
Exploiting the
Commutativity Lattice

Milind Kulkarni
Donald Nguyen, Dimitrios

Prountzos, Xin Sui and
Keshav Pingali

Wordmark Download

This download offers several options for using the official university
wordmark and the What Starts Here tagline. The elements can be
used in several formats, allowing you to choose one that best fits
with your design needs.

The wordmark and tagline should not be changed or manipulated
in any way.

When reproduced in color the wordmark should always appear in
The University of Texas at Austin's signature color, burnt orange (PMS 159).
No other color is acceptable, with the exception of all black for use on faxes,
memos and in newspapers, and all white for reverses on dark backgrounds.

Official wordmark stacked (preferred) Official wordmark horizontal

Wednesday, July 20, 2011

Exploiting semantics in
transactional execution

2

Set S: X Y Z

Wednesday, July 20, 2011

Exploiting semantics in
transactional execution

2

atomic {
...
S.add(a)
...

}

Set S:

atomic {
...
S.contains(b)
...

}

X Y Z

Wednesday, July 20, 2011

Exploiting semantics in
transactional execution

2

atomic {
...
S.add(a)
...

}

Set S:

atomic {
...
S.contains(b)
...

}

X Y ZX Y Z A

Wednesday, July 20, 2011

Exploiting semantics in
transactional execution

2

atomic {
...
S.add(a)
...

}

Set S:

atomic {
...
S.contains(b)
...

}

X Y ZX Y Z A

X

Wednesday, July 20, 2011

Exploiting semantics in
transactional execution

2

atomic {
...
S.add(a)
...

}

Set S:

atomic {
...
S.contains(b)
...

}

X Y ZX Y Z A

Wednesday, July 20, 2011

Exploiting semantics in
transactional execution

2

atomic {
...
S.add(a)
...

}

Set S:

atomic {
...
S.contains(b)
...

}

X Y ZX Y Z A

Wednesday, July 20, 2011

X Y Z A

atomic {
...
S.add(a)
...

}

atomic {
...
S.contains(b)
...

}

Exploiting semantics in
transactional execution

3

Set S:

Wednesday, July 20, 2011

X Y Z A

atomic {
...
S.add(a)
...

}

atomic {
...
S.contains(b)
...

}

Exploiting semantics in
transactional execution

3

Set S:

Key insight: exploit commutativity properties

to ensure transactional behavior

Wednesday, July 20, 2011

X Y Z A

atomic {
...
S.add(a)
...

}

atomic {
...
S.contains(b)
...

}

Exploiting semantics in
transactional execution

3

Set S:

Key insight: exploit commutativity properties

to ensure transactional behavior

[Herlihy & Koskinen
PPoPP 08]

[Ni et al. PPoPP 07]

[Kulkarni et al.
PLDI 07]

[Kulkarni et al.
ASPLOS 08]

[Koskinen et al.
POPL 10]

[Carlstrom et al.
PPoPP 07]

[Weihl et al. IEEE
ToC 88]

Wednesday, July 20, 2011

How do we check
commutativity?

• Can specify conditions for commutativity:

• How should a transactional run-time system
check these?

• Prior work: ad hoc combinations of logging
and locking

4

add(a)/r commutes with contains(b)/r if
a ≠ b

Wednesday, July 20, 2011

How do we check
commutativity?

5

add(a)/r commutes with contains(b)/r if
a ≠ b

Wednesday, July 20, 2011

How do we check
commutativity?

5

add(a)/r commutes with contains(b)/r if
a ≠ b or r = false

Wednesday, July 20, 2011

How do we check
commutativity?

• Commutativity can be more complex:

• Prior work often did not fully check
commutativity to reduce overhead

• How do we know this is correct?

5

add(a)/r commutes with contains(b)/r if
a ≠ b or r = false

Wednesday, July 20, 2011

Contributions

• Define a commutativity lattice for reasoning
about commutativity specifications

• How do we check commutativity?

• Provide systematic approaches for
implementing commutativity checks

• How do we implement low overhead checks?

• Show how to use commutativity lattice to
correctly construct lower-overhead checkers

6

Wednesday, July 20, 2011

Commutativity

7

σ1

Wednesday, July 20, 2011

Commutativity

7

m1

r1

σ1

Wednesday, July 20, 2011

Commutativity

7

m1

r1

σ1 σ2

Wednesday, July 20, 2011

Commutativity

7

m1 m2

r1 r2

σ1 σ2

Wednesday, July 20, 2011

Commutativity

7

m1 m2

r1 r2

σ1 σ2 σ3

Wednesday, July 20, 2011

Commutativity

7

m1 m2

r1 r2

σ1 σ2 σ3

m1, m2 commute in σ1

Wednesday, July 20, 2011

Commutativity

8

m1m2

r1r2

σ1 σ’2 σ3

m1, m2 commute in σ1

Wednesday, July 20, 2011

Using commutativity to
guarantee serializability

9

B:

A:

m1 m2 m3 m4

m1 m2 m3 m4

Wednesday, July 20, 2011

Using commutativity to
guarantee serializability

10

m1 m2 m3 m4m1 m2 m3 m4History :

Wednesday, July 20, 2011

Using commutativity to
guarantee serializability

10

m1 m2 m3 m4m1 m2 m3 m4History :

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9

Wednesday, July 20, 2011

Using commutativity to
guarantee serializability

11

m1 m2 m3 m4m1 m2 m3 m4History :

σ1 σ2 σ3 σ’4 σ5 σ6 σ7 σ8 σ9

Wednesday, July 20, 2011

Using commutativity to
guarantee serializability

12

m1 m2 m3 m4m1 m2 m3 m4History :

σ1 σ2 σ’3 σ’4 σ5 σ6 σ7 σ8 σ9

Wednesday, July 20, 2011

Using commutativity to
guarantee serializability

13

m1 m2 m3 m4 m1 m2 m3 m4History :

σ1 σ2 σ’3 σ”4 σ’5 σ’6 σ’7 σ8 σ9

Wednesday, July 20, 2011

Runtime commutativity
checks

• For each method invocation by transaction B

• Runtime checks commutativity with all
methods invoked by transaction A

• If all checks succeed, execution continues

• If any commutativity check fails, one
transaction rolled back

14

Wednesday, July 20, 2011

φ (ma, mb)

Commutativity
conditions

15

Commutativity condition:

Wednesday, July 20, 2011

φ (ma, mb)

Commutativity
conditions

15

Commutativity condition:

true only if ma and mb commute

Wednesday, July 20, 2011

φ (ma, mb)

Commutativity
conditions

15

Commutativity condition:

Precise condition: φ (ma, mb)*

Wednesday, July 20, 2011

φ (ma, mb)

Commutativity
conditions

15

Commutativity condition:

Precise condition: φ (ma, mb)*

true if and only if ma and mb commute

Wednesday, July 20, 2011

φ (ma, mb)

Commutativity
conditions

15

Commutativity condition:

Precise condition: φ (ma, mb)*

φ (add(a)/r1, contains(b)/r2)*

a ≠ b or r1 = false

Wednesday, July 20, 2011

Commutativity lattice

16

(add(a)/r1, contains(b)/r2)

a ≠ b or r1 = false

Wednesday, July 20, 2011

Commutativity lattice

16

(add(a)/r1, contains(b)/r2)

a ≠ b or r1 = false

false

a ≠ b r1 = false

Wednesday, July 20, 2011

Commutativity lattice

16

(add(a)/r1, contains(b)/r2)

a ≠ b or r1 = false

false

a ≠ b r1 = false

Allows most
parallelism

Allows no
parallelism

Wednesday, July 20, 2011

Implementing
Commutativity

Wednesday, July 20, 2011

Soundness and
completeness

• A conflict detection implementation is sound
if it claims methods commute only if they
actually do according to the conditions

• A conflict detection implementation is
complete if it claims methods commute if
they do according to the conditions

18

Wednesday, July 20, 2011

Running example
• Set-like data structure

• Supports add and contains

19

(add(a)/r1, contains(b)/r2)
a ≠ b or r1 = false

(add(a)/r1, add(b)/r2)
a ≠ b or (r1 = false and r2 = false)

(contains(a)/r1, contains(b)/r2)
true

Wednesday, July 20, 2011

Running example
• Set-like data structure

• Supports add and contains

20

(add(a)/r1, contains(b)/r2)
a ≠ b

(add(a)/r1, add(b)/r2)
a ≠ b

(contains(a)/r1, contains(b)/r2)
true

Wednesday, July 20, 2011

Implementing
commutativity

• Three schemes

• Abstract locking

• Forward gatekeeping

• General gatekeeping

21

Wednesday, July 20, 2011

Abstract locking

• Sound and complete implementation when
commutativity condition is simple

• Is either true, false, or a set of conjuncts
of the form “x ≠ y”

22

(add(a)/r1, contains(b)/r2)

a ≠ b

a ≠ b or r1 = falseNot simple:

Simple:

Wednesday, July 20, 2011

Abstract locking

• Basic skeleton

• Associate an abstract lock with each object that
can be passed as an argument to a method

• When a method is called, acquire locks on each
argument in appropriate mode

• Object already locked → commutativity violation

• All locks released when transaction ends

• Key problem: building compatibility matrix

23

Wednesday, July 20, 2011

Building compatibility
matrix

• One mode per argument of a method

24

add(a) → add:1

contains(b) → cont:1

Wednesday, July 20, 2011

Building compatibility
matrix

• One mode per argument of a method

24

add(a) → add:1

contains(b) → cont:1

add:1
cont:1

ad
d:

1

co
nt

:1

Wednesday, July 20, 2011

Building compatibility
matrix

• Compatibility: If condition includes conjunct
“a ≠ b” then modes for a and b
incompatible

25

add:1
cont:1

ad
d:

1

co
nt

:1

φ(add(a)/r1, contains(b)/r2) : a ≠ b

Wednesday, July 20, 2011

Building compatibility
matrix

• Compatibility: If condition includes conjunct
“a ≠ b” then modes for a and b
incompatible

25

add:1
cont:1

ad
d:

1

co
nt

:1

φ(add(a)/r1, contains(b)/r2) : a ≠ b

Wednesday, July 20, 2011

Building compatibility
matrix

• Compatibility: modes for a and b
incompatible if condition includes conjunct
“a ≠ b”

26

add:1
cont:1

ad
d:

1

co
nt

:1

φ(add(a)/r1, add(b)/r2) : a ≠ b

Wednesday, July 20, 2011

Building compatibility
matrix

• Compatibility: modes for a and b
incompatible if condition includes conjunct
“a ≠ b”

26

add:1
cont:1

ad
d:

1

co
nt

:1

φ(add(a)/r1, add(b)/r2) : a ≠ b

Wednesday, July 20, 2011

Building the
compatibility matrix

• Compatibility: modes for a and b
incompatible if condition includes conjunct
“a ≠ b”

27

add:1
cont:1

ad
d:

1

co
nt

:1

φ(contains(a)/r1, contains(b)/r2) : true

Wednesday, July 20, 2011

Building the
compatibility matrix

• Compatibility: modes for a and b
incompatible if condition includes conjunct
“a ≠ b”

27

add:1
cont:1

ad
d:

1

co
nt

:1

φ(contains(a)/r1, contains(b)/r2) : true

Wednesday, July 20, 2011

Other conflict detection
techniques

• Forward gatekeeping: sound and complete
for more complex conditions

• General gatekeeping: allows most flexibility
in commutativity conditions

• Basic tradeoff: Increasing complexity = more
expressive, but more overhead

28

a ≠ b or r1 = false

Wednesday, July 20, 2011

Trading off parallelism
for overhead

Wednesday, July 20, 2011

• No prior work fully implemented
commutativity for sets

• Used lower-overhead schemes instead

Set spec

Lowering overhead of
conflict detection

30

Wednesday, July 20, 2011

• No prior work fully implemented
commutativity for sets

• Used lower-overhead schemes instead

Set spec

Lowering overhead of
conflict detection

30

Forward gatekeeper

Wednesday, July 20, 2011

• No prior work fully implemented
commutativity for sets

• Used lower-overhead schemes instead

Set spec

Lowering overhead of
conflict detection

30

Forward gatekeeper

Abstract locks

Wednesday, July 20, 2011

• No prior work fully implemented
commutativity for sets

• Used lower-overhead schemes instead

Set spec

Lowering overhead of
conflict detection

30

Forward gatekeeper

Abstract locks

??

Wednesday, July 20, 2011

• To lower overhead, build sound and
complete implementation of a different
specification

Set spec’

Disciplined approach

31

Forward gatekeeper

Abstract locks

Set spec

Wednesday, July 20, 2011

• To lower overhead, build sound and
complete implementation of a different
specification

Set spec’

Disciplined approach

31

Forward gatekeeper

Abstract locks

Set spec

Wednesday, July 20, 2011

• To lower overhead, build sound and
complete implementation of a different
specification

Set spec’

Disciplined approach

31

Forward gatekeeper

Abstract locks

Set spec

Wednesday, July 20, 2011

• Find simpler specifications from lower in the lattice

Exploiting the
commutativity lattice

32

a ≠ b ⋁ r1 = false

Forward gatekeeper

trueφ(contains(a)/r1, contains(b)/r2) :
φ(add(a)/r1, contains(b)/r2) :

(add(a)/r1, add(b)/r2)φ a ≠ b ⋁ (...)

Wednesday, July 20, 2011

• Find simpler specifications from lower in the lattice

Exploiting the
commutativity lattice

33

true

a ≠ b

Forward gatekeeper

R/W locks

φ(contains(a)/r1, contains(b)/r2) :
φ(add(a)/r1, contains(b)/r2) :

a ≠ b(add(a)/r1, add(b)/r2)φ

Wednesday, July 20, 2011

Exploiting the
commutativity lattice

34

φ(contains(a)/r1, contains(b)/r2) : a ≠ b

φ(add(a)/r1, contains(b)/r2) : a ≠ b

Forward gatekeeper

R/W locks

Exclusive locks

(add(a)/r1, add(b)/r2)φ a ≠ b

• Find simpler specifications from lower in the lattice

Wednesday, July 20, 2011

●

●

●

●

Sp
ee
du
p

0.
0

1.
0

2.
0

3.
0

Threads
1 2 4 8

● coarse
ex
rw

Evaluation
• Moving through commutativity lattice

effectively trades off parallelism and
overhead

35

Preflow push

Wednesday, July 20, 2011

Evaluation

• Showed that forward/general gatekeeping
can provide more parallelism and better
performance than memory-level locking
(e.g., STM)

• Tradeoffs vary for different applications

➡ Ability to generate and reason about
different implementations critical

36

Wednesday, July 20, 2011

Conclusions

• Commutativity conditions are an attractive
way to perform conflict detection for
transactional execution

• Commutativity checkers can be
systematically generated from specifications

• Commutativity lattice provides disciplined
approach to producing checkers, reasoning
about behavior

37

Wednesday, July 20, 2011

