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Exploiting semantics in
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How do we check
commutativity!?

® Can specify conditions for commutativity:

add(a)/r commutes with contains(b)/r if
a*+b

® How should a transactional run-time system
check these!?

® Prior work: ad hoc combinations of logging
and locking
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How do we check
commutativity!?

e Commutativity can be more complex:

add(a)/r commutes with contains(b)/r if
a + b orr = false

® Prior work often did not fully check
commutativity to reduce overhead

® How do we know this is correct!?
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Contributions

® Define a commutativity lattice for reasoning
about commutativity specifications

® How do we check commutativity?

® Provide systematic approaches for
implementing commutativity checks

® How do we implement low overhead checks!?

® Show how to use commutativity lattice to
correctly construct lower-overhead checkers
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Runtime commutativity
checks

® For each method invocation by transaction B

® Runtime checks commutativity with all
methods invoked by transaction A

® |f all checks succeed, execution continues

® |f any commutativity check fails, one
transaction rolled back
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Commutativity condition: (Q (IMa, Mp)

true only if m, and m, commute
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Commutativity
conditions

Commutativity condition: (Q (IMa, Mp)

Precise condition: P (Ma, mp)

true if and only if m, and m, commute
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Commutativity
conditions

Commutativity condition: (P (IMa, Mp)
Precise condition: (p*(ma, Mp)
(p*(add(a)/m, contains(b)/r?)

|1
a *+ borr = false
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Commutativity lattice

(add(Ca)/r1, contains(b)/r?)

a #+ borr = false
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Commutativity lattice

(add(Ca)/r1, contains(b)/r?)

a #+ borr = false
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Commutativity lattice

(add(Ca)/r1, contains(b)/r?)

a #+ borr = false

a¥+b

/\ Para”elism

Allows most

ri = false

\/

false

Allows no

parallelism
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Implementing
Commutativity




Soundness and
completeness

® A conflict detection implementation is sound
if it claims methods commute only if they
actually do according to the conditions

® A conflict detection implementation is
complete if it claims methods commute if
they do according to the conditions
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Running example

® Set-like data structure
® Supports add and contains
(add(a)/ri1, contains(b)/r?)
a#+ borr =false
(add(a)/r1,add(b)/r2)

a # b or (r = false and r; = false)

(contains(a)/ri, contains(b)/r2)

true
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Running example

® Set-like data structure
® Supports add and contains
(add(a)/ri1, contains(b)/r?)
a¥b
(add(a)/r1,add(b)/r2)
a¥*b

(contains(a)/ri, contains(b)/r2)

true
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Implementing
commutativity

® Three schemes
® Abstract locking
® Forward gatekeeping

® General gatekeeping

21
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Abstract locking

® Sound and complete implementation when
commutativity condition is simple

® |s either true, false, or a set of conjuncts
of the form “x # y”

(add(Ca)/r1, contains(b)/r?)

Not simple: |a #+ b or r| = false

Simple: [a # b

22
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Abstract locking

® Basic skeleton

® Associate an abstract lock with each object that
can be passed as an argument to a method

® When a method is called, acquire locks on each
argument in appropriate mode

® Object already locked = commutativity violation
® All locks released when transaction ends

® Key problem: building compatibility matrix

23
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Building compatibility
matrix

® One mode per argument of a method
add(a) — add:|

contains(b) — cont:l

24
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Building compatibility
matrix

® One mode per argument of a method
add(a) — add:|

contains(b) — cont:l

AR
Qb
S &

cont: |
add: |
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Building compatibility
matrix

® Compatibility: If condition includes conjunct

“a #+ b’ then modes foraand b
incompatible

Q(add(a)/ri, contains(b)/rz) : a+b
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Building compatibility
matrix

® Compatibility: If condition includes conjunct

“a #+ b’ then modes foraand b
incompatible

Q(add(a)/ri, contains(b)/r2): a*b
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Building compatibility
matrix

® Compatibility: modes for a and b
incompatible if condition includes conjunct

“a ¢ b”
@ (add(Ca)/ri,add(b)/rz) : a*b
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Building compatibility
matrix

® Compatibility: modes for a and b
incompatible if condition includes conjunct

“a ¢ b”
@ (add(Ca)/ri1,add(b)/rz) : a*b
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Building the
compatibility matrix

® Compatibility: modes for a and b
incompatible if condition includes conjunct

“a ¢ b”
(containsCa)/ri, contains(b)/rz) :|true
NN
&I
& &
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Building the
compatibility matrix

® Compatibility: modes for a and b
incompatible if condition includes conjunct

“a ¢ b”
(containsCa)/ri, contains(b)/rz) :|true
NN
&I
& &
cont: | ..
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Other conflict detection
techniques

® Forward gatekeeping: sound and complete
for more complex conditions

a #+ borr = false

® General gatekeeping: allows most flexibility
in commutativity conditions

® Basic tradeoff: Increasing complexity = more
expressive, but more overhead

28
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Trading off parallelism
for overhead




Lowering overhead of
conflict detection

® No prior work fully implemented
commutativity for sets

® Used lower-overhead schemes instead
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® No prior work fully implemented
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Disciplined approach

® To lower overhead, build sound and
complete implementation of a different
specification

®

~~~~~ Forward gatekeeper

Abstract locks

31

Wednesday, July 20, 2011



Disciplined approach

® To lower overhead, build sound and
complete implementation of a different
specification

Abstract locks
31

Wednesday, July 20, 2011



Disciplined approach
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complete implementation of a different
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Q(contains(a)/ri, contains(b)/rz) :|true

P (adc
p(adc

Exploiting the
commutativity lattice

® Find simpler specifications from lower in the lattice

(a)/ri, contains(b)/ry) :
(a)/ri,add(b)/r2)

a+bVr =false

a#bV(.)

‘ Forward gatekeeper
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Exploiting the
commutativity lattice

® Find simpler specifications from lower in the lattice
Q(contains(a)/ri, contains(b)/rz) :|true

Q(add(a)/ri, contains(b)/r2): a*b
@(addCa)/ri,add(b)/rz) a+b

Forward gatekeeper
R/W locks
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Exploiting the
commutativity lattice

® Find simpler specifications from lower in the lattice

(contains(Ca)/ri, contains(b)/rz) :ja # b
Q(add(a)/ri, contains(b)/rz): a*b
@(addCa)/r1,add(b)/rz) a+b

Forward gatekeeper

R/W locks

Exclusive locks
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Evaluation

® Moving through commutativity lattice
effectively trades off parallelism and

overhead
Preflow push
o _
@ |-~ coarse
o O
SN
() —
Lo
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© | | | |
1 2 4 8

Threads
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Evaluation

® Showed that forward/general gatekeeping
can provide more parallelism and better
performance than memory-level locking

(e.g.,STM)
® Tradeoffs vary for different applications

= Ability to generate and reason about
different implementations critical
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Conclusions

e Commutativity conditions are an attractive
way to perform conflict detection for
transactional execution

e Commutativity checkers can be
systematically generated from specifications

e Commutativity lattice provides disciplined
approach to producing checkers, reasoning
about behavior
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