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Abstract 

Quantum crystallography (QCr) is a branch of crystallography aimed at obtaining the 

complete quantum mechanics of a crystal given its X-ray scattering data. The 

fundamental value of obtaining an electron density matrix that is N-representable is that 

it ensures consistency with an underlying properly antisymmetrized wavefunction, a 

requirement of quantum mechanical validity. But mostly X-ray crystallography has 

progressed in an impressive way for decades based only upon the electron density 

obtained from the X-ray scattering data without the imposition of the mathematical 

structure of quantum mechanics. Therefore, one may perhaps ask regarding N-

representability “why bother?” It is the purpose of this article to answer such a question 

by succinctly describing the advantage that is opened by quantum crystallography.  

 

Résumé français 

La cristallographie quantique (QCr) est une branche de la cristallographie visant à obtenir 

la description quantique complète d'un cristal compte tenu de ses facteurs de structure 

obtenus à partir de la diffraction des rayons X. La valeur fondamentale de l'obtention 

d'une matrice de densité électronique qui est N-représentable est l'assurance de sa 

cohérence avec une fonction d'onde sous-jacente correctement anti-symétrisée comme 

l'exige la mécanique quantique. Mais la cristallographie aux rayons X a, pour la plupart, 

progressé de façon impressionnante pendant des décennies en se basant uniquement sur 

la densité électronique obtenue à partir des facteurs de structure expérimentaux sans 

l’imposition de la structure mathématique de la mécanique quantique. Par conséquent, on 

peut peut-être se demander à propos de la N-représentabilité «pourquoi s'en soucier?» Le 

but de cet article est d’adresser cette question en décrivant brièvement l'avantage que 

présente la cristallographie quantique. 

 

KEYWORDS: Momentum density; Density matrices; Clinton equations; N-

representability; Bader’s quantum theory of atoms in molecules (QTAIM); Interacting 

quantum atoms (IQAs) 
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1. Introduction 

Quantum Crystallography (QCr)1 is a branch of crystallography bringing crystal 

experiments within the purview of quantum mechanics. X-ray scattering data analyzed 

with a strictly quantum mechanical formalism closely related to the Schrödinger equation 

is just one example of problems addressed within QCr.  

Quite recently there has been a renewed and heightened interest in Quantum 

Crystallography (QCr).1-8 A meeting was held in Nancy (France), in 2017, sponsored by 

the Centre Européen de Calcul Atomique et Moléculaire (CECAM), for the expressed 

purpose of discussing the present state of Quantum Crystallography and planning how 

best to utilize the results which one may foresee as obtainable within the field. Soon after 

the CECAM meeting, at the 2017 triennial conference and general assembly of the 

International Union of Crystallography (IUCr) held in Hyderabad (India), the IUCr 

adapted “Quantum Crystallography” as the title of one of its standing Commissions. The 

Commission on Quantum Crystallography is a continuation (and therefore an extension) 

of the previous IUCr “Charge, Spin and Momentum Density (CSMD)”. 

The purpose of the IUCr Commission on Quantum Crystallography parallels the 

goals which came out of the CECAM meeting. There are at least two IUCr meetings 

devoted to Quantum Crystallography scheduled to occur in 2018: The First Erice 

International School on Quantum Crystallography (in Erice, Italy), and the Sagamore 

XIX - 2018 Conference on Quantum Crystallography (Halifax, Canada). There is, thus, a 

scientific ferment rising in the subject that is much to be welcomed because the outcome 

surely will enhance the usefulness of crystallography. This paper tries to anticipate the 

advantage that quantum mechanics may bring to the interpretation of crystallographic 

experimental data. 

The present state of quantum crystallography was of course preceded by a mature 

and highly developed field of X-ray diffraction crystallography. The independent atom 

model (IAM) of refinement is still prevalent after many years.9-11 In this model each 

atom is represented by a spherical electron density obtained from a Hartree-Fock (HF) 

calculation centered on its nuclear position. The density of the molecule or the unit cell 

under study, IAMρ , becomes that of a sum of the spherical atomic densities: 
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spherical
IAM

1

n

i

i

ρ ρ
=

=∑                          (1) 

where spherical
iρ  are the spherical atomic densities and n is the number of atoms in the 

molecule or unit cell. In the past, these spherical atomic densities were obtained from the 

HF calculations. Nowadays, for most atoms the spherically-averaged electron densities 

are obtained from Dirac-Fock multiconfigurational calculations.12 The relativistic effects 

are incorporated to account for the contraction of the cores of heavy atoms brought about 

by the relativistic change in the mass of fast moving electrons.13-18 Functions designed 

specifically for charge density studies that include relativistic effects have been 

constructed as linear combinations of Slater-type functions.19, 20 

The experimental parameters fixed by the diffraction data are the atomic positions 

and the Debeye-Waller factors that describe the atomic displacements due to atomic 

vibrations. This spherical atom model is more than adequate to obtain the basic crystal 

structure. By definition, the IAM is inherently incapable of representing the non-

spherical aspects of the molecular density. But these aspects are important, since they are 

responsible, for example, for chemical bonding.  

Once X-ray data became sufficiently accurate to discern the presence of non-

spherical electron density around nuclear positions a formalism was created to reflect that 

reality. The spherical atomic density was replaced by non-spherical multipole 

representations of the density.21-27 Within the popular Hansen-Coppens model, the 

multipole definitions of the density is of the following form (in standard notation):24, 25 

max
3 3

0

( ) ' ( ' ) ( , )
l l

atom core core valence valence l lm lm

l m l

P P r R r P Yρ ρ κ ρ κ κ κ θ ϕ± ±
= =−

= + +∑ ∑          (2) 

where P are population coefficients that satisfy the condition 
0

l

core valence lm

m

P P P N±
=

+ + =∑  (the 

total number of electrons of the atom or ion), coreρ and valenceρ  are the normalized 

Hartree-Fock densities of the free atom or ion, and Rl are exponential radial functions. 

The first two terms model the core and valence densities spherically while the third is a 

valence density deformation term.  

Given Eq. (2) as a model for the aspherical atomic electron density, the structure 
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factor expression becomes:24, 25, 28 

max

,core ,core ,valence , valence

0

( ) ( ) ( , )

4 ( , ) exp[2 ] ( )

j j j j

j

l l
l

lm l lm j

l m l

F P f P f

P i j Y i T

κ

π β γ π± ±
= =−

= +


+ ⋅



∑

∑∑

H H H

H r H

                                 (3) 

where fj,core and fj,valence are the Fourier transforms of ,corejρ  and , valencejρ respectively, 

jl is the lth Fourier-Bessel transform of the radial part of the multipole functions Rl, 

Ylm! are spherical harmonics in reciprocal space polar coordinates, and Tj(H) are the 

temperature factors. In the refinement, Pj,valence, Plm, κ , and 'κ  are optimized in addition 

to the nuclear coordinates and the temperature factors (Tj). The use of good quality 

crystals and low temperatures in conjunction with this model yields high resolution 

electron densities that reflect chemical bonding.28-34  

The crystallographic spin density of a molecular magnet has also been determined 

by means of a modified multipolar model.35 Such spin-resolved electron density 

distribution can be obtained experimentally by combining X-ray and polarized neutron 

diffraction using a “spin-split” pseudo-atoms model.36 

Bader’s quantum theory of atoms in molecules (QTAIM) analysis of molecular 

densities, whether obtained from theory37-39 or from experimentally-obtained electron 

densities refined with a multipolar model,25, 26, 28 reveals various topological and 

topographic features of physical importance. These include for example bond paths, 

critical points, and the laplacian of the electron density whether at the critical points or in 

the whole space.  

QTAIM also analyzes properties, such as the kinetic energy densities, the 

potential energy density V(r), and the electron localization and delocalization indices, 

that require more than simply the electron density for their evaluation. There is no 

general method to obtain energy information from the experimental X-ray diffraction 

data presently. However, there are approximations that can apply under certain 

circumstances. 

For instance, Abramov has proposed to use the following approximate expression 

to estimate the kinetic energy density G(r) at regions of low electron density and where 
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the laplacian of the electron density is small:40  

( ) ( ) ( )
( )
( )

( )
2/3 5/32 23 1 1

3
10 72 6

G
ρ

π ρ ρ
ρ

∇     = + + ∇     
     

r
r r r

r
,        (4) 

(in atomic units (a.u.)), an approximation usually valid within ca. 0.5 - 2.1 Å from an 

atomic nucleus. 

 With G(r), one can invoke the local virial theorem, written again in a.u.: 41 

( ) ( ) ( )21
2

4
G Vρ∇ = +r r r ,                   (5) 

to obtain V(r) and thus also the total energy density ( ) ( ) ( )H G V= +r r r . 

 Espinosa, Molins, and Lecomte,42 have shown that hydrogen bond dissociation 

energy (De) in dimers exhibit a strong statistical correlation with the potential energy 

density obtained from Eqs. (4) and (5) with the startling result (often called the EML 

expression) that:42   

( )e BCP

1

2
E D V= − = r ,                               (6) 

a relation that has been revisited by Spackman.43 

 Given the importance of the energy densities, it is desirable to have a method that 

delivers them exactly and anywhere in the molecular or crystallographic direct space. 

Such a method is part of the quantum crystallography programme. 

There exist today hundreds of crystal structures, including many protein 

structures, that have highly accurate multipole density representations of their electronic 

structure.29-34, 44-53 This is truly a great accomplishment allowing insight into chemical 

bonding, the chemical influence of multiple bonds, substituent effects, the nature of 

dipole moments, and in general the prediction of molecular properties which are 

dependent upon quantum operators that are multiplicative such as any powers of the 

electron density. 

The density alone however is not sufficient to satisfy the calculation of all 

quantum operators. Properties, for example, that are represented by derivatives within the 

usual rules of quantum mechanics cannot be derived using only the density. That is to 

say, the usual rules for expectation values require that they be evaluated according to the 
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expression 

*ˆ ˆO O dτ= Ψ Ψ∫                  (7) 

where dτ is a generalized volume element of integration. 

Only for operators that are multiplicative can one evaluate the above expectation 

value (Eq. (7)) using only the density. In contrast, those properties represented by 

derivative operators require the wave function or density matrices that are N-

representable by a wave function. The exploitation of the full quantum crystallography 

referenced in the title is to extract from the X-ray scattering factors the density matrices 

allowing the calculation of all quantum operator properties, not just those obtainable 

from the electron density.  

There are two aspects to obtaining the quantum mechanical density matrices 

needed for the general expectation values representing systems in a complete way. These 

two aspects are the mathematical problems of first ensuring N-representability and 

secondly the practical calculations of extracting the density matrices from the X-ray 

scattering data. These two practicalities are discussed in the following two sections of 

this paper. 

 

2. N-Representability, What Is It? 

N-representability of a density matrix is the mathematical guarantee that it can be 

mapped bijectively to an antisymmetric N-body wave function.54 This mathematical 

mapping is illustrated in Fig. 1. N-representability is a requirement for consistency with 

quantum mechanics.  
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Fig. 1 An illustration of the bijective mapping between the space of N-representable 

density matrices and that of N-body antisymmetric wave functions.55 (The single-

determinant nature of the wavefunction is implied by the idempotency of P). 

 

 Fig. 1 illustrates a set of antisymmetric wave functions and a set of N-

representable one-body density matrices to which they are connected. Integration over a 

squared wave function results in a quantum mechanically valid density matrix. Note 

however that in general an arbitrary function f(1,1’) will not be connected to a valid 

antisymmetric wave function. Only in the case of an N-representable density matrix it 

will map back to a wave function, and it is that which allows it to be called N-

representable.54  

 The general condition for N-representability of a one-body reduced density matrix 

(1-RDM) that includes spin is that its eigenvalues must fall in the range 0 1kW≤ ≤ , for 

all k.56 Moreover, for single determinant N-representability, the 1-RDM is a projector, 

i.e., P2 = P (condition of idempotency).57  

 N-representability is important to quantum crystallography. The 

indistinguishability of electrons is a manifestation of density matrix N-representability. 

The momentum density matrix may be obtained by a double Fourier transform of the 

position density matrix. However, for that to be valid in momentum space, when so 

obtained, it must be from an N-representable position space density matrix. 

 The projector condition includes both Hartree-Fock (HF) wave functions and 

those of density functional theory (DFT) orbitals of the Kohn-Sham (KS) equations. 

Page 8 of 22

https://mc06.manuscriptcentral.com/cjc-pubs

Canadian Journal of Chemistry



Draft

 9

Walter Kohn emphasized that “[t]he only purpose of the KS orbitals is to deliver the 

exact density”.58 Interestingly, the orbitals related to density matrices of the form P2 = P 

whose elements are constrained by X-ray scattering factors do just that. That condition 

defines orbitals which in principle deliver the experimental, and thus the exact density. 

 Thus, what are the equations which determine projectors that satisfy experimental 

X-ray scattering factors? These are the Clinton equations,59 which are therefore of such 

importance to quantum crystallography. 

 

3. The Clinton Equations 

The Clinton equations to determine a projector density matrix are of the iterative form,59, 

60 

2 3
1 3 2 n

n n n k k

k

+ = − + λ∑P P P O .                        (8) 

The Lagrangian multipliers λ are obtained by inserting P into the equations of constraint, 

 1
ˆtr n k kO+ =P O ,                          (9) 

where the matrix representative of the constraint operator is Ok and the expectation value 

is the magnitude ˆ
kO . The iterative equations are well behaved and converge to 

projector matrices, P2 = P, satisfying equations of constraint such that the λ’s go to zero.   

The key points are summarized in a question-and-answer format: (i) What do the 

Clinton equations pursue in a nutshell? These equations deliver a projector which 

satisfies X-ray experimental constraints. (ii) In the iterative procedure, what is the initial 

guess matrix? Experience shows that the initial guess is essentially arbitrary as long as it 

satisfies the normalization condition. (iii) What are the constraints? Normalization and 

the experimental X-ray scattering factors. 

The Clinton equations are significant in that they deliver single determinant N-

representable projectors which satisfy experimental constraints such as normalization and 

X-ray scattering factors. The importance of these equations to quantum crystallography is 

demonstrated by a brief outline of simple applications. 
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4. Some Applications of the Clinton Equations 

The Clinton equations have been applied to the Beryllium (Be) crystal61 using the X-ray 

scattering data of Larsen and Hanson.62 The core is fixed to be the Be free atom 1s orbital 

of Huzinaga.63 The valence orbital of the Be atom is expanded in a linear combination of 

two basis functions. The mathematical definitions of the basis functions are given  in Ref. 

61. The valence density matrix is of dimension 2 2× . The Clinton equations are used to 

obtain the elements of the one-body density matrix using as a constraint minimization of 

the crystallographic least squares R-factor. 

 

Fig. 2 Valence electron density of beryllium crystal from (a) Dovesi et al.,64 (b) 

Massa et al.,61 and (c) Cohen, et al.65 The steps between contour levels are each 0.01 

e/Å3. Solid/dashed contours are for positive/negative values, respectively. The zero 

contour (last solid contour) refers to four electrons per unit cell volume. 

(Experimental data of Larsen and Hansen).62 (Reproduced with permission from Ref. 

61. © American Physical Society). 
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 Illustrated in Fig. 2 are valence-density maps for the (x, y, 1/4) crystal plane. In 

this figure, two different ab initio calculations are shown together with the result of the 

calculations. One sees here the results of Dovesi et al.,64 Fig. 2(a), the work of Massa et 

al.,
61 Fig. 2(b), and of Chou et al.,65 Fig. 2(c). There is close correspondence between the 

ab initio and X-ray projector valence-density features. The map by Massa et al. agrees 

closely with the experimental map of Larsen and Hansen (not shown because of their 

very close similarity) and falls numerically between the ab initio maps of the figure. 

 

Fig. 3. Error distribution in the structure factors (R-factor = 0.0018) for the beryllium 

crystal. (Reproduced with permission from Ref. 61. © American Physical Society). 

 

  Notice in Fig. 3 that the projector model closely represents the X-ray 

experimental data. Illustrated there, is the difference between corresponding sets of 

observed and calculated structure factors ({Fobs.} and {Fcalc.}) as a function of scattering 

angle θ, in units of standard deviation. Clearly, the projector density fits very well the Be 

data. As with a normal distribution the errors are randomly distributed out to highest 

angles. The R-factor is remarkably small, at 0.0018. In summary, the projector density 

matrix has extracted from the X-ray scattering experiment a satisfactory quantum 

mechanical representation of the data. Other important quantum crystallographic studies 

on Be include Jayatilaka’s X-ray constrained wave function analysis66 and the maximum 

entropy study of Iversen.67 

Hernández-Trujillo and Bader68 applied the idea of using projectors to enforce N-
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representability in their quest to determine the transferability of atoms in molecules 

defined within Bader’s QTAIM.37-39 Their goal is to determine the viability of 

reconstructing large molecules from transferable QTAIM atoms and functional groups 

stitched at their zero-flux inter-atomic surfaces, defined as:37 

  ( ) ( ) 0 ( , )S∇ ⋅ = ∀ ∈ Ωr n r r rρ ,         (10) 

where ( )ρ∇ r is the gradient of the electron density at the location defined by the position 

vector r, ( )n r  is the normal vector to the surface ( , )S Ω r  of an atom Ω . (In QTAIM, the 

symbol Ω  is often used interchangeably to mean the volume occupied by an atom in a 

molecule or a crystal or the atom itself). 

The inter-atomic surfaces of the pieces that are joined in such piecemeal fashion 

are then melded together by the use of Clinton equations.68 The Clinton equations are 

used by these workers to ensure N-representability on systems that ranged from ionic to 

polar.68 (See Fig. 4). 

 Polkosnik and Massa have recently imposed N-representability in the 

reconstruction of water clusters from smaller fragments.69 In contrast to the work of 

Hernández-Trujillo and Bader,68 in the work of Polkosnik and Massa kernels are 

recombined into an augmented density matrix of the full system rather than extracted at 

an inter-atomic surface as in the work of Hernández-Trujillo and Bader. 

 

 

Fig. 4 Comparison of reconstructed idempotent (P2 = P) and direct Hartree-Fock 

electron densities contours and zero-flux inter-atomic surfaces: Reconstructed 
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densities are represented by solid lines overlaid with the directly calculated contours 

(dashed). The different contours are almost indistinguishable, inter-atomic surfaces 

diverge very slightly at low values of the electron density. (Left (a) is for the ground 

state LiH molecule as an example of an ionic system and right (b) for the ground 

state of the ethanol as a typical polar organic molecule. All axes are in atomic units 

(a.u.) – See text). (Adapted with permission from Ref. 68, Copyright American 

Physical Society). 

 

5. The Quantum Crystallography Advantage: Select Examples  

 

5.1 Electron Density in Momentum Space 

One cannot calculate the momentum density directly from the electron position density. 

This is yet another example of a property for which the electron density alone is not 

enough. However the position one-matrix ( 1( , ')ρ r r ) does allow calculation of the 

momentum one-matrix ( 1( , ')ρ p p ). The diagonal elements the one-matrix, in either 

position or momentum space, will yield the density in either space. 

The double Fourier transform of the one-matrix 1( , ')ρ r r  in the variables r and r’ 

delivers the one-matrix 1( , ')ρ p p  in the momentum variables p and p’. Thus, 

( ' ')
1 1( , ') ( , ') e 'i d dρ ρ ⋅ + ⋅= ∫∫ p r p rp p r r r r ,          (11) 

and, 

1 '
( ) ( , ')ρ ρ

→
=

p p
p p p .                                   (12) 

Here too we see that extraction of the density alone, from the X-ray scattering, is 

insufficient for another important physical property, the momentum density. That is to 

say, symbolically, 

( )ρ →r ( )ρ p ,            (13) 

in contrast: 

1( , ') ( , ') ( )ρ ρ ρ→ →r r p p p .                                 (14) 
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5.2 Total Molecular Electronic Energy 

Certainly, one of the most important quantum mechanical properties of a molecular 

system is its total electronic energy. To obtain this quantity from the X-ray experiment 

would allow comparison of the energy of analogous molecules, isomers, homologous 

series, the interaction energies between drug and its receptor, etcetera.  

Let us consider how to calculate the molecular electronic energy, as in the 

expectation value, 

*ˆ ˆE H H dτ= = Ψ Ψ∫              (15) 

where  Ψ  is the molecular wave function, and Ĥ  is the molecular Hamiltonian operator.  

The expectation value of the energy operator Ĥ  can be calculated in terms of density 

matrices as  follows, 

1 2
ˆ ˆ ˆ

ext eeE T V Vρ ρ ρ= + + .            (16) 

Eqn. (16) shows that three different density matrices are required to calculate the 

expectation value of the Hamiltonian. The kinetic energy is represented by a one-body 

derivative operator that requires the one-body density matrix for its calculation. The 

external potential is a multiplicative operator evaluated with the density. The electron-

electron potential is a non-local two-body operator requiring the two-body density matrix 

for its calculation. Notice the electron density alone is not sufficient to evaluate the 

expectation value of the molecular Hamiltonian.  

The quantum crystallographic advantage is here evident. By extraction of all three 

density matrices, ρ , 1ρ , and 2ρ  from the crystal scattering data one can evaluate all of 

the usual quantum operators of interest.  

 

5.3 Bader’s Atomic Virial Partitioning of Molecular Energy 

Bader invented an important quantum mechanical way of defining the space occupied by 

an atom in a molecule referred to above, viz., the quantum theory of atoms in molecules 

(QTAIM).37 An atom in a molecule is defined as a bounded region of space where the 

boundary consists of the union of one or more inter-atomic surfaces of zero-flux in the 
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gradient vector field of the electron density (Eq. (10)) and possibly an isodensity surface 

normally taken as the van der Waals surface, ( ) 0.001 a.u.ρ =r , if the atom is a terminal 

one (see Fig. 4). 

The kinetic energy of each atom in a molecule ( )T Ω  can be obtained from the 

following volume integral over the atomic basin Ω (in a.u.):  

2
1 '

1
( ) ( , ')

2
T dρ

→
Ω

Ω = − ∇∫ r r
r r r .          (17) 

Bader proposed70 and then demonstrated37, 71-73 the existence of an atomic virial theorem 

that parallels the molecular virial theorem.74 For a system at an energy-minimized 

geometry (where the virial of the forces on the nuclei vanish, in principle), whether a 

minimum or a transition structure on the potential energy surface, the atomic virial 

theorem is written:37 

  ( ) 2 ( )V TΩ = − Ω ,                                                                   (18) 

where ( )V Ω  is the potential energy of the atom in a molecule or crystal.  

This theorem leads to the definition of the so-called virial energy of an atom in a 

molecule or crystal at an optimized geometry since atomic energy is given by:  

( ) ( ) ( ) ( )E T V TΩ = Ω + Ω = − Ω .          (19) 

Such (virial) atomic energies are endowed with the desirable and non-trivial property of 

additivity, i.e., adding-up to the total molecular energy: 

  ( )E E
Ω

= Ω∑ .            (20) 

Notice that although the density alone defines the space occupied by each atom, the 

density alone is insufficient to deliver the kinetic energy. For that property the one-body 

density matrix 1( , ')ρ r r  is required. Armed with 1( , ')ρ r r  and the kinetic energy, one 

bypasses the calculation of the complicated and expensive ( )V Ω in the calculation of 

( )E Ω . 

 

5.4 Interacting Quantum Atoms (IQA) Energy Decomposition 

Another decomposition of molecular total energy is that pioneered by Martín-Pendás et 
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al.
75-77 whereby one- and two-electron energy contributions are integrated over individual 

QTAIM atomic basins as well as over all possible pairs of basins in the molecule or unit 

cell. This partitioning is known as the interacting quantum atoms (IQA) energy 

decomposition, and is exact.  

The IQA expresses the total energy as a sum of self- and interaction-terms:75-77  

 self int

1

2
A AB

A A B A

E E E
≠

= +∑ ∑∑ ,                                 (21) 

where the self-energy of atom A is defined as: 

 self
A A AA AA

en ee
E T V V= + + ,                              (22) 

where AT  stands for its kinetic energy, AA

en
V  is the interaction of its electrons with its 

nucleus, and where AA

ee
V  is the electron-electron repulsion within its basin. The 

interaction energy contribution between a pair of atoms A and B, in its turn, is defined as: 

 int
AB AB AB AB AB

nn en ne ee
E V V V V A B= + + + ≠( ) ,                    (23) 

where the superscripts refer to atoms A and B and the subscripts refer to energy 

interaction types between them. For example, AB

ne
V  is the symbol for the energy of 

interaction between the nucleus of A and the electrons of B. The total energy is 

decomposed exactly in this form into a set of self- and interaction-contributions.  

The IQA energy components can be combined in such a way as to yield additive 

atomic energy contributions. These additive energy contributions, which are different 

from the additive virial energies (Eq. (20)), satisfy the following summation rule: 

 add self int

1

2
i ji

A AA

i

j i

E A E E
≠

= + ∑( ) .                      (24) 

Thus within IQA, the total energy is viewed as a sum of intra- and inter-atomic 

contributions (Eq. (24)), which require computing all terms of the type discussed above. 

That is to say the energy integrals required will invoke all three density matrices ρ , 1ρ , 

and 2ρ . This has proven to be a highly successful extension of Bader’s ideas based upon 

the definition of the QTAIM atomic basins. But again the quantum crystallography 

advantage shows itself as usual in allowing calculation of properties that go beyond those 
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obtainable from the density ρ  alone. 

 

5.5 Excited State Electron Densities from X-Rays 

It has been shown by Coppens et al. that time-dependent X-ray measurements can reveal 

the electron density of excited states of molecular crystals.78-81 This has been carried out 

using bright synchrotron X-ray sources in concert with laser pulses to create the excited 

states in time-resolved pump-probe photocrystallographic experiments. This is still a 

frontier area of crystallography. Although it has been shown that excited state densities 

have been observed, what is their best mathematical representation?  

It is suggested here that the unoccupied orbital space of the ground state one body 

density matrix contains the excited state orbitals. Thus the projector density matrix 

discussed above obtained from the Clinton equations (Eqs. (8) and (9)) can be used to 

represent both ground and excited state orbitals. The one-body density matrix 1( , ')ρ r r  of 

the ground state orbitals would be obtained in the usual way for the ground state. In that 

process there will occur a density matrix corresponding to orbitals unoccupied and 

orthogonal to those of the ground state.  

In a second experiment laser pumping to the excited state will give rise to 

scattering data for that excited state.78 That data can be used to fix the elements of an 

excited state density matrix projector. The excited state density matrix can then be 

determined using the Clinton equations. In this case, the imposed constraints are 

normalization, the X-ray scattering factors of the exited state, and one new constraint. 

The required new constraint is that the excited state orbitals must be orthogonal to the 

ground state orbitals. In this case the general form of a constraint condition, viz.,   

 ˆtr O=PO ,                          (25) 

becomes  

 exited groundtr 0=P P ,                        (26) 

where the matrix being constrained is that of the excited state exitedP , and the matrix 

representative of the constraint is the ground state matrix groundP which will already be 
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known from calculations with the scattering data of the ground state, and the constraint 

expectation value is exactly zero. 

Again the formalism suggests that it should be constructed on more than the 

electron density alone. In this case, one is suggesting a one-body density matrix for the 

ground state orbitals (
1

ground ( , ')ρ r r ) and one for the orbitals of the excited state 

(
1

excited ( , ')ρ r r ).   

 

6. Conclusions   

 

The concept of quantum crystallography has been the subject of a number of recent 

discussions by Grabowsky, Genoni, and Burgi,1 and by Jayatilaka2 in a highly relevant 

book by C. Gatti and P. Macchi.3 In this paper, arguments that the complete quantum 

mechanics can be extracted from the X-ray data in the form of ρ , 1ρ , and 2ρ  have been 

discussed. The point is that the incorporation of a quantum mechanical formalism to 

describe the scattering data achieves two important goals: (1) It opens the door for the 

extraction of an entirely new range of properties from X-ray diffraction experiments, 

properties (e.g. the momentum density, energies, etc.) that are not obtained in the 

ordinary X-ray analysis, (2) by incorporating the quantum mechanics into the solution of 

the crystallographic problem, the densities thus obtained have quantum mechanical 

validity not otherwise guaranteed, whether from spherical or ashperical (multipolar) 

refinement.  

In short, more information is available from the X-ray data, over and above just 

the electron density ρ , no matter how precise it may be in terms of the crystallographic 

agreement R-factor. One certainly recognizes all of the good information and chemical 

interpretations that have been brought forward by the crystallographic pioneers of non-

spherical density. That has been and still remains in present science all to the good. It is 

simply pointed out here there is a natural quantum mechanical formalism to extract even 

more useful information from X-ray scattering data.  
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