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Abstract

Background: Phase synchrony has extensively been studied for understanding neural coordination in health and
disease. There are a few studies concerning the implications in the context of BCIs, but its potential for establishing
a communication channel in patients suffering from neuromuscular disorders remains totally unexplored. We
investigate, here, this possibility by estimating the time-resolved phase connectivity patterns induced during a
motor imagery (MI) task and adopting a supervised learning scheme to recover the subject’s intention from the
streaming data.

Methods: Electroencephalographic activity from six patients suffering from neuromuscular disease (NMD) and six
healthy individuals was recorded during two randomly alternating, externally cued, MI tasks (clenching either left or
right fist) and a rest condition. The metric of Phase locking value (PLV) was used to describe the functional
coupling between all recording sites. The functional connectivity patterns and the associate network organization
was first compared between the two cohorts. Next, working at the level of individual patients, we trained support
vector machines (SVMs) to discriminate between “left” and “right” based on different instantiations of connectivity
patterns (depending on the encountered brain rhythm and the temporal interval). Finally, we designed and realized
a novel brain decoding scheme that could interpret the intention from streaming connectivity patterns, based on
an ensemble of SVMs.

Results: The group-level analysis revealed increased phase synchrony and richer network organization in patients.
This trend was also seen in the performance of the employed classifiers. Time-resolved connectivity led to superior
performance, with distinct SVMs acting as local experts, specialized in the patterning emerged within specific
temporal windows (defined with respect to the external trigger). This empirical finding was further exploited in
implementing a decoding scheme that can be activated without the need of the precise timing of a trigger.

Conclusion: The increased phase synchrony in NMD patients can turn to a valuable tool for MI decoding.
Considering the fast implementation for the PLV pattern computation in multichannel signals, we can envision the
development of efficient personalized BCI systems in assistance of these patients.
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Background
According to World Health Organization (WHO) ap-

proximately 15% of the global population experiences

some kind of disability with a 2–4% being reported as

severe.1 Brain Computer Interfaces (BCIs) receive con-

tinuous attention as an emerging technology for re-

habilitation and restoration of communication in people

with disabilities. BCIs create a communication channel

between the brain and machines, such as computers, as

they “translate” brain signals into machine commands

without requiring any muscle or peripheral nerve activity

[1, 2]. The idea of “mind reading” was first conceived by

Berger [3], but only in the past few years BCI implemen-

tations were made plausible. BCIs can be implemented

with various approaches, but electroencephalography

(EEG) has been proven to be the most popular choice

due to its non-invasiveness, low cost and advantage of

being employed with minimal effort even in home

environments.

EEG-based BCIs can be categorized as exogenous or en-

dogenous depending on whether external stimulation is

provided to the user. Event-related (evoked) potential,

ERP(EP), BCIs belong to the exogenous BCIs as the brain

activation is measured after a specific event (or delivered

stimulus). Most often visual stimuli are encountered, since

they are more naturally perceived, with the most notable

examples being transient [4], code-modulated [5] and

steady-state [6, 7] visual responses to flickering patterns.

While exogenous BCIs achieve high performance, their

design inherently contradicts with the perspective of asyn-

chronous (i.e. self-paced) BCIs, and this is the main reason

why endogenous BCIs currently receive significant atten-

tion, even though a considerable training period, that can

last from a couple of days to several months, is required

for the user before harnessing such a system. The most

prominent paradigm of endogenous BCIs is the one that

requires the user to perform a mental task, including

movement imagination of limb(s) or even tongue [8–12],

speech imagination [13, 14] and mental arithmetic [15,

16]. In the case of movement imagination, called hereafter

motor imagery (MI), particularly, brain decoding usually

relies on the sensorimotor rhythm (SMR) detected in the

EEG signal from the electrodes located over the

sensory-motor cortex, the part of the brain that is associ-

ated with planning, control and execution of voluntary

movements [17].

MI related modulations in brain activity, associated

with both μ and β rhythms over the sensorimotor areas

are often reported in EEG studies and the approach of

event-related desynchronization/synchronization (ERD/

ERS) that estimates the power increase/decrease during

the MI task or once it is completed, has been developed

to capture them [18–20]. A second popular approach is

the technique of common spatial patterns (CSPs) [21]

and its alternatives [22–25], where spatial filtering is

combined with classification so as to decode the

intended movement. Signal-amplitude characteristics,

derived in the time domain, are exploited in all these

approaches. Phase synchrony has recently entered into

the picture and led to novel alternative ways in decod-

ing an indented movement by describing the functional

inter-areal interactions during MI [26, 27]. The metric

of phase locking value (PLV) is usually employed and

features from either the static or dynamic connectivity

patterns, as they emerge over the sensor space, have

been demonstrated to facilitate the effective decoding

of user’s intentions [28, 29].

In the related literature of MI-BCIs, there are only a

few studies that deal with the option of a self-initiated

motion. In two of them, Scherer et al. [30] and Chae et

al. [31], a two-stage classification scheme is adopted.

The first stage takes over the detection of (the onset of )

an MI-event, while the second stage performs the final

read out (i.e. the direction of the movement). Addition-

ally, a “brain switch” has been implemented based on

the β rhythm rebound (i.e. ERS) that appears at the end

of a particular MI event. Either a simple thresholding

scheme [32] or linear discriminant analysis [33] is

employed to flag a significant departure from the on-

going activity that corresponds to an “idling” (baseline)

state. Once an MI event is detected, the associated com-

mand is given to the actuator.

The above mentioned MI-BCI approaches have been

investigated in several studies with participants suffer-

ing from motor disabilities, including amyotrophic lat-

eral sclerosis (ALS) [34, 35], spinal cord injury (SCI)

[36, 37], multiple sclerosis (MS) [38, 39] and chronic

strokes (CS) [40, 41]. However, only a limited number

of studies have been done on people suffering from

neuromuscular disease (NMD) [42]. In contrast with

SCI and CS, NMD is a progressive condition that often

initiates with the affection of specific group of muscles

and finally spreads to many other groups, resulting in

gradual loss of a patient’s fine motor skills. Therefore,

significant mental effort is required by the patients to

make a move or even attempt to move their limbs in

their everyday life for several years, prior to the

complete loss of their movement control. In this direc-

tion, the initial motivation of this study was to examine

how NMD-patients, as novice BCI users, would per-

form in simple MI tasks (imagination of left/right hand

movement) without any training and/or feedback. We

hypothesized that, due to long-lasting self-organization,

phase synchrony would govern their re-configured

brain networks and could be detected in the sensor

space when they were cued to imagine a limb move-

ment (which for them is almost equivalent to try to

realize the same movement).
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The contribution of this paper is threefold. We first

show that NMD patients are characterized by increased

level of both phase-synchrony and network organization

with respect to healthy controls. Next, we demonstrate a

nearly optimal performance for a decoding scheme that

exploits, in a personalized fashion, the connectivity pat-

terns emerging during cued imaginary movement. Fi-

nally, we describe a novel algorithmic procedure that

could adapt the proposed decoding scheme for a

self-paced BCI scenario and provide a “proof-of-con-

cept” using the available data. Besides the documented

effectiveness, our proposal is supported by the computa-

tional efficiency of the adopted PLV implementation (see

Appendix).

Methods
Participants

A total of twelve individuals (7 males and 5 females,

aged 36.08 ± 6.45) participated in this study, separated

into two groups. More specifically, the first group con-

sists of six people suffering from NMD and the second

of six able-bodied with a matching socio-demographic

profile. Table 1 provides information about each partici-

pant, while a more detailed description (e.g. inclusion

criteria, clinical characteristics) can be found in [43]. All

subjects had normal or corrected-to-normal vision and

none of them had taken any psycho-active or

psycho-tropic substance. Participants had no prior ex-

perience with SMR protocols, or any other BCI protocol.

Prior to the experimental session, subjects and their

caretakers were informed about the experimental pro-

cedure. A consent form, thoroughly read, was signed by

the participants or in cases of inability by their care-

takers. The experimental protocol was approved by the

Ethical Committee of MDA HELLAS.

Experimental environment

During the experimental procedure, participants were

seated in a comfortable armchair placed 50 cm from a

22-in. Liquid Crystal Display with the EEG cap attached

on their scalp. In cases where subjects used a wheelchair,

appropriate modifications were made to make them feel

as comfortable as possible. Throughout the entire

process, subjects were instructed to place both hands in

the armrests and to minimize any kind of upper limb

movement in order to minimize the artifactual activity.

Experimental design

The experimental procedure required the subjects to im-

agine the movement of their left or right hand. Prior to

the MI task, a 3 min recording of resting state was real-

ized. The cue for the initiation of movement imagination

was given by a red arrow (onset), appearing either on

the left or right side of the screen, pointing in the same

direction and indicating the corresponding imagery

movement. The arrow remained on the screen for ap-

proximately 5 s, indicating the continuation of move-

ment imagination to the subject. Once the arrow

disappeared from the screen, subjects could rest and

prepare themselves for the next arrow appearance. Prior

to the arrow presentation, a fixation cross was displayed

on the screen for 3 s, indicating the beginning of a new

trial. Figure 1 illustrates the sequence of events during a

single trial. The experimental session was divided in two

sub-sessions performed during the same day, each one

consisting of 20 random arrow appearances, equally dis-

tributed among the two classes, resulting in 40 trials (20

for each imagery movement class). Between the two ses-

sions subjects had the opportunity to rest for five to 10

min. OpenVibe,2 a free and open-source platform was

used to design the experimental protocol and to

synchronize the EEG recording with the timestamps

from the visual triggers.

EEG recording

The brain activity was recorded, with a sampling fre-

quency of 256 Hz, using the BePlusLTM Bioelectric

Signal Amplifier,3 an EEG scanner with 61 + 2 (ground

and reference) electrodes placed according to the 10–

10 International System. Using an electro-conductive

cream, the impedance for all electrodes was set bellow

10KΩ before beginning the recording in every session.

Table 1 Subject Demographics

Able-bodied subjects NMD patients

Participant ID Gender Age Participant ID Gender Age Condition

S1 F 46 P1 M 35 SMA III

S2 F 31 P2 M 44 Muscular Dystrophy

S3 M 40 P3 M 32 Muscular Dystrophy Type II

S4 M 43 P4 F 36 Tunesian Muscular Dystrophy

S5 F 39 P5 M 25 Duchene Muscular Dystrophy

S6 M 29 P6 F 33 Tunesian Muscular Dystrophy
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Pre-processing

During the offline processing, the EEG signals were band-

pass filtered within (0.5–45 Hz) with a third-order Butter-

worth filter (applied in zero-phase filtering mode), prior to

the trial segmentation so as to avoid edge effects. The seg-

mentation process resulted in 20 trials for each MI task

(left and right) and 20 trials for the resting state. Using a

procedure based on spectral analysis and working for each

subject independently “bad” sensors were identified visu-

ally and excluded from further analysis. It is important to

stress out here than on average no more than 5 sensors

were rejected and the remaining (“good”) ones, denoted

hereby as Nsensor (56 ≤Nsensor ≤ 61), were employed in the

subsequent average re-reference procedure. Independent

component analysis (ICA) [44] was then used as a means

to reduce artifacts that usually arise from eyes, muscles or

cardiac pulse. Using a semi-supervised procedure that

employed the ranking of independent components (ICs),

based on kurtosis /skewness and the visual inspection of

their spectra and topographies, artifactual components

were identified and removed before reconstructing the

multichannel single-trial data. For the purposes of this

work, seven commonly used EEG frequency bands were

defined: δ (1–4) Hz; θ (4–8) Hz; α1 (8–10) Hz; α2 (10–13)

Hz; β1 (13–20) Hz; β2 (20–30) Hz; γ (30–45) Hz and the

neural activity of each brain rhythm was examined inde-

pendently. Once again, band-pass filtering was imple-

mented via third-order Butterworth filters, applied in

zero-phase mode.

PLV-measurements and functional connectivity patterns

Phase synchronization is a well-established concept for

describing the coordinated function of distinct neural as-

semblies based on the recorded signals. When studied at

the level of sensor space, the brain signals recorded at

distinct sites are used (by one of the available estimators)

to detect whether the relative phases of the underlying

oscillatory processes bear any systematic relation across

time. The Phase Locking Value (PLV) measurement, in-

troduced by Lachaux et al. [45], is a very popular estima-

tor of phase synchrony, with the great advantage of

computational simplicity that motivated its use in the

context of MI-BCIs. Considered as a function, PLV gets

as input two signal traces and outputs a scalar ranging

between 0 and 1, with 1 indicating the functionally

coupling between the brain areas associated with the sig-

nals and 0 indicating functional independence. Given a

pair of single-trial signals xk(t) xr(t), with k,r = 1…Nsensor

and t = t1… t2, from distinct recording sites, PLV is

estimated as follows:

PLVðxk; xrÞ ¼
1

t2−t1
j
Pt2

t1
expði ΔφðtÞÞj (1)

with Δφ(t) = φk(t)-φr(t) denoting the difference between

the instantaneous phases of the two processes and

discrete time parameter t running along the latencies of

interest (for instance the 5 s interval during the presen-

tation of an arrow on the screen). Each phase signal

φk(t) is derived by applying the Hilbert transform to the

corresponding band-limited brain activity xk(t). In our

implementation, the PLV computations extend to every

pair of sensors, by efficiently parallelizing the computa-

tions implied by eq.(1), as shown in Appendix. In this

way, for each frequency band, an [Nsensor ×Nsensor]

matrix is formed with entries Wkr = PLV(xk,xr). Adopting

the popular perspective of complex networks, this

matrix is treated as a weighted adjacency matrix W en-

capsulating the connectivity pattern of a graph that

spans the sensor space and reflects the brain’s functional

organization. Considering the symmetry in PLV mea-

surements, PLV(xk,xr) = PLV(xr,xk) and the fact that all

diagonal elements Wkk equal 1, it is easy to realize that a

more economical description of a connectivity pattern

can be obtained by vectorizing the upper triangular part

of W, i.e. gathering all
N sensor�ðN sensor−1Þ

2
elements Wkr with

r < k in a single vector, denoted as vec(W).

Network metrics

The functional connectivity graph defined by W matrix,

with nodes the recording sites and edges the links be-

tween the sites weighed by the associated pairwise

PLV values, can be characterized based on network

topology metrics [46, 47]. In our study, the network

characterization was based on weighted graphs and

aimed at revealing the self-organization tendencies of

the underlying cortical network and contrasting them

between healthy and NMD condition. Towards this end,

the following three well-known metrics were estimated

and compared between recording conditions (rest vs MI),

as well as, physiological states (health vs NMD).

Fig. 1 The timeline of the experimental procedure (depicted for a single-trial)
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Strength equals to the sum of connectivity weights at-

tached to a given node. It may serve, approximately, as a

centrality measure, indicating the importance of the associ-

ated brain region within the observed network organization:

Sk ¼
X

r≠k

wkr (2)

Global/Local Efficiency is a metric which expresses how

efficiently information is transferred via the network, at a

global/local level. Network’s efficiency is directly linked

with the concept of shortest paths, which in our case were

estimated after turning the functional coupling strengths

wkr to pairwise distances dkr = 1-wkr and applying the

Dijkstra’s algorithm. Adopting the formulation of global

efficiency (GE) as defined in (Latora and Marchiori [48]):

GE ¼ 1
N sensorsðN sensors−1Þ

X

k;r≠k

1

lrk
(3)

with lrk denoting the length of shortest path between

nodes (i.e. sensors) r and k.

Local efficiency (LE) is estimated by first restricting the

above computations to each subgraph Gk, containing the

neighbors of a node k, and then integrating across nodes:

LE ¼
1

N sensors

X

r≠k

LE kð Þ

¼
1

N sensors

X

r≠k

1

NGk
NGk

−1ð Þ

X

i; j∈Gk

1

lij
4ð Þ

Time-indexed patterns of functional connectivity

In an attempt to track more precisely the dynamics of cor-

tical self-organization during MI, we derived multiple in-

stantiations of the connectivity pattern for each single-trial,

by means of a stepping window that confined the integra-

tion in eq. (1) within successive (overlapping) temporal seg-

ments. The width of window, Twindow, was defined

according to the “cycle-criterion” (CC) [49, 50], that adapts

the temporal resolution so as 3 cycles from the lowest fre-

quency of the band-limited brain signal to be included at

each step along the time-axis.4 In this way, a sequence

vec(W[τ]), τ = 1,2…Nτ was derived that encapsulated the

evolving functional connectivity during a single event of

hand movement imagination. This sequence is indexed via

discrete variable τ, differing from the original time variable

t of the signals, to indicate that a lower temporal resolution

may be utilized for reducing computational burden and

memory storage. The motivation for analyzing the dynam-

ics of connectivity patterns stemmed from previous studies,

which had demonstrated that transiently formed couplings

during MI [34, 35], may be useful for brain decoding.

Feature screening

The number Npairs of features corresponding to the derived

PLV measurements was high. This number was ranging

from 1596 to 1830, depending on the number of “bad”

sensors, in the case of “static” connectivity patterns, where

one vector vec([W]) was assigned to each single trial. This

number had to be multiplied by the number of employed

steps when we were dealing with time-indexed connectivity

patterns (vec(W[τ])). This was an extremely high number of

features, relatively to the small number of available trials.

Apart from the theoretical issues raised by the “curse of di-

mensionality”, it was clear that not all possible couplings

would carry highly discriminative information useful for the

task of decoding left from right MI [51]. For this reason, we

resorted to a “filter” approach for selecting features. Specific-

ally, we utilized the Matlab’s rankfeatures5 command (with

the option of “Wilcoxon” criterion), so as to rank the fea-

tures (coupling strengths or time-resolved coupling strengths

between pair of recording sites) and select the most reliable

ones to participate in the subsequent design of a classifier.

More specifically, in the case of static connectivity pat-

terns the operation of this command, denoted as follows

Score rð Þ ¼ rankfeatures ð vec left
W

i
� �n o

i¼1:N trials

;

vec right
W

j
� �n o

j¼1:N trials

Þ;

r ¼ 1; 2…Npairs 5ð Þ

resulted in a vector of scores reflecting the relative dis-

criminative power of each coupling. Feature selection

was accomplished by identifying the set of 10 most dis-

criminative couplings.

For the case of time-indexed connectivity, we adopted

a distinct procedure that elaborated on the temporal pat-

terning of the functional connectivity as this was unfold-

ing during MI. The previous command was applied

repeatedly at every latency τ of the stepping window

resulting in a time-indexed score

Score r; τð Þ ¼ rankfeatures ð vec left
W

i τ½ �
� �n o

i¼1:N trials

;

vec right
W

j τ½ �
� �n o

j¼1:N trials

Þ;

τ ¼ 1; 2…;Nτ

6ð Þ

To identify the most important features among the

(Npairs.Nτ) available ones, a permutation test was applied.

The available connectivity patterns from “left” and “right”

trials were randomly partitioned, several times, into two

groups and the computations implied by eq.(7) were

repeated for every random splitting. The computed

{randScore(r,τ)}1:Nrand measurements were used to form

a “baseline” distribution of scores associated with the

random case, where no differences between imagin-

ation of a left and right hand movement would be

detectable. From the formed distribution, the value of
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Score-index corresponding to the margin of 99.9%

was identified and utilized as a threshold, thr99.9%,

that was applied to the actual Score(r,τ) measure-

ments so as to keep only the statistical significant

couplings (p-value < 0.001). After this trimming step

that zeroed most of the measurements, a sparse matrix

appeared that contained some spurious entries (associated

with couplings that occasionally become significant for

short lasting intervals). An additional data-sieving step

(based on simple rowwise median filtering) was applied

that eliminated most of them. The rationale behind this

last step was the detection of couplings that could be con-

sidered as both “useful” and “stable” regarding their dis-

criminatory power. Such a reinforcement of consistency

in time was motivated by the need for an economical de-

coding procedure and the possibility of making it func-

tional without knowing the absolute timing (as it will be

explained later). A pair-dependent profile was derived by

the sequence of these operation as shown below, where

the operator H(·) denotes Heaviside step function operator

and 1
N is column-vector of N ones.

I r; tð Þ ¼ H Score r; τð Þ−thr99:9%ð Þ;
r ¼ 1; 2;…Npairs ; t ¼ 1; 2;…Nτ

Î Npairs�Nτ½ � ¼ runningMedianrowwise Ið Þ

Profile rð Þ ¼ Î:1
N τ 7ð Þ

Finally, feature selection was accomplished by de-

tecting the non-zero entries in this profile. A demon-

stration of this sequence of algorithmic steps can be

seen in Fig. 2.

SVM-classifiers as MI-direction decoders

Support Vector Machines (SVMs) constitute a family of

well-established classification algorithms [52], that is

very popular among BCI practitioners [53, 54]. In the

basic binary formulation, the training algorithm of SVM

is designed to determine the optimal hyper-plane that

separates two classes, while maximizing the margin be-

tween them. It selects the single hyperplane that guaran-

tees optimal generalization, meaning that it can cope

better with new (unseen) data. The class of an unseen

pattern is determined based on its relative position with

respect to the learned hyperplane, while a confidence

level for this decision can be estimated by considering

its distance to the hyperplane [55]. For the purposes of

this study, a linear hyper-plane was selected for the

MI-direction decoding as it provided satisfactory results

at low computational load (a combination of high im-

portance for online implementations). In all cases

Fig. 2 Feature Selection procedure: a The latency dependent Wilcoxon score for all sensor pairs. b The definition of a “global” threshold based
on the distribution of Wilcoxon scores in randomized data. c The selected subset of couplings that continuously exceed this threshold for
intervals longer than 100 msec (i.e. temporally consistent discriminative couplings)
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reported below, SVM classification had been employed

in a “personalized” mode. This trend, that ultimately led

to subject-specific brain decoding, was initiated very

early during the stage of feature selection. For each trial

of an MI movement, the selected discriminative features

(depending on subject and brain rhythm) were used to

form the input pattern to be used in SVM training and

validation.

The performance of the SVM-based binary classifica-

tion (“left” vs “right”) was measured, for each subject in-

dependently, under the two different feature-screening

procedures, which in turn led to two distinct classifica-

tion scenarios: one based on static and one based on “in-

stantaneous” connectivity (sub)patterns. Classification

performance was expressed in terms of accuracy, and

carefully validated using a cross-validation scheme that

was dependent on the scenario.

The validation and testing procedure was performed

on a single-subject basis. In the reported results (with

the exception of the results referred to self-paced MI), a

leave-one-out-cross-validation (LOOCV) scheme had

been employed to validate the accuracy of the proposed

methodology. The use of LOOCV was motivated by the

restricted amount of trials available (the sample was not

big enough to employ other validation schemes like 70–

30% training-test splitting of the dataset). In the LOOCV

scheme, 2Ntrial-1 = 39 trials were selected as the

training-set and the remaining one was used as the un-

known sample that the SVM had to associate with a

class. The procedure was repeated, cyclically, 40 times

and the accuracy was defined based on the 40 predic-

tions obtained from the 40 trials.

We need to clarify here that in the case of static

scenario, the feature selection had been embodied in

the LOOCV validation scheme (i.e. it was realized 40

times). However, this was not the case for the decod-

ing of time-indexed connectivity patterns (vec(W[τ])),

in which the features should show a consistency

across time. In the latter case the feature selection

was accomplished outside the LOOCV session of the

SVM. Since the number of candidate features (pair-

wise couplings at multiple instances) was roughly 150

times higher than the available number of trials and

therefore the danger of overfitting was even higher

than in the case of static connectivity patterns we

resorted to bootstrapping [56]. Having in mind to es-

tablish a procedure that could also be employed in a

potential implementation of a personalized BCI, in

which only a small training data-set would be avail-

able for crafting the decision function and the overall

training should be completed within a reasonable

time before the actual use of the BCI system, we pro-

ceeded as follows. We repeatedly form (by sampling

with replacement) 30 sets of 2Ntrials, and the

procedure described in eq.(7) was applied to every

bootstrap-resample resulting in an ensemble of curves

{boot_iProfile(r)}boot_i = 1:30. Feature selection was ac-

complished, by averaging these profiles and threshold-

ing the obtained average curve.

An SVM-ensemble for self-paced MI decoding

The high performance of the SVM-decoders working with

time-resolved connectivity patterns, vec(W[τ]), motivated

us to search for a decoding scheme that could operate

without the need for an external trigger that would initiate

a trial. The original idea was that a “local” SVM tailored to

deal with patterns from latency τsel would show a high

confidence level about its prediction only within a

time-interval around that latency. Adopting this consider-

ation, connectivity patterns could continuously feed (i.e.

as streaming data) to the particular SVM and its decision

would be activated only whenever a certain level of confi-

dence was reached. While this idea seemed to work well

(after trial-averaging) when applied to the available

MI-trials, it had the tendency to produce false-positive de-

tections at the level of single trials (see Fig. 3b). This led

us to consider not just one “time-indexed” SVM (the earli-

est one with the highest performance, that would satisfy

the need for a speedy response), but also a sequence of

them {SVMi}, i = τsel_1,τsel_2…,τsel_M with the scope of

making more stringent the decision about detecting an

MI event. Assuming a trigger-agnostic scenario, these

SVMs will run in parallel resulting in a time-indexed vec-

tor Z(τ) = [z1(τ),z2(τ),…,zM(τ)]T, with entries

zi τð Þ ¼ SVMi FeatureExtraction vec W τ½ �ð Þð Þð Þ;
i ¼ τsel1 ; τsel2 ;…:; τselM 8ð Þ

Each entry zi denotes the confidence of a selected clas-

sifier multiplied by the sign of its prediction (+/− is asso-

ciated with “right”/“left” movement), i.e. a real number

within [− 1 1]. Deviating from the standard approaches

for combining classifiers (e.g. voting), in the proposed

scheme the classifiers’ output are combined based on

temporal patterning (that reflects their relative position-

ing in time, which is associated with the optimal per-

formance in the cued trials). An “instantaneous”

classification index is derived by averaging the individual

signed confidences after imposing the predefined lags

zensemble tð Þ ¼
1

M

XM

i
zi t þ τselið Þ 9ð Þ

It is important to note, here, that such an SVM-ensemble

formation is feasible and computational tractable, thanks to

the prior selection of a unique set of “stable” couplings (via

bootstrapping over a small available training set). The sug-

gested SVM-ensemble scheme is supported by two
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experimental observations. First, the time-indexed accuracy

of the locally defined SVMs showed multiple,

easy-detectable, peaks (e.g. Figure 3a). This led to an easy

automation for selecting the SVMs.6 Second, there was no

pair of SVMs among the selected “local” ones in the ensem-

ble, that showed significant similarity.7 The latter fact

means that all the selected SVMs were defining different

separating-hyperplanes in the space of common features.

Results

Group analysis of pairwise couplings

The first part of our analysis was devoted to confirming

the hypothesis that there were significant differences be-

tween NMD patients and controls regarding the strength

of functional couplings. To this end, a single connectiv-

ity pattern was first derived (by trial-averaging) for each

subject, brain rhythm and recording condition (i.e.

“rest”, “left”, “right”). To facilitate inter-subject compari-

sons, all the connectivity patterns were confined to the

unique set of sensors that were identified as “good” sen-

sors in all subjects. Then, a statistical comparison of the

medians (derived at group level) in every pairwise coup-

ling of the connectivity patterns was performed. The

Wilcoxon rank sum test was repeatedly applied and the

results were corrected for multiple testing, by means of

false discovery rate (FDR; α = 0.05) [57]. Figure 4,

includes the obtained results for all frequency bands

and recording conditions. The statistically significant

(p < 0.05) pairs stand out as colored entries in the

shown matrices. The color in these entries reflect the

sign of the observed differences. It was computed based

on the medians of the groups (med({PLV(.)}NMD) –

med({PLV(.)}Control)) and clearly indicates (since only

red hue is observed) an increased coupling in the pa-

tients group compared to the control group, mostly in

low and high brain rhythms. It is important to mention

here, that increased functional couplings was found in

all frequency bands, although not clearly observed

when a common color code was used. The topological

representation of the statistically significant functional

couplings is provided in Additional file 1: Figure S1,

with the edge-width reflecting the difference in strength

between the group-level medians of each pairwise

coupling and the node-size the number of edges that

have survived the statistical test (p < 0.05) and are inci-

dent to the node. It is clear, that the NMD group is

characterized by enhanced connectivity even in the

resting state. In the two MI-conditions, the majority of

nodes being part of the statistical significant couplings

follow a distributed pattern, which occasionally in-

cludes the primary and supplementary sensory-motor

area (for instance, in “left”: α1, β1 and γ rhythms).

Fig. 3 SVM-ensemble formation: a A set of consecutive but not “colliding” SVMs are combined in order to form an ensemble that will process, in
parallel, the streaming coupling measurements and derive for each latency a vector of classification grades. b The latency-resolved multitude of
instantaneous SVM-predictions is shown for three exemplar single trials (first three columns in every row) along with the corresponding pattern
resulted from averaging the individual ST profiles across all trials (right most column). Each SVM outputs a classification score ranging within
[− 1 1], with the sign indicating the movement side and the magnitude reflecting its confidence
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Group analysis of network metrics

Next, we compared the network organization associated

with the functional connectivity patterns as a means to

further justify the observed differences between the two

groups in terms of pairwise coupling strengths. The

three metrics of Strength, GE and LE were first applied

at the single-trial level (to “static” Ws) and then averaged

to derive a triad of measurements for each subject, brain

rhythm and experimental condition. Figure 5 compares

these measurements, after deriving group-medians. The

stars in the bars of patients’ graphs indicate the statistically

significant differences (p-value < 0.01, bonferroni-corrected)

in the level of network-metrics, which resulted from the

group-analysis of the corresponding measurements (NMD

patients vs controls) performed using the Wilcoxon

rank sum test. It is easy to observe that despite the lack

of statistically significant differences in case of Strength

(which practically corresponds to integrating the coup-

ling strength across sensors), the other two metrics re-

garding the network’s efficiency (i.e. GE and LE) depict

significant differences for rhythms faster than 8 Hz,

where MI spectral activity is expected to be found. The

Fig. 4 The results from the statistical comparison (Group-level analysis) of averaged connectivity patterns between patients and controls. Each
pairwise coupling was compared independently, for every band and recording condition, by means of Wilcoxon rank sum and the significant
ones (p < 0.05; corrected for multiple comparisons) are indicated as non-zeroed entries of a “connectivity matrix”, with a color code that
encapsulates the difference in strength (of the median values in the corresponding groups). Red hue has to be interpreted as higher coupling in
patients and green hue as higher coupling in controls, while color intensity reflects the strength of this effect. The absence of green hue in the
diagrams clearly indicates the increased coupling in patients group compared to the control group

Fig. 5 Contrasting the functional network organization between patients and controls using the standard networks metrics of strength, global-
efficiency (GE) and local efficiency (LE). The median values, have been computed across the subjects of each group, and presented for all brain
rhythms. Statistically significant differences between the two groups have also been detected (using Wilcoxon rank sum test) and indicated with
a star symbol in the corresponding bar of the patients’ barplot
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observed differences in these two topological metrics

(which reflect how efficiently the information flows

within the brain network), are related to brain coordin-

ation and, hence, can be attributed to the NMD condi-

tion itself and the way it affects the patient’s brain

reorganization during its progression. Interestingly,

differences in network organization during MI-tasks

were detected in α2 rhythm, even though the pairwise

couplings did not show, individually, any difference

between groups based on their PLV-levels (see Fig. 4

and Additional file 1: Figure S1).

Personalized MI decoding – SVM classification based on

static patterns

In the third stage of our analysis, we attempted to de-

code the MI-imagery direction based on the single-trial

functional connectivity patterns and compared the per-

formance between the two cohorts. We employed a lin-

ear SVM in conjunction with standard, statistical,

feature screening. The scope of this screening was to

confine the SVM design within the space spanned by the

10 most informative functional couplings. To reduce the

possibility of overfitting, this feature selection step had

been included in the LOOCV scheme (i.e. it was per-

formed every time an SVM was about to be designed

from the set of trials that had been reserved for train-

ing). The classification accuracy of the “left vs. right” de-

coding task for each subject and brain rhythm is shown

in Fig. 6, where it can be justified that working at a per-

sonalized level was indeed necessary, since performance

(and frequency-band of optimal performance) varied a

lot across subjects. It is evident that the accuracy levels

for the patients group are significantly higher, with five

out of six subjects exceeding 75% accuracy and even the

subject with the lowest accuracy (i.e. P3) for this group

reaches 65%. It is also interesting to notice that for the

NMD group the highest accuracy is associated with β1

(13–20 Hz) band in four subjects (i.e. P1, P2, P4, P6).

On the other hand, half of the control subjects do not

surpass the level of 60% accuracy in any of the frequency

bands, with subject S5 standing as the best subject for

the control group, as it is the only case were 80% of the

trials were correctly classified. To confirm rigorously the

hypothesis that BCI-naïve patients can perform better

than controls in the employed MI tasks, we gathered the

highest performance level from each individual in two sets of

accuracies, {NMDAccuracies}i=1:6 / {controlsAccuracies}i = 1:6,

and applied the Wilcoxon rank sum test that revealed a stat-

istical significant difference (p < 0.05, one-tailed).

For comparison purposes we have included, as Additional

file 1: Figure S2, the results from decoding MI-direction

based on power spectral density (PSD) estimates,

where the feature screening was applied to the en-

semble of PSD measurements (that included the mea-

surements from every sensor and brain rhythm).

Overall, the decoding performance stays below 75%

Fig. 6 The classification performance in the state discrimination task (“left” vs “right” hand movement imagery) when elements from the static
connectivity patterns are utilized
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(except for patient P5), i.e. lower than in the case of

PLV measurements. In addition, there is no statistically sig-

nificant advantage for the NMD group over the controls

considering the highest performance level from each individ-

ual (p= 0.43, one-tailed). Similar trends were obtained from

a decoding scheme based on CSPs (see Additional file 1:

Figure S3).

Personalized MI decoding – SVM classification based on

time-varying patterns

At the expense of increased computations and algorithmic

complexity, we then moved to decoding MI-direction from

time-varying connectivity patterns for the NMD-patients.

Both the beneficial phase-synchrony based representation,

for the brain activity in this clinical group, and the fact that

MI-BCIs have remained largely unexplored for NMD pa-

tients led us to study deeper the relevant dynamic patterns

of connectivity. Supporting evidence, regarding the dy-

namic nature of the underlying phenomena, was offered by

the feature screening procedures, since the scores acquired

by dynamic patterns were often higher than the ones ob-

tained from static patterns.8 Working at a personalized

level, we first identify the set of functional couplings that

showed a stable and highly discriminative behavior (using

bootstrapping and eq.(7)). These couplings have been in in-

cluded in Fig. 7. The fixed set of selected entries were ex-

tracted, in every single-trial, from the time-indexed

connectivity patterns, vec(W[τ]), which had been computed

with a time-step of 350 ms. The vectors were used to de-

sign and evaluate an “instantaneous” SVM (i.e. SVMτ)

that corresponds to each latency and also follows a

LOOCV scheme. The performances of this decoder

were estimated by comparing the time-indexed pre-

dictions with the class labels of the trials and inte-

grating the results across trials.

Figure 8 shows the corresponding performance curves

for the “instantaneous” SVM classification scheme. At

every latency the performance was estimated based on

the selected couplings (shown in Fig. 7). It is clear, that

there is variability among subjects. There are subjects

(P1, P3 and P6) reaching the highest accuracy within the

first second and maintaining the high performance for

the full trial length. On the other hand, subjects P2 and

P4 do as well achieve the highest performance levels

within the first second but do not maintain it for the tri-

al’s full length. Such a trend could be interpreted as de-

clining engagement to the task. Finally, one subject (P5)

showed deterioration in performance after the first sec-

ond. The observed variability can be attributed to the

subject’s devotion to the task, how he/she performed it,

and possibly to the type of NMD. Overall, this classifica-

tion scheme appears to lead to optimal performance

earlier in time.

In quest of self-paced MI decoding

Finally, we explored the possibility of decoding

phase-connectivity patterns in a way that could be used

in a future implementation of a self-paced MI-BCI,

where the user would initiate the MI events at will. Since

there were no recordings of self-initiated MI events, we

Fig. 7 The statistically significant and temporally consistent couplings as detected by means of a permutation test (random re-labeling of trials),
applied for each patient and brain rhythm independently
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decided to partially “simulate” the case by exploiting the

resting-condition recordings and devising a scheme that

would mark a time instance as the beginning of an

MI-event (“left” or “right”) only when the temporal pat-

terning in the streaming connectivity-data was deviant

from the patterning in the baseline (rest) condition. To

this end, 20 trials were extracted from each patient’s

resting-state recording and “baseline” time-resolved con-

nectivity patterns (extending for 8 s) were formed, based

on the same signal-analytic pipeline used in the case of

MI-trials. Since the purpose of this analysis was the reli-

able detection of dynamical transitions in brain state

(from “idle” to an MI event), the connectivity patterns

from resting state and, also, the MI events were derived

with high temporal resolution (based on a step of

20 msec), so as to emphasize the temporal aspects of the

detection task. To ease the presentation of the results re-

ported in this section, Fig. 9 depicts graphically the

employed algorithmic steps.

A training set consisting of 10 trials from each class

(“left”, “right” and “rest”) was formed and utilized in a

two-stage data-learning process. During the first-stage,

only the MI-related single-trial connectivity patterns

({leftvec(Wi[τ]}i = 1:10 and {rightvec(Wi[τ]}i = 1:10) were used

for a) the feature-selection, b) the training of all “instant-

aneous” SVMs, c) the selection among them, of those

that populated the ensemble {SVMi}. The feature

selection step is exemplified in Fig. 2, for subject P2’s

connectivity patterns from α1 rhythm. The selection of

SVMs is exemplified in Fig. 3a, while the application of

the SVM-ensemble in some trials (from all recording

conditions) is demonstrated in Fig. 3b, where the vectors

of successive predictions appear as columns in the

shown heat-maps. The right-most panels in Fig. 3b in-

cludes the corresponding trial-averaged heat-maps,

where a “diagonal” pattern is emerging in both cases of

“triggered” MI-events but not in the case of

resting-state. It was exactly this discrepancy, that the

stratified combination of the outputs of the SVMs par-

ticipating in the ensemble, tried to reveal, in a computa-

tionally tractable way, by means of eq.(9).

During the second stage, the temporal traces corre-

sponding to the single-trial “instantaneous” readouts from

the SVM-ensemble were derived for the above mentioned

MI-related connectivity patterns and, in addition, for the

baseline-related ones {restvec(Wi[τ]}i = 1:10. Figure 10

demonstrates the estimated traces of Classification Index,

zensemble(t), in continuation of the example shown previ-

ously in Figs. 2 and 3. It is evident that a peak is identifi-

able, just after the 3rd second (onset), for both the “left”

and “right” conditions. On the contrary, the traces derived

from the rest condition trials do not illustrate any compar-

able peak. In an attempt to quantify these observations,

and simultaneously complete the design of a totally

Fig. 8 The classification performance in the “left” vs “right” task, when the selected couplings (shown in Fig. 7) are used to form multiple time-
resolved patterns associated with each trial
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self-paced MI-decoding scheme, we used these 30 profiles

(as training data) to craft a decision rule, that based on

streaming data (a segment of SVM-ensemble readout)

would decide if the observed temporal patterning in

Classification Index corresponded to baseline condition or

to an MI event and, hence, should trigger the command

associated with the sign of the trace from the

SVM-ensemble. To accomplish the data-learning task, we

extracted multiple segments, of 0.5 s width, from the

singe-trial traces shown in Fig. 10 and confined within the

intervals indicated via vertical dotted lines. These 100

segments were corresponding to the “MI-event” class (re-

gardless direction). An equal number of segments were

extracted from the baseline condition, but this time with-

out any restriction about the time interval. These seg-

ments constituted the “baseline” class patterns. Both type

of segments were used for training a binary-SVM (with a

radial basis function kernel) to discriminate an MI event

from the baseline state. The trained “SVM-switch”, was

then fed with the streaming SVM-ensemble readouts,

Fig. 10 The latency-dependent classification-index Zensemble as derived, by means of the time-lagged combination of the SVM-ensemble
readouts, for a training set of trials

Fig. 9 a Flowchart of the data leaning process for the self-paced MI decoding. b Graphical depiction of the decoding procedure from the
streaming connectivity patterns during one single trial
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zensemble(t), resulted from the testing set of trials. Figure

11, exemplifies this step by first depicting the “instantan-

eous” single-trial readouts form the SVM-ensemble

(formed in Fig. 3a) for the three recording conditions (Fig.

11a) and, then, the corresponding single-trial traces of the

instantaneous confidence of the SVM-switch (all the con-

secutive segments had been fed to this classifier) (Fig.

11b). Using as threshold, the confidence level of 0.5, we

obtained only 2 false positive (FP) detections in all three

recording conditions (please notice that this would had

also been the case if a high confidence level had appeared

within the first 3 s interval of a MI trial), and no false

negative ones. After referencing these counts to the number

of trials, we estimated two probabilistic indices regarding the

observed probabilities of FP and FN (here 2/30 and 0/30

respectively).

The overall procedure was repeated after different ran-

domized partitions of the data (i.e. Monte-Carlo cross

validation scheme), and the results (after averaging

across 100 splits) were tabulated in Table 2. The brain

rhythms had been selected according to the performance

levels shown in Fig. 8.

The very low probabilities of misdetection and false

alarm, in conjunction with the very high performance

of the individual MI-decoders participating in the en-

semble, make the combined scheme (SVM-ensemble

& SVM-switch) potentially suitable for self-paced

MI-decoding (see Fig. 9).

Discussion

NMD is a condition that gradually affects the muscula-

ture and eventually leads to the loss of any voluntary

muscle control. The reflections of NMD on the

electroencephalographic brain activity, under the per-

spective of establishing efficient BCIs, have rarely been

studied [42]. It was the scope of this study to examine

the differences in the functional brain organization be-

tween NMD patients and healthy individuals in a

motor-imagery paradigm that, traditionally, is considered

fruitful for endogenous BCIs. Rhythm-specific connect-

ivity patterns during motor imagery and resting state

were derived and used, first, to contrast the two cohorts

in terms of coupling strength and network organization

and, then, to explore different possibilities for MI-event

decoding and detection schemes, in NMD patients. Spe-

cial attention was paid to dynamic patterns of functional

connectivity in an attempt to identify faster ways to per-

form MI decoding and relax the dependence of this de-

coding from external triggering.

Overall, the reported results provide empirical evi-

dence about the hypothesis that NMD patients could

perform well in MI tasks, without any training, due to

the equivalence, for them, of performing an imagery

movement and an actual one; or, equivalently, due to the

fact that the disease’s progression simulates a long train-

ing phase. More specifically, the pairwise phase-coupling

was found statistically elevated in NMD patients (Fig. 4

and Additional file 1: Figure S1) and the network

organization (associated with faster rhythms) significantly

higher (Fig. 5). In addition, MI-decoding, worked out in a

personalized manner, was performed more efficiently in

patients than in controls (Fig. 6). It is important to notice

that Phase-synchrony representation resulted in a more

reliable decoding than signal-power representation

(compare Fig. 6 with Additional file 1: Figure S2) and CSP

approach (Additional file 1: Figure S3).

Fig. 11 a The latency-resolved multitude of instantaneous SVM-predictions is shown for a test-set trials. b The latency-dependent confidence of
the SVM-decider (trained based on temporal patterns extracted from Fig. 10)
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Moreover, our results also showed that direction decod-

ing can be performed, almost equally well, by training

time-indexed SVM-decoders using phase synchrony pat-

terns that are regularly sampled from the post-stimulus

time interval (Fig. 8) opening the possibility of reducing the

response time in cued MI-based BCIs. This observation led

to a lagged combination of distinct SVM-decoders that all

operated in the same feature space (Fig. 2) but trained with

different time-indexed instantiations of the training set of

phase synchrony patterns (Fig. 3a). The introduced combin-

ation of SVM-activations acts as an optimal filter that can

run in real-time and reliably trigger the recognition of an

MI-event (Fig. 11), the direction of which is conveyed by

the polarity of the assembled classification-index.

The importance of this work stems from fact that (to

the best of our knowledge) there is only one paper that

tackles the same problem that is MI-BCI for NMD

patients [42]. In line with our work, the authors demon-

strate the successful use of BCI. However, MI-decoding is

based on time-domain characteristics and requires signifi-

cant amount of training time (8–12 training sessions).

There are some novelty aspects in this work, that

need to be put in the context of contemporary practice

in neuroscience research and streaming data analysis.

First, we need to underline our choice to work with dy-

namic phase synchrony patterns, casting new empirical

evidence about the benefits of chronnectomics (“chronos”

= time + “connectomics”), an emerging branch of net-

work neuroscience that focuses on the dynamics of

brain-network (self )organization phenomena [58–61].

Phase locking computations can be implemented effi-

ciently from multisite recordings, as already has been

pointed out by a recent work [62] and indicated in the

Appendix. This computational efficiency, together with

the fact that the MI-related network reorganizations are

characterized by fast transitions, opens the possibility of

prompt MI-detection and decoding in nearly real-time.

The second point that deserves further consideration is

the SVM-ensemble formation and its use in filtering

mode (i.e. its application to streaming connectivity pat-

terns). While such an implementation of SVMs seems ra-

ther unusual in EEG-related research, it has already been

successfully employed for continuous speech recognition

(for instance [63, 64]).

Finally, the main limitations of this study need to be

discussed, starting with the restricted number of

available trials. Even though precautions were taken (by

means of cross-validation) to avoid overfitting, our

findings will wait the verification from further studies.

Particularly the self-paced MI-decoding scheme was

demonstrated and validated using a “crude simulation”.

This part of our study needs to be treated strictly as a

proof-of-concept, since trials from an independent

resting state recording were treated as extracts from

continuous data interrupted by MI-events. Secondly,

although it is common practice in studies with people

with disabilities to include a restrained number of partic-

ipants [35–37, 40], as the recruitment process is not as

straightforward as in control population, it would be of

great importance to further validate the statistical differ-

ences between the groups by encountering higher num-

ber of NMD participants in the MI experimental

procedure. Thirdly, all the reported results were ob-

tained from off-line analysis, in which “cleaned” data

were employed (see Pre-processing section). It remains

to show that (whether) the proposed decoding scheme is

robust to artifacts like blinks; a possibility that rises since

it revolves around phase-descriptor. Alternatively, in a

realistic implementation one of the available real-time

artifact-removal techniques may be incorporated [65,

66]. Therefore, the evaluation regarding the methodol-

ogy’s performance in terms of challenging, real-time

conditions is yet to be explored and is considered to

be an intriguing part of any future actions aiming to

“build” a self-paced MI BCI. Moreover, a personalized

(subject-adaptive) data-learning scheme was pursued

for the purpose of MI-decoding. This, inevitably,

makes necessary a small training set before a participant

can take advantage of the suggested MI-decoding mech-

anism. While principles of transfer learning maybe useful,

we tend to consider as best practice a small training ses-

sion in which self-initiated MI-events will be embedded in

a “relevant” baseline activity recoding (for instance, watch-

ing a videoclips sequence and “instruct” skipping the

current one by imagining a hand movement). Finally,

connectivity patterns were estimated at sensor level

and the issue of volume conduction was not ad-

dressed since favorable results were obtained readily

and the precise modelling was considered beyond the

scope of MI-BCIs.

Conclusions
NMD patients appear to possess an inherent advantage,

over healthy subjects, in the use of phase-synchrony

related MI-BCIs. Patient-specific data-learning proce-

dures have the potential for leading to effective brain

decoding schemes from the emerging connectivity

patterns, that can be implemented efficiently and,

when embedded in patient’s daily life, provide a cer-

tain level of autonomy.

Table 2 FP/FN for the SVM-switch

Participant ID P1 P2 P3 P4 P5 P6

brain rhythm α2 α1 β2 α2 α1 α2

FP 2.2% 3.5% 7.2% 3.9% 7.2% 2.7%

FN 1.4% 2.0% 5.3% 2.1% 3.3% 1.4%
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Endnotes
1http://www.who.int/disabilities/world_report/2011/re

port/en/
2http://openvibe.inria.fr/
3http://www.ebneuro.biz/en/neurology/ebneuro/gali

leo-suite/be-plus-ltm
4For instance, in the case of δ band ([f1, f2] = [1, 4]

Hz), and since the sampling frequency was fs = 256 Hz,

the size of window was Twindow ¼ CC
f 1
� f s ¼

3
1
� 256 ¼ 7

68 samples.
5https://www.mathworks.com/help/bioinfo/ref/rank

features.html
6https://www.mathworks.com/help/signal/ref/find

peaks.html
7The correlation coefficient ρ(zi(t),zj(t)), i,j = 1…M,

averaged across trials, was lower than 0.2.
8i.e. maxr, τ(Score(r, τ) >maxr(Score(τ)) following the

notation of eq.(5) and eq.(6)).

Appendix

In the following Matlab-coded implementation of the

PLV-computations, the function receives as input the

multichannel-signal matrix (row-vectors correspond to

sensors) and outputs the square matrix W containing all

pairwise couplings

function

W=Fast_PLV_for_multichannel_signal(filtered_traces)

% PLV_Matrix = Fast_PLV_for_multichannel_signal(fil-

tered_traces)

% filtered_traces: [N_sensors x N_timepoints] matrix

of band-limited signals

% PLV_Matrix: [N_sensors x N_sensors] matrix of

pairwise PLVs

[Nsensors,Ntime] = size(filtered_traces);

Phases = angle(hilbert(filtered_signals’))’; Q= (exp(j*Phases));

W = (1/Ntime)*abs(Q * Q’)

Additional file

Additional file 1: Figure S1. Topographical representation of the
statistically significant functional couplings (shown in Fig. 4). In the
emerging graphs, the edge-width reflects the strength of the coupling
and the node-size the number of edges incident to that node. The
shown results correspond to Group-level analysis and reflect higher con-
nectivity in the NMD patients. Figure S2. The classification performance
in the state discrimination task (“left” vs “right”), when band-specific
power-spectral density estimates are employed. Figure S3. The classification
performance in the state discrimination task (“left” vs “right”), when the
Common Spatial Pattern algorithm is employed in the 8–30 Hz frequency
band as described by Fabien Lotte [1]. (ZIP 819 kb)
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