list along with the long term 
memory of the search results is used.  It is shown to be effective on a variety of 
combinatorial problems with different degrees and numbers of constraints.  The 
approach requires few parameters, is robust to their setting, and encourages search 
in promising regions of the feasible and infeasible regions before converging to a 
final feasible solution.  The method is tested on three diverse NP-hard problems, 
facility layout, system reliability optimization, and orienteering, and is compared 
with two other penalty approaches developed explicitly for tabu search.  The 
proposed memory-based approach shows consistent strong performance. 

 

1.0 Introduction 

Tabu search (TS) has become an effective heuristic method for many combinatorial 

optimization problems with large and complex search spaces.  Glover and Laguna [20] define the 

most important distinguishing property of TS as the exploitation of adaptive forms of memory.  

These take the form of short-term memory strategies (i.e., tabu list and aspiration criteria) and 

long-term memory strategies (e.g., intensification and diversification).  This paper develops a 

general approach that uses the special memory properties of TS to effectively optimize 

constrained problems.  An adaptive penalty function, that responds to the search history to guide 

the search to promising regions of both the feasible and infeasible regions of the space, is 

developed and tested.  While TS has been applied to many constrained problems, a general 

penalty methodology that specifically exploits the memory structure of TS has not yet been 

previously presented in the literature. 

Although its roots go back to the late 1960s and early 1970s, TS was proposed in its 

current form in the late 1980s by Glover [21].  Together, with simulating annealing (SA) and 

genetic algorithms (GA), TS has been chosen by the Committee on the Next Decade of 

Operations Research [14] as “extremely promising” for the future treatment of practical 

applications.  Although it is difficult to represent a “canonical form” of TS, most versions of TS 

can be characterized by the following two characteristics: i) complementing local search, and ii) 

prohibiting moves that have been previously selected.  Further information about TS is available 

from [20, 22-24] 
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2.0 Constraints and Tabu Search 

Most optimization problems contain constraints.  Some of these are easy to satisfy 

through problem specific encodings and operators so that infeasible solutions are not considered.  

However, it is often difficult to enforce solution feasibility.  Moreover, it may be hard to identify 

even a single feasible solution for some highly constrained problems.  Even for problems where 

feasibility can be maintained by discarding infeasible solutions without consideration, it may not 

be efficient or effective to do so [11].  General heuristics, such as TS, SA and GA are especially 

problematic when dealing with such problems because they initiate search (generally) with a 

random solution and apply operators that may not be able to guarantee feasibility even when 

operating on a feasible solution.  Furthermore, because these are general approaches (i.e., meta-

heuristics), it is desirable to employ a general method for dealing with constraints that minimizes 

or eliminates the need for problem specific information.  

Much of the literature on handling constraints involves the use of penalty functions.  

Rather than enforcing feasibility, a penalty is applied to an infeasible solution to worsen its 

objective function value.  This may be as simple as a constant penalty for any infeasible solution 

to more complex functions that depend on the solution itself, the search history or other user-

defined criteria.  Schwefel [40] classified penalty functions according to their severity as follows: 

• barrier methods where no infeasible solution is considered (also known as the death 

penalty) 

• partial penalty functions where a penalty is applied near the feasibility boundary 

• global penalty functions where a penalty is applied over the entire infeasible region. 

Lagrangian relaxation methods [2, 16, 39] use a somewhat similar approach where the most 

difficult constraints of the problem are temporarily relaxed by using a modified objective 

function to prevent a solution from being too far from the feasible region.   

A general penalty approach is described below, using the notation of Smith and Coit [42].  

A minimization problem is shown, but this can be readily converted to a maximization problem. 

min f (x)        (P) 

   s.t. x ∈ A 

   x ∈ B 
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where x is a vector of decision variables, and the constraints “x ∈ A” are relatively easy to 

satisfy while the constraints “x ∈ B” are relatively difficult to satisfy.  Using this definition, the 

problem can be reformulated as: 

min f (x) + p(d(x, B))        (R) 

   s.t. x ∈ A 

where d(x, B) is a function denoting the distance of the solution vector x from the region B, and 

p(⋅) is a monotonically nondecreasing penalty function.  Two major penalty approaches have 

been studied in the literature; one based on the number of constraints violated, and one based on 

the distance from the feasible region with the latter usually being more effective [29]. 

Hertz [27] solves a course scheduling problem using TS by weighting constraints 

according to their difficulty to satisfy, where constraints which are more difficult have greater 

weight.  Weights are predetermined by the user and are customized to each problem instance.  

Taillard et al. [43] study the Vehicle Routing Problem (VRP) using TS and, in their problem, 

each vehicle must start and terminate its route within the time window associated with the depot.  

It is permissible to miss the time windows at some customer locations, but this results in 

penalties that are added to the objective value.  Their objective function, therefore, consists of the 

total distance traveled on the route plus the amount of lateness multiplied by a lateness penalty 

coefficient (α).  They assert that by using a large α, the VRP with hard time windows can also be 

addressed.   

Thomas and Salhi [45] implement a TS heuristic to solve the resource constrained project 

scheduling problem where the objective function is the minimization of project makespan.  Their 

objective function has the property of rejecting moves that have been visited many times 

previously and penalizing moves that lead to schedules possessing a high level of resource 

infeasibility.  The penalty function, which is a multiple of the ratio of resource infeasibility to the 

total amount of that resource available, is added to the objective value.   

Glover et al. [24] describe a “shifting penalty approach” which is an instance of strategic 

oscillation, one of the basic diversification approaches for TS.  The shifting penalty tactic is used 

by Hertz and de Werra [28] and Costa [15] for timetable-planning problems.  First, a penalty 

function is constructed based on the degree of violation for any given schedule.  Then, the global 

objective function is defined as the weighted sum of these penalty functions, where constraints 

are weighted according to importance.  Weights are dynamic, and the largest weights are reduced 
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after a specified number of iterations.  With this method, the more important constraints are 

satisfied early in the search, then the search turns to satisfying the lesser constraints.  

2.1  The Penalty Function of Nonobe and Ibaraki 

A TS approach to the constraint satisfaction problem (CSP) is studied by Nonobe and 

Ibaraki (N&I) [36].  They define a weight for each constraint based on its “importance.”  If the 

CSP has no feasible solution, an acceptable solution that slightly violates the less important 

inequalities is identified.  They give computational results for problems including graph coloring, 

generalized assignment, set covering, timetabling and nurse scheduling. 

Using the notation from [36], starting with an initial solution x, a penalty function, p(x) is 

defined by, 
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Combining the problem objective function, f(x), with the penalty results in the overall objective 

function q (for a minimization problem):  

min { } )()0,)(min(θ)0,)(max(w)( xpzxfzxfxq o +−+−=  

where z is the objective function value, f, of the best feasible solution found thus far (initially set 

to a large number), 0 ≤ θ ≤ 1 is a program parameter, and wo > 0 is a weight given to f(x).  This 

function encourages search near the border of feasibility and infeasibility.  If a new solution, x, is 

better than the best feasible but is also infeasible, its objective function improvement (f(x) – z) is 

weighted less than its corresponding penalty, p(x), by using θ < 1 and wo < 1.  There is concern 

in setting the parameters.  If wo is large, solutions with better objective values are readily found, 

but it may be difficult to obtain feasibility.  On the other hand, if it is small, feasibility is 

generally maintained but the objective function value may suffer.  Therefore, N&I introduce an 

adaptive method to control wo to encourage feasible solutions within a pre-specified range of 

lower and upper bounds, LB and UB, respectively.  If the rate of infeasible solutions in the most 
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recent 100 iterations is less than LB, wo is multiplied by σ.  If this rate is greater than UB, then 

wo is divided by σ, where σ>1 is a program parameter.  From preliminary trials, they found that 

performance is not very sensitive to σ, however LB and UB are important, therefore their values 

must be carefully set.  The LB and UB values can be set according to the difficulty of obtaining 

feasible solutions during search, i.e., large values should be assigned if it is hard to find feasible 

solutions and small values if it is rather easy.  In their paper, the parameter values are set as 

follows:  θ=0.5, σ=3, wo
(0)=1 (initial value of wo), LB=0.4, UB=0.6. 

2.2  The Penalty Function of Gendreau, Hertz and Laporte 

Gendreau et al. [18] solve the VRP using TS with capacity and route duration constraints.  

They develop a penalty approach that depends on recent constraint violations over a last 

predefined number of solutions.  Using the notation of [18], the objective is to find a set of 

shortest (least cost) vehicle routes. 

min ∑ ∑
∈

=
r Rvv
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where S is a solution, r are the routes in the set, Rr is a specific route in the set, vi and vj are two 

consecutive vertices (i.e., two different cities), and cij is a nonnegative distance (cost) associated 

with the arc (vi, vj).  With any solution S (feasible or not), they associate the objective in the 

following penalized form: 

min ))0 iolation,duration v (max())0 iolation,capacity v(max()()( 2112 ββ ++= SFSF  

If the solution is infeasible, F2(S) incorporates a penalty term for excess vehicle capacity and 

another for excess route duration.  Positive weights, β1 and β2, are initially set to one and then 

updated after each h iterations as follows.  A weight for a constraint that was always violated 

over the past h iterations is doubled.  A weight for a constraint that was never violated over the 

past h iterations is halved.  Otherwise, weights remain unchanged.  This has the property of 

inflating (deflating) the penalty imposed if the recent search history is entirely within the 

infeasible (feasible) region.  They use a value of 10 for h although their experimental results 

show that the search is not sensitive to this value. 

This paper builds on the approaches discussed above, especially those of Nonobe and 

Ibaraki [36] and Gendreau et al. [18], by penalizing infeasible solutions according to the distance 

from the feasible region and the search history, as remembered by the tabu list, in short term 

memory, and by the best solutions found, in long term memory.  The penalty is implicitly 
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bounded and can be influenced through an amplification parameter for each constraint.  This 

approach is demonstrated on three dissimilar combinatorial problems:  the unequal-area, shape-

constrained block layout problem, the series-parallel redundancy allocation problem and the 

orienteering problem, a constrained version of the traveling salesman problem.  In the first and 

last problem types, there is a single, discrete constraint while in the second problem type, there 

are multiple, continuous constraints.  A variety of instances with different degrees of constraint 

are solved using the memory-based penalty TS for both classes of problems and compared with 

the penalty approaches of [36] and [18]. 

3.0 Proposed Adaptive Penalty Method 

3.1 Basic Structure of the Penalty 

 The proposed penalty function uses the central idea of Near Feasibility Threshold (NFT) 

as first defined by Smith and Tate [41] and enhanced by Coit et al. [13] in their work on penalty 

functions for GA.  NFT marks the portion of the infeasible region where search should be 

encouraged.  While solutions are penalized in relation to their distance from feasibility, within 

the NFT region (i.e., between feasibility and the NFT), infeasible solutions are penalized 

relatively lightly, while beyond the NFT region solutions are penalized relatively heavily.   

 The definition of NFT depends on both the structure of the problem and that of the 

constraints.  While NFT can be as simple as a constant [44], it is often effective to employ a 

dynamic or adaptive NFT [11] that reacts in response to the search history.  An obvious dynamic 

formulation is to adjust NFT with the length of the search, so that NFT continually decreases, 

which increases the penalty imposed, all else being equal.  A dynamic decreasing NFT will 

encourage search through the infeasible region early, but then increasingly encourage focus in 

the feasible region.  This was done in Coit et al. [13] as: 

Λ1
NFTNFT o

+
=       (1) 

where NFTo is an initial value for NFT and Λ is a variable to adjust NFT.  For example, in a GA 

Λ can be defined as a function of the number of GA generations, g, by letting Λ=λ×g, where λ is 

a user-defined constant. 

Hence, the general penalized objective function is in the following form (for a 

minimization problem) with η constraints. 
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where F(x) and Fp(x) are the unpenalized and penalized objective function values, respectively, 

for solution x.  Fall represents the unpenalized objective function value of the best solution found 

so far and Ffeas is the value of the best feasible solution found so far.  Exponent Ki is a user-

defined parameter that amplifies the behavior of the ratio, and NFTi is the near feasibility 

threshold for constraint i.  The penalty imposed above depends on both the distance of the 

solution from feasibility and the search history regarding the relative difference between the best 

feasible and infeasible solutions found. 

 The penalty function above has several nice properties.  It is adaptive and automatically 

scales itself to the particular constraint through the ratio 
i

id
NFT

)B,(x
.  It has been shown to be 

robust to Ki, to problem instance, degree of problem constraint, and number and type of 

constraints when used in a GA [13].  There are few user set parameters.  The central idea of this 

paper is to include these advantageous properties in a method explicitly designed for TS that 

leverages its memory properties.   

3.2 Incorporating Memory into NFT 

 NFT represents the area in the infeasible region where search is encouraged.  In the GA 

implementation [13, 44], NFT ranged from a constant to a variable depending on the number of 

generations. NFT can assume a more sophisticated role in TS and there is greater potential for 

improved efficiency in solving constrained optimization problems by exploiting search history 

information.   

In this paper, NFT adapts to the recent search history by using the short term memory 

capability of the tabu list along with knowledge of the current move.  If most of the recent moves 

have been feasible, NFT is increased, thereby decreasing the penalty and encouraging more 

exploration of the near feasible region.  If most of the recently accepted moves have been 

infeasible, NFT is decreased, increasing the penalty and moving the search towards the feasible 

region.  Unlike the GA dynamic implementation where NFT monotonically decreases with 

search length, the TS NFT can increase or decrease depending on short term memory.  Using the 

memory-based NFT infeasible solutions are penalized according to equation 2.  Equation 2 
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includes a long term memory term, Ffeas - Fall, which is the difference between the best feasible 

solution and the unpenalized value of the best solution yet found in the search. 

 Specifically, the method is as follows.  The tabu list size at any given iteration, j, is 

defined as Tj and the number of feasible solutions on the current tabu list is defined as Fj.  A 

feasibility ratio at iteration j, Rj, is defined as: 

    
j

j
j T

F
R =        (3) 

For constraint i, if the current move is to a feasible solution: 
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For constraint i, if the current move is to an infeasible solution: 
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 For a given constraint, NFT changes according to the count of the feasible vs. infeasible 

solutions on the tabu list.  The method of N&I [36] includes the idea of examining recent 

solutions to change the weight of the penalty.  The method of Gendreau et al. [18] uses the idea 

of altering the penalty according to the feasibility of solutions on the tabu list.  In their case, it is 

a step function that changes when the tabu list has moved from wholly infeasible to wholly 

feasible, or vice versa.  The method of equations 2 through 5 uses a continuous metric for the 

feasibility/infeasibility constituency of the tabu list and additionally considers the feasibility of 

the current move.  Long term memory is also employed with the difference term between the 

best feasible solution yet found and the unpenalized value of the best solution yet found.   

 Consider the behavior of NFT for a single bounding constraint.  If all moves on the tabu 

list are feasible and the current move is also feasible, NFT increases by a factor of 1.5.  This has 

the property of encouraging search towards the infeasible region.  If all moves on the tabu list are 

infeasible and the current move is also infeasible, NFT decreases by a factor of 0.5.  This 

increases the penalty for an infeasible solution and moves the search towards the feasible region.  

This geometric change in NFT creates a lower bound on NFT of 0.   

 If all moves on the tabu list are feasible and the current move is infeasible, NFT remains 

unchanged.  Similarly, if all moves on the tabu list are infeasible and the current move is 

feasible, NFT remains unchanged.  In these cases, the value of NFT is appropriate as it has 
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moved the search towards the recently unvisited region, either feasible or infeasible.  In the next 

move, if the same region as the last move is chosen, NFT is slightly increased (in the case of 

recent feasible moves) or slightly decreased (in the case of recent infeasible moves).   

 An initial value of NFT needs to be set for each constraint, although the method is 

insensitive to this value since NFT will begin changing immediately.  One simple way to do this 

is to take a percent of each constraint as its NFTo.  This formulation can easily handle dynamic 

tabu list sizes by using the current size, Tj, in (4) and (5).  Multiple constraints are handled 

independently and constraints that are discrete or continuous can be accommodated.  

4.  Demonstration Applications 

The proposed penalty function and the other two general methods developed for TS, 

Nonobe and Ibaraki’s [36] and Gendreau et al.’s [18], are applied to three diverse NP-hard 

combinatorial problems, facility layout, system reliability optimization, and orienteering.  While 

the results for each problem class are only shown for the TS with each penalty approach, the best 

TS solutions equal or improve upon the best solutions found by other heuristics, as published in 

the literature.  These are the GA of Coit et al. [13] for the layout problems, the GA of Coit and 

Smith [12] for the redundancy allocation problems, and the problem-specific improvement 

heuristic of Chao et al. [8] for the orienteering problems.  The TS and parameters used in the 

proposed penalty function will be described in the following subsection while the parameter 

values used in the other penalty functions are shown in Table 1. 

Insert Table 1 here. 

4.1 Unequal Area Block Layout 

The unequal area block layout problem, from facilities design, was originally formalized 

by Armour and Buffa [1].  There is a rectangular region, R, with fixed dimensions H and W, and 

a collection of N departments, each of specified area aj, the total area of which is A= H×W.  Each 

ordered pair of departments (j,k) is associated with a traffic flow F(j, k).  The objective is to 

partition the region into N subregions, of appropriate area, in order to minimize the sum 

)()(
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where δ (j, k, Π) is the distance (using a pre-specified metric) between the center of department j 

and the center of department k in the partition Π.  This formulation did not include a shape 

constraint and could result in unrealistically shaped departments through optimization of its 

 9



centroid-to-centroid distance metric.  Tate and Smith [44] extend the problem by adding a 

maximum aspect ratio (MAR) for all departments to constrain shapes.  Similarly, Coit et al. [13] 

establish a minimum side length (MSL) constraint for each department.  

4.1.1 The TS Algorithm 

The TS approach in this paper uses the flexible bay construct of Tate and Smith [44] with 

a variable length string encoding which concatenates a permutation of the department order 

(using a boustrophedon ordering) and the bay break position.  Figure 1 illustrates this encoding.  

In the tabu list, an entire solution is kept.  A dynamic length tabu list is used which varies every 

20 iterations according to a uniform random number, U[8,15].  The termination criterion is a 

fixed number of moves without improvement in the objective function of the best feasible 

solution.  The TS reported here is not sensitive to the exact tabu list size or the termination 

criterion. 

Figure 1 here. 

 The search proceeds as follows (using a six department illustration): 

Step 0 Generate a random initial solution.  Assign it to the BEST SO FAR, CURRENT 

CANDIDATE, and the BEST CANDIDATE.  (At the beginning of the search, the initial 

values of the cost of the BEST FEASIBLE SO FAR and the BEST SO FAR are assigned 

the value of 2×H×W×(∑ ), the maximum value of a solution). ∑
≠
==

N

kj
k

N

j
j,kF

)(
11

)(

EXAMPLE:  2  6  3  4  1  5    3  5 

 This layout has departments 2, 6 and 3 in the first bay, departments 4 and 1 in the 

second bay and department 5 in the third bay. 

Step 1 Search the neighborhood of all possible insertion moves for the department 

permutation and choose the first one with a better objective function value.  An 

insertion removes one department from the sequence and inserts it in another 

location.  This is accomplished by generating a random permutation and 

considering the departments in order of that random permutation.  If this 

candidate solution, the CURRENT CANDIDATE, is tabu and the corresponding 

solution is not better than the BEST SO FAR solution (i.e., the aspiration criteria is 

not satisfied), disallow it and repeat Step 1.  If the solution is not tabu, this 

solution becomes the BEST CANDIDATE.  Compare it with the BEST SO FAR and THE 
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BEST FEASIBLE SO FAR and make the necessary updates.  If no better department 

sequence can be found, maintain the current solution. 

EXAMPLE:  To decide in which order departments will be inserted, a randomly 

generated permutation is used.  However, insertions will be made on the sequence 

of the original solution.  Insertions will be tried until an improvement is found.  If 

the randomly generated permutation is 

1  3  5  6  2  4 

then department 1 would be removed from its position and inserted as the first 

department, then after department 2, then after department 6, and so on.  Next, 

department 3 would be removed and inserted as the first department, then after 

department 2, then after department 4, and so on.  This would continue until an 

improvement is found.  For example, if the first improving move for the previous 

solution was to insert 3 after 5 then the new solution would be: 

2  6  4  1  5  3  |  2  4 

Now, departments 2 and 6 are in the first bay, departments 4 and 1 are in the 

second bay, and departments 5 and 3 are in the third bay. 

Step 2 For the departmental sequence of the BEST CANDIDATE found in Step 1, examine 

new bay breaks by exhaustively adding/subtracting one in all possible locations 

from the current bay breaks.  If the CURRENT CANDIDATE is tabu and the 

corresponding solution is not better than the BEST SO FAR solution (i.e., the 

aspiration criteria is not satisfied), disallow it and repeat Step 2.  If the solution is 

not tabu, this solution is the BEST CANDIDATE.  Compare it with the BEST SO FAR 

and the BEST FEASIBLE SO FAR and make the necessary updates.  

 EXAMPLE:  There are two bay breaks in the current solution, therefore all 

possible deletions of a bay break and all possible additions of a bay break will be 

tried and the best will be selected, for example: 

2  6  4  1  5  3    2  4  5 

 In this solution, departments 2 and 6 are in the first bay, departments 1 and 4 are 

in the second bay, department 5 is in the third bay and department 3 is in the 

fourth bay.  Two bay break additions, 1 2 4 5 and 2 3 4 5, would be examined and 

three single bay deletions, 4 5, 2 5, and 2 4, would be examined and the bay break 
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configuration would be set to the best of these five options and the current bay 

break configuration. 

Step 3 Enter the solution selected by Steps 1 and 2 on the tabu list, also deleting the 

oldest tabu list entry if the tabu list is full.  Check the stopping criterion, and if it 

is not satisfied, return to Step 1. 

4.1.2 Penalty Function 

To make useful comparisons, NFT is defined as in Coit et al. [13], using a metric of the 

number of infeasible departments rather than the degree of infeasibility of any certain 

department.  There is a single constraint so Ki = K.  Hence, following (2), the objective function 

is: 

Kn
allFfeasFFpF 






−+=

NFT
)()()( xx     (7) 

where n is the number of infeasible departments (violating MSL or MAR), K is set to 2, NFT is 

calculated as described in Section 3.2 and NFTo is set to 1. 

4.1.3 Test Problems and Results 

Three problems from the literature were studied.  The largest problem was originally 

defined by Armour and Buffa [1] and modifed by Coit et al. [13] to set an MSL for each 

department and these constraints are used in this study.  Coit et al. used this set of constraints to 

randomly generate 100,000 solutions and found only 1.6% of them to be feasible.  A second, 

more constrained version, of Armour and Buffa was devised which specified a maximum aspect 

ration (MAR) of 3 for each department.  Smaller test problems are from Bazaraa [3] (12 and 14 

departments) and an MSL of 1 was used. The stopping criterion was defined as the maximum 

number of iterations (steps 1 and 2) that could be conducted without finding an improvement in 

the best feasible solution.  The number of moves without improvement to the best feasible 

solution was set at 1000 (Armour and Buffa problem) and 200 (Bazaraa problems).  

As can be seen from Table 2, where the best result of each row is shaded, the 

performance of the TS with a memory-based penalty function is promising.  Clearly, the penalty 

approach of [36] was not as effective as the methods of [18] and this paper.  Gendreau et al.’s 

approach generally had greater variability to seed, so that the best results tended to be better, 

however the mean and especially the worst case performance suffered.  In Figure 2, the behavior 

of NFT over a typical search is shown.  While the GA used a static NFT of 1, it can be seen that 
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the memory property of the TS finds NFTs around 2 to be more effective.  NFT alters frequently, 

generally ranging from 1.5 to 3.5.  This NFT activity is desirable in that it confirms that search is 

being focused near the boundary between feasibility and infeasibility, where the optimal solution 

is likely to be found. 

Table 2 and Figure 2 here. 

4.2 Series-Parallel System Redundancy Allocation 

The series-parallel system redundancy allocation problem (RAP), Figure 3, is described 

as follows:  given overall restrictions on maximum system cost of C and system weight of W, 

determine the optimal design configuration to maximize system reliability, when there are 

multiple component choices available for each of several k-out-of-n:G subsystems.  Formally: 
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where, 

R:  system reliability  

C:  cost constraint 

W:  weight constraint 

s:  number of subsystems 

i
x :   ),...,,( ,21 imiii xxx

xij :  quantity of jth  component in subsystem i 

ni:  total number of components used in subsystem i, i.e.,  ∑
=

im

j
ijx

1

nmax, i: maximum number of components in parallel used in subsystem i (user assigned) 

ki: minimum number of components in parallel required for subsystem i to function 

Ri(xi| ki):  reliability of subsystem i, given ki 

Ci(xi):  total cost of subsystem i 

Wi(xi):  total weight of subsystem i 
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The following assumptions are made: 

i) The components and the system can be in one of two states: operating or failed, 

ii) Failures of components are independent. 

iii) The failure rates of components are independent of whether they are in use or not, i.e., 

 there is active redundancy. 

Figure 3 here. 

Chern [10] shows that the series-parallel RAP is NP-hard.  The problem has been widely 

studied with different approaches including dynamic programming (Bellman [6], Bellman and 

Dreyfus [4, 5], Fyffe et al. [17], Nakagawa and Miyazaki [35]) and integer programming (Ghare 

and Taylor [19], Bulfin and Liu [7], Misra and Sharma [33]).  More recently, heuristic methods 

such as GA (Painton and Campbell [37], Coit and Smith [11, 12], Coit et al. [13]) and the Ant 

System Algorithm (Liang and Smith [32]) have been applied to the problem. 

4.2.1 The TS Algorithm 

The encoding is the same as that used in Coit et al. [12], which is a straightforward 

permutation encoding of size  representing a concatenation of the components in each 

subsystem sorted from most reliable to least reliable including non-used components (i.e., blanks 

when n

∑
=

s

i
in

1
max,

i < nmax,i) which have a reliability of 0.  To obtain an initial solution, s integers between ki 

and nmax–3 were uniformly randomly chosen to represent the number of parts in parallel (ni) for a 

particular subsystem.  Then, ni components were randomly and uniformly selected from among 

the mi different types. 

Moves operate on subsystems only and two kinds are used.  The first changes the number 

of a particular component by adding or subtracting one, for all available component types.  For 

example, if there are two type 1 components in a subsystem, change to a subsystem with either 

one type 1 component or three type 1 components.  The second simultaneously adds one 

component to a component type of a certain subsystem and deletes one component from another 

component type in the same subsystem (enumerating all possibilities).  For example, if a 

subsystem has three of component type 2 and one of component type 4, then one possibility 

deletes a component type 2 and adds a component type 4.  A second possibility adds a 

component type 2 and deletes a component type 4. The two types of moves are performed 

independently on the current solution, and the best move among them is selected.  An important 
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advantage of these types of moves is that they do not require recalculating the entire system 

reliability.  Each time only one subsystem is changed, therefore, only the reliability of that 

subsystem is recalculated and system reliability is updated accordingly.  After considering all 

subsystems and all components within each subsystem, the best non-tabu candidate is selected as 

the move.   

The structure of the subsystem that has been changed (in the accepted move) is stored in 

the tabu list.  For example, if subsystem two has been changed from one with two type 1, three 

type 2 and one type 3 components (x2=1 1 2 2 2 3 0 0) to one with one type 1, three type 2 and 

one type 3 components (x2=1 2 2 2 3 0 0 0), then any move with two type 1, three type 2 and one 

type 3 components in subsystem two is now tabu.  To know if an entry on the tabu list is feasible 

or infeasible, the system cost and weight are kept with the subsystem structure in the tabu list.  

The length of the tabu list changes every 20 iterations to an integer distributed uniformly 

between [s, 3s].  

4.2.2 Penalty Function 

Since the series-parallel system RAP is formulated with two independent constraints 

(cost and weight), the penalty function is a linear summation as shown in (2) with N = 2. 





















 ∆
+







 ∆
−−=

21

NFTNFT
)()()(

K

c

K

w
feasallp

cwRRRR xx     (8) 

∆c and ∆w represent the magnitude of the constraint violations and NFTco and NFTwo are set to 

1% of the constraint values, C and W.  K is set to 1 in each case, though results are not sensitive 

to this value. 

4.2.3 Test Problems and Results 

The test problems considered were originally proposed by Fyffe et al. [17] and modified 

by Nakagawa and Miyazaki [35].  Fyffe et al. [17] specified 130 units of system cost, 170 units 

of system weight and ki=1 (i.e., 1-out-of-n:G subsystems).  Nakagawa and Miyazaki [35] 

developed 33 variations of the original problem, where the cost constraint is maintained at 130 

and the weight constraint, W, varies from 191 to 159.  In both papers, the assumption was that 

only identical components could be placed in parallel.  Coit and Smith [12], however, relaxed 

this assumption and assumed that different components could be placed in parallel.  For all 

subsystems nmax, i is set to be 8.  
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 The results of TS are compared in Table 3 with the best solution for each row shaded.  

Although differences in reliability are small, keep in mind that reliability is bounded by 1.0, and 

any increase in system reliability will result in significant savings over the life of the system.  

Results were similar to the layout problem – the approach of [36] did not perform nearly as well 

as the others and the approach of [18] was more variable which, in this problem class, caused 

worse mean and worst case performance.  Figure 4 shows the NFT behavior of the weight 

constraint as it varies throughout the duration of the TS.  As in Figure 3, NFT is actively altering 

to encourage a thorough search of the boundary area about feasibility and infeasibility.  After 

more extreme adjustments early in the search, the memory property of the penalty function finds 

an NFT ranging from 1 to 6 to be most effective. 

Table 3 and Figure 4 here. 

4.3 Orienteering Problem 

Given a set of control points with associated scores along with start and end points 

(which have no score), the orienteering problem (OP) finds a path that maximizes the total score 

subject to a given time (or distance) budget, denoted by Tmax.  Because of the constraint, tours 

will not include all points.  The OP is equivalent to the Traveling Salesman Problem (TSP) when 

the time is relaxed just enough to cover all points and start and end points are not specified.  The 

OP is NP-hard and has applications in vehicle routing and production scheduling, as discussed in 

Golden et al. [25] and Keller [31]. 

The OP has been studied with a number of heuristics, including Tsiligirides [46], Golden 

et al. [25, 26], Keller [31], Ramesh and Brown [38], Kantor and Rosenwein [30], Mittenthal and 

Noon [34], Wang et al. [47], and Chao et al. [8, 9].  These heuristics include neural networks, 

tree-based algorithms, center of gravity algorithms and problem specific improvement 

algorithms. 

4.3.1 The TS Algorithm 

The encoding is the order of cities visited.  To generate a random initial solution, a simple 

heuristic is used.  First, the number of cities to be visited is randomly chosen.  Second, the total 

distance from each city to every other city is calculated.  The ratio of the score of a city to its 

total distance is found and this ratio correlates with the probability of including that city in the 

initial tour.  Using these probabilities and uniform random numbers from 0 to 1, a (variable 

length) permutation of visited cities is created. 
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Five move operators were used.  The first inserts the city in the ith location after the jth 

location.  The second adds a city, which is not in the tour, to the tour after the jth location.  The 

third deletes the city in the ith location from the tour.  The fourth simultaneously inserts a city and 

deletes a city.  The fifth reverses the order of cities between two selected positions while keeping 

the origin and destination unchanged.  The length of the tabu list changes every 20 iterations to 

an integer distributed uniformly between [NC/2, 2NC] where NC is the total number of cities.  

4.3.2 Penalty Function 

Following (2), the penalized objective function is 
K

d
feasallp NFT

dSSSS 






 ∆
−−= )()()( xx     (9) 

∆d represents the magnitude of the time constraint violation, NFTdo is set to 10% of the 

constraint value, Tmax. and K is set to 2. 

4.3.3 Test Problems and Results 

The test problems are those most studied in the literature [8, 46].  These are three sets of 

size 32, 21, and 33 nodes with 18, 11, and 20 instances, varying by  value, respectively.  

Chao et al. [8] found a mistake in the original data set of [46] in the size 32 problem, corrected 

the mistake and created a new data set, named data set 4, which is different from the old set at 

node 30.  The search spaces are 1  for the 21 node, 2.7 x 10

maxT

17102. × 32 for the 32 node and 8.2 x 

1033 for the 33 node problems.  The N&I [36] penalty approach performed poorly on these 

problems in all cases and so exact results are not shown.  Table 4 shows the remaining results 

compared to the best heuristic in the literature, that of [8].  Both the proposed memory-based 

penalty and Gendreau’s penalty performed well; the best of 10 runs for each problem instance of 

both equaled or bettered the best results in the literature.  For mean and worst over 10 runs, 

results are fairly evenly mixed between the two methods over the problem instances, and the 

overall conclusion is that either method is very effective for the OP problem.  As shown in 

Figure 5, an NFT ranging from 0.5 to 3 is found to be most effective for this problem class. 

Table 4 and Figure 5 here. 

5.0 Conclusions 

 This paper has put forth a general method for effectively handling constraints when using 

a tabu search metaheuristic.  The memory property of TS is distinct and has proven useful for 

 17



many difficult combinatorial problems.  Most of these problems are constrained, and discarding 

or repairing infeasible solutions has been observed to be inefficient.  The memory-based penalty 

function of this paper encourages search within both the feasible region and promising areas of 

the infeasible region.  It self scales to the magnitude of each constraint and requires setting an 

initial Near Feasibility Threshold and an amplification exponent for each constraint, though these 

can be easily established and results are robust to their values.  The penalty adapts to both the 

long term memory of the search (through comparison of the best solution and best feasible 

solution found) and the short term memory of the search (through feasibility/infeasibility 

characterization of the current move relative to recently accepted moves). 

 This approach can be used on a variety of constrained problems.  In computational 

comparisons on three distinct combinatorial problems, the memory-based approach is superior to 

[36] with many fewer parameters to set a priori.  Comparisons with Gendreau’s et al. [18] 

approach are mixed.  Number of parameters to set in each method are essentially the same (K 

and NFTo in this method and initial weights and h in the method of [18]).  The methods both 

change the penalty applied according to recent search history, the memory-based approach 

explicitly uses the tabu list and Gendreaus’s approach uses a window size, h.  Both handle 

multiple constraints independently and use the distance from feasibility as the main penalty term.  

The memory-based approach adds a self scaling of constraints through the NFT and feedback 

from the long term memory using the best solutions (feasible and overall) found.  It seems that 

for some problems such as the OP, these are not advantageous additions, however for other 

problems especially those with multiple constraints, such as the RAP, they may well be.  

Computational evidence herein indicates that the approach of [18] may be more variable to seed 

in general.   

In comparisons with results from the literature, a TS with an effective penalty function is 

extremely competitive for these problem classes.  Moreover, the dynamic behavior of NFT over 

search clearly illustrates that a penalty that adjusts to search history is more effective than a static 

penalty or one that operates monotonically.  The method of this paper is simple, general and 

effective, and is a step forward in using memory to advantage in TS. 
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Table1.  Parameter Settings of Two Penalty Methods. 

 

N & I 's [36] penalty 
θ 0.5 
σ 3.0 

w0
(0) 1.0 

LB 0.4 
UB 0.6 

Gendreau et al.'s [18] penalty 
initial weights 1.0 

h 10 
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Table 2. Results of the Block Layout Test Problems Over 10 Random Number Seeds. 

 
   

 Armour & Armour &  Bazaraa- Bazaraa- 
Method Buffa Buffa 12 dept. 14 dept. 

 MSL of    
 MAR=3 Coit et al.[13] MSL=1 MSL=1 

Memory-based 
penalty 

    

best 5618.2 4712.7 8682.2 5190.1 
mean 5852.3 5192.1 8969.8 5404.1 
worst 6081.6 5776.2 9651.2 5687.3 

N & I 's [36] penalty     
best 5648.5 4967.7 9036.4 5292.5 

mean 5934.0 5266.6 9281.5 5515.5 
worst 6252.5 5588.3 9725.7 5903.5 

Gendreau et al.'s [18]     
 penalty     

best 5607.2 4753.5 8587.0 4962.4 
mean 5958.5 5049.3 8930.7 5389.9 
worst 7082.0 5549.8 9768.2 5810.9 
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Table 3.  Comparison of TS Penalty Approaches to Redundancy Allocation. 

 
   System Reliability of TS over 10 runs 
   Memory-based penalty N & I’s [36] penalty Gendreau et al's [18] penalty

No C W Max R Mean R Min R Max R Mean R Min R Max R Mean R Min R 
1 130 191 0.9868 0.9867 0.9865 0.9742 0.9616 0.9354 0.9868 0.9867 0.9865 
2 130 190 0.9864 0.9863 0.9861 0.9744 0.9648 0.9568 0.9864 0.9863 0.9862 
3 130 189 0.9859 0.9858 0.9855 0.9849 0.9692 0.9570 0.9859 0.9858 0.9857 
4 130 188 0.9854 0.9851 0.9850 0.9715 0.9524 0.9013 0.9854 0.9853 0.9851 
5 130 187 0.9847 0.9847 0.9847 0.9670 0.9622 0.9575 0.9847 0.9847 0.9847 
6 130 186 0.9842 0.9842 0.9842 0.9673 0.9469 0.8751 0.9842 0.9842 0.9842 
7 130 185 0.9835 0.9835 0.9834 0.9704 0.9596 0.9451 0.9835 0.9834 0.9832 
8 130 184 0.9830 0.9830 0.9830 0.9664 0.9577 0.9405 0.9830 0.9829 0.9827 
9 130 183 0.9823 0.9823 0.9822 0.9666 0.9473 0.8837 0.9823 0.9822 0.9819 

10 130 182 0.9815 0.9815 0.9812 0.9656 0.9614 0.9562 0.9815 0.9815 0.9812 
11 130 181 0.9810 0.9809 0.9805 0.9653 0.9463 0.8956 0.9810 0.9809 0.9805 
12 130 180 0.9803 0.9803 0.9803 0.9666 0.9372 0.8801 0.9803 0.9802 0.9800 
13 130 179 0.9795 0.9795 0.9793 0.9678 0.9499 0.8959 0.9795 0.9794 0.9793 
14 130 178 0.9784 0.9784 0.9784 0.9677 0.9438 0.8615 0.9784 0.9784 0.9784 
15 130 177 0.9776 0.9776 0.9776 0.9671 0.9423 0.8757 0.9776 0.9776 0.9775 
16 130 176 0.9767 0.9767 0.9765 0.9617 0.9524 0.9127 0.9767 0.9766 0.9765 
17 130 175 0.9757 0.9757 0.9757 0.9607 0.9417 0.9085 0.9757 0.9756 0.9756 
18 130 174 0.9749 0.9749 0.9749 0.9595 0.9463 0.9132 0.9749 0.9749 0.9748 
19 130 173 0.9738 0.9738 0.9738 0.9604 0.9228 0.7879 0.9738 0.9738 0.9738 
20 130 172 0.9730 0.9730 0.9730 0.9579 0.9266 0.8403 0.9730 0.9730 0.9730 
21 130 171 0.9719 0.9719 0.9719 0.9573 0.9103 0.8313 0.9719 0.9719 0.9719 
22 130 170 0.9708 0.9708 0.9708 0.9513 0.9079 0.8259 0.9708 0.9708 0.9708 
23 130 169 0.9693 0.9693 0.9693 0.9538 0.9151 0.8205 0.9693 0.9693 0.9693 
24 130 168 0.9681 0.9681 0.9681 0.9505 0.8942 0.8249 0.9681 0.9680 0.9673 
25 130 167 0.9663 0.9663 0.9663 0.9478 0.9161 0.8901 0.9663 0.9663 0.9663 
26 130 166 0.9650 0.9650 0.9650 0.9498 0.9151 0.8617 0.9650 0.9650 0.9646 
27 130 165 0.9637 0.9637 0.9637 0.9498 0.9074 0.8420 0.9637 0.9637 0.9636 
28 130 164 0.9624 0.9624 0.9624 0.9440 0.8971 0.8530 0.9624 0.9623 0.9617 
29 130 163 0.9606 0.9606 0.9605 0.9384 0.8951 0.8362 0.9606 0.9606 0.9600 
30 130 162 0.9592 0.9592 0.9592 0.9368 0.8976 0.8051 0.9592 0.9591 0.9589 
31 130 161 0.9580 0.9580 0.9580 0.9445 0.9001 0.8571 0.9580 0.9580 0.9580 
32 130 160 0.9557 0.9557 0.9557 0.9322 0.8931 0.8055 0.9557 0.9557 0.9557 
33 130 159 0.9546 0.9546 0.9546 0.9347 0.9041 0.8594 0.9546 0.9544 0.9536 
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Table 4.  Comparison of Results on the Orienteering Problem. 
 

 Chao et al. [8] Memory-based penalty Gendreau et al.'s [18] penalty 
Tmax Max score Max 

score 
Mean 
score 

Min 
score 

Max 
score 

Mean 
score 

Min 
score 

Problem Set 1 – 32 Nodes 
5 10 10 10 10 10 10 10 

10 15 15 15 15 15 15 15 
15 45 45 43.5 30 45 45 45 
20 65 65 60 45 65 63 55 
25 90 90 88.5 75 90 90 90 
30 110 110 110 110 110 110 110 
35 135 135 130 100 135 132.5 130 
40 155 155 151.5 130 155 152.5 130 
46 175 175 170 150 175 175 175 
50 190 190 185 165 190 188 180 
55 205 205 200.5 180 205 200 190 
60 225 225 221 215 225 222.5 220 
65 240 240 238 220 240 240 240 
70 260 260 257.5 235 260 260 260 
73 265 265 265 265 265 265 265 
75 270 270 270 270 270 270 270 
80 280 280 280 280 280 278.5 265 
85 285 285 285 285 285 285 285 

Problem Set 2 – 21 Nodes 
15 120 120 120 120 120 120 120 
20 200 200 200 200 200 200 200 
23 210 210 210 210 210 210 210 
25 230 230 230 230 230 230 230 
27 230 230 221.5 220 230 225 220 
30 265 265 264.5 260 265 265 265 
32 300 300 293 265 300 297 270 
35 320 320 311 310 320 312.5 305 
38 360 360 355.5 350 360 354 350 
40 395 395 395 395 395 395 395 
45 450 450 450 450 450 450 450 

Problem Set 3 – 33 Nodes 
15 170 170 170 170 170 170 170 
20 200 200 200 200 200 198 180 
25 260 260 256 240 260 258 250 
30 320 320 320 320 320 320 320 
35 390 390 369 260 390 374 350 
40 430 430 401 300 430 422 410 
45 470 470 460 450 470 468 460 
50 520 520 508 440 520 512 440 
55 550 550 549 540 550 527 480 
60 580 580 576 560 580 576 560 
65 610 610 608 600 610 604 560 
70 640 640 632 580 640 633 600 
75 670 670 669 660 670 666 640 
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80 710 710 705 700 710 700 660 
85 740 740 731 690 740 739 730 
90 770 770 766 730 770 767 740 
95 790 790 790 790 790 787 760 
100 800 800 800 800 800 799 790 
105 800 800 800 800 800 800 800 
110 800 800 800 800 800 800 800 

Problem Set 4 – 32 Nodes - Corrected 
5 10 10 10 10 10 10 10 

10 15 15 15 15 15 15 15 
15 45 45 43.5 30 45 45 45 
20 65 65 61 45 65 63 55 
25 90 90 88.5 75 90 90 90 
30 110 110 110 110 110 110 110 
35 135 135 128 100 135 132.5 125 
40 155 155 149 120 155 153 135 
46 175 175 170 150 175 172.5 160 
50 190 190 185 165 190 184.5 165 
55 205 205 200.5 180 205 201.5 195 
60 220 225 222 220 225 221.5 215 
65 240 240 239 230 240 240 240 
70 260 260 257.5 245 260 257 245 
73 265 265 261.5 240 265 263.5 250 
75 275 275 273 255 275 269.5 255 
80 280 280 278.5 270 280 279 270 
85 285 285 285 285 285 285 285 
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Figure 2.  Typical NFT behavior over search for the Armour and Buffa [1] block layout problem. 
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Figure 3.  Series-parallel system configuration 
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Figure 4.  Typical NFT behavior over search for the redundancy allocation problem (weight 

constraint). 
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Figure 5.  Typical NFT behavior over search for the orienteering problem. 
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