
Journal of Signal Processing Systems (2019) 91:33–46

https://doi.org/10.1007/s11265-018-1416-1

Exploiting Task Parallelism with OpenCL: A Case Study

Pekka Jääskeläinen1 · Ville Korhonen1 ·Matias Koskela1 · Jarmo Takala1 · Karen Egiazarian1 · Aram Danielyan2 ·

Cristóvão Cruz2 · James Price3 · SimonMcIntosh-Smith3

Received: 1 April 2017 / Revised: 15 February 2018 / Accepted: 1 October 2018 / Published online: 15 October 2018

© The Author(s) 2018

Abstract

While data parallelism aspects of OpenCL have been of primary interest due to the massively data parallel GPUs being

on focus, OpenCL also provides powerful capabilities to describe task parallelism. In this article we study the task

parallel concepts available in OpenCL and find out how well the different vendor-specific implementations can exploit

task parallelism when the parallelism is described in various ways utilizing the command queues. We show that the vendor

implementations are not yet capable of extracting kernel-level task parallelism from in-order queues automatically. To

assess the potential performance benefits of in-order queue parallelization, we implemented such capabilities to an open

source implementation of OpenCL. The evaluation was conducted by means of a case study of an advanced noise reduction

algorithm described as a multi-kernel OpenCL application.

Keywords OpenCL · Task-level parallelism

1 Introduction

OpenCL is a widely-adopted programming standard for

parallel heterogeneous systems. The goal of the standard

is to support a wide range of heterogeneous platforms

efficiently and provide source code portability across them.

While data parallelism aspects of OpenCL have been

of primary interest to its users due to the massively

parallel GPU devices being on focus, OpenCL also

provides extensive capabilities to describe heterogeneous

task parallelism by means of pushing commands to one or

more command queues controlling one or more devices, and

using events, command queue barriers or kernel argument

buffer data dependencies for synchronization.

We consider this side of the standard underutilized

despite it being the feature to efficiently harness devices in

heterogeneous platforms to collaboratively execute multi-

kernel applications by reducing the “master role” of the

host program. OpenCL command queues (CQ) provide a

� Pekka Jääskeläinen

pekka.jaaskelainen@tut.fi

1 Tampere University of Technology, Tampere, Finland

2 Noiseless Imaging Ltd., Tampere, Finland

3 University of Bristol, Bristol, UK

means to describe larger parts of the application structure to

the OpenCL runtime, giving it an opportunity to optimize

the execution at the higher level [9]. OpenCL 2.0 [10]

introduced additional task-related features, allowing devices

themselves to launch new kernels asynchronously, which

blurs the original division of responsibilities between a

“master host” and “slave devices”.

In this article we study the task parallel concepts of

OpenCL and evaluate how well vendor-specific implemen-

tations of OpenCL can currently exploit task parallelism.

As we found out that the vendor implementations are

not yet capable of extracting kernel-level task parallelism

from in-order queues automatically, we also propose a task

scheduling runtime which can analyze the data dependen-

cies automatically and utilizes multicore processors with

various memory hierarchies efficiently.

The rest of the article is organized as follows. In Section 2

we discuss the background of OpenCL and its potential

in harnessing entire heterogeneous platforms. Section 3

describes how task parallelism can be expressed using

OpenCL constructs, whereas Section 4 shows the steps to

efficiently construct multi-device heterogeneous task graphs

out of multiple command queues. Section 5 details the

proposed command queue runtime. Section 6 evaluates

the performance using a case study of an advanced noise

reduction algorithm. Finally, conclusions and our future

plans are presented in Section 8.

http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-018-1416-1&domain=pdf
http://orcid.org/0000-0001-5707-8544
mailto: pekka.jaaskelainen@tut.fi


34 J Sign Process Syst (2019) 91:33–46

2 Platform-Wide Execution
of Heterogeneous Task Graphs

Due to its history as a standardized programming model

for GPGPUs, OpenCL has been mostly used to reap

quick performance increases from GPUs where the parallel

performance is abundant, but requires data parallel kernels

to exploit to the maximum. Therefore, a common parallel

programming pattern in OpenCL accelerated applications

has been a straightforward host-slave “single kernel at a

time” offloading model where most of the application logic

is written in standard C/C++ with only the accelerated parts

calling the OpenCL API for getting speedups available with

the more parallel devices. The parts of the application not

suitable for parallel GPUs have been thus naturally mapped

to the host processor, which is usually a general purpose

CPU that can execute serial code faster due to higher clock

frequencies, branch prediction and speculative execution.

But why should the programmers bother writing larger

parts of the application as OpenCL kernels that are

pushed to command queues when large speedups can be

already reached by the simple model of CPU to GPU

offloading? So far there has been only limited number

of non-GPU based devices available that could have been

efficiently programmed using OpenCL. However, more

and more OpenCL support for devices originally designed

for other tasks than graphics processing has appeared

to the market from vendors such as Movidius (Myriad

vision processing units [12]) and Texas Instruments (C6000

DSPs [15]). Synopsys also now provides OpenCL support

for application-specific processors produced using their

ASIP Designer tools [14]. Also FPGA vendors have

acknowledged the benefits of a heterogeneous parallel

programming standard for providing more efficient results

from high-level synthesis [2, 3] with a rising trend of

integrating configurable logic at the chip or package

level with CPUs and GPUs [5, 16]. As this development

progresses, and a wider diversity of OpenCL-supported

devices are becoming accessible in a same platform,

the performance benefits of structuring the OpenCL

implementation application for efficient coordinated multi-

kernel execution is becoming more tangible.

The power performance promise of heterogeneous

computing can only be redeemed when the application

is properly partitioned and each part mapped to a device

with the best matching architecture. However, the costs

of mapping kernels in the application to multiple devices

must not shadow the power-performance benefits of

utilizing a more suitable device for the task at hand.

Such costs include the additional synchronization related

communication needed when a consumer task is not

residing in the same device as the producer task. This

is costly especially in case the synchronization has to

be done across different chips, but also adds to power

consumption and traffic congestion in case of using on-

chip interconnection networks. If the device communication

requires operating system calls in the host, it also adds

context switch overheads.

In addition to the lack of diversity in OpenCL supported

devices, from our experience, another major reason for

resorting to the simple single kernel offloading model

has been the often quoted low level of the OpenCL

programming model. Many programmers consider it too

burdensome to describe the whole application logic using

the OpenCL constructs, therefore programmers tend to

implement most of the logic in the host program without

calling OpenCL. This is emphasized in case of legacy

applications that are accelerated using OpenCL.

In this aspect, OpenCL can be considered to have

a bit of an identity problem; on one hand it is too

low level as an end user programming model, leaving

a lot of decisions such as kernel-to-device partitioning,

or the style of data parallelism to the shoulders of the

programmer. On another hand, it contains rather high level

abstractions and “programmer-targeted features”, such as

two kernel description languages, instead of only defining

a kernel intermediate representation for the compilers to

target. In contrast, the more recent Heterogeneous Systems

Architecture (HSA) [1] standard clearly sets itself to a

lower level in the heterogeneous parallel software stack with

very strictly defined hardware features, bit exact in-memory

control structures, and synchronization protocols that the

conformant heterogeneous platforms must implement.

If OpenCL is considered too low level to efficiently

implement large applications with, or requires a lot of

boilerplate code when accelerating legacy applications,

should more focus be put on using it as a portable

software stack layer below more programmer productive

higher-level programming languages? In this use, OpenCL

provides a benefit over HSA; its looser requirements to the

underlying hardware platform resulting from the somewhat

higher level abstractions. HSA requires a coherent shared

virtual memory across the whole system of which power

efficient and scalable implementation is considered an

open research challenge [7, 8, 13]. While hardware based

cache coherency is not a problem for many classes of

heterogeneous platforms, it is a too strict requirement to

place for a programming model used as a portability layer

which is desired to cover also the most challenging high

performance low power use cases and the highly embedded

devices of “Internet-of-Things” use cases.

We believe OpenCL has untapped potential of being

efficiently utilized as a portability layer for wide range

of heterogeneous platforms that are capable of executing



J Sign Process Syst (2019) 91:33–46 35

heterogeneous task graphs across various devices in an

independent manner. Its task graph description capabilities

are powerful enough to describe task graphs that are

“heterogeneous”, that is, which can utilize various type of

devices and explicit synchronization that can be optimized

by the runtime, and thus spread the execution across diverse

heterogeneous platforms.

3 Task Parallel Concepts in OpenCL

OpenCL programs structure the computational parts of the

application into kernels and specify that there must be no

data dependencies between the “kernel instances” (work-

items) by default. This allows the programmer to describe

parallelism in the single program multiple data (SPMD)

style. In this style, multiple parallel work-items execute

the same kernel function in parallel with synchronization

expressed explicitly by the programmer. Another concept

utilizing the SPMD model is the work-group (WG) which

bundles sets of work-items that can possibly synchronize

with each other. The specification states that the groups

itself can be executed completely independently from each

other. These concepts allow exploiting scalable data level

parallelism at multiple levels with a single kernel command;

across work-items in a single WG and all the WGs in the

work-space.

Thread-level parallelism can be utilized in OpenCL in

multiple ways: First, as WGs are assumed to be data

independent of each other, they can be executed as coarse-

grained “embarrasingly parallel” tasks, to exploit multiple

hardware threads (or cores) available in the devices. At the

higher application abstraction level, an abstraction called

command queue (CQ) is used for pushing tasks to the

devices in the platform.

There are two modes of operation available for the CQs:

In-order mode, which has an implicit ordering constraint

derived from the order the commands are enqueued in.

The other mode of execution is out-of-order (OoO) with

which the command execution ordering is constrained by

explicit synchronization commands and explicitly defined

event dependencies.

The event based command synchronization follows

the common event handling scheme: Each event object

encapsulates an execution status of a command, which

other commands can monitor. Command dependencies are

formed by defining an event wait list when enqueuing a

command. It contains a list of events that must signal the

finished status before the enqueued command is ready for

execution.

OpenCL versions 1.0-1.2 state that commands in in-

order queues must be executed in the order they have

been queued, even if an external observer couldn’t tell the

difference. However, starting from version 2.0, reordering

the command execution also in case of in-order CQs is

explicitly allowed as long as the execution semantics are

preserved [9, 11]. This is fulfilled in case the updates

on the memory objects accessed by the kernel commands

are visible to succeeding reads defined by the command

enqueue order, and if commands that have other side effects

are not reordered.

The less constrained in-order CQ execution semantics

of OpenCL 2.0 mean that the practical difference of in-

order to OoO CQs is that the programmer can rely on

data dependence analysis based on the buffer arguments of

the kernel commands to enforce the ordering constraints.

This is in contrast to OoO CQs with which one must mark

command dependencies explicitly with events or by using

command queue barriers.

Commands between multiple CQs, regardless if they are

in-order or OoO CQs are assumed independent from each

other unless synchronized by events. A single CQ always

targets a single device, but a single device may be targeted

by multiple CQs in the same OpenCL context to expose task

parallelism. Utilizing multiple CQs controlling multiple

devices, the programmer can communicate the higher level

application logic to the OpenCL runtime which can then

perform static and dynamic scheduling for performance

improvements.

Multiple command queues and shared (sub-)buffers can

be used to form multiple device kernel execution that

relieves the host as shown in Fig. 1. In this style of

execution, OpenCL buffers residing in a shared memory

are used to pass data between successive kernel commands.

It allows describing execution of task sequences across

the devices in the platform without having to synchronize

buffers with the host after each executed kernel like in the

simplest “CPU to GPU offloading model”.

Kernel sequences connected with buffers is an efficient

means in OpenCL to implement such type of applications

where the sequence of tasks to execute vary, for example,

per each frame of a video stream, and where the different

tasks benefit from different style of devices. The model

resembles, but is different from the streaming model

enabled by OpenCL 2.0 pipes. Pipes are designed for

forming data flow style execution pipelines with kernels

residing in the devices for long periods of time, processing

packets as they appear from other kernels.

4 Converting Command Queues to Task
Graphs

In task scheduling, the tasks of the application and their

dependencies are commonly expressed as a task graph (also

sometimes referred to as a macro-dataflow graph). A task



36 J Sign Process Syst (2019) 91:33–46

Figure 1 Example of a

multi-device multi-kernel task

sequence connected with

buffers.

graph is defined as a directed acyclic graph (DAG) G

consisting of a tuple of sets:

G = (V , E, C, T ) (1)

The graph topology is defined by set V which consists

of the tasks in the application, and by the edge set E

which defines communication direction or other ordering

constraints between tasks. These two sets are enough to

describe the semantics of the application to avoid illegal task

execution ordering decisions by the scheduler. Additional

information can be defined as labels by the set C that stores

communication costs associated with edges, and by the set

T which records the execution times of the tasks. [17]

The general task-scheduling problem is to manage the

execution of the tasks in a set of processors in the

platform as efficiently as possible, typically with the goal

of minimizing the total execution time of the application or

maximizing the energy efficiency. In order to accomplish its

goal, the scheduler must make two decisions for each task:

Which processor should execute each task (the partitioning

decision) and at which time, or in which relative order to the

other tasks (the scheduling decision).

When all G nodes and edges are labeled with their

costs before the run time, that is, when the sets C and T

are known before execution, the launch times of the tasks

can be defined statically in advance. In this ideal situation

there is no need for notifying the finishing of a task to the

dependent tasks due to the common assumption of the tasks

finishing early enough for the produced results to be valid

and consumable by the dependent tasks. However, due to

the dynamic nature of shared resource systems and data

dependent task execution times that call for dynamic load

balancing, fully static scheduling of task graphs to the extent

of omitting explicit task synchronization is not practical.

Therefore, task completion notification costs must be taken

into account when designing an efficient task scheduling

runtime system for executing both coarse and fine grained

tasks.

In OpenCL, command queues, which are used to pass

tasks to the runtime, are associated with a single OpenCL

device. Thus, the partitioning problem of the tasks is

partially delegated to the programmer or to a higher level

programming model. Due to the relative simplicity of

the contemporary OpenCL-programmable platforms, the

OpenCL application partitioning decision is usually driven

by the characteristics of the kernel at hand; massively

data parallel kernels are mapped to GPUs, while kernels

with more control oriented or uniformly executed parts are

targeted to the CPU or a DSP. However, the OpenCL devices

are often multicores themselves, leaving the choice of which

compute unit inside the device to execute the task in to the

runtime. Especially in case of multicore devices with non-

shared cache hierarchy levels, the compute unit mapping

choice for the work-group or a kernel command can make

a big difference in terms of cache hit ratio. Clearly, also

when scheduling for asymmetric multicore devices such

as ARM’s big.LITTLE CPUs that have multiple different

types of cores with the same instruction-set architecture, the

compute unit partitioning decision has a major impact.

In order to exploit the OpenCL buffer data locality,

the runtime must ensure the buffers are not needlessly

synced or moved around in the global memory hierarchy.



J Sign Process Syst (2019) 91:33–46 37

In addition, especially with applications involving a lot of

small granularity kernels, it is important to reduce the global

synchronization needs during execution, by ensuring that

only the kernels that need to be notified of an event are

notified while bothering the host or other devices as little

as possible. In order to exploit application-level properties

such as task dependencies and communication demands

in task parallelization, the OpenCL runtime can utilize a

task graph representing the kernels and their dependencies

involved in the application.

4.1 Constructing the Task Graph

OpenCL standard, which is at the time of this writing at

version 2.1, does not directly include a concept of a task

graph. Therefore, the sets of G have to be populated from

CQ abstractions such as events and commands while taking

in account the special cases and differences in the versions

of the standard.

When building a G from CQs, the set V is populated

with nodes consisting of three different task types that

can be directly converted from CQ concepts: Memory

transfer tasks which move or synchronize buffer data,

synchronization tasks which are used to explicitly restrict

the execution order of commands, and kernel tasks for

executing user defined compute tasks in a device.

In addition to the task types derived from CQ concepts,

we use several other task types for improving the parallelism

and optimizing the scheduling process: Kernel compilation

tasks are added due to the possibility of OpenCL to

build kernels online in the host program – presenting the

compilation as tasks in the task graph enables the runtime

to overlap kernel compilation with other tasks. Compilation

task is implicitly added when a new kernel command is

added with a dependency edge added to ensure compilation

is finished before the kernel task can start. The kernel

tasks are further split to work-group tasks for allowing fine-

grained control of work-group execution across multiple

compute-units.

While constructing the task nodes is a straightforward

process, adding the edges require considering the different

mixes of inorder and out-of-order queues. Extra care must

be taken to extract as much task parallelism as possible

while still preserving the application semantics as defined

by each standard version. The edge set is constructed from two

main data sources: Explicit events used to synchronize com-

mands in one or more CQs and buffer data dependencies

defined by the buffer arguments to kernel commands.

The rules for constructing the edges can be formalized

to a set of conditions which are checked when considering

two tasks (va, vb) ∈ V : va �= vb from command queues

(qx, qy) ∈ Q, where Q represents the set of all command

queues in the OpenCL context. In case at least one of the

following conditions is fulfilled, an edge va → vb is added

to E.

qx = qy ∧ inorderq(qx) ∧

(OpenCL version < 2.0 ∨

(qaf ter(va, vb) ∧ datadep(va, vb)) (2)

where inorderq() is true in case the given command

queue is an in-order queue. Function qaf ter(va, vb) returns

true in case vb was pushed to the CQ after va . Function

datadep(va, vb) is true in case there is a data dependency

between the two tasks according to their buffer arguments

or shared program scope variables, a feature introduced in

OpenCL 2.0. This condition handles nodes in the same in-

order queue. An example of such a task graph is illustrated

in Fig. 2. The example program writes kernel input data

to the device memory, then launches the kernel B, which

produces input for the next kernel C. Finally, the host reads

back the results from the device. Edges between the nodes

are implied by the in-order semantics of OpenCL 1.2.

(qx �= qy ∨ ¬inorderq(qx)) ∧ waitson(va, vb) (3)

where waitson(va, vb) marks an event dependency such

that vb waits on a completion event produced by va . Out-of-

order queues and event synchronization is handled by this

condition. In case the two commands are from two different

Figure 2 Example of a simple task graph constructed from a single command queue in OpenCL 1.2. All tasks implicitly depend on results from

the preceding task.



38 J Sign Process Syst (2019) 91:33–46

Figure 3 Example of a task graph extracted from a two-device program.

queues, they are always treated like they are from an out-

of-order queue and must be event synchronized to ensure

a predefined ordering. An example of a G built from two

different queues possibly controlling two different devices

is shown in Fig. 3. It can be seen that this application

has task parallelism that can be exploited with multiple

device or multiple compute unit execution. For example, the

buffer commands can be executed in parallel in case there

is enough memory bandwidth available, or overlapped with

kernel execution from the other queue.

4.2 Command Queue Data Dependence Analysis

OpenCL programmers typically use in-order queues for

their ease of use; the burden of extracting parallelism and

enforcing adequate synchronization is placed to the runtime.

Thus, in the edge creation conditions formulated in the

previous section, the datadep() function is placed major

responsibility in extracting task parallelism from programs

using in-order queues. The function returns true in case an

edge should be added due to of either a known memory

access conflict or because of being unable to prove there is

no dependence between the given tasks. It relies on the fact

that in OpenCL 2.0, it is legal to reorder the in-order queue

commands in case semantical differences to the original

order cannot be observed from the outside. In practice,

state in OpenCL applications that is visible to the outside

observers is transferred in memory objects (MO) the kernels

receive as arguments and indirectly by means of program

scope variables (PSV). In this context Pipe memory objects

are excluded, since their use cases differs greatly from

normal Buffer and Image memory objects.

In case only considering any uses of MOs or PSVs, it is

straightforward to add a set of edges to the task graph that

constraint the execution order to prevent illegal command

orderings. However, finer grained analysis that determines

the read-write relationships of the accesses should be

conducted for improving task parallelization opportunities.

When considering data dependencies between tasks,

read-after-read dependencies can be ignored because they

involve no data races which require serialization. Only the

other access relationships, that is, write-after-read, read-

after-write and write-after-write add restrictions to the

execution ordering, and thus imply edges in the task graph.

There are various ways to extract the access type information

from CQ tasks. For memory transfer tasks, the access

type is explicitly defined by the used API function. For

example, clWriteBuffer() writes a MO to the device memory

and reads it from the host memory, while clReadBuffer()

performs an opposite direction memory transfer task.

Analyzing the MO usage of kernel tasks can be done by

exploiting explicit information and by means of static kernel

memory access analysis. In the task graph build process,

there are three ways are used to derive the access type

information:

1. At creation time, the MO can be flagged with

CL MEM READ ONLY or

CL MEM WRITE ONLY, indicating that any kernel

task using the MO may only read it or write to it.

2. Restricted to Image MO’s only: to check the arguments

of the kernel task for read only and write only

access qualifiers that have the same semantics with

the corresponding MO flags, but can be defined at the

granularity of a kernel task.



J Sign Process Syst (2019) 91:33–46 39

3. In case the buffer is in the constant address space, only

read accesses are allowed.

4. When none of the above flags or qualifiers are present,

read/write access is assumed by the standard. Static

compiler analysis can be attempted to resolve whether

kernel is only reading the data in the buffer.

PSVs are per-device global variables in kernels that have

the same lifetime as the whole OpenCL application and

once initialized, they can be read and written by other

kernels in the same program module. PSVs are a completely

device-side construct – no information of PSVs are given by

the programmer at the host side. In addition to static kernel

analysis, the following predicates can be derived from the

specification text to reduce the number of task graph edges

when a kernel is known to use PSVs:

1. If the kernel tasks va and vb are not from the same

program, there is no PSV-induced dependence.

2. If the kernel tasks va and vb are not queued to the same

device, there is no PSV-induced dependence.

5 Implementing a Task Scheduling Runtime

For this study, we extended an open source OpenCL

implementation with a runtime that is able to extract task

graphs from command queues and dynamically schedule

their execution on shared memory single instruction set

multicores (often referred to as CPUs).

There were two main challenges when developing the

runtime: First, the point of time during the host application’s

execution affects the size of extracted task graphs heavily.

This problem is discussed in the next subsection. Second,

the mapping of kernels and work-groups to cores in various

multicores is not trivial due to differing memory hierarchies

and topologies. The proximity and the size of caches affects

the resulting performance heavily. The implementation

specifics resulting from this, with a portable OpenCL task

scheduling algorithm are presented in the latter subsection.

5.1 Dynamic Construction of Task Graphs

In OpenCL applications, the extent of the task relationships

that can be extracted to build a task graph that is beneficial

in task scheduling is limited by calls made by the host

program to OpenCL APIs such as clFinish() or clFlush().

When the program calls these functions, it communicates

to the runtime that it assumes progress will be made in the

execution of the CQ given as a parameter.

A common OpenCL host program idiom is an asyn-

chronous execution style where one or more commands are

pushed to a queue, and then clFlush() is called in hopes of

kernels executing concurrently in a device while the host

program is running and possibly pushing more tasks to

the queue. This is typically done in a loop to produce a

streaming style of execution using the command queues.

When clFlush() is called, it often means that more

commands will be pushed to the CQ by the host application

– otherwise it would have called clFinish() to indicate the

finalization of the queue. When the host program needs to

synchronize with commands running in the devices, it calls

clWaitForEvents() to ensure a particular command and all

its prerequisite commands in the chain of dependent tasks

have finished, or blocks until all commands in the queue

have finished execution by calling clFinish().

When clFinish() is called, the runtime is signaled that

no new commands will be pushed to the queue which

would allow analyzing the contents of all CQs involved

in the application to construct an expansive task graph.

However, because the command queues can be constructed

and sent for execution incrementally with an assumption

of asynchronous execution progress for the already queued

tasks, it means the task graph used by the runtime must

be adaptive and efficiently expanded with new information

when new commands are pushed to the runtime. This task

is trivial with out-of-order queues and their explicit event-

based synchronization that maps directly to task graph

edges, but with in-order queues it requires some additional

work.

In the proposed task graph based runtime, TG is

constructed incrementally whenever new commands are

pushed to a CQ. In order to speed up the edge analysis and to

enable dynamic construction, the edge predicate checking is

performed only between the newly pushed tasks and a set of

previous ones. To analyze data dependencies dynamically,

a data access bookkeeping structure as shown in Fig. 4 is

attached to each MO or PSV. The structure keeps track of

the last queued task that modifies the given MO or PSV, and

the tasks that read the data and have been enqueued after it.

When a new write to the same object is encountered, read-

after-write edges are created between the first write and the

reads, and between all the reads and the new write. After

a new write is encountered, the earlier last write and last

read sets of tasks can be discarded with newly pushed data

reading tasks being associated with a new last write record.

5.2 Dynamic Task Scheduling for SharedMemory
Multicores

In the proposed dynamic task scheduling algorithm for

various shared memory multicores, we group the compute

units (processor cores) according to their cache hierarchy

proximity to “compute groups”. Physical cores (or hardware

threads) that share the same lowest level cache entity,

form a compute group. The purpose of the grouping is to

enhance data locality improvements when task parallelism



40 J Sign Process Syst (2019) 91:33–46

Figure 4 An application with a commands enqueued to two in-order

command queues with an explicit event synchronization point, b a

dynamic data access book keeping structure for data X (MO or PSV)

when all commands are enqueued, but none have completed yet, and

c the extracted task graph that exposes parallelism, but preserves the

in-order queue semantics.



J Sign Process Syst (2019) 91:33–46 41

is available by prioritizing cores in the same group when

launching tasks that are dependent on the previous kernels

executing in the group. Especially in a “tiled” execution

model typical in image or video processing pipelines the

data is processed in smaller blocks with multiple successive

kernels this type of execution is expected to enhance cache

hits as the product of the previous kernel is likely still

remaining in the close cache for the next kernels to read.

Each compute group contains a work queue for each

physical core and a worker thread for each hardware thread.

All of the worker threads are bound to one of the physical

cores belonging to the compute node.

The initial work sharing is performed as follows.

Enqueued commands are stored to a task list in their order

of arrival. When a command queue is flushed, the task list is

dismantled by utilizing the event dependency information to

compose the task graphs as was described previously. Task

graphs are pushed to the compute groups in a round robin

fashion as soon as they are extracted. Inside the compute

groups, the task graphs are further round robin distributed

to the work queues.

During execution, the load is balanced by means of

locality aware work stealing: Each worker thread has a

priority ordered list of work queues from where they

seek for work. When executing commands, workers try to

maintain depth first ordering by preferring immediate task

graph successors of the commands they execute in order to

enhance data locality.

The worker thread execution thus proceeds in the

following main steps, which is looped until no commands

are available:

1. Go through the work queues in the compute group until

a launched task graph or a ready to launch task graph is

found.

2. Keep executing commands from the chosen task graph

until there are no commands to execute or there are only

commands blocked by other events.

3. When own compute group runs out of task graphs, the

first worker in the node to make this observation tries to

steal one full task graph from another compute group.

4. If stealing was not possible start going through work

queues in the next compute group, emphasizing groups

with shared lower level cache hierarchies.

6 Case Study

6.1 The Application

We evaluated the current state of OpenCL task parallelism

in vendor SDKs and the proposed command scheduling

algorithm using an advanced noise reduction that consists

of multiple steps that were natural to divide to multiple

OpenCL kernels.

The algorithm is called BM3D [4]. Its OpenCL

implementation was partitioned into multiple kernels

executing individual steps forming a kernel pipeline. The

pipeline begins with a block matcher kernel which reads in

smaller tiles of the input image, and searches for similar

tiles from the other parts of the image. Find matches kernel

does the ordering of the matching blocks from the most

similar to the least similar. Threshold kernel does the actual

noise canceling by using haar transforms and thresholding.

Aggregate returns blocks back to their places in the output

image, and finally, Aggregate division computes a weighted

average of the blocks written to the output.

The kernel pipeline is launched for 30 input frames in

parallel in order to produce abundant task-level parallelism

for the tested runtimes to exploit.

6.2 Tested Runtimes

We used the following OpenCL implementations for

comparing their runtimes’ capabilities to exploit kernel

level parallelism: The latest release of Portable Computing

Language (pocl-0.14 [6]), pocl 0.14 with the proposed

task scheduling runtime, Intel OpenCL runtime v16.1.1 and

AMD APP SDK v3.0.

The benchmarked multicore platforms were: A dual-

socket Intel Xeon E5-2697 v3, the CPU of AMD A10-

7850K (Kaveri), and Intel Core i7. The Xeon platform is a

NUMA architecture with two separate 12-core (24 hardware

thread) processors each having their own cache hierarchy.

This CPU incurs high penalties from bad task assignments

due to the multi-socket setup. AMD A10 is a quad core

that consists of two dual core processors with their own L2

caches. Intel Core i7 is a quadcore with a single shared L3

cache.

Clearly, the AMD OpenCL implementation is assumed

to be optimized on AMD CPUs and the Intel’s on their own,

it is possible to run them in their competitors’ CPUs. Thus,

just for the sake of comparison we included numbers of

AMD OpenCL SDK on Intel’s CPUs and vice versa.

Multiple different ways to use command queues to

expose task parallelism were evaluated: The first one is

the case simplest to the programmer; all commands are

enqueued to a single in-order command queue without

explicit kernel-level task parallelism. The second alternative

uses a separate in-order command queue for each of the

30 frames, thus explicitly communicating that commands

processing each of the frames are mutually independent.

The third option is a single out-of-order command queue

where all available task parallelism is stated explicitly by

forming event dependencies only between those commands

that must be ordered. Finally, the fourth alternative uses



42 J Sign Process Syst (2019) 91:33–46

Figure 5 Total execution times for each platform with a single in-order queue.

a separate out-of-order-queue for each frame with event

synchronization. The proposed implementation’s in-order

queue parallelization capabilities were also evaluated with

a single in-order queue, assuming OpenCL 2.0 command

queue execution semantics which explicitly allow in-order

queue parallelization. We found that the other SDKs do not

yet support this mode at the time of this writing.

The total execution times are not feasible to compare

between the OpenCL platforms because the performance

of the kernel compilers varies a lot (e.g., due to executing

an Intel SDK on an AMD CPU and vice versa) which

affects the cache footprint and the synergy between multiple

kernels running at the same time. Regarding the kernel

compiler we found that the Intel’s performs the best for

most of the cases and that pocl 0.14’s kernel compilation

performance has fallen behind. However, as the focus of this

article is in how task parallelization differs with different

command queue usage styles, we computed the speedups

in comparison to the kernel serial execution in each case. It

should be noted that the compared kernel serial execution

can still utilize work-group level parallelism across multiple

cores and the additional task level parallelism measured here

results from concurrent execution of multiple commands.

The task-serial execution times of the application on each

platform is shown in Fig. 5. This is the baseline we measure

the task parallelization speedups from.

Figure 6 Speedups from utilizing task parallelism on the Intel Xeon CPU.



J Sign Process Syst (2019) 91:33–46 43

Figure 7 Speedups from utilizing task parallelism on the AMD A10 CPU.

Intel Xeon results are shown in Fig. 6. Intel and AMD

both can exploit the abundance of cores in this CPU the

best. Proposed runtime gets speedups up to 1.96x, while

Intel’s SDK up to 2.3x and AMD’s up to 2.44x. However,

AMD requires multiple command queues to be used in order

to execute kernels in parallel. Intel can also extract task

parallelism from a single out-of-order queue. The proposed

runtime is the only one that can utilize the automatic in-

order queue kernel parallelization and can reach the same

parallelization performance utilizing only a single in-order

queue for all the commands. Similar benefit can be seen

with the other CPUs as well. Pocl 0.14 reaches only up to

1.2x speedup in its current state.

AMD A10 results are shown in Fig. 7. The results from

proposed and Intel are quite similar to Xeon platform,

both platforms gain some performance improvement when

task parallelism is available. Intel’s task parallelization

speedup is 4 - 10%. Proposed gets a steady speedup of

4%, also with the automatic in-order queue parallelization.

Pocl 0.14 gains no performance improvement from kernel

level parallelism regardless of how it was described. AMD

SDK results are quite unexpected since it seems to suffer a

25% performance penalty when multiple queues are used to

describe kernel level parallelism. It is likely utilizing some

sort of a simple but fair round robin scheduling scheme,

executing a command from each queue at the time, which

leads to a bad cache foot print as it doesn’t exploit the

data locality between kernels processing a single frame.

The speedups in general are considerably lower than with

the Xeon. This is likely due to the individual kernels in

the application sufficiently utilizing all the cores via work-

group parallelization.

Finally, Intel i7 results are shown in Fig. 8. On this

platform, proposed gets steady 7% speedups, while Intel’s

Figure 8 Speedups from utilizing task parallelism on the Intel Core i7.



44 J Sign Process Syst (2019) 91:33–46

speedup is capped at 14%. For some reason Intel’s single

ooo-queue case is 3% slower than the base line. Pocl 0.14

again gains no speedups from kernel level parallelization.

AMD SDK does not gain anything from a single out-

of-order queue and again suffers over 20% performance

penalty in multiple command queue scenarios.

In conclusion, the proposed task scheduler which was

added to pocl 0.14, improves its performance of task parallel

execution and is the only one of the compared ones currently

capable of task parallelizing commands from a single in-

order queue efficiently. However, Intel OpenCL SDK has

overall fastest implementation on the tested CPUs. It can

also efficiently utilize task parallelism described using

the different command queue schemes. This is especially

visible on the dual Xeon platform. It also performs well

even when using rather large number of command queues

to isolate the task parallel parts.

AMD SDK, on the other hand, seems not to be optimized

for task parallel execution. The dual Xeon platform makes

an exception where speedups are on par with Intel’s. The

results suggest that AMD’s SDK is not currently making

data locality aware scheduling decisions based on the com-

mand queue dependencies, but schedules from command

queues “fairly” which had severe impact on the platforms

with more limited cache resources of this case study.

7 RelatedWork

This article presented the ways task-level parallelism can be

described and utilized in OpenCL programs, and evaluated

how well this aspect of OpenCL applications is taken

advantage of by commercial and open source runtimes. To

the best of the author’s knowledge, there is no article with

similar information published.

The article also described runtime techniques involved

in extracting task level parallelism from in-order-queues

utilizing the explicit data dependency information. The

proposed runtime is the only one that can do automatic

in-order queue kernel parallelization and reach the same

parallelization performance utilizing only a single in-order

queue for all the commands.

Of the related evaluated OpenCL runtimes, Intel OpenCL

SDK had overall fastest runtime implementation on CPUs,

efficiently utilizing parallelism described using the different

command queue schemes. Intel’s SDK driver offloads the

task level scheduling to the Threading Building Blocks,

which has advanced algorithms tuned to exploit Intel

multicore CPUs.

The other related OpenCL runtime for CPUs, AMD’s

OpenCL SDK, seems not to be optimized for task parallel

execution. Our evaluation suggests that AMD’s SDK, unlike

the proposed runtime, is not currently making data locality

aware scheduling decisions based on the command queue

buffer dependencies, but schedules from command queues

“fairly” which had severe impact on the platforms with more

limited cache resources of this case study.

8 Conclusions

OpenCL enables multiple ways to explicitly describe

parallelism across multiple commands (tasks) utilizing out-

of-order command queues and event synchronization. In

addition, starting from version 2.0 of the standard, implicit

extraction of task parallelism from in-order command

queues is allowed.

We used a case study of an advanced multi-kernel image

denoising application to measure how well the vendor

OpenCL CPU implementations can exploit task parallelism

when the commands are pushed in different ways to

command queues by the host program. In addition, we

developed a task scheduling runtime to the open source pocl

implementation which can exploit task parallelism from the

explicit command queue scenarios, and also from in-order

queues based on the buffer dependencies.

We found that the tested OpenCL implementations were

generally able to exploit task parallelism when independent

tasks were pushed to separate in-order or out-of-order

command queues, which is the most explicit way to describe

task parallelism in OpenCL. Intel’s implementation was

able to also parallelize multiple independent task graphs

pushed to a single out-of-order-queue. None of the vendor

SDKs were currently able to parallelize in-order command

queues. The speedups measured from the implicit task

parallelism that the proposed runtime could utilize were on

par with the explicit ones for the case study application.

One important aspect in task graph execution is to utilize

the task graph’s dependencies to schedule dependent tasks

(those that share data) closer to each other both spatially

and temporally. The case study indicated that AMD’s SDK

seems not to do this, but use some kind of round robin

scheme as the rather high number (30) of command queues

actually resulted in a slow down. The proposed runtime and

the Intel’s were able to utilize data locality and were not

affected inversely by distributing the task graphs to their

own command queues.

This article described internals of a key component

used in the ALMARVI project’s image processing software

stack. The project used an OpenCL centric stack that was

supported with unified hardware interfaces and higher level

programming models. The OpenCL task scheduling runtime

described in this article was utilized to accelerate multiple

kernel execution of complex image filtering algorithms.



J Sign Process Syst (2019) 91:33–46 45

Acknowledgments This work was primarily supported by the

ARTEMIS joint undertaking under grant agreement no 621439

(ALMARVI). Some of the authors also received funding from

Academy of Finland (funding decision 297548) and Finnish Funding

Agency for Technology and Innovation (project ”Parallel Accelera-

tion” funding decision 40115/13).

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://

creativecommons.org/licenses/by/4.0/), which permits unrestricted

use, distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

References

1. Hsa platform system architecture specification, 2015.
2. Bacon, D., Rabbah, R., Shukla, S. (2013). FPGA pro-

gramming for the masses. Commun. ACM, 56(4), 56–63.

https://doi.org/10.1145/2436256.2436271.
3. Czajkowski, T., Aydonat, U., Denisenko, D., Freeman, J., Kinsner,

M., Neto, D., Wong, J., Yiannacouras, P., Singh, D. (2012). From

openCL to high-performance hardware on FPGAs. In: Proc. Int.

Conf. on field programmable logic and applications, pp. 531–534.

https://doi.org/10.1109/FPL.2012.6339272.

4. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K. (2007). Image

denoising by sparse 3-d transform-domain collaborative filtering.

IEEE Transactions on Image Processing, 16(8), 2080–2095.

https://doi.org/10.1109/TIP.2007.901238.

5. Intel: Intel expands customer choice with first configurable intel�

atomTM-based processor. Press release, 2015. http://newsroom.

intel.com/.

6. Jääskeläinen, P., de La Lama, C.S., Schnetter, E., Raiskila, K.,

Takala, J., Berg, H. (2015). pocl: A performance-portable OpenCL

implementation. International Journal of Parallel Programming,

43(5), 752–785. https://doi.org/10.1007/s10766-014-0320-y.

7. Kaxiras, S., & Keramidas, G. (2010). SARC coherence: Scaling

directory cache coherence in performance and power. IEEE Micro,

30(5), 54–65. https://doi.org/10.1109/MM.2010.82.

8. Kayi, A., Serres, O., El-Ghazawi, T. (2015). Adaptive cache coher-

ence mechanisms with producer-consumer sharing optimization

for chip multiprocessors. IEEE Transactions on Computers, 64(2),

316–328. 10.1109/TC.2013.217.

9. Khronos Group (2012). Beaverton, OR: OpenCL Specification

v1.2r19 edn.

10. Khronos Group (2015). Beaverton, OR: OpenCL Specification

v2.0 edn.

11. Khronos Group (2015). Beaverton, OR: OpenCL Specification

v2.1 edn.
12. Movidius: Software Development Kit (web page). http://www.

movidius.com/solutions/software-development-kit.
13. Singh, I., Shriraman, A., Fung, W., O’Connor, M., Aamodt, T.

(2013). Cache coherence for gpu architectures. In: 2013 IEEE 19th

international symposium on high performance computer architec-

ture (HPCA2013), pp. 578–590. https://doi.org/10.1109/HPCA.

2013.6522351.
14. Synopsys: ASIP designer – application-specific processor design

made easy. web (2015). https://www.synopsys.com/dw/doc.php/

ds/cc/asip-brochure.pdf.

15. Texas Instruments: OpenCL Runtime Documentation v01.01.xx

(2015). http://downloads.ti.com/mctools/esd/docs/opencl.
16. Xilinx, Inc.: Xilinx UltraScale Architecture and Product Overview

(2015). DS890 (v2.6).
17. Yang, T., & Gerasoulis, A. (1991). A fast static scheduling algo-

rithm for dags on an unbounded number of processors. In: Pro-

ceedings of the 1991 ACM/IEEE conference on supercomputing,

1991. Supercomputing ’91, pp. 633–642. https://doi.org/10.1145/

125826.126138.

Pekka Jääskeläinen received

his M.Sc. and D.Sc.(Tech.)

degrees from TUT in 2005

and 2012, respectively, and

an Adjunct Professorship

from University of Oulu in

2017. Currently he leads the

Customized Parallel Com-

puting (CPC) group. On top

of publication activities, he

is a contributor to hetero-

geneous parallel platform

related open source projects

acting as the lead developer

of TTA-Based Co-design

Environment (http://tce.cs.tut.

fi) and Portable Computing Language (http://portablecl.org) projects.

His current research interests include methods and tools to reduce the

engineering effort involved in design and efficient programming of

diverse heterogeneous platforms, and hardware and compiler tech-

niques to reduce the energy consumption of the softwarebased control

of processors.

Ville Korhonen was part of

the Customized Parallel Com-

puting (CPC) group of Tam-

pere University of Technology

through years 2013 to 2017. In

CPC he focused on research-

ing parallel programming of

heterogeneous platforms in

the context of OpenCL API

and the Portable Computing

Language (pocl) project. Cur-

rently he has moved to indus-

try and is working as an

embedded software developer

in Wapice Ltd. Finland.

Matias Koskela received

his bachelor’s and master’s

degrees with honors from

Tampere University of Tech-

nology in 2014 and in 2015,

respectively and is now pur-

suing his doctoral degree.

His research interests include

optimizations and parallelism

in real-time implementa-

tions, especially focusing in

real-time ray tracing.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/2436256.2436271
https://doi.org/10.1109/FPL.2012.6339272
https://doi.org/10.1109/TIP.2007.901238
http://newsroom.intel.com/
http://newsroom.intel.com/
https://doi.org/10.1007/s10766-014-0320-y
https://doi.org/10.1109/MM.2010.82
http://www.movidius.com/solutions/software-development-kit
http://www.movidius.com/solutions/software-development-kit
https://doi.org/10.1109/HPCA.2013.6522351
https://doi.org/10.1109/HPCA.2013.6522351
https://www.synopsys.com/dw/doc.php/ds/cc/asip-brochure.pdf
https://www.synopsys.com/dw/doc.php/ds/cc/asip-brochure.pdf
http://downloads.ti.com/mctools/esd/docs/opencl
https://doi.org/10.1145/125826.126138
https://doi.org/10.1145/125826.126138
http://tce.cs.tut.fi
http://tce.cs.tut.fi
http://portablecl.org


46 J Sign Process Syst (2019) 91:33–46

Jarmo Takala received his

M.Sc.(hons) and D.Sc.(Tech.)

degrees from Tampere Univer-

sity of Technology, Tampere,

Finland (TUT) in 1987 and

1999, respectively. He joined

VTT-Automation, Tampere,

Finland in 1992, Nokia

Research Center, Finland in

1995. He joined TUT in 1996

and he has been Professor

in Computer Engineering

at TUT since 2000. During

2007- 2011 he was Associate

Editor and Area Editor for

IEEE Trans. Signal Process.

and in 2012-2013 he was the Chair of IEEE Signal Processing

Society’s Design and Implementation of Signal Processing Systems

Technical Committee.

Karen Egiazarian received

M.Sc. in mathematics from

Yerevan State University,

Armenia, in 1981, the Ph.D.

degree in physics and math-

ematics from Moscow State

University, Russia, in 1986,

and a Doctor of Technology

from Tampere University of

Technology (TUT), in 1994.

In 2015 he has received the

Honorary Doctoral degree

from Don State-Technical

University (Rostov-Don,

Russia). Dr. Egiazarian is a

co-founder and CEO of Noise-

less Imaging Oy (Ltd), a TUT spin-off company. He is a Professor at

Signal Processing Laboratory, TUT, leading the Computational Imag-

ing group, head of Signal Processing Research Community (SPRC)

at TUT, and an Adjunct Professor in the Department of Information

Technology, University of Jyv?skyl? (Finland). His main research

interests are in the field of computational imaging, compressed sens-

ing, efficient signal processing algorithms, image/video restoration

and compression. Dr. Egiazarian has published over 700 refereed

journal and conference articles, books and patents in these fields. He

is an Editorin- Chief of Journal of Electronic Imaging (SPIE) and a

Member of the DSP Technical Committee of the IEEE Circuits and

Systems Society.

Aram Danielyan received his

Ph.D. degree in Signal Pro-

cessing from Tampere Univer-

sity of Technology in 2013. He

has been working as a Senior

Imaging Algorithm Engineer

in Noiseless Imaging ltd. and

poLight ltd. Since 2018 he

is with Intel Finland. His

professional interests include

image and video processing

and efficient software imple-

mentations of imaging algo-

rithms.

Cristóvão Cruz completed his

masters degree in Electronic

and Telecommunications

Engineering at University

of Aveiro in 2014. He is

currently working at Noise-

less Imaging Oy (Ltd) as

an algorithms engineer and

is enrolled on the doctoral

programme of Computing

and Electrical Engineering at

Tampere University of Tech-

nology. His current research

is focused on the design and

implementation of image

restoration algorithms.

James Price is a Research

Associate in the High Per-

formance Computing group at

the University of Bristol. His

research focuses on improv-

ing the programmability of

modern, many-core computer

architectures. James is cur-

rently a Research Software

Engineer for the Isambard

HPC facility, and is heavily

involved in porting, bench-

marking and optimizing codes

for Arm processors. He has

a PhD in Computer Science

from the University of Bristol.

Simon McIntosh-Smith is

a full Professor of High Per-

formance Computing at the

University of Bristol in the

UK. He began his career as

a microprocessor architect at

Inmos and STMicroelectron-

ics in the early 1990s, before

co-designing the world’s first

fully programmable GPU

at Pixelfusion in 1999. In

2002 he co-founded Clear-

Speed Technology where,

as Director of Architecture

and Applications, he co-

developed the first modern

many-core HPC accelerators. He now leads the High Performance

Computing Research Group at the University of Bristol, where his

research focuses on performance portability and application based

fault tolerance. He plays a key role in designing and procuring HPC

services at the local, regional and national level, including the UK’s

national HPC server, Archer. In 2016 he led the successful bid by the

GW4 Alliance along with the UK?s Met Office and Cray, to design

and build ‘Isambard’, the world?s first production, ARMv8-based

supercomputer.


	Exploiting Task Parallelism with OpenCL: A Case Study
	Abstract
	Introduction
	Platform-Wide Execution of Heterogeneous Task Graphs
	Task Parallel Concepts in OpenCL
	Converting Command Queues to Task Graphs
	Constructing the Task Graph
	Command Queue Data Dependence Analysis

	Implementing a Task Scheduling Runtime
	Dynamic Construction of Task Graphs
	Dynamic Task Scheduling for Shared Memory Multicores

	Case Study
	The Application
	Tested Runtimes

	Related Work
	Conclusions
	Acknowledgments
	Open Access
	Publisher's Note
	References


