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atomic {
... 
S.add(a) 
...

}

atomic { 
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...

}

Exploiting semantics in 
transactional execution
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Set S:

Key insight: exploit commutativity properties 

to ensure transactional behavior
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How do we check 
commutativity?

• Can specify conditions for commutativity:

• How should a transactional run-time system 
check these?

• Prior work: ad hoc combinations of logging 
and locking

4

add(a)/r commutes with contains(b)/r if 
a ≠ b
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How do we check 
commutativity?

• Commutativity can be more complex:

• Prior work often did not fully check 
commutativity to reduce overhead

• How do we know this is correct?

5

add(a)/r commutes with contains(b)/r if 
a ≠ b or r = false
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Contributions

• Define a commutativity lattice for reasoning 
about commutativity specifications

• How do we check commutativity?

• Provide systematic approaches for 
implementing commutativity checks

• How do we implement low overhead checks?

• Show how to use commutativity lattice to 
correctly construct lower-overhead checkers

6
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Commutativity
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m1 m2

r1 r2

σ1 σ2 σ3

m1, m2 commute in σ1
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m1m2

r1r2

σ1 σ’2 σ3

m1, m2 commute in σ1
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Using commutativity to 
guarantee serializability

9

B:

A:

m1 m2 m3 m4

m1 m2 m3 m4
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Runtime commutativity 
checks

• For each method invocation by transaction B 

• Runtime checks commutativity with all 
methods invoked by transaction A

• If all checks succeed, execution continues

• If any commutativity check fails, one 
transaction rolled back

14
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φ (ma, mb)         

Commutativity 
conditions

15

Commutativity condition:
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Commutativity condition:

true only if ma and mb commute
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Commutativity condition:

Precise condition: φ (ma, mb)*
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φ (ma, mb)         

Commutativity 
conditions

15

Commutativity condition:

Precise condition: φ (ma, mb)*

φ (add(a)/r1, contains(b)/r2)*

a ≠ b or r1 = false
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Commutativity lattice
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(add(a)/r1, contains(b)/r2)

a ≠ b or r1 = false
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Commutativity lattice
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(add(a)/r1, contains(b)/r2)

a ≠ b or r1 = false

false

a ≠ b r1 = false

Allows most 
parallelism

Allows no 
parallelism
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Implementing 
Commutativity
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Soundness and 
completeness

• A conflict detection implementation is sound 
if it claims methods commute only if they 
actually do according to the conditions

• A conflict detection implementation is 
complete if it claims methods commute if 
they do according to the conditions

18
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Running example
• Set-like data structure

• Supports add and contains

19

(add(a)/r1, contains(b)/r2)
a ≠ b or r1 = false

(add(a)/r1, add(b)/r2)
a ≠ b or (r1 = false and r2 = false)

(contains(a)/r1, contains(b)/r2)
true
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Running example
• Set-like data structure

• Supports add and contains
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(add(a)/r1, contains(b)/r2)
a ≠ b

(add(a)/r1, add(b)/r2)
a ≠ b

(contains(a)/r1, contains(b)/r2)
true
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Implementing 
commutativity

• Three schemes

• Abstract locking

• Forward gatekeeping

• General gatekeeping

21

Wednesday, July 20, 2011



Abstract locking

• Sound and complete implementation when 
commutativity condition is simple

• Is either true, false, or a set of conjuncts 
of the form “x ≠ y”

22

(add(a)/r1, contains(b)/r2)

a ≠ b

a ≠ b or r1 = falseNot simple:

Simple:
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Abstract locking

• Basic skeleton

• Associate an abstract lock with each object that 
can be passed as an argument to a method

• When a method is called, acquire locks on each 
argument in appropriate mode

• Object already locked → commutativity violation

• All locks released when transaction ends

• Key problem: building compatibility matrix

23
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Building compatibility 
matrix

• One mode per argument of a method

24

add(a) → add:1

contains(b) → cont:1
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add(a) → add:1

contains(b) → cont:1

add:1
cont:1

ad
d:

1

co
nt

:1
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Building compatibility 
matrix

• Compatibility: If condition includes conjunct 
“a ≠ b” then modes for a and b 
incompatible 

25

add:1
cont:1

ad
d:

1

co
nt

:1

φ(add(a)/r1, contains(b)/r2) : a ≠ b
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Building compatibility 
matrix

• Compatibility: modes for a and b 
incompatible if condition includes conjunct 
“a ≠ b”
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nt
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φ(add(a)/r1, add(b)/r2) : a ≠ b
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Building the 
compatibility matrix

• Compatibility: modes for a and b 
incompatible if condition includes conjunct 
“a ≠ b”

27

add:1
cont:1

ad
d:

1

co
nt

:1

φ(contains(a)/r1, contains(b)/r2) : true
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Building the 
compatibility matrix

• Compatibility: modes for a and b 
incompatible if condition includes conjunct 
“a ≠ b”
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add:1
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ad
d:
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co
nt
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φ(contains(a)/r1, contains(b)/r2) : true

Wednesday, July 20, 2011



Other conflict detection 
techniques

• Forward gatekeeping: sound and complete 
for more complex conditions

• General gatekeeping: allows most flexibility 
in commutativity conditions

• Basic tradeoff: Increasing complexity = more 
expressive, but more overhead

28

a ≠ b or r1 = false
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Trading off parallelism 
for overhead
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• No prior work fully implemented 
commutativity for sets

• Used lower-overhead schemes instead

Set spec

Lowering overhead of 
conflict detection

30
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Forward gatekeeper
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• No prior work fully implemented 
commutativity for sets

• Used lower-overhead schemes instead

Set spec

Lowering overhead of 
conflict detection

30

Forward gatekeeper

Abstract locks

??

Wednesday, July 20, 2011



• To lower overhead, build sound and 
complete implementation of a different 
specification

Set spec’

Disciplined approach

31

Forward gatekeeper

Abstract locks

Set spec
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Forward gatekeeper

Abstract locks

Set spec
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• Find simpler specifications from lower in the lattice

Exploiting the 
commutativity lattice

32

a ≠ b ⋁ r1 = false

Forward gatekeeper

trueφ(contains(a)/r1, contains(b)/r2) :
φ(add(a)/r1, contains(b)/r2) :

(add(a)/r1, add(b)/r2)φ a ≠ b ⋁ (...)
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• Find simpler specifications from lower in the lattice

Exploiting the 
commutativity lattice

33

true

a ≠ b

Forward gatekeeper

R/W locks

φ(contains(a)/r1, contains(b)/r2) :
φ(add(a)/r1, contains(b)/r2) :

a ≠ b(add(a)/r1, add(b)/r2)φ
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Exploiting the 
commutativity lattice

34

φ(contains(a)/r1, contains(b)/r2) : a ≠ b

φ(add(a)/r1, contains(b)/r2) : a ≠ b

Forward gatekeeper

R/W locks

Exclusive locks

(add(a)/r1, add(b)/r2)φ a ≠ b

• Find simpler specifications from lower in the lattice
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Evaluation
• Moving through commutativity lattice 

effectively trades off parallelism and 
overhead

35

Preflow push
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Evaluation

• Showed that forward/general gatekeeping 
can provide more parallelism and better 
performance than memory-level locking 
(e.g., STM)

• Tradeoffs vary for different applications

➡ Ability to generate and reason about 
different implementations critical

36
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Conclusions

• Commutativity conditions are an attractive 
way to perform conflict detection for 
transactional execution

• Commutativity checkers can be 
systematically generated from specifications

• Commutativity lattice provides disciplined 
approach to producing checkers, reasoning 
about behavior

37
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