Exploiting the
Commutativity Lattice

Donald Nguyen, Dimitrios
Milind Kulkarni Prountzos, Xin Sui and
Keshav Pingali

RSITY OF

PURDUE TEXAS

AUSTIN

Wednesday, July 20, 2011

Exploiting semantics in
transactional execution

Set S

Exploiting semantics in
transactional execution

Set S:
atomic { atomic {
é:édd(a) é:éontains(b)

}... }...

Exploiting semantics in
transactional execution

Set :
atomic { atomic {
é:édd(a) é:éontains(b)

}... }...

Exploiting semantics in
transactional execution

et
X

atomic { atomic {
S.add(Ca) S.contains(b)

}... }...

Exploiting semantics in
transactional execution

Set :
atomic { atomic {
é:édd(a) é:éontains(b)

}... }...

Exploiting semantics in
transactional execution

Set S

atomic { atomic {
@é:c.;dd(a) @é:éontains(b)
, . , .

Exploiting semantics in
transactional execution

Set S

atomic { atomic {
@é:c.;dd(a) @é:éontains(b)
, . , .

Exploiting semantics in
transactional execution

Set S

perties

. o
exploit commutativity p

insight: . '
Key insig e transactional behavior

to ensu
@S.contains(b)

}... }...

Wednesday, July 20, 2011

Exploiting semantics in
transactional execution

[Carlstrom et al.

PPoPP 07] [Koskinen et al.
SetS: X — I POPL 10]

[Weihl et al. |EEE
ToC 88]

[Herlihy & Koskinen
PPoPP 08]

[Kulkarni et al.
PLDI 07]

[Kulkarni et al.
ASPLOS 08]

3

Wednesday, July 20, 2011

How do we check
commutativity!?

® Can specify conditions for commutativity:

add(a)/r commutes with contains(b)/r if
a*+b

® How should a transactional run-time system
check these!?

® Prior work: ad hoc combinations of logging
and locking

Wednesday, July 20, 2011

How do we check
commutativity?

add(a)/r commutes with contains(b)/r if
a*+b

How do we check
commutativity?

add(a)/r commutes with contains(b)/r if
a + b orr = false

How do we check
commutativity!?

e Commutativity can be more complex:

add(a)/r commutes with contains(b)/r if
a + b orr = false

® Prior work often did not fully check
commutativity to reduce overhead

® How do we know this is correct!?

Wednesday, July 20, 2011

Contributions

® Define a commutativity lattice for reasoning
about commutativity specifications

® How do we check commutativity?

® Provide systematic approaches for
implementing commutativity checks

® How do we implement low overhead checks!?

® Show how to use commutativity lattice to
correctly construct lower-overhead checkers

Wednesday, July 20, 2011

Commutativity

Commutativity

Commutativity

Commutativity

Commutativity

O 02 O3

Commutativity

O 02 O3

I "2

mj, M2 commute in O

Wednesday, July 20, 2011

Commutativity

mj, M2 commute in O

Wednesday, July 20, 2011

Using commutativity to
guarantee serializability

A:

Using commutativity to
guarantee serializability

History :

Using commutativity to
guarantee serializability

History :

O O?

O3

O4

O5s

O

O7

Os Oy

Using commutativity to
guarantee serializability

History :

O O?

O3

04

O5s

O

O7

Os Oy

Using commutativity to
guarantee serializability

History :

O O?

O3 O4

O5s

O

O7

Os Oy

Using commutativity to
guarantee serializability

History :

O O?

0.’3 0.”4 0.’5

O¢

o7

Os Oy

Runtime commutativity
checks

® For each method invocation by transaction B

® Runtime checks commutativity with all
methods invoked by transaction A

® |f all checks succeed, execution continues

® |f any commutativity check fails, one
transaction rolled back

Wednesday, July 20, 2011

Commutativity
conditions

Commutativity condition: (Q (IMa, Mp)

Commutativity
conditions

Commutativity condition: (Q (IMa, Mp)

true only if m, and m, commute

Wednesday, July 20, 2011

Commutativity
conditions

Commutativity condition: (Q (IMa, Mp)

Precise condition: (p*(ma, Mp)

Commutativity
conditions

Commutativity condition: (Q (IMa, Mp)

Precise condition: P (Ma, mp)

true if and only if m, and m, commute

Wednesday, July 20, 2011

Commutativity
conditions

Commutativity condition: (P (IMa, Mp)
Precise condition: (p*(ma, Mp)
(p*(add(a)/m, contains(b)/r?)

|1
a *+ borr = false

Wednesday, July 20, 2011

Commutativity lattice

(add(Ca)/r1, contains(b)/r?)

a #+ borr = false

Wednesday, July 20, 2011

Commutativity lattice

(add(Ca)/r1, contains(b)/r?)

a #+ borr = false

/\

a*+b ri = false

Wednesday, July 20, 2011

Commutativity lattice

(add(Ca)/r1, contains(b)/r?)

a #+ borr = false

a¥+b

/\ Para”elism

Allows most

ri = false

\/

false

Allows no

parallelism

Wednesday, July 20, 2011

Implementing
Commutativity

Soundness and
completeness

® A conflict detection implementation is sound
if it claims methods commute only if they
actually do according to the conditions

® A conflict detection implementation is
complete if it claims methods commute if
they do according to the conditions

Wednesday, July 20, 2011

Running example

® Set-like data structure
® Supports add and contains
(add(a)/ri1, contains(b)/r?)
a#+ borr =false
(add(a)/r1,add(b)/r2)

a # b or (r = false and r; = false)

(contains(a)/ri, contains(b)/r2)

true

Wednesday, July 20, 2011

Running example

® Set-like data structure
® Supports add and contains
(add(a)/ri1, contains(b)/r?)
a¥b
(add(a)/r1,add(b)/r2)
a¥*b

(contains(a)/ri, contains(b)/r2)

true

20

Wednesday, July 20, 2011

Implementing
commutativity

® Three schemes
® Abstract locking
® Forward gatekeeping

® General gatekeeping

21

Wednesday, July 20, 2011

Abstract locking

® Sound and complete implementation when
commutativity condition is simple

® |s either true, false, or a set of conjuncts
of the form “x # y”

(add(Ca)/r1, contains(b)/r?)

Not simple: |a #+ b or r| = false

Simple: [a # b

22

Wednesday, July 20, 2011

Abstract locking

® Basic skeleton

® Associate an abstract lock with each object that
can be passed as an argument to a method

® When a method is called, acquire locks on each
argument in appropriate mode

® Object already locked = commutativity violation
® All locks released when transaction ends

® Key problem: building compatibility matrix

23

Wednesday, July 20, 2011

Building compatibility
matrix

® One mode per argument of a method
add(a) — add:|

contains(b) — cont:l

24

Wednesday, July 20, 2011

Building compatibility
matrix

® One mode per argument of a method
add(a) — add:|

contains(b) — cont:l

AR
Qb
S &

cont: |
add: |

24

Wednesday, July 20, 2011

Building compatibility
matrix

® Compatibility: If condition includes conjunct

“a #+ b’ then modes foraand b
incompatible

Q(add(a)/ri, contains(b)/rz) : a+b

25

Wednesday, July 20, 2011

Building compatibility
matrix

® Compatibility: If condition includes conjunct

“a #+ b’ then modes foraand b
incompatible

Q(add(a)/ri, contains(b)/r2): a*b

25

Wednesday, July 20, 2011

Building compatibility
matrix

® Compatibility: modes for a and b
incompatible if condition includes conjunct

“a ¢ b”
@ (add(Ca)/ri,add(b)/rz) : a*b

26

Wednesday, July 20, 2011

Building compatibility
matrix

® Compatibility: modes for a and b
incompatible if condition includes conjunct

“a ¢ b”
@ (add(Ca)/ri1,add(b)/rz) : a*b

26

Wednesday, July 20, 2011

Building the
compatibility matrix

® Compatibility: modes for a and b
incompatible if condition includes conjunct

“a ¢ b”
(containsCa)/ri, contains(b)/rz) :|true
NN
&I
& &

27

Wednesday, July 20, 2011

Building the
compatibility matrix

® Compatibility: modes for a and b
incompatible if condition includes conjunct

“a ¢ b”
(containsCa)/ri, contains(b)/rz) :|true
NN
&I
& &
cont: | ..

27

Wednesday, July 20, 2011

Other conflict detection
techniques

® Forward gatekeeping: sound and complete
for more complex conditions

a #+ borr = false

® General gatekeeping: allows most flexibility
in commutativity conditions

® Basic tradeoff: Increasing complexity = more
expressive, but more overhead

28

Wednesday, July 20, 2011

Trading off parallelism
for overhead

Lowering overhead of
conflict detection

® No prior work fully implemented
commutativity for sets

® Used lower-overhead schemes instead

30

Wednesday, July 20, 2011

Lowering overhead of
conflict detection

® No prior work fully implemented
commutativity for sets

® Used lower-overhead schemes instead

®

Forward gatekeeper

30

Wednesday, July 20, 2011

Lowering overhead of
conflict detection

® No prior work fully implemented
commutativity for sets

® Used lower-overhead schemes instead

Abstract locks

30

Wednesday, July 20, 2011

Lowering overhead of
conflict detection

® No prior work fully implemented
commutativity for sets

® Used lower-overhead schemes instead

Abstract locks

30

Wednesday, July 20, 2011

Disciplined approach

® To lower overhead, build sound and
complete implementation of a different
specification

®

~~~~~ Forward gatekeeper

Abstract locks

31

Wednesday, July 20, 2011



Disciplined approach

® To lower overhead, build sound and
complete implementation of a different
specification

Abstract locks
31

Wednesday, July 20, 2011



Disciplined approach

® To lower overhead, build sound and
complete implementation of a different
specification

Abstract locks
31

Wednesday, July 20, 2011



Q(contains(a)/ri, contains(b)/rz) :|true

P (adc
p(adc

Exploiting the
commutativity lattice

® Find simpler specifications from lower in the lattice

(a)/ri, contains(b)/ry) :
(a)/ri,add(b)/r2)

a+bVr =false

a#bV(.)

‘ Forward gatekeeper

32

Wednesday, July 20, 2011




Exploiting the
commutativity lattice

® Find simpler specifications from lower in the lattice
Q(contains(a)/ri, contains(b)/rz) :|true

Q(add(a)/ri, contains(b)/r2): a*b
@(addCa)/ri,add(b)/rz) a+b

Forward gatekeeper
R/W locks

33

Wednesday, July 20, 2011



Exploiting the
commutativity lattice

® Find simpler specifications from lower in the lattice

(contains(Ca)/ri, contains(b)/rz) :ja # b
Q(add(a)/ri, contains(b)/rz): a*b
@(addCa)/r1,add(b)/rz) a+b

Forward gatekeeper

R/W locks

Exclusive locks

34

Wednesday, July 20, 2011



Evaluation

® Moving through commutativity lattice
effectively trades off parallelism and

overhead
Preflow push
o _
@ |-~ coarse
o O
SN
() —
Lo
0~ 7 "‘/‘\A
o | 4pm—rtp———"t+—""-——"""%
© | | | |
1 2 4 8

Threads

35

Wednesday, July 20, 2011



Evaluation

® Showed that forward/general gatekeeping
can provide more parallelism and better
performance than memory-level locking

(e.g.,STM)
® Tradeoffs vary for different applications

= Ability to generate and reason about
different implementations critical

36

Wednesday, July 20, 2011



Conclusions

e Commutativity conditions are an attractive
way to perform conflict detection for
transactional execution

e Commutativity checkers can be
systematically generated from specifications

e Commutativity lattice provides disciplined
approach to producing checkers, reasoning
about behavior

37

Wednesday, July 20, 2011



