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Abstract

The resources generated by the GTEx consortium offer unprecedented opportunities
to advance our understanding of the biology of human diseases. Here, we present an
in-depth examination of the phenotypic consequences of transcriptome regulation
and a blueprint for the functional interpretation of genome-wide association
study-discovered loci. Across a broad set of complex traits and diseases, we
demonstrate widespread dose-dependent effects of RNA expression and splicing. We
develop a data-driven framework to benchmark methods that prioritize causal genes
and find no single approach outperforms the combination of multiple approaches.
Using colocalization and association approaches that take into account the observed
allelic heterogeneity of gene expression, we propose potential target genes for 47%
(2519 out of 5385) of the GWAS loci examined.

Introduction

In the last decade, the number of reproducible genetic associations with complex human

traits that have emerged from genome-wide association studies (GWAS) has substan-

tially grown. Many of the identified associations lie in non-coding regions of the genome,

suggesting that they influence disease pathophysiology and complex traits via gene reg-

ulatory changes. Integrative studies of molecular quantitative trait loci (QTL) [1] have

established gene expression as a key intermediate molecular phenotype, and improved

functional interpretation of GWAS findings, spanning immunological diseases [2], vari-

ous cancers [3, 4], lipid traits [5, 6], and a broad array of other complex traits.

Large-scale international efforts such as the Genotype-Tissue Expression (GTEx) Con-

sortium have provided an atlas of the regulatory landscape of gene expression and splicing
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variation in a broad collection of primary human tissues [7–9]. Nearly all protein-coding

genes in the genome now have at least one local variant associated with expression

changes and the majority also have common variants affecting alternative splicing (FDR <

5%) [9]. In parallel, there has been an explosive growth in the number of genetic discover-

ies across a large number of traits, prompting the development of integrative approaches

to characterize the function of GWAS findings [10–14]. Nevertheless, our understanding

of underlying biological mechanisms for most complex traits substantially lags behind the

improved efficiency of the discovery of genetic associations, made possible by large-scale

biobanks and GWAS meta-analyses.

One of the primary tools for the functional interpretation of GWAS associations has

been the integrative analysis of molecular QTLs. Colocalization approaches that seek to

establish shared causal variants (e.g., eCaviar [15], enloc [16], and coloc [17]), enrich-

ment analysis (S-LDSC [18] and QTLEnrich [11]), or mediation and association methods

(SMR [12], TWAS [13], and PrediXcan [19]) have provided important insights, but they

are often used in isolation, and there have been limited prior assessments of power and

error rates associated with each [20]. Their applications often fail to provide a compre-

hensive, biologically interpretable view across multiple methods, traits, and tissues or

offer guidelines that are generalizable to other contexts. Thus, a comprehensive assess-

ment of expression and splicing QTLs for their contributions to disease susceptibility and

other complex traits requires the development of novel methodologies with improved

resolution and interpretability.

Here, we present methods and resources that help elucidate how genetic variants

associated with gene expression (cis-eQTLs) or splicing (cis-sQTLs) contribute to, or

mediate, the functional mechanisms underlying a wide array of complex diseases and

quantitative traits. Since splicing QTLs have largely been understudied, we perform

a comprehensive integrative study of this class of QTLs, in a broad collection of tis-

sues, and disease associations. We provide predictions of functional mechanisms for 74

distinct complex traits from 87 GWA study results and demonstrate independent val-

idation and evaluation of findings using likely causal gene-disease relationships in the

Online Mendelian Inheritance of Man (OMIM) database. Notably, we find widespread

dose-dependent effects of cis-QTLs on traits through multiple lines of evidence. We

examine the importance of considering, or correcting for, false functional links attributed

to GWAS loci due to neighboring but distinct causal variants. We call this confound-

ing LD contamination for the remainder of the paper. To identify predicted causal

effects among the complex trait-associated QTLs, we conduct systematic evaluation

across different methods. Furthermore, we provide guidelines for employing complemen-

tary methods to map the regulatory mechanisms underlying genetic associations with

complex traits.

Mapping the regulatory landscape of complex traits

The final GTEx data release (v8) included 54 primary human tissues, 49 of which included

at least 70 samples with both whole genome sequencing (WGS) and tissue-specific RNA-

seq data. A total of 15,253 samples from 838 individuals were used for cis-QTL mapping

(Fig. 1) [9]. In addition to the expression quantitative trait loci (eQTL) mapping, we also

evaluated genetic variation associated with alternative splicing (sQTL) and their impact

on complex traits.
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Fig. 1 Overview of workflow for mapping complex trait-associated QTLs. Full variant association summary
statistics results from 114 GWAS were downloaded, standardized, and imputed to the GTEx v8 WGS variant
calls (maf > 0.01) for analyses. A total of 8.87 million imputed and genotyped variants were investigated to
identify trait-associated QTLs. A total of 49 tissues, 87 studies (74 distinct traits), and 23,268 protein-coding
genes and lncRNAs remained after stringent quality assurance protocols and selection criteria. A wide array of
complex trait classes, including cardiometabolic, anthropometric, and psychiatric traits, were included

We downloaded and processed 114 publicly available GWAS datasets with genome-

wide variant association summary statistics (here onwards, summary statistics). After

data harmonization, format standardization, missing data imputation, and other quality

assurance steps (Additional file 1: Fig. S1, Fig. S2, and Fig. S3), we retained 87 datasets

representing 74 distinct complex traits including cardiometabolic, hematologic, neu-

ropsychiatric, and anthropometric traits (Additional file 1: Fig. S4). We provide the full

list of datasets used in our study and all processing scripts as a resource to the community

(Additional file 2: Table S1 and Additional file 1: Table S2).

Using these resources, we sought to identify likely causal associations among these

gene- and alternatively spliced transcript-associated variants (eVariants and sVariants,

respectively). For this purpose, we applied colocalization, enrichment, and associa-

tion analyses, and provide a resource to enable investigations into gene prioritization

approaches for disease associations.

Gene expression and alternative splicing dysregulations have been proposed as the

underlying mechanism of the association signals in many diseases [5, 11, 21–24]. Sim-

ilar to previous reports [8], we observed robust and widespread enrichment of eQTLs

and sQTLs among disease-associated variants (Fig. 2). This observation suggests a causal

role for expression and splicing regulation in complex traits. Figure 2 also illustrates the

dangers of using a naive approach to assigning causal genes to GWAS variants that are

associated with expression or splicing, especially when using loose p value thresholds. For

example, with a p value threshold of 0.05, over 97% of common variants will be assigned

some gene in some tissue associated at that level.



Barbeira et al. Genome Biology           (2021) 22:49 Page 4 of 24

Fig. 2 Expression and splicing QTL enrichment among GWAS variants. The proportion of genetic variants
associated with gene expression (a) and splicing (b) of at least one gene in at least one tissue for each p value
cutoff (on x-axis in − log10(p) scale) is shown. The proportions for all tested variants are shown as circles, and
the proportions for the GWAS catalog variants are shown as squares

Dose-dependent regulatory effects of expression and alternative splicing on

complex traits

Nevertheless, enrichment studies can be confounded by many unknown factors. There-

fore, we sought to gather stronger evidence for a causal link by testing whether there is

a dose-dependent effect of expression and splicing QTLs on complex traits. Figure 3a

illustrates schematically our approach.We examined whether expression or splicing asso-

ciated variants (referred to as e/sVariants for the remainder of the paper) with higher

impact on gene expression or splicing lead to higher impact on a complex trait, i.e., a

larger GWAS effect (Fig. 3a). The impact of the regulation of a gene on a trait is quantified

by the slope βgene. That is, a null hypothesis of no dose-dependent effect is equivalent to

βgene = 0.

To reduce unnecessary noise in the analysis, we included only the most likely causal

e/sVariant within each credible set as determined by the e/sQTL fine-mapping (denoted

“fine-mapped variants” throughout the remainder of the paper; see Methods on QTL

fine-mapping).

First, we quantified dose-dependent effect of expression and splicing regulation on the

trait as the average mediating effect size, β̄ . We calculated this average effect using the

Pearson correlation between the absolute values of the molecular and complex trait effect

sizes (cor(|γ |, |δ|)) across all fine-mapped variants (for any gene) for each trait-tissue

pair. As hypothesized, we found, consistently across all tissue-trait pairs, a positive cor-

relation between the GWAS and QTL effects, which was significantly larger than the

permuted null with matched local LD. The average correlations were 0.18 (s.e. = 0.004,

p < 1 × 10−30) and 0.25 (s.e. = 0.006, p < 1 × 10−30) for expression and splicing, respec-

tively with the distribution of the median correlation across tissues for each trait shown

in Fig. 3b. Averages and standard errors were calculated taking into account correlation

between tissues, and p values were calculated against permuted null with matched local

LD (Supplementary Text). The non-negative permuted correlation values indicate that

local LD contributed to inflate the estimated mediation effect. These results provide the

first line of evidence of the dose-response effect.
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Fig. 3 Dose-dependent effects of QTLs on complex traits. Here, all analyses were performed with
fine-mapped variants (QTL with highest posterior inclusion probability). a Schematic representation of dose-
response model. b Correlation between QTL and GWAS effects, Cor(|δ̂|, |γ̂ |). Gray distribution represents
permuted null with matched local LD. Each data point corresponds to the median correlation for the trait
across 49 tissues. c Average mediated effects from mediation model (σ 2

gene , median across tissues). Gray
distribution represents permuted null with matched local LD. eMediated effects of secondary vs. primary
eQTLs of genes with colocalization probability (rcp) >0.10. in whole blood, genes for all 87 traits are shown

To test and account for mediation effect heterogeneity (different slope/dosage sensitiv-

ity for different genes), we modeled the gene-specific mediation effect, βg , as a random

variable following a normal distribution βg ∼ N (0, σ 2
gene). Under this random-effects

model, the null hypothesis can be stated as σ 2
gene = 0 (Supplementary Text; Fig. 3c). As

shown in Fig. 3c, these effects were significantly larger than expected from the permuted

null (expression p = 1.8 × 10−9; splicing p = 2.5 × 10−7). These results indicate that

strong genetic effects on expression or splicing are more likely to have a strong associa-

tion to complex traits, adding strong support to a dose-dependent relationship between

gene regulation and downstream traits.

Importantly, by averaging across all genes, the estimates, from both the average and the

random-effects approach, of the mediating effect are robust to confounding due to LD, as

discussed in the Supplementary Text.

Another way to account for mediation effect heterogeneity is to make use of the allelic

series of independent eQTLs identified for over half of the eGenes [9]. We examined

whether the mediating effect (β = δ/γ ) inferred from the primary eQTL (βprim) was

consistent with the one inferred from the secondary eQTL (βsec). Among the indepen-

dent eQTLs for a given gene, we called primary the one with the larger effect size. We

considered only fine-mapped eQTLs given the low power to detect multiple independent

sQTLs.We confirmed this concordance, as reported by the GTEx consortium [9], demon-

strating that the correlation between the primary and secondary mediating effects is

larger than expected given the LD between them. To better visualize this concordance, we

plotted the estimated mediating effects of primary against the secondary eQTLs (whole
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blood shown here but other tissues look similar) in Fig. 3d and showed that they cluster in

the first and third quadrants. All gene-trait pairs with relatively high regional colocaliza-

tion probability (rcp > 0.10, see colocalization details below) are shown here to facilitate

visualization, but the clustering around the diagonal line was observed even without the

filtering. This provides a third confirmatory evidence for the widespread dose-dependent

effects of eQTLs on complex traits.

Note that genes with discordant effects within the allelic series would be harder to

detect and suggest more complex causal relationship or context specificity.

Causal gene prediction and prioritization

In addition to genome-wide analyses that shed light on the molecular architecture of

complex traits, QTL analysis of GWAS data can identify potential causal genes and

molecular changes in individual GWAS loci. Towards this end, we performed associ-

ation analysis with genetically predicted regulation and colocalization (Fig. 4a). After

evaluating the performance of coloc and enloc [16, 17], we chose enloc as our primary

approach, due to its use of hierarchical models to estimate colocalization priors [16]

and its ability to account for multiple causal variants. The coloc assumption of a single

causal variant drastically reduces performance especially in large QTL datasets such as

GTEx with widespread allelic heterogeneity. For a more extensive discussion on the ben-

efits of Bayesian colocalization methods and comparison of enloc to other colocalization

approaches including SMR-HEIDI, see [25]. We estimated the posterior regional colocal-

ization probability (rcp), using enloc, for 12,072,964 tissue-gene-GWAS locus-trait tuples

and 67,943,800 tissue-splicing event-GWAS locus-trait tuples. For the tally of colocal-

ized genes, we used rcp > 0.5 as a stringent cutoff as demonstrated below with the low

colocalization probabilities of height loci using two different datasets.

In total, we identified 3477 (15% of 23,963) unique genes colocalizing with GWAS hits

(rcp > 0.5) across all traits and tissues analyzed. Similarly, 3157 splicing events (1% out

of 310,042) colocalized with GWAS hits, corresponding to 1226 genes with at least one

colocalized splicing event (5% of 23,963).

Colocalization of e/sQTLs with GWAS variants provides important causal support for

molecular traits. However, we found their estimates to be overly conservative. To illus-

trate this point, we tested the colocalization of height with itself, using two large-scale

studies of individuals of European-ancestry individuals: GIANT [26] and UK Biobank.

We started by performing fine-mapping of both GWAS results using susier [27]. Notably,

only 416 (39%) of GIANT’s fine-mapped credible sets overlapped with the correspond-

ing UK Biobank credible sets. We estimated the colocalization probability as the sum of

the product of posterior inclusion probabilities of variants for each of the 1069 indepen-

dent credible sets in GIANT, which is similar to the approach used by eCAVIAR [15].

Two thirds of the GIANT credible sets (66.2%) had a colocalization probability below

0.01, and about half (48.9%) had a colocalization probability below 0.001. In other words,

two thirds of the loci found by GIANT would be considered not to be colocalized with

UK Biobank’s loci when using a seemingly very loose colocalization probability cutoff of

0.01. Given the larger sample size of the UK Biobank GWAS (n = 337,119 UKB GWAS

vs. n = 253,288 for GIANT), the low colocalization cannot be attributed to lack of power.

This result is likely due in part to the sensitivity to small LD differences between different

EUR populations that make up large GWAS meta-analysis cohorts such as GIANT. Our
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Fig. 4 Identifying and validating predicted causal genes. a Schematic representation of association and
colocalization approaches. b Schematic representation of extrapolating the dose-response curve to the
Mendelian end of phenotypic variation spectrum [37]. c Proportion of GWAS-associated loci per trait that
contain colocalized and PrediXcan-associated signals for expression and splicing

analysis illustrates the fact that colocalization probability estimates are highly conserva-

tive and may miss many causal genes, and low colocalization probability should not be

interpreted as evidence of lack of a causal link between the molecular phenotype and the

GWAS trait. Notice that this limitation is not inherent to the colocalization method itself

but the limitation of currently available large-scale GWAS meta-analysis results.

A complementary approach to colocalization is to estimate the GWAS trait association

with genetically predicted gene expression or splicing [19]. The GTEx v8 data provides

an important expansion of these analyses, allowing generation of prediction models in 49

tissues with whole genome sequencing data to impute gene expression and splicing vari-

ation. We trained prediction models using a variety of approaches and selected the top

performing one based on precision, recall, and other metrics [28]. Briefly, the optimal

model uses fine-mapping probabilities for feature selection and exploits global patterns of

tissue sharing of regulation (Supplementary Text) to improve prediction. In-depth com-

parison of these fine-mapped models with Elastic Net-based and CTIMP [29] models is

described in [28]. The analysis presented here uses these improved models (fine-mapped-

mashr) instead of Elastic Net as reported in the main GTEx publication [9]. Multi-SNP

prediction models were generated for a total of 686,241 gene-tissue and 1,816,703 splic-

ing event-tissue pairs. The larger sample size and improved models led to an increase in

the number of expression models to a median across tissues of 14,062, from a median of

4776 GTEx v7 Elastic Net models (median increase at 191%, Additional file 1: Fig. S5).

Splicing models are available only for the v8 release.

Next, we computed the association between an imputed molecular phenotype (expres-

sion or splicing) and a trait to estimate the genic effect on the trait, using the summary
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statistics-based PrediXcan [24]. Given the widespread tissue sharing of regulatory vari-

ation [8], we also computed MultiXcan scores to integrate patterns of associations from

multiple tissues and increase statistical power [10]. Out of the 22,518 genes tested with

PrediXcan, 6407 (28%) showed a significant association with at least one of the 87 traits

at Bonferroni-corrected p value threshold (p < 0.05/686, 241, where the denomina-

tor is the number of gene-tissue pairs tested; Additional file 1: Fig. S6). For splicing,

about 15% (20,364 of 138,890) of tested splicing events showed a significant association

(p < 0.05/1, 816, 703, where the denominator is the number of intron-tissue pairs tested).

Nearly all traits (94%; 82 out of 87) showed at least one significant gene-level PrediXcan

association in at least one tissue (Additional file 1: Figs. S7 and S8); the median number

of associated genes across traits was 974. This resource of PrediXcan associations can be

used to prioritize a list of putatively causal genes for follow-up studies.

To replicate the PrediXcan expression associations in an independent dataset, BioVU,

which is a large-scale biobank tied to Electronic Health Records [30, 31], we selected

seven traits with predicted high statistical power. Out of 947 gene-tissue-trait discoveries

tested, 458 unique gene-tissue-trait triplets (48%) showed replication in this independent

biobank (PrediXcan association p < 0.05; see Supplementary Text). Further confirm-

ing this statistical replication in BioVU, we used the PheWAS [32] catalog as the silver

standard and found an AUC curve of 0.62. [33].

Altogether, these results provide abundant links between gene regulation and GWAS

loci. To further quantify this, we split the genome into approximately LD-independent

blocks [34] and identified blocks with a significant GWAS variant for each trait (at Bon-

ferroni threshold adjusted for number of variants 0.05/8.8 × 106 ∼ 5.7 × 10−9); we refer

to any such region-trait pair by “GWAS locus.” We calculated the proportion of GWAS

loci that contain a significantly associated gene via PrediXcan or a colocalized gene via

enloc (rcp > 0.5). Briefly, the LD blocks are defined by analyzing empirical patterns of LD

observed in 1000 Genomes [35] and variants in different regions are unlikely to be corre-

lated, thus providing us with a data-driven criterion to distinguish independent genomic

signals.

Across the traits, 72% (3899/5385) of GWAS loci had a PrediXcan expression associ-

ation in the same LD block, of which 55% (2125/3899) had evidence of colocalization

with an eQTL; for splicing, 62% (3345/5385) had a PrediXcan association of which 34%

(1135/3345) colocalized with an sQTL (Additional file 1: Table S3). From the combined

list of eGenes and sGenes, 47% of loci have a gene with both enloc and PrediXcan sup-

port. The distribution of the proportion of associated and colocalized GWAS loci across

87 traits is summarized in Fig. 4c; for a typical complex trait, about 20% of GWAS loci

contained a colocalized, significantly associated gene while 11% contained a colocalized,

significantly associated splicing event. These results propose function for a large number

of GWAS loci, but most loci remain without candidate genes, highlighting the need to

expand the resolution of transcriptome studies.

A recent report estimates that the proportion of trait variance explained by the assayed

transcriptome is on average 11% [36]. Even though this number is not directly compara-

ble with the proportion of loci with support from PrediXcan and enloc, some discussion

is warranted. Differences may arise with our analysis from the fact that (1) GTEx v8

doubles the number of samples with both genotype and RNA-seq relative to v7, (2) we

include links based on splicing in addition to expression, (3) a variant may act through
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both regulation of expression levels and other undetected mechanisms (pleiotropy), and

(4) attenuation bias may reduce the estimates given the error in eQTL effect sizes.

Of note, two members of the sterolin family, ABCG5 and ABCG8, showed highly

significant predicted causal associations using both PrediXcan and enloc for LDL-C

levels and self-reported high cholesterol levels. ABCG8 showed more significant associ-

ations in both datasets (chr2: 43838964–43878466; UKB self-reported high cholesterol:

−log10(pPrediXcan) = 38.43, rcp = 0.985; GLGC LDL-C: −log10(pPrediXcan) = 71.40,

rcp = 0.789), compared toABCG5 (chr2: 43812472–43838865;−log10(pPrediXcan) = 36.85,

rcp = 0.941; −log10(pPrediXcan) = 80.80, rcp = 0.705). Mutations in either of the two ATP-

binding cassette (ABC) half-transporters, ABCG5 and ABCG8, lead to reduced secretion

of sterols into bile and, ultimately, obstruct cholesterol and other sterols exiting the

body [38]. In mice with disrupted Abcg5 and Abcg8 (G5G8-/-), a 2- to 3-fold increase

in the fractional absorption of dietary plan sterols and extremely low biliary cholesterol

levels was observed, indicating that disrupting these genes contributes greatly to plasma

cholesterol levels [39]. The overexpression of human ABCG5 and ABCG8 in transgenic

Ldlr-/- mice resulted in 30% reduction in hepatic cholesterol levels and 70% reduced

atherosclerotic legion in the aortic root and arch [40] after 6 months on a Western diet.

Several other lipid-associated loci were also consistently predicted as causal across

OMIM, the rare variant derived set, PrediXcan and enloc. Rare protein-truncating vari-

ants inAPOB have been previously associated with reduced LDL-C and triglyceride levels

and reduced coronary heart disease risk [41]. Interestingly, APOB has been predicted as a

causal gene in four related traits, coronary artery disease, LDL-C levels, triglyceride lev-

els, and self-reported high cholesterol levels. Among the four traits, PrediXcan showed

the highest association to LDL-C levels (−log10(pPrediXcan) = 130.89; rcp = 0.485) while

self-reported high cholesterol showed the strongest evidence using enloc at nearly maxi-

mum posterior probability (−log10(pPrediXcan) = 93.66; rcp = 0.969). Although APOB has

been suggested as a better molecular indicator of predicted cardiac events in place of

LDL-C levels [42, 43], its translation has been surprisingly slow in clinical practice [44].

Here, we provide an additional support for the crucial role APOB may play in predicting

lipid traits.

Performance for identifying “ground truth” genes

To compare the ability of different approaches to identify the causal gene that mediates

the association between GWAS loci and the traits, we sought to curate sets of “ground

truth” genes using information that is independent of GWAS results (Additional file 1:

Fig. S9). We call these sets “silver standards” as a reminder of their imperfect nature. The

first silver standard was based on the OMIM (Online Mendelian Inheritance in Man)

database [45], and the second one was based on publicly available rare variant tests from

exome-wide association studies [46–48], resulting in 1592OMIM gene-trait pairs and 101

rare variant-based gene-trait pairs (Additional file 3: Table S4, Additional file 4: Table S5).

The rationale behind the choice of the OMIM database is the comorbidity among

Mendelian and complex diseases suggesting that genes whose loss of function cause

Mendelian diseases also manifest in milder phenotypic variation when modified to a

lesser degree by regulatory variation [49, 50]. In other words, that the dose-response curve

at the regulatory range may be extrapolated to the rare, loss-of-function end (Fig. 4b).

The rationale behind the use of the rare variant association study results is the excess of
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deleterious rare variants associated with complex traits in genes that are in the vicinity of

common variants associated with the same trait [46, 51, 52]. Note that rare variant associ-

ations are nearly independent of common variants due to the allele frequency difference

between them.

For the analysis, we partitioned the genome into approximately independent LD

blocks [34] and considered all the blocks where a silver standard gene was available

for the trait. Since only genes in the vicinity of an index gene can be discovered with

cis-regulatory information, we only considered the LD blocks with a GWAS signifi-

cant variant (Additional file 1: Fig. S10). This selection resulted in 228 OMIM gene-

trait pairs (28 distinct traits) and 80 rare variant-associated gene-trait pairs (5 distinct

traits) that are located within the same LD block as the GWAS locus for a matched

trait.

Both PrediXcan and enloc based on expression and splicing showed good sensitivity and

specificity for identifying the silver standard genes as demonstrated by the ROC curves

in Fig. 5a, b. These are well above the gray random guess lines indicating the predic-

tive ability of these methods to find causal genes (see comparison with permuted null in

Additional file 1: Fig. S11).

For applications such as target selection for drug development or follow-up experi-

ments, another relevant metric is the precision or, equivalently, positive predictive value

(PPV)—the probability that the gene-trait link is causal given that it is called significant

Fig. 5 Causal gene identification performance. ROC curves of enloc and PrediXcan statistics to identify the
“causal” genes (OMIM silver standard) using expression (a) and splicing (b) are shown. Precision recall curves
of enloc and PrediXcan to identify silver standard genes using expression (c) and splicing (d) (we show the
precision in the range 0 to 0.4 to improve visualization). The number of GWAS loci (LD block-trait pairs) where
the OMIM gene was ranked at the top by proximity, enloc, and PrediXcan using expression (e) and splicing (f).
In 131 loci out of 206, the OMIM gene was not ranked at the top by either proximity, significance, or
colocalization. In thirty one of the loci, the OMIM gene was ranked first by all three criteria. In nineteen loci,
the OMIM gene was closest gene (to the top GWAS variant) but not the top gene by PrediXcan significance
nor enloc’s colocalization probability
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or colocalized. Precision recall curves for expression- and splicing-based predictions are

shown in Fig. 5c, d. With more stringent threshold (towards the left in the recall axis),

higher precision is obtained.

For example, 8.7% of genes with PrediXcan significant genes (p < 0.05/49 × num-

ber of gene/trait pairs) were OMIM genes and 14.8% of genes with high colocalization

probability (rcp > 0.5) were also OMIM genes for matched traits.

Multiple factors contribute to the rather low precision. One of them is the widespread

molecular pleiotropy [9], i.e., multiple genes affected by the same trait-associated vari-

ants. Another factor reducing the overall causal gene detection performance is the

inherent bias of the OMIM gene list. Our current understanding of gene function

is biased towards protein-coding variants with very large effects, as reflected in the

list of OMIM genes. Genes associated to rare severe disease tend to be depleted of

regulatory variation [53, 54], which will decrease the performance of a QTL-based

method [54].

Among the 206 loci with at least one OMIM gene (a few loci contained multiple OMIM

genes), an OMIM gene was the closest to the top GWAS SNP in 31.6% of the loci, it was

the most colocalized in 24.8% of the loci, and it was the most significant in 20.4% of the

loci (Fig. 5e, f ).

To further investigate whether this predictive power could be improved by combin-

ing multiple criteria, we performed a joint logistic regression of OMIM gene status on

(1) the proximity of the top GWAS variant to the nearest gene (distance to the gene

body), (2) posterior probability of colocalization, and (3) PrediXcan association signifi-

cance between QTL and GWAS variants. To make the scale of the three features more

comparable, we used their respective ranking. When genes did not have an enloc or

PrediXcan score, they were assigned to the last position in the ranking. All three fea-

tures were significant predictors of OMIM gene status, with better ranked genes more

likely to be OMIM genes (proximity p = 2.0 × 10−2, enloc p = 6.1 × 10−3, PrediXcan

p = 2.5× 10−4), indicating that each method provides an additional source of causal evi-

dence even after conditioning on the others. Similar results were obtained using splicing

colocalization and association scores and the rare variant-based silver standard, as shown

in Additional file 1: Table S6. These results provide further empirical evidence that a com-

bination of colocalization and association methods will perform better than individual

ones. The significance of the proximity score even after accounting for significance and

colocalization indicates missing regulatory events, i.e., mechanisms that may be uncov-

ered by assaying other tissue or cell type contexts, larger samples, and other molecular

traits, underscoring the need to expand the size and breadth of QTL studies. Proximity

criterion also helps resolve cases when QTL data indicates multiple genes with similar

significance.

Predicted OMIM genes included well-known findings such as PCSK9 for LDLR, with

PCSK9 significant and colocalized for relevant GWAS traits (LDL-C levels, coronary

artery disease, and self-reported high cholesterol), and Interleukins andHLA subunits for

asthma, both significant and colocalized for related immunological traits. Significantly

associated and colocalized genes that predictedOMIMgenes also included FLG (eczema),

TPO (hypothyroidism), and NOD2 (inflammatory bowel disease) (see Additional file 1:

Table S4 for complete list). Analysis with rare variant-based silver standard yielded similar

conclusions (Supplementary Text; Additional file 1: Fig. S12).
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Tissue enrichment of GWAS signals

The broad sharing of regulatory variation across tissues and the reduced significance

of tissue-specific eQTLs make causal tissue identification challenging. To address this

problem, we devised a novel approach to identify tissues of relevance for the etiology

of complex traits. We investigated the patterns of tissue specificity and tissue sharing of

PrediXcan association results across 49 tissues. For each trait-gene pair, the PrediXcan

z-score can be represented as a 49 × 1 vector with each entry being the gene-level z-

score in the corresponding tissue (if the prediction model of the gene is not available in

that tissue, we filled in zero). To explore the tissue specificity of the PrediXcan z-score

vector, we proceeded by assigning the z-score vector to a tissue-pattern category and

tested whether certain tissue-pattern categories were over-represented among colocal-

ized PrediXcan genes as compared to non-colocalized genes. We used the FLASH factors

identified frommatrix factorization applied to the cis-eQTL effect size matrix, as PrediX-

can and cis-eQTL shared similar tissue-sharing pattern (Supplementary Text). To obtain a

set of detailed and biologically interpretable tissue-pattern categories from the 31 FLASH

factors, we manually merged them into 18 categories as shown in Additional file 1: Fig.

S13. For each trait, we projected the z-score vector of each gene to one of the 31 FLASH

factors (as described in Section 9 of Additional file 1) so that the gene was assigned to the

corresponding tissue-pattern category. We defined a “positive” set of genes as the ones

with PrediXcan p value that meets Bonferroni significance at α = 0.05 in at least one tis-

sue and enloc rcp > 0.01 in at least one tissue, which could be thought as a set of candidate

genes affecting the trait through expression level. We chose a rather low threshold used

for the rcp due to the stringent conservative nature of colocalization probabilities.We also

constructed a “negative” set of genes with enloc rcp = 0, which could be thought as a set

of genes whose expressions were unlikely to affect the trait. We proceeded to test whether

certain tissue-pattern categories were enriched in “positive” set as compared to “negative”

set. Since the main focus of this analysis was tissue-specific patterns, we excluded Factor1

(the cross-tissue factor) and Factor25 (likely to be a tissue-shared factor capturing tissues

with large sample size). Additionally, we excluded Factor7 (testis), as it was unlikely to

be the mediating tissue but might introduce false positives. We tested the enrichment of

each tissue-pattern category by Fisher’s exact test (“positive”/“negative” sets and in/not in

tissue-pattern category). Among 87 traits, 82 traits had enloc signal and the enrichment

of these was calculated accordingly.

Using the pattern of tissue classes of non-colocalized genes (rcp = 0) as the expected

null, we assessed whether significantly associated and colocalized genes (PrediXcan sig-

nificant and rcp > 0.01) were over-represented in certain tissue classes (Fig. 6). Consistent

with previous reports [11, 55], we identified several instances in which the most signifi-

cant tissue is supported by current biological knowledge. For example, blood cell count

traits were enriched in whole blood, neuroticism and fluid intelligence in brain/pituitary,

hypothyrodism in thyroid, coronary artery disease in artery, and cholesterol-related traits

in liver. Taken together, these results show the potential of leveraging regulatory variation

to help identify tissues of relevance for complex traits.

Discussion

We performed in-depth examination of the phenotypic consequences of the genetic reg-

ulation of the transcriptome and provide data-driven analytical approaches to benchmark
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Fig. 6 Identifying trait-relevant tissues using tissue-specific enrichment. Enrichment of tissue-specific
association and colocalization compared to the pattern of tissue specificity of non-colocalized genes.
Over-representation of the tissue class for PrediXcan-significant and colocalized genes is indicated by dark
yellow while depletion is indicated by blue. Black dots label the tissue class-trait pairs passing the nominal p
value significance threshold of 0.05. Abbreviation: Table S2. Trait category colors: Fig. S4

methods that assign function to GWAS loci and best-practice guidelines for using the

GTEx resources to interpret GWAS results. We provide a systematic empirical demon-

stration of the widespread dose-dependent effect of expression and splicing on complex

traits, i.e., variants with larger impact at the molecular level have larger impact at the

trait level. Furthermore, we found that target genes in GWAS loci identified by enloc and

PrediXcan were predictive of OMIM genes for matched traits, implying that for a pro-

portion of the genes, the dose-response curve can be extrapolated to the rare and more

severe end of the genotype-trait spectrum. The observation that common regulatory

variants target genes also implicated by rare coding variants underscores the extent to

which these different types of genetic variants converge to mediate a spectrum of similar

pathophysiological effects and may provide a powerful approach to drug target discovery.

We implemented association and colocalization methods that leverage the observed

allelic heterogeneity of expression traits. After extensive comparison using two indepen-

dent sets of silver standard gene-trait pairs, we conclude that combining enloc, PrediXcan,

and proximity ranking outperforms the individual approaches. The significance of the

proximity ranking is a sign of the “missing regulability” emphasizing the need to expand

the resolution, sample size, and range of contexts of transcriptome studies as well as to

examine other molecular mechanisms.

We caution that the increased power offered by this release of the GTEx resources also

brings higher risk of false links due to LD contamination and that naive use of eQTL or

sQTL association p values to assign function to a GWAS locus can be misleading. Colo-

calization approaches can be used to weed out LD contamination, but given the lack of

LD references from source studies, they can also be overtly conservative. General pur-

pose reference LD from publicly available sources are not sufficient for fine-mapping and

colocalization approaches, which can be highly sensitive to LD misspecification when

only summary results are used [56]. The GWAS community has made great progress

in recognizing the need to share summary results, but to take full advantage of these

data, improved sharing of LD information from the source study as well as from large

sequencing reference datasets is also required.

Finally, we generated several resources that can open the door for addressing key ques-

tions in complex trait genomics.We present a catalog of gene-level associations, including
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potential target genes for nearly half of the GWAS loci investigated here that provides a

rich basis for studies on the functional mechanisms of complex diseases and traits. We

provide a database of optimal gene expression imputation models that were built on the

fine-mapping probabilities for feature selection and that leverage the global patterns of

tissue sharing of regulation to improve the weights. These imputation models of expres-

sion and splicing, which to date has been challenging to study, provide a foundation

for transcriptome-wide association studies of the human phenome—the collection of all

human diseases and traits—to further accelerate discovery of trait-associated genes. Col-

lectively, these data thus represent a valuable resource, enabling novel biological insights

and facilitating follow-up studies of causal mechanisms.
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