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Resumo 

 

Introdução: O cancro da próstata constitui um dos tipos de cancro com maior incidência e 

mortalidade. A vasta maioria dos intervenientes-chave envolvidos em vias moleculares implicadas 

na carcinogénese prostática permanece, ainda, desconhecida. Os microRNAs (miRNAs), uma classe 

de pequenas moléculas de RNA não codificante, são essenciais no desenvolvimento e progressão 

tumoral, através da regulação pós-transcricional de genes envolvidos no processo de 

tumorigénese. Atualmente, têm sido feitos esforços no sentido de clarificar a interação biológica 

que parece existir entre o MYC, um reconhecido oncogene, e vários miRNAs, bem como o 

consequente impacto que esta interação possa ter no desenvolvimento de cancro. 

Objetivos: O principal objetivo da presente Tese foi a identificação de novos miRNAs implicados na 

carcinogénese da próstata e a sua possível associação à sinalização pelo gene MYC. 

Materiais e Métodos: Um vetor lentiviral contendo uma sequência de RNA de interferência foi 

utilizado para silenciar o gene MYC na linha celular de cancro de próstata PC-3. Nestas células, as 

alterações nos níveis de transcrito de quatro miRNAs previamente selecionados (miR-27a*, miR-

126*, miR-570 e miR-1292), decorrentes do silenciamento do MYC [(confirmado ao nível do 

transcrito (RT-qPCR) e da proteína (Western Blot)], foram avaliadas por RT-qPCR. Adicionalmente, 

a expressão dos miRNAs 27a* e 126* foi validada, por RT-qPCR, numa série de amostras clínicas de 

próstata. Os níveis proteicos do fator de transcrição c-Myc foram avaliados na mesma série, por 

imunohistoquímica, e comparados com os níveis de expressão destes miRNAs. A análise in silico 

permitiu avaliar a existência de uma possível interação biológica entre o c-Myc e os miRNAs 

validados. O impacto biológico da desregulação de miRNAs, decorrente do silenciamento do MYC, 

foi determinado com base nos níveis proteicos, analisados por Western Blot, de alvos previamente 

validados do miR-27a*. 

Resultados: Os níveis da proteína c-Myc mostraram ser significativamente mais elevados nas 

lesões de PIN e nos tumores primários, em comparação com tecidos prostáticos 

morfologicamente normais. Adicionalmente, foi obtida uma associação estatisticamente 

significativa entre a expressão proteína de c-Myc e os níveis de PSA sérico e Gleason score (GS) 

dos doentes. Em células PC-3, o silenciamento do MYC levou a uma redução significativa dos níveis 
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de expressão dos quatro miRNAs selecionados. Em amostras clínicas de próstata, os níveis de 

expressão dos miRNAs 27a* e 126* seguiram uma tendência oposta aos níveis da proteína c-Myc, 

sendo significativamente menores em lesões de PIN e ainda mais reduzidos em tumores primários, 

quando comparados com tecidos normais de próstata. Foi encontrada uma associação 

estatisticamente significativa entre os níveis de miR-27a* e o GS dos doentes. Os níveis proteicos 

de c-Myc associaram-se inversamente aos níveis do miR-126*, isto é, a baixa expressão de c-Myc 

(< 10%) associou-se significativamente a níveis elevados de miR-126*, sendo que os tumores com 

elevada expressão de c-Myc (> 50%) apresentaram níveis reduzidos de miR-126*. A análise 

realizada in silico revelou locais de ligação da proteína c-Myc na região promotora dos dois 

miRNAs validados. Esta análise identificou ainda o gene MYC e genes codificadores de proteínas 

ativadoras deste fator de transcrição como alvos putativos do miR-126*. As células PC-3 

silenciadas para o gene MYC apresentaram um aumento dos níveis proteicos do EGFR e MTOR, 

dois alvos previamente validados do miR-27a*. 

Discussão: O padrão de expressão obtido para miRNAs 27a* e 126* indica um papel supressor 

tumoral de ambos os miRNAs validados. A associação entre níveis elevados do miR-27a* e valores 

mais elevados de GS sugere o valor prognóstico deste miRNA. A redução da expressão dos miRNAs 

27a* e 126* em células PC-3, após o silenciamento do MYC, indica um possível papel desta 

proteína na ativação transcricional destas moléculas. Adicionalmente, a existência de locais de 

ligação previstos para o c-Myc na região promotora de ambos os miRNAs corrobora a possível 

existência de uma interação entre eles. Por outro lado, padrões de expressão antagónicos 

observados para ambos os miRNAs validados e a proteína c-Myc na série de amostras clínicas 

sugerem um mecanismo distinto, no qual o c-Myc inibe a transcrição destes miRNAs supressores 

tumorais, contribuindo assim para a tumorigénese. Finalmente, o miR-27a* parece regular a 

expressão de genes envolvidos na carcinogénese prostática, de forma semelhante ao que foi 

reportado para outros modelos tumorais. 

Conclusões e Perspetivas Futuras: Os resultados obtidos sugerem que a regulação pelos miRNAs 

27a* e 126* poderá constituir um mecanismo adicional da complexa rede regulatória responsável 

pelo controlo da expressão e atividade do fator de transcrição c-Myc, em cancro da próstata. No 

entanto, estudos adicionais são necessários para confirmar a existência de tal interação e para 

avaliar a relevância biológica destes miRNAs na carcinogénese prostática. 
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Summary 

 

Introduction: Prostate cancer (PCa) represents one of the most incident and deadliest types of 

cancer affecting men worldwide. Regarding PCa progression, many key players involved in the 

molecular pathways contributing to prostate carcinogenesis remain unveiled. MicroRNAs 

(miRNAs), a class of small non-coding RNA molecules, are crucial in cancer development and 

progression, through the post-transcriptional regulation of genes involved in the tumorigenic 

process. Currently, research efforts have been focused in characterizing the biologic interplay 

between c-Myc transcription factor, a well-recognized oncogene, and several miRNAs, and its 

consequent impact in cancer development. 

Aims: The main goal of this Master Thesis was to identify novel miRNAs implicated in prostate 

carcinogenesis and to further characterize their possible link to MYC signaling. 

Material and Methods: A lentiviral vector containing a short hairpin RNA sequence was used for 

MYC silencing in the PC-3 cell line. Alterations in the expression levels of four selected microRNA 

candidates (miR-27a*, miR-126*, miR-570 and miR-1292) were assessed in PC-3 cells, by RT-qPCR, 

upon MYC knockdown confirmation at both transcript (RT-qPCR) and protein (Western Blot) level. 

Further validation of miR-27a* and miR-126* was performed by RT-qPCR in a large set of prostate 

clinical samples. Protein levels of c-Myc were assessed in the same series by 

immunohistochemistry, and compared with the expression levels of these miRNAs. In silico 

analysis was performed to assess the possible interaction between c-Myc and both validated 

miRNAs. To assess the biological impact of miRNA deregulation upon MYC silencing, the 

expression levels of validated molecular targets of miR-27a*were also evaluated by Western Blot. 

Results: Protein levels of c-Myc showed to be significantly higher in PIN lesion and PCa samples, 

when compared with morphologically normal prostate tissues (MNPTs). Additionally, there was a 

statistically significant association between c-Myc protein levels and patients’ PSA levels and 

Gleason score (GS). In PC-3 cells, MYC silencing led to a significant decrease in the expression 

levels of the four selected miRNAs. Moreover, in clinical samples, we were only able to assess 

expression levels of miR-27a* and miR-126*. MiRNAs levels followed the opposite trend observed 

for c-Myc, being significantly lower in PIN lesions and, at more extent, in PCa, when compared 
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with MNPTs. A statistically significant association between miR-27a* expression levels and 

patients GS was also disclosed. Protein levels of c-Myc inversely associated with miR-126* 

transcript levels, i.e., < 10% c-Myc group significantly associated with high miR-126* transcript 

levels and the > 50% c-Myc group significantly associated with low miR-126* transcript levels. In 

silico analysis revealed c-Myc binding sites for both validated miRNAs’ promoter region and 

indicated c-Myc and c-Myc activator proteins as putative targets of miR-126*. In PC-3 cells, protein 

levels of epidermal growth factor receptor (EGFR) and mechanistic target of rapamycin (MTOR), 

two previously validated miR-27a*-targets, increased upon MYC gene silencing. 

Discussion: The obtained expression pattern for miR-27a* and miR-126* suggests their role as 

tumor suppressor miRNAs, which is in agreement with other previously published studies. 

Significantly higher miR-27a* expression levels were in found in the subgroup of patients with 

higher GS, indicating this miRNA as a promising prognostic tool. Interestingly, the decreased 

expression levels of miR-27a* and miR-126* observed in PC-3 cells, upon MYC knockdown, 

indicates c-Myc as a transcriptional activator of these molecules. Moreover, the existence of 

predicted c-Myc binding sites in both these miRNAs promoter regions additionally strengthens the 

possibility of such interaction to occur. On the other hand, opposite expression patterns observed 

for both validated miRNAs and c-Myc across a large series of prostate clinical samples suggest a 

different mechanism, in which c-Myc inhibits the transcription of tumor suppressor miRNAs, this 

way contributing to tumor progression. Additionally, miR-27a* seems to regulate the expression 

levels of genes implicated in prostate carcinogenesis, similarly to what was previously reported for 

other cancer models. 

Conclusion and Future Perspectives: Taken together, the obtained results suggest that miR-27a* 

and miR-126* may comprise an additional layer of the complex regulatory network responsible for 

controlling MYC expression and activity in PCa. However, further functional studies are necessary 

to confirm the existence of a true interplay between these miRNAs and c-Myc transcription factor, 

and to evaluate the biological relevance of miR-27a* and miR-126* in prostate carcinogenesis. 
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1. Introduction 

 

1.1. Epigenetics 

 

The term “Epigenetics” was first used in the early 1940s, when Conrad Waddington 

attached the prefix epi, which literally means “over” or “upon”, to the word genetics (1). All cells 

composing a complex multicellular mammal organism share the same genetic heritage. However, 

the vast diversity and complexity of such organisms clearly show that, despite having the same set 

of genetic instructions, encoded in their DNA molecules, cells can significantly diverge from each 

other in what their regulatory state is concerned (2). These differences allow cells with the same 

genome to maintain all sorts of phenotypes. There is a series of mechanisms that allow cells to 

create a non-genetic memory, with which they record and integrate information arising from their 

own development process and their environmental context (3). Besides, the way some cellular 

features are propagated and maintained cannot be explained by genetic mechanisms alone. 

Epigenetics can then be defined as the set of modifications in the DNA or its associated proteins 

that carry the information content regarding gene expression during cell division, and that are not 

related with changes in the DNA sequence itself (4). 

 

Figure 1. Differentiation potential of stem cells in each developmental stage [Adapted from: (6)].  
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 The epigenome of a cell consists in all the chemical alterations to DNA and histones that 

can be transmitted from one cell generation to the next, through either mitosis or meiosis. The 

epigenetic mechanisms work as powerful on and off switches that determine which proteins will 

be expressed inside the cell (5), being partially responsible, together with other mechanisms, for a 

considerable cell diversity within the same multicellular organism - neurons, myocytes, 

hepatocytes, blood cells and many others – due to differential gene expression (Figure 1) (6). Such 

mechanisms also play an important role in the inactivation of one of the X chromosomes in 

mammal females. Currently, the set of known epigenetic mechanisms includes DNA methylation, 

chromatin remodeling associated with histone modifications and regulation by non-coding 

ribonucleic acid (RNAs) molecules (Figure 2) (7). 

 

 

 

 

Deregulation of epigenetic mechanisms is often implicated in pathological processes, since 

it leads to the abnormal activation or inactivation of given genes (5). Among their involvement in 

disease-driven processes, the role of epigenetic mechanisms in tumorigenesis is one of the major 

issues nowadays. Herein, the focus of this Thesis will be on epigenetic mechanisms involving 

microRNA regulation. 

Figure 2. Epigenetic mechanisms include DNA methylation, histone modification 

and microRNA-based regulation [Adapted from: (7)]. 
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1.2. MicroRNA Regulation 

 

Non-coding RNAs act by modifying the structure or expression of messenger RNA (mRNA) 

molecules, leading to alterations in expression levels of the proteins they encode (2). MicroRNAs 

(miRNAs) represent a set of endogenous small non-coding RNA molecules, with a length between 

18 and 25 nucleotides, currently acknowledged as key players in gene regulation (8). MiRNAs were 

first discovered in 1993 in Caenorhabditis elegans, and, currently, they are known to play 

important roles in almost all cellular pathways, including cell cycle progress and regulation, 

immune response to pathogens, stem cell differentiation, stress response, apoptosis and 

pathological processes (Figure 3) (9). 

 

 

MiRNA biogenesis is a relatively complex process (Figure 4) (10). The majority of these 

small RNA molecules derive from longer intramolecularly double-stranded RNAs (dsRNAs), also 

called primary miRNAs or pri-miRNAs (11). Its transcription, carried out by RNA polymerase II, may 

occur from independent genomic transcription units or from introns of protein-coding genes (8). 

After being transcribed, pri-miRNA molecules are further cleaved by specialized ribonuclease III 

enzymes, such as RNA polymerase III Drosha (DROSHA) in the case of mammals, which are located 

in the cell nucleus. The resulting intermediate molecules, miRNAs precursors or pre-miRNAs, have 

60 to 70 nucleotides in length and, typically, display a stem-loop structure with self-

complementarity. One molecule of pri-miRNAs may originate several pre-miRNAs, after cleavage 

Figure 3. MiRNA-regulated cellular, biological and physiological processes [Adapted from: (9)]. 
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by Drosha (polycistronic miRNAs), which, by its turn, is part of a larger protein complex with about 

650 kDa, known as the microprocessor complex (10). Within the pre-miRNA molecule, there is self-

complementarity, which leads to the formation of a double-stranded hairpin. Pre-miRNAs are then 

exported to the cytoplasm through nuclear pores by the nuclear transport receptor Exportin 5 

(XPO5). In the cytoplasm, another ribonuclease III enzyme, known as Dicer (DICER1), which acts in 

a complex with the transactivating response RNA-binding protein (TRBP), further cleaves the pre-

miRNA molecules, originating small dsRNA molecules of approximately 22 bp. Each of these 

molecules is composed by an active or guide strand, which is then released and associated to the 

RNA-induced silencing complex (RISC), originating the mature RISC complex, and an inactive or 

passenger strand, which is removed and directed to degradation (12). The selection between the 

guide and passenger strands is made according to their thermodynamic properties (10). 

At this point, mature miRNAs associated with the RISC complex, which also includes the 

Argonaute proteins, among others, are able to target specific mRNA molecules and interfere with 

their translation, through sequence-specific interactions (8). In the case of animals, this 

ribonucleoprotein complex typically positions itself at the 3’ untranslated region (UTR) of the 

target mRNA molecule, by recognition of complementary sequences (Figure 4) (10). Depending on 

the level of complementarity between the miRNA sequence and its mRNA target sequence, post-

transcriptional regulation may occur through inhibition of translation or degradation of the mRNA 

molecule (10). The latter may additionally be divided in site-specific cleavage, an extremely rare 

event in mammals that takes place when there is a perfect or almost perfect match between the 

miRNA and mRNA molecules, and enhanced mRNA degradation, which, together with the 

translational inhibition process, is associated with a mismatch between the sequences of the 

miRNA molecule and its target mRNA. Recently, it is thought that the degree of translation 

repression or mRNA degradation depends not only on the sequence complementarity between 

the miRNA and its target mRNA, but also on the expression levels of both (13).  
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Despite miRNA regulation being mainly associated to downregulation of its target mRNA 

molecule and, consequently, of the respective protein, these small non-coding RNAs may be 

responsible, in certain cellular contexts, for translation upregulation, when they happen to bind 

the 5’-UTR of the target mRNA (14). MiRNA-mediated regulation is highly promiscuous, since each 

miRNA can potentially regulate several mRNA target molecules. In fact, recent computational 

analysis and transcriptome profiling suggest that each miRNA molecule may have as many as 200 

mRNA targets (13). On the other hand, several miRNAs can act together in the regulation of a 

single gene. Currently, there are over 2500 human mature miRNA molecules listed at miRBase 

(15). There are several computational tools and databases that can be used to predict miRNA 

targets (16). However, the role that many of them play in biology of the cell still remains largely 

unveiled. Deregulation of miRNA-mediated mechanisms and pathways has been associated with 

several different pathologies, including age-related, cardiac and neurological diseases, as well as 

immune disorders and, most importantly, cancer (17). 

Figure 4. Biogenesis and mechanism of action of miRNAs [Adapted from: (10)]. 
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Table 1. MiRNAs associated with human cancers [Adapted from: (19)]. 

1.3. MicroRNA Deregulation in Cancer 

 

1.3.1. The Role of MicroRNAs in Tumorigenesis: Oncogenic vs. Tumor 

Suppressive 

 

 

As previously mentioned, deregulation of epigenetic mechanisms plays a crucial role in 

many pathological processes, of which cancer is one of the best studied (1). Specifically, several 

miRNAs have been reported as deregulated in different human cancers (12) and studies involving 

miRNA expression profiling showed significant differences between normal and tumor tissues (10). 

Indeed, miRNAs deregulation has been associated with critical steps of tumorigenesis, including 

tumor growth, progression, invasion and metastasis formation, as well as with patients’ response 

to therapy. It has been reported that about 50% of the miRNAs encoding genes are inserted in 

cancer-associated genomic regions (18). Thus, it becomes clear that numeric or structural 

chromosomal abnormalities, affecting the regions where those genes are mapped in, may lead to 

altered miRNAs levels, ultimately promoting tumorigenesis. Aberrant expression or deregulation 

of miRNA biogenesis machinery may itself be one of the causes underlying the genetic instability 

that fosters tumor formation (19), as illustrated by Dicer downregulation in lung cancer (20). 

MiRNA Cancer Association Function 

miR-15a and 

miR-16-1 

Frequently deleted or downregulated in B-cell chronic lymphocytic leukemia; 

negatively regulate the anti-apoptotic gene  B-cell CLL/lymphoma 2 (BCL2) 

Tumor 

suppressor 

miR-21 Anti-apoptotic factor; upregulated in glioblastomas and breast cancer Oncogene 

let-7 family 
Negatively regulates the rat sarcoma (RAS) oncogenes; directs cell 

proliferation and differentiation; decreased expression in lung cancer 

Tumor 

suppressor 

miR -17-19b 

cluster 

Upregulated by  v-Myc avian myelocytomatosis viral oncogene homolog 

(MYC); negatively modulates the E2F transcription factor 1 (E2F1) oncogene; 

loss of heterozygosity of this cluster is found in hepatocellular carcinoma; 

overexpressed in B-cell lymphomas 

Tumor 

suppressor 

Oncogene 
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Since miRNAs act by regulating gene expression at a post-transcriptional level, it is clear 

that these molecules may play an important role in cancer development, depending on their 

cellular context, their target genes and their involvement in the pathological process. Hence, 

miRNAs may either have oncogenic functions, if their deregulation leads to inhibition of tumor 

suppressor genes expression, or tumor suppressor functions, if they are responsible for regulating 

the expression of oncogenes (21) – Figure 5 and Table 1 (19). 

 

The oncogenic miRNAs, also called “oncomirs”, characteristically have their expression 

increased  in tumors, and they contribute for cancer development through negative regulation of 

tumor suppressor genes or genes that control vital cellular processes such as apoptosis, cell cycle 

control and checkpoints mechanisms, cell growth and differentiation (19). For example, miR-372 

and miR-373, overexpressed in human testicular germ cell tumors, promote cell proliferation and 

tumorigenesis by preventing tumor protein p53-mediated (TP53) cyclin-dependent kinase (CDK) 

inhibition (22). 

Figure 5. MiRNAs can act either as oncogenic or tumor suppressor elements [Adapted from: (19)]. 
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Tumor suppressor miRNAs, which show decreased expression in cancer tissues, regulate 

the expression of proto-oncogenes, preventing their overexpression, and their downregulation 

contributes to neoplastic transformation (23). The lethal-7 (let-7) miRNA family was the first to be 

recognized as having tumor suppressor functions (24). The miRNAs included in this family target 

several important genes that are critically involved in cell growth and differentiation, such as rat 

sarcoma (RAS) oncogene family, which is mutated in 15-30% of human cancers (23). 

MiRNAs have specific signatures, according to the type of tissue and of cancer. Several 

studies have been conducted to build miRNA expression profiles in normal tissues, cancer cell lines 

and tumors with different origins (25). Actually, miRNA profiling is becoming more and more 

attractive, and can be put to use together with gene profiling. That happens mostly because of 

miRNA’s increased stability and short length (25). Such studies have revealed that a large number 

of miRNAs display specific altered expression levels according to tumor type and stage, allowing 

for miRNA expression patterns to classify tumors (26). Thus, miRNA profiling may be extremely 

informative, helping in the classification of poorly differentiated tumors, when mRNA profiling fails 

to do so (27). The development and improvement of refined and accurate miRNA detection 

methodologies permits the use of these small molecules in diagnosis, so that specific miRNAs may 

become cancer biomarkers and ancillary tools for diagnosis. 

 

1.3.2. MicroRNA Regulation by c-Myc 

The v-Myc avian myelocytomatosis viral oncogene homolog (MYC) gene encodes for a 

transcription factor, c-Myc, that plays an essential role in almost all cellular processes, many of 

which are important for tumorigenesis, such as cell cycle progression, proliferation, growth, 

metabolism, angiogenesis, differentiation, adhesion and motility, being also deregulated in several 

human cancers (28). Several studies have shown that c-Myc is also involved in regulating miRNA 

cellular levels, inducing the expression of oncogenic miRNAs, such as miR-17-92 cluster (29-33). In 

other cases, it represses the expression of tumor suppressor miRNAs (34-36), as it is represented 

in Figure 6 (28). This transcription factor has also been shown to regulate miRNA processing 

through transcriptional regulation of Drosha (37). Thus, clarifying the role of c-Myc-regulated 

miRNAs in tumourigenesis may be of great interest for developing novel cancer therapies. 
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1.4. Prostate Cancer 

 

1.4.1. Prostate Anatomy, Histology and Physiology 

The prostate gland is part of the human male reproductive and urinary systems, playing a 

major role in secretion, ejaculation and urination (38). It lies underneath the bladder, in front of 

the rectum, being separated from the latter by a thin layer of connective tissue (Figure 7) (39). The 

human prostate weights about 20 g and has approximately 3 cm long, 4 cm wide and 2 cm thick, in 

young individuals. This organ completely surrounds the urethra. The apex of this walnut-shaped 

organ contacts with membranous urethra and is directed downward, while the basis contacts the 

bladder and is directed upward (38). The gland is internally divided by the prostatic urethra into 

distinct inner and outer regions. The ejaculatory ducts penetrate the prostate and join the 

prostatic urethra at the verumontanum.  

Although over the years several investigators sustained a lobular structure for the human 

prostate, MacNeal, based on anatomic observations in different animal models, proposed the 

division of this gland into zones rather than lobes (Figure 7) (39), a proposition that is widely 

accepted among the scientific and medical community (40). 

Figure 6. MiRNA Regulation by c-Myc transcription factor [Adapted from: (28)]. 
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The prostate is a well innervated gland by both the sympathetic and parasympathetic 

divisions, the former being important to mediate smooth muscle contraction, through activation 

of α-1 receptors, and the latter being involved in stimulation of glandular activity. 

 Histologically, each glandular zone is composed by acini and ducts, lined with two main 

cell layers: a luminal columnar cell layer with secretory functions and an underlying basal cell 

layer. However, there may be several intermediate cell types separating these two layers (41). 

Progression from basal (stem) to secretory luminal (mature) cells represents a continuous 

differentiation process.  

 

1.4.2. Prostate Pathology 

 Several pathological processes may affect the prostate (Figure 8) (39). Benign prostatic 

hyperplasia (BPH), a benign prostatic enlargement, is a common condition among men over 70 

years old (42) and it is defined as microscopic or macroscopic nodules with hyperplasia of 

glandular and stromal cells, mostly occurring at the gland’s transition zone (39). 

 Among neoplastic lesions, prostate cancer (PCa) is the most common and it may be 

preceded by prostatic intraepithelial neoplasia (PIN) (43). Although most men display PIN lesions 

by the age of 50, only high-grade PIN (HGPIN) lesions are considered precursors of PCa, as they are 

Figure 7. Anatomic position of human prostate and prostate zones [Adapted from: (39)]. 
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able to form multiple foci and present significant changes in cell phenotype. In PIN, the two-cell 

layer is preserved although normal luminal cells are replaced by neoplastic cells closely resembling 

PCa cells, and those have been shown to share multiple chromosomal abnormalities with PCa (44). 

These HGPIN lesions occur mostly in the peripheral zone. 

Several factors may be responsible for inflammatory processes in the prostatic tissue, such 

as infectious agents, hormonal changes, dietary habits, physical trauma and urinary reflux (39). 

Inflammation of the prostate, which becomes more common with aging, is frequently associated 

with glandular atrophy and mostly located in the peripheral zone. Interestingly, a fraction of 

epithelial cells localized in these focal atrophy lesions shows the ability to proliferate, giving rise to 

the so-called proliferative inflammatory atrophy (PIA). PIA lesions are considered to potentially 

evolve either to HGPINs lesions or directly to PCa. Although benign, PIA lesions can share altered 

signaling pathways with PCa, namely downregulation of several tumor suppressor and caretaker 

genes (39).  

 

  

Among all types of PCa, adenocarcinoma accounts for over 95% of cases, being originated 

from glandular cells (40). Prostate adenocarcinoma is mostly acinic, but may also be of other 

types, such as small-cell neuroendocrine, adenoid cystic and basal, squamous cell, urothelial and 

sarcomatoid (45). PCa and BPH share certain traits, such as hormone-dependent growth and 

response to anti-androgen therapy, but this neoplasm has often a silent/asymptomatic behavior. It 

is not uncommon for patients to be diagnosed when metastatic lesions have already developed 

(e.g. bone, brain, lymph nodes, lung and liver). Hence, the development of early diagnosis tools is 

of great importance for PCa patient management. 

Figure 8. Cellular and molecular model of early prostate neoplasia progression [Adapted from: (39)]. 
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1.4.3. Prostate Cancer Epidemiology 

PCa is the second most frequent type of cancer and the sixth leading cause of cancer 

death among men, worldwide (Figure 9) (46, 47). By the year of 2030, the number of PCa 

diagnosed cases is expected to reach an astonishing number of 1.7 million. In Portugal, in 2012, 

PCa ranked first in incidence and second in mortality, in men (48). 

 

 

1.4.4. Prostate Cancer Risk Factors 

Although several factors are thought to contribute or increase the risk of PCa 

development, only three of them are well-established and widely accepted (49).  

Family History: Familial PCa accounts for about 10-15% of all cases (50). Men whose family 

members have developed PCa are considered to be at high risk of developing PCa themselves, 

although the clinical and pathological features of the familial PCa are similar to those of non-

familial cases (49). If affected family members are close relatives (e.g. father or brothers), the risk 

may be 2 to 8 times higher (51). The risk becomes even higher when multiple family members 

have been affected.  

Age: PCa incidence strongly increases with age, probably due to the accumulation of oxidative 

stress (49). It increases nearly one hundred times from men aged 40-44 years to those between 

Figure 9. Estimated age-standardized incidence and mortality rates for prostate cancer [Adapted from: (46)]. 
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70-74 years (52). Since PCa is characterized by a silent and slow-growing behavior, the 

development of pre-neoplastic lesions, that can forego PCa, may occur for many years or even 

decades before the malignant lesions are diagnosed. Indeed, theoretically, almost every men 

would develop PCa if they could reach 100 years old (53). 

Ethnicity: Different ethnic groups have different risks of developing PCa (49). African-American 

men are those at higher risk, developing PCa 60% more frequently than Caucasian American men 

(52). In Europe, northern and central countries have lower incidence rates compared to southern 

and eastern countries. Those differences may be due to several factors: differences in exposure, 

dietary habits and genetic heritage, but also differences in the decision-making process, access to 

medical care and preferred diagnostic tools (54). 

 Although not firmly established, other factors have been associated with PCa, including 

smoking, obesity and diabetes (55-57). 

 

1.4.5. Prostate Cancer Diagnosis 

Since PCa is mostly asymptomatic at its earliest stages of development, improvement of 

patient’s prognosis highly depends on early disease detection, while the malignancy is still 

confined to the gland (58). Thus, in many countries, men over 50 years, or even younger if they 

have familial history of PCa, are recommended to be screened for PCa yearly.  

At present, PCa’s detection is mostly based on digital rectal exam (DRE) and prostate-

specific antigen (PSA) blood test (59). Abnormalities found in these exams, although not entirely 

reliable and accurate, are strong indicators for the presence of PCa. DRE has been recently falling 

into disuse. The PSA blood test is a widespread PCa screening methodology intended to detect PCa 

at early stages, in asymptomatic men, but also in men suffering from suspicious PCa symptoms 

(60). The PSA protein is specifically produced by prostate cells and, physiologically, is mainly found 

in semen. However, it also diffuses into the bloodstream where it may be detected. A high PSA 

concentration (i.e., above 4 ng/ml) is a strong indicator for the presence of PCa and, if the cancer 

does, in fact, exist, this parameter correlates with tumor extension. Although, in general, the 

higher the PSA concentration, the greater the chance that PCa is present, an abnormally high 

blood PSA concentration is not an unquestionable proof of the presence of PCa, since several 

other conditions, such as aging, BPH and inflammation, may also be the cause of it (61). Indeed, 
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PSA is specific for the prostate gland, and abnormal concentrations of this molecule can therefore 

inform for a several different physical conditions concerning the prostate. The inadequate use of 

the PSA molecule as an early diagnosis tool leads to the overdiagnosis and, consequently, to the 

overtreatment of PCa cases (62). These are tumors that would have never progressed to a 

symptomatic state or would never be clinically diagnosed, in the absence of the test (63).   

The gold standard tool for PCa diagnosis is the prostate biopsy, in which a set of 12 to 16 

small tissue cylinders are taken from the patient’s prostate, and later analyzed by a pathologist 

(59). A Transrectal Ultrasound (TRUS) usually guides this procedure. The combination of both 

methodologies, named TRUS-guided systemic needle biopsy, represents the most reliable 

procedure to accurately identify the presence of PCa. 

Although PCa’s early detection is currently possible, the available screening and diagnostic 

methodologies still face several difficulties and challenges (13). Neither DRE nor PSA blood test are 

able to accurately identify the presence of cancer (64). Indeed, several prostatic disorders, other 

than PCa, may be responsible for increased production and/or diffusion of PSA into the 

bloodstream, including BPH, prostatitis, diet alterations, intake of medications and environmental 

factors (61, 65). Furthermore, these tools do not predict with accuracy the pathological stage of 

the disease (66). Other associated problems, such as a high rate of false positives, intensify the 

need for development of novel, accurate and non-invasive diagnostic tools to be used for early 

detection of PCa. 

 

1.4.6. The Gleason Grading System 

Following histological diagnosis of PCa, there is a need to ascertain its potential clinical 

aggressiveness based on tumor grading. In PCa, the Gleason grading system is the most widely 

used and is based on the histological appearance of neoplastic glands (67). When analyzing 

histologic samples of PCa, and since this type of cancer is usually heterogeneous, the two most 

predominantly observed Gleason patterns, each one of them graded from 1 to 5, are chosen and 

then summed together, giving rise to the Gleason score (GS), which ranges from 2 (1+1) to 10 

(5+5) (Figure 10) (68). The higher the GS, the less differentiated and more aggressive is the tumor, 

and therefore, worse is the patient’s prognosis. There are some limitations to the predictive 

accuracy of the GS, due to inter- and intraobserver variability, professional experience and 
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sampling issues. Accurate GS information is critical for the planning of post-radical prostatectomy 

management in patients with PCa, which includes evaluating the risk of recurrence and planning of 

additional therapy (69). 

 

 

1.4.7. Prostate Cancer Staging 

Cancer staging can be divided in clinical and pathological, depending on the moment at 

which tumor staging is performed (70). Clinical staging is based on the collection of data prior to 

the first definite treatment, either by DRE, TRUS or other imaging techniques. On the other hand, 

pathological staging is based on the collection of histological data regarding the tumor’s extent in 

the prostate and surrounding tissues. The staging of PCa, intimately related to the patient’s 

prognosis, is performed according to the TNM (Tumor – Lymph Node – Metastasis) classification 

system, the staging tool most widely used for solid tumors (40). Tumors are staged according to 

the extent of the primary tumor (T category), invasion of regional lymph nodes (N category) and 

the absence or presence of distant metastasis (M category) (Figure 11) (71). The complete PCa 

staging process takes also into account information provided by the GS and PSA blood test. 

Altogether, each PCa case is ascribed to a specific stage category (I-IV), which becomes higher for 

more advanced and aggressive tumors. 

Figure 10. GS for PCa histologic grading [Adapted from: (68)]. 
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Figure 11. The 2010 American Joint Committee on Cancer/International Union Against Cancer TNM Staging 

Classification for prostate cancer [Adapted from: (71)]. 
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1.4.8. Prostate Cancer Therapy 

At the early stages of PCa development (I/II), the outcome of patients is considered to be 

good, with over 90% of progression-free survival after 5 years (72). However, for more advanced 

stages (III/IV), long survival periods are less likely to occur. For patients with clinically localized 

tumors, standard treatment includes patient active surveillance/watchful waiting, an approach 

intended to spare patients with slow-growing and indolent tumors from the discomfort, pain and 

morbidity of unnecessary treatments (72). Radical prostatectomy and external beam radiotherapy 

are usually considered for more aggressive tumors, though still organ-confined, or locally 

advanced disease, respectively. For patients with advanced high-risk stage III or stage IV disease, 

androgen ablation-based therapy is implemented either by surgical or chemical castration. First-

generation anti-androgen drugs include flutamide and bicalutamide. Unfortunately, mutations 

affecting the androgen receptor (AR) gene frequently occur under androgen-deprivation therapy, 

giving rise to a condition called castration-resistance that is associated with dismal prognosis (73). 

Standard treatment for patients who have developed metastatic castration-resistant PCa is based 

on conventional chemotherapy (e.g., docetaxel). Recently, several other therapeutic strategies 

became available, including new-generation anti-androgens, PCa vaccines and agents targeting 

bone metastasis (74-76). 

 

1.5. Overview of the Role of MicroRNAs in Prostate Cancer 

 

Epigenetic alterations play a major role in prostate carcinogenesis and may be identified 

from the earliest stages, the precursor lesions, to the most advanced forms of disease (13). Among 

these alterations, aberrant expression and function of miRNAs has a pivotal role in PCa’s 

pathological pathways, being associated with critical cellular and physiological processes such as 

androgen signaling, apoptosis evasion, cell proliferation, migration and metabolism. Presently, 

over 50 miRNAs have been documented to be deregulated in PCa (4), although both function and 

targets still remain unveiled for most of them. Several miRNAs have been reported to be 

differentially expressed between normal and tumor tissue samples, arising as promising key 

participants in PCa carcinogenesis (77-79). Since 2007, the date of the first systematic miRNA 

profiling report in PCa by Porkka et al., several studies have been conducted to unveil the roles 
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played by different miRNAs in prostate carcinogenesis (80). Currently, global miRNA profiling is 

performed using techniques such as microarray analysis. However, when studying a specific 

miRNA molecule, quantitative Real-Time polymerase chain reaction (RT-qPCR) should be used to 

validate the alterations that surface in the microarray analysis. Computational approaches are 

then used in order to identify specific target genes of the altered miRNAs (81). Frequently, 

different studies obtain contradictory results for the same miRNA molecule, making it difficult to 

conclude about its role in pathogenesis (82). This can be due to differences in study design by 

distinct research groups, underestimated treatment of the patients, different methods of sample 

collection, presence of contaminating cells and specificity and sensitivity of the used platforms. 

However, it can also be due to the fact that the same miRNA, depending on the type of cancer, or 

even in different stages of the same cancer, is expressed in different levels and plays different 

roles in the progress of the disease (83). 

Despite the controversy in the literature concerning the role of certain miRNAs in prostate 

carcinogenesis, it is widely accepted that miRNAs are differentially expressed with disease 

progression. In other words, different miRNAs participate in different stages of PCa pathogenesis, 

each stage having its own characteristic miRNA profile or signature, which highlights the dynamic 

character of miRNA regulation, their ability to receive stimuli from the tumor microenvironment 

and respond accordingly, and their enormous potential for PCa diagnosis, prognosis and tumor 

staging (84). In a recent study, several miRNAs were found to be aberrantly expressed in the tumor 

stroma, instead of the tumor itself, highlighting the close and essential interaction that has to be 

established between neoplastic cells and their surrounding microenvironment, or stroma, so that 

the tumor may successfully develop, grow and invade the adjacent tissues (Figure 12) (79). 

 

Figure 12. Differentially expressed miRNAs in PCa tumor and stroma [Adapted from: (79)]. 



19 

 

1.5.1. Epigenetic Regulation of MicroRNAs in Prostate Cancer 

MiRNAs have their levels of expression frequently regulated by other miRNAs and also 

other epigenetic mechanisms, such as DNA methylation and histone modification, forming 

complex feedback regulative loops, as depicted in Figure 13 (85). In fact, over 40% of miRNA 

codifying genes are located in the proximity of CpG islands, where extensive DNA methylation 

normally occurs. Tumor suppressor miR-145 has been previously reported to be downregulated in 

prostate cancer, mainly due to hypermethylation of its promoter (86, 87). Other relevant miRNAs 

that have been reported to be downregulated in PCa due to promoter hypermethylation include 

miR-21 and miR-205 (88-91). Additionally, miRNAs often act synergistically with other epigenetic 

mechanisms for repression of their target genes expression (13). For example, miR-101 is often 

downregulated in PCa, leading to an upregulation of its target gene, enhancer of zeste homolog 2 

(EZH2), an important component of the epigenetic regulator polycomb complex. The deregulated 

activity of this enzymatic complex disturbs the expression levels of several other miRNA 

molecules, ultimately contributing to PCa progression (92). 

 

 

1.5.2. Involvement of MicroRNAs in Prostate Carcinogenesis 

 Deregulation of miRNAs expression in PCa is associated with apoptosis avoidance, as 

represented in Figure 14 (80), and at least 10 different miRNAs have been implicated. For example, 

expression of the E2F transcription factor 1 (E2F1) is regulated by miR-20a, which is located within 

the miR-17-92 cluster, along with five other miRNAs, and it is overexpressed in PCa, functioning as 

an oncomir (93). E2F1 is critical for cell cycle progress and control, as well as p53 and caspase-

Figure 13. Epigenetics-miRNA regulatory circuit [Adapted from: (85)]. 
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Figure 14. MiRNAs involved in the avoidance of apoptotic pathways in PCa [Adapted from: (80)]. 

mediated apoptosis. MiR-25 and miR-205 also play an important role in the avoidance of apoptosis 

in PCa cells, targeting the same transcription factor (88, 94, 95). Oncogenic miR-21 represents one 

of the most important miRNAs in PCa development, attenuating the apoptotic pathways through 

targeting essential tumor suppressor genes, such as programmed cell death 4 (PDCD4) and 

phosphatase and tensin homolog (PTEN) (96, 97).  

 

 

MiRNAs can also act downstream of several transcription factors. The miR-34 cluster has 

tumor suppressor functions and establishes a tight regulatory loop with p53, the guardian of the 

genome. This loop becomes activated in cases of DNA damage or cell stress, and promotes cell 

cycle arrest and apoptosis through the downregulation of important genes codifying for adhesion 

molecules, cyclins, CDKs, sirtuin 1 (SIRT1) and the apoptotic factor  B-cell CLL/lymphoma 2 (BCL2) 

(98-103). MiR-34 miRNA family is frequently lost or downregulated in PCa tumors and cell lines 

(104, 105). Other important miRNAs involved in cell cycle regulation and apoptosis are the tumor 

suppressor miR-15a and miR-16, frequently downregulated in PCa (106-109). Upon loss of this 

miRNA cluster, G1/S transition becomes facilitated and apoptosis is avoided, a consequence of the 

upregulation of the cyclin D1 (CCND1) and the anti-apoptotic factor BCL-2, respectively. This 
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miRNA cluster seems to target multiple oncogenic activities within the cell (80). MiR-221 and miR-

222, both usually upregulated in PCa, are also crucial in cell cycle regulation and progression, 

acting as oncogenic miRNAs in PCa (110). Among their targets are key cell cycle regulators, 

including cyclin-dependent kinase inhibitors 1B and 1C (CDKN1B and CDKN1C), which inhibit the 

activity of CDKs, and PTEN (110-112).  

Several miRNAs are also involved in aberrant androgen signaling, which is one of the most 

important pathways in PCa progression (80). In that perspective, miRNAs may either modulate 

androgen-related pathways, or act as androgen-responsive elements. MiR-125b belongs to the 

latter group, being frequently upregulated in PCa as a response to increased androgen production 

(113). This oncomir targets important genes that codify for proteins involved in cell cycle 

regulation, such as p53 and p53 target proteins, and apoptotic factors such as BCL2-

antagonist/killer 1 (BAK1), leading to a blockage of apoptotic pathways and promoting androgen-

independent tumor growth (113-115). Curiously, miR-125b has been reported to act as tumor 

suppressor in other cancer types, and also to be downregulated in PCa, highlighting the 

multifaceted character of miRNAs in different pathological contexts (77, 116, 117). MiR-21, which 

possesses an androgen-responsive element (ARE) in its promoter region, similarly to miR-125b, 

has been also reported to contribute to castration resistance, through pathways involving, among 

others, transforming growth factor β receptor II (TGFBR2) (118, 119). MiR-146a, a tumor 

suppressor miRNA, is also involved in promoting androgen-independent tumor growth, when 

downregulated in hormone refractory PCa, since its gene targets – elements of the Rho-associated 

coiled-coil containing protein kinase 1 (ROCK1) and epidermal growth factor receptor (EGFR) 

pathways - are key players in the acquisition of the castration-resistant phenotype (120, 121).  

When it comes to miRNAs involved in the modulation of androgen-related pathways, several 

candidates have already been reported, including the already mentioned miR-221/222 cluster and 

miR-331-3p (112, 122). The latter is frequently absent in PCa, leading to upregulation of its target 

gene, ERBB-2, which encodes a tyrosine kinase receptor. More recently, miR-19a, miR-17a and 

miR-133b have also been reported to be regulated by androgen receptor signaling pathways in 

LNCaP, an androgen-dependent PCa cell line (123). 
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1.5.3.  MicroRNAs Deregulation in Prostate Cancer Metastasis  

Since metastatic PCa remains an incurable disease, the study of the underlying molecular 

mechanisms ultimately responsible for tumor invasion and metastasis is of great clinical interest 

(78). The identification of miRNAs involved in tumor progression and metastasis, and the 

validation of the respective target genes, may lead to their future use as metastatic biomarkers 

and development of novel therapies targeting metastatic disease. Recent studies revealed a large 

number of miRNA molecules that may be involved in PCa metastasis, acting either as oncogenic or 

tumor suppressor elements (78, 103). These include miR-16, which is significantly downregulated 

in PCa metastatic models, suggesting a metastatic suppressive role (109, 124). Other miRNAs that 

may act as metastatic suppressors, and are downregulated in PCa metastatic disease, include miR-

126*, 145 and 205 (88, 125, 126). MiR-34a has been suggested to be involved in the regulation of 

epithelial-to-mesenchymal transition (EMT) process, in which cancer cells go from a fixed epithelial 

phenotype to a mesenchymal phenotype, with increased motility and invasion capacity (103). 

During this transition, loss of typical epithelial markers, such as E-cadherin (CDH1) adhesion 

molecule, and the gain of mesenchymal markers, such as vimentin (VIM) and fibronectin (FN1), 

occur (127). MiR-34a is also thought to be involved in the regulation of cancer stem cells (CSCs) 

characteristics, through the regulation of the cluster of differentiation 44 (CD44) gene, which 

codifies for an important adhesion molecule that is one of the main biomarkers of stemness (103). 

CSCs comprise a small cell population within the primary tumor and are suspected to be the basis 

of EMT and metastatic behavior. MiR-143 and miR-145 target some EMT-related markers, thus 

acting in the suppression of metastasis formation (128-133). Other miRNAs with tumor 

suppressive functions, such as miR-29b and miR-143, whose downregulation in PCa is frequently 

associated with the metastatic process, are responsible for the regulation of the matrix 

metalloproteinases (MMPs) that act in the degradation of extracellular matrix components, 

promoting tumor invasion (134-136).  

In conclusion, miRNAs seem to play crucial roles in every relevant pathway that 

contributes to the transformation of normal prostate epithelium into invasive and androgen-

independent tumors (Figure 15) (82). 
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1.5.4. c-Myc-Regulated MicroRNAs Are Key Players in Prostate Cancer 

Recently there has been an attempt to establish a cause-consequence relation between 

the deregulation of several miRNAs that have been observed to be aberrantly expressed in PCa 

and the pathological activation of the MYC oncogene, a common upstream event in several human 

malignancies (82). This transcription factor has already been reported to bind to conserved regions 

in the promoter sequence of several miRNA genes, causing widespread miRNA downregulation 

(137). For example, the c-Myc-associated downregulation of miR-26a, miR-26b and miR-11 leads 

to upregulation of the gene codifying for the epigenetic regulator polycomb complex element 

(EZH2), which is known to promote PCa progression (35, 138, 139). Moreover, some miRNAs may 

be responsible for the regulation and suppression of c-Myc oncogenic functions in PCa, including 

miR-34a that was shown to suppress the activation of certain oncogenes through the inhibition of 

c-Myc transcriptional complexes (104). The fact that c-Myc is known to induce androgen-

dependent PCa growth also supports the existence of a regulatory network established between 

this transcription factor and several miRNAs (140).  

 

Figure 15. MiRNAs – targets and functions with important physiological roles in PCa [Adapted from: (82)]. 
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1.5.5. MicroRNAs Are Valuable Diagnostic, Prognostic and Predictive 

Tools in Prostate Cancer 

As previously mentioned, aberrant miRNA expression patterns in PCa are of dynamic 

nature, changing along with the disease itself, thus allowing researchers to associate several 

altered miRNAs with different stages of PCa (Figure 16) (141). The identification and validation of 

miRNA signatures for each PCa stage is of great value, and may allow not only the development of 

novel diagnostic tools, but also help in the characterization of patients’ prognosis, disease 

outcome and even provide information to better decide on the best therapeutic strategy. This 

becomes of major importance in PCa, which is characterized by heterogeneity and difficulty in 

patient’s outcome prediction, due to slow and indolent growth and the ability of rapidly becoming 

lethal (142). 

 

Figure 16. Key miRNAs involved in PCa pathogenesis [Adapted from: (141)]. 
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As previously mentioned, the screening and diagnostic methodologies available for PCa 

still face several difficulties and challenges. In this context, miRNAs demonstrate features that are 

fit for PCa biomarkers (142). Their expression profiles are frequently tissue-, disease- and 

developmental-specific, being able to accurately discriminate tumors at different stages of 

development. Additionally, these molecules also show remarkable levels of stability in different 

clinical samples, as their small size and distinctive biochemical structure grant them higher 

resistance to RNase-mediated degradation. Moreover, miRNAs are easy to quantify by RT-qPCR 

and, because they are highly evolutionarily conserved among different species, animal models 

may be used in the search and validation of new biomarkers (143). Importantly, circulating 

miRNAs seem to be particularly resistant to extreme biochemical conditions and may be also be 

detected in other body fluids, such as breast milk and, most importantly for urological tumors, 

urine (144).  

Several studies addressed the potential of miRNAs as promising PCa biomarkers. However, 

due to differences in miRNA array platforms, protocols for quantification, methods of statistical 

analyses and sample selection and size, concordance among these studies is rather low, 

preventing the definition of a clinical useful miRNA panel. Among all miRNAs detected in body 

fluids of PCa patients, miR-141 and miR-375 seem to be the most promising candidates (145-149). 

Other studies emphasized the diagnostic capability of miR-106a and miR-1274 in serum of patients 

with early stage PCa (150). MiR-21 and miR-221, which have been widely associated with PCa, 

have also been found to be elevated in plasma of PCa patients (147). Regarding the presence of 

abnormal miRNA levels in urine of PCa patients, a study revealed high levels of miR-107 and miR-

574-3p (149). On the other hand, miR-205 and miR-214 were significantly downregulated in urine 

samples, successfully discriminating healthy individuals from PCa patients (151). Urine collection 

from PCa patients may be a very informative tool, as malignant cells are likely to be shed in urine 

before discharge (152). Another study, based on the use of tissue microarray methodology to 

identify miRNAs with diagnostic potential in PCa, indicated miR-205 as a promising PCa biomarker, 

as its downregulation is frequently associated with metastasis due to its involvement in EMT (89). 

Despite their potential as promising PCa diagnostic tools, circulating miRNAs may have their 

specificity impaired as the same miRNA may be involved in the tumorigenic process of several 

different cancers. 
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As previously mentioned, miRNAs can also be used as valuable prognostic and predictive 

tools, as they may be associated with different stages, histological features, aggressiveness and 

neoplastic behavior (153). This is of major importance, since it may influence therapeutic choices 

and prediction of disease outcome. Elevated blood levels of miR-141, miR-200b and miR-375 have 

been associated with castration-resistant metastatic PCa and high GS, discriminating these high-

risk patients from those with low-risk, clinically localized PCa (146, 149). The same was reported 

for miR-21 and miR-221 (147). Expression of these miRNAs has also been associated with 

biochemical relapse, which consists in an increase of PSA blood levels in patients who have already 

undergone curative-intent surgery or radiation therapy (148). Other miRNAs have also been 

correlated with tumor aggressiveness, including miR-125b and miR-222 (64). Another study 

suggested a correlation between elevated tissue levels of miR-96 and high GS, as well as increased 

likelihood of recurrence (89). 

Despite androgen deprivation therapy being the first line treatment for advanced-stage 

PCa, most patients will eventually develop a more aggressive form of disease, characterized by 

androgen-independent growth, formation of distant metastasis and very poor prognosis (154). A 

second line treatment, directed to patients who have been diagnosed with castration-resistant 

PCa, includes microtubule stabilizing agents, such as paclitaxel and docetaxel. Nonetheless, few 

successful therapeutic strategies are available for treating chemoresistant forms of PCa (155). 

Other important events and elements, in which miRNAs deregulation plays a key role in, including 

emergence of CSC phenotypes, EMT and metastatic capabilities, may be involved in the acquisition 

of chemoresistance. Since miRNAs have already been implicated in resistance to chemotherapy in 

several different human cancers, their role in chemoresistant PCa has been the subject of great 

interest, and some miRNAs have been associated with the drug resistance emerging during PCa 

treatment (156). A recent study uncovered the role of miR-34a and miR-200c in paclitaxel 

resistance in PCa cell PC-3 and DU145 cells, as both cell lines displayed low expression levels of 

these miRNAs in CSC populations (155). MiR-34a has also been reported to be involved in 

camptothecin chemoresistance in PC-3 cells, due to upregulation of its target gene, SIRT1 (157). 

Elevated levels of miR-21, both in serum of PCa patients and in PCa cell lines, have also been 

associated with docetaxel and temozolomide resistance (158, 159). In a recent study, miR-141 

showed potential to be used as a biomarker to assess patients’ response to treatment and to 

predict clinical progression (160). 
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1.5.6. MicroRNAs in Prostate Cancer: A Therapeutic Perspective 

When compared to more conventional drugs, miRNA-based compounds may have several 

advantages, including the ability to target several downstream effectors and genes, either by 

mimicking or inhibiting a single miRNA, and the potential to simultaneously use several miRNAs to 

obtain a synergistic effect (143). The small size of these molecules also prevents them from having 

antigenic properties. Despite the great potential of using miRNAs either as therapeutic agents or 

molecular targets, the development of miRNA-based therapies faces some challenges, one of the 

most limiting being their delivery to cancer cells, both in clinically localized disease or distant 

metastasis. This obstacle may be overcome through the incorporation of miRNA molecules or 

miRNA-based compounds in appropriate vehicles, capable of making their specific delivery to the 

affected organs, tissues or cell populations. Such vehicles include liposomes and other types of 

nanoparticles, which may have the ability to specifically target cancer cells, depending on their 

design (161-164). These carriers with nanometric dimensions, or the miRNAs themselves, can be 

associated with peptides with cell-penetrating properties or targeting elements (Figure 17) (165).  

 

 

 

 

 

Figure 17. Intracellular fate of nanoparticles with encapsulated miRNA or small synthetic interference 

RNA (siRNA) following receptor-mediated endocytosis [Adapted from: (165)]. 
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Other major challenges to the development of miRNA-based therapies include the 

disturbance of unintended mRNA targets, due to the fact that a single miRNA may regulate several 

different mRNA molecules, the inhibition of synthesis or processing of other known or yet to 

discover miRNAs and several aspects concerning the safety and toxicity associated with the 

developed therapeutic agents (166-168). 

To date, no miRNA-targeted therapy has been implemented in clinical practice (143). MiR-

141 and 375, whose levels are elevated both in serum and in tumor tissues of PCa patients, target 

important tumor suppressor genes, Sec23 homolog A (SEC23A) and zinc finger E-box binding 

homeobox family of transcription factors (ZEB), respectively, and are involved in preventing EMT, 

an essential step in the metastatic process (160, 169). Thus, those miRNAs represent promising 

molecular targets for development of novel therapies. In a recent study, the liposome-based 

delivery of miR-34a to PCa stem cells prevented these cells from replicating, through 

downregulation of CD44, a miR-34a target gene (103). In a different study, the systemic delivery of 

synthetic miR-16, frequently downregulated in PCa cells, showed inhibitory effects in PCa cell lines 

proliferation and growth of bone metastasis, in a PCa xenograft model, probably because this 

miRNA targets important cell cycle regulators such as cyclin-dependent kinases 1 and 2 (CDK1 and 

CDK2) (124). Other studies evaluated the capability of certain compounds to restore normal 

miRNA expression in PCa. Recently, Sousa et al. demonstrated the ability of enoxacin, an 

antibiotic, to restore normal miRNA biogenesis and expression in PCa cell lines, attenuating the 

malignant phenotype (170). 

There are several ongoing clinical trials addressing the role of miRNAs in PCa pathogenesis, 

but none of them is considering, so far, the potential use of miRNAs as therapeutic agents (143). 
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2. Aims of the Study 

  

According to what was previously stated, it is becoming increasingly evident that miRNAs 

play a crucial role in many relevant cellular pathways involved in prostate carcinogenesis. 

However, many different aspects of their mechanisms of action, specific targets and integrated 

pathways, remain unveiled. Additionally, the regulatory crosstalk between the c-Myc transcription 

factor and several miRNAs appears to be a promising therapeutic target in prostate 

carcinogenesis, although many aspects of this interaction require further characterization. 

Understanding the precise way in which c-Myc controls the expression of different miRNA 

molecules, and also how some of them may affect the expression of this transcription factor, in 

PCa, represents an important step towards a better understanding of the biology of this complex 

disease.  

Therefore, the main goal of this Master Thesis is to further explore the importance of the 

regulatory network that is established between c-Myc and different miRNAs, and its impact in 

prostate carcinogenesis. Prior to the start of this dissertation within the Cancer Biology and 

Epigenetics Group (CBEG), c-Myc transcript levels had been previously analyzed in a series of 

primary PCa, PIN lesions and morphologically normal prostate-tissues (MNPTs). Following these 

results, an expression array was made using total RNA from tumor samples containing high and 

low levels of MYC transcript levels to assess which candidate miRNAs could have their expression 

regulated by this transcription factor in PCa. Additionally, the MYC gene was silenced in a PCa cell 

line (PC-3) to validate the results obtained in the microarray array. The work of this Master Thesis 

consisted in accomplishing the following set of tasks: 

1. Confirm and validate the silencing of the MYC gene in PC-3 cell line; 

2. Assess the content of c-Myc transcription factor in the series of primary PCa cases, 

PIN lesions and normal tissues, at protein level, and associate it with the 

corresponding transcript levels; 

3. Validate the importance of a group of miRNAs, identified in the expression array, 

in PCa carcinogenesis and investigate their potential regulation by c-Myc, through 

the assessment of their expression levels in a series of primary PCa, PIN lesions 
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and normal prostate tissues, as well as in the PCa cell line in which MYC gene was 

silenced; 

4. Verify the association between the expression of different candidate miRNAs with 

clinical and pathological features of PCa; 

5. Predict molecular targets of those miRNA and assess their relevance in prostate 

carcinogenesis. 
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3. Preliminary Data 

  

The work comprised in this Master Thesis is integrated in a broader project of the CBEG (CI-

IPOP-4/2012), whose main aim is to explore and understand the regulatory network established 

between c-Myc and miRNAs, as well as its importance in prostate carcinogenesis. 

 Firstly, MYC expression was assessed by quantitative RT-qPCR in a series of 198 primary 

PCa cases, 43 high-grade PIN lesions (from now on only referred to as “PINs”), and 13 

morphologically normal prostate tissue samples (MNPTs) (Figure 18). PIN lesions showed the 

highest levels of MYC transcript, and both PIN lesions and primary PCa cases depicted, in a 

statistically significant manner, higher MYC levels compared to MNPTs. MYC expression was also 

assessed, at chromosome [fluorescence in situ hybridization (FISH)], transcript (RT-qPCR) and 

protein (Western blot) level, in six different PCa cell lines, which are in vitro models representative 

of PCa heterogeneity, three of which are hormone-dependent (LNCaP, 22Rv1 and VCaP) and the 

remaining are hormone-resistant (DU145, MDA-PCa-2b and PC-3). Taking together the transcript 

and protein levels, LNCaP and PC-3 displayed the highest expression levels of c-Myc. 

 

 Figure 18. MYC transcript levels, assessed by RT-qPCR and normalized to GUSβ, in a series of 

primary PCa, PIN and MNPTs (*** p < 0.001; ** p < 0.01; * p < 0.017; ns – non-significant). 
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Three PCa cases with low MYC expression and four with high MYC expression were chosen 

for subsequent microarray analysis. Total RNA was then extracted, using the miRNeasy Mini Kit 

(Qiagen, Limburg, Netherlands) and used to perform a microRNA microarray, using the SurePrint 

G3 Human v16 miRNA 8x60K Microarray Kit with SurePrint Technology (Agilent Technologies Inc., 

Santa Clara, CA, USA). MicroRNA Spike In Kit (Agilent Technologies Inc.) was used to efficiently 

monitor microarray workflow for linearity, sensitivity and accuracy. The statistical analysis of the 

microarray was performed using R language (The R Project for Statistical Computing). Student’s T-

Test, with Bonferroni correction, was the chosen statistical method, with p-value < 0.01 and Fold 

Change > 1.3. The resulting heatmap, represented in Figure 19, shows only miRNAs that achieved 

statistical significance, and revealed 78 miRNAs that were overexpressed in samples with high 

MYC transcript content, representing possible targets of c-Myc regulation. From that list of 

candidates, a panel of 3 miRNAs (miR-27a*, miR-570 and miR-1292) was chosen for further 

validation of its abnormal expression and potential c-Myc regulation in PCa. Selection of miRNA 

candidates was based on a critical review of published studies so that miRNAs without prior 

documented implication in PCa or other cancer models were not considered for further analysis. 

Although it was not one of the top overexpressed miRNAs, miRNA-1292 was also included after a 

Rank Product non-parametric test was performed, with the aim of shortening the list of candidate 

miRNAs. Expression levels of miRNA-126*, although not listed in the miRNA microarray, were also 

assessed, since this miRNA has been described in the literature as a regulator of MYC gene 

expression, in multiple myeloma cells (171). 

The MYC gene was permanently silenced in PCa cell lines using short hairpin RNA (shRNA) 

lentiviral particles. Although the initial intent was to silence the MYC gene in two distinct PCa cell 

lines, hormone-dependent LNCaP and hormone-resistant PC-3 (the ones that showed the highest 

MYC expression), this was only successfully accomplished, so far, for PC-3, probably due to LNCaP 

strong dependence on paracrine signaling that impaired the clonal propagation of single cells 

(172). 

The work comprised in this Master Thesis provides continuity to the tasks already 

accomplished and described in this subsection. 
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Figure 19. Heatmap resulting from the miRNA microarray performed with total RNA extracted from PCa cases 

with high and low levels of MYC transcript. Selected miRNA candidates are indicated by the black arrows. 
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4. Materials and Methods 

 

4.1. Clinical Samples 

 

4.1.1. Patients and Sample Collection 

 In the present study, samples of 198 prostate adenocarcinomas and 43 PIN lesions were 

prospectively collected from patients consecutively diagnosed with clinically localized disease and 

submitted to radical prostatectomy at the Portuguese Institute of Oncology – Porto, Portugal, 

between 2001 and 2006. As control samples, 13 MNPTs were collected from the prostatic 

peripheral zone of patients diagnosed with bladder cancer and submitted to cystoprostatectomy. 

All specimens were immediately frozen after surgical procedure and stored at -80oC for further 

analysis. After histological confirmation of the presence of tumor and normal tissue within a 

specimen, fresh-frozen tissue fragments were trimmed to augment the yield of target cells (> 

70%). Histological slides from formalin-fixed paraffin-embedded (FFPE) tissue fragments were also 

obtained from the same surgical specimens and assessed for Gleason grade and TNM stage. 

Relevant clinical data was collected from the clinical records, and these studies were approved by 

the institutional review board [Comissão de Ética para a Saúde-(IRB-CES-IPOFG-EPE 198/2012)] of 

Portuguese Institute of Oncology - Porto, Portugal. 

 

4.1.2. Immunohistochemistry 

 Histological slides from FFPE tissue fragments were obtained from the same surgical 

specimens referred in the previous subsection, and samples were sectioned at a thickness of 4 μm. 

Slides were deparaffinized through two consecutive passages in xylene (Sigma-Aldrich®, St. Louis, 

MO, USA) and then hydrated in a series of ethanol solutions (Merck, Darmstadt, Germany) with 

decreasing ethanol content (100% - 90% - 70% - 50%). Epitope retrieval was performed with pre-

heated ethylenediaminetetraacetic acid (EDTA) buffer (Thermo Scientific, Waltham, MA, USA) for 

20 minutes, in a microwave oven, at a potency of approximately 700W. Endogenous peroxidase 

activity was neutralized for 20 minutes with 0.6% hydrogen peroxide (Merck). Protein detection 

was performed using the NovolinkTM Max Polymer Detection System (Leica Biosystems, Nussloch, 

Germany), according to manufacturer instructions. Slides were incubated overnight with a rabbit 
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monoclonal antibody specific for c-Myc (Abcam®, Cambrige, United Kingdom) in a 1:100 dilution at 

4oC inside a humid chamber. All washing steps were performed with tris buffered saline with 

Tween® 20 (TBS-T) (Sigma-Aldrich®). Antigen-antibody binding reaction was unveiled as the slides 

were incubated for 7 minutes, in the dark, in a 0.05% (m/v) 3,3’-diaminobenzidine (DAB) solution 

(Sigma-Aldrich®) in phosphate-buffered saline (PBS) (Biochrom Ltd., Cambridge, United Kingdom) 

activated with a 30% hydrogen peroxide solution, in a volume corresponding to 0.1% of the final 

DAB solution volume. Slides were counterstained with hematoxylin (Merck) for less than 5 seconds 

and washed for 1 minute in a 0.25% ammonium solution (Merck). Slides were dehydrated through 

consecutive passages in a series of ethanol solutions with increasing ethanol content (50% - 75% - 

90% - 100%) and diaphanized through two consecutive passages in xylene. After the coverslip was 

mounted, slides were dried. As a positive control for the immunohistochemistry (IHC) reaction, 

FFPE tissue from a Burkitt’s lymphoma was included. 

 Slides were observed at the optical microscope by an experienced pathologist for c-Myc 

immunoexpression evaluation. The used scoring criteria was previously reported by our research 

group (173) (0 – no observed expression; +1 – weak expression in ≤ 10% of the epithelial (in the 

case of MNPTs) and neoplastic cells; +2 – weak expression in > 10% of the neoplastic cells or 

moderate expression in ≤ 50% of the neoplastic cells; +3 – moderate/intense expression in > 50% 

of the neoplastic cells). Moreover, cases with a +1 score were considered negative for c-Myc 

expression, and cases with a +2 or +3 score were considered as positive for c-Myc expression.  

 

4.1.3. RNA Extraction – TRIzol® Reagent Method 

 Total RNA was extracted from clinical samples with PureLink™ RNA Mini Kit (Invitrogen, 

Carlsbad, CA, USA), according to manufacturer instructions. Briefly, 750 μL of TRIzol® Reagent 

(Invitrogen) were added to a tube containing a tissue sample. Each tissue sample was grinded and 

homogenized in 750 μL of TRIzol® with a homogenizing device (VWR International, PA, USA). 

Samples were incubated for 10 minutes at room temperature, after which, 300 μL of chloroform 

(Merck) were added. Then, tubes were briefly vortexed and incubated for three minutes at room 

temperature, before being centrifuged for 15 minutes at 12,000 g and 4oC. Afterwards, 

approximately 600 μL of the upper transparent phase, containing RNA, were transferred to a new 

tube and 600 μL of 70% ethanol were added, followed by agitation. Next, 700 μL of the previous 

mixture were transferred to a Spin Cartridge placed inside a collection tube, and centrifuged at 
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12,000 g for 15 seconds, at room temperature. The flow-through was subsequently discarded, and 

the last two steps were repeated until all the previously prepared mixture containing RNA was 

passed through the Spin Cartridge. At this point, 700 μL of Wash Buffer I were added and another 

centrifugation was performed. After this, Spin Cartridge was moved to a new collection tube. Next, 

500 μL of Wash Buffer II were added to the Spin Cartridge and another centrifugation was 

performed. The previous step was repeated. Finally, a one minute centrifugation was performed 

to ensure maximum cleaning. Lastly, Spin Cartridge was placed in a new RNase-free tube to collect 

RNA by elution with 50 μL of RNase-free water, after an incubation of 3 minutes at room 

temperature and a 2 minutes centrifugation at 12,000 g. This step was repeated, so that a total of 

100 μL of RNA solution was obtained. RNA concentrations and purity ratios were ascertained using 

a NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA). RNA 

quality was verified by electrophoresis and RNA samples were stored at -80oC. 

 

4.1.4. MicroRNA cDNA Synthesis 

 MicroRNA complementary DNA (cDNA) synthesis was accomplished using the TaqMan® 

MicroRNA Reverse Transcription Kit and MegaplexTM Primer Human Pools A v2.1. and B v3.0. 

(Applied Biosystems®, Life TechnologiesTM, Foster City, CA, USA). The latter contain two distinct 

sets (A and B) of stem-looped reverse transcription primers that allow the simultaneous synthesis, 

into cDNA, of over 750 different human miRNAs (Figure 20). 

 

 

Briefly, distilled water (B. Braun Medical Inc., Melsungen, Germany) was added to each 

sample of extracted RNA to a final volume of 3 μL, containing 350 ng of RNA, in a nuclease-free 

PCR tube. Additionally, 1.6 μL of the MegaplexTM RT Primers, 0.4 μL of deoxynucleotide 

Figure 20. Specific miRNA cDNA synthesis [Adapted from: TaqMan® MicroRNA Assays, provided by Applied 

Biosystems®, Life Technologies
TM

]. 
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triphosphates (dNTPs) with 2'-deoxythymidine 5'-triphosphate (dTTP) (100 mM), 3 μL of 

MultiScribeTM Reverse Transcriptase (50 U/μL), 1.6 μL of 10X RT Buffer, 1.8 μL of MgCl2 solution (25 

mM), 0.2 μL of RNase Inhibitor (20 U/μL) and 0.4 μL of nuclease-free water were also added to 

each tube. The tubes were gently vortexed, briefly centrifuged and incubated for 5 minutes on ice. 

Reverse transcription was performed in a Veriti® Thermal Cycler (Applied Biosystems®). Thermal-

cycling conditions consisted in: 40 cycles constituted by 2 minutes at 16oC, 1 minute at 42oC, 1 

second at 50oC and one holding stage of 5 minutes at 85oC. Samples were finally stored at -20oC. 

 

4.1.5. MicroRNAs Expression: Individual Assays 

RT-qPCR was performed using TaqMan® Small RNA Assays (Applied Biosystems®), in a 

7500 Real-Time PCR system (Applied Biosystems®), according to the manufacturer instructions. A 

TaqMan® MGB probe contains a reporter dye (FAMTM Dye) linked to its 5’-end, and a minor groove 

binder (MGB) at the 3’-end. Additionally, there is a non-fluorescent quencher (NFQ) at the 3’-end 

of the probe. During the PCR reaction, the TaqMan® MGB probe specifically anneals to a 

complementary sequence between the forward and reverse primer sites (Figure 21). When the 

probe is intact, the proximity between the reporter dye and the quencher dye suppresses the 

fluorescence of the first one, primarily by Förster-type energy transfer. The DNA polymerase 

cleaves only probes that are hybridized to the target. Once the probe is cleaved, the reporter dye 

and quencher dye become separated, resulting in increased fluorescence by the reporter. 

However, the increase in fluorescence signal occurs only if the target sequence is complementary 

to the probe and is amplified during PCR, which avoids non-specific amplification. Polymerization 

of the strand continues, but because the 3′ end of the probe is blocked, there is no extension of 

the probe during PCR (174). 
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1. Polymerization 

3. Cleavage 

2. Strand Displacement 

4. Completion of Polymerization 

 

 

 

 

 

The MegaplexTM RT products were thawed on ice. Then, each well of a 96-well plate 

received: 5 μL of TaqMan® Universal Master Mix II, with no uracil-DNA glycosylase (UNG) (Applied 

Biosystems®, Life TechnologiesTM), 0.5 μL of TaqMan® Small RNA Assay (20X) (Applied 

Biosystems®, Life TechnologiesTM), 0.75 μL of MegaplexTM RT product and 3.75 μL of nuclease-free 

water. Each sample was run in triplicate, and, in every plate, two negative template controls 

(reaction mix) were included. Synthetized similarly to all samples, cDNA from total human RNA 

(Agilent Technologies Inc.) was included, in each plate, in five consecutive 1:10 dilutions. These 

serial dilutions allowed the generation of a standard curve for relative quantification and also, to 

ascertain PCR efficiency. According to the manufacturer instructions, the running method 

consisted in: a holding stage of 2 minutes at 50oC, followed by another holding stage at 95oC for 10 

minutes, during which enzyme activation occurs, and 40 cycles composed of a denaturation stage 

at 95oC that lasts for 15 seconds and an annealing/extending stage at 60oC during 60 seconds. 

RNU6B was used as a reference gene for normalization, since it is known to be stably 

expressed in PCa and other cancer models and, therefore, the most suitable for this analysis (175). 

Figure 21. Nuclease assay process [Adapted from: TaqMan® MicroRNA Assays, provided by Applied Biosystems®, Life 

Technologies
TM

]. 
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Relative expression of targets tested in each sample was obtained using the following 

formula:  

                                                                      

The obtained ratio was then multiplied by 1000 for easier tabulation. In Table 2 can be 

found a list of all the individual assays that were used, the specific sequence that each one targets 

and the MegaplexTM RT Primers Pool containing the specific primers for the reverse transcription 

reaction.  

Table 2. Specific target sequences and Megaplex
TM 

RT Primers Pools of the studied miRNAs. 

 

4.2. In Vitro Studies 

 

4.2.1. Cell Culture 

In the present study, two PCa cell lines were chosen for MYC gene silencing: PC-3 and 

LNCaP. However, as previously explained, successful silencing was only achieved in PC-3 cell line. 

PCa cell lines are valuable in vitro tools to study PCa, possessing different features and behaviors 

that can be representative of distinct stages of the disease. However, it is important to keep in 

mind that they differ from prostate adenocarcinoma in several aspects, and comparisons with 

MiRNA Target Sequence 
Megaplex

TM 
RT 

Primers Pool 

RNU6B 5’-CGCAAGGATGACACGCAAATTCGTGAAGCGTTCCATATTTTT-3’ A v2.1. 

miR-27a* 5’- AGGGCUUAGCUGCUUGUGAGCA-3’ B v3.0. 

miR-126* 5’- CATTATTACTTTTGGTACGCG-3’ B v3.0. 

miR-570 5’- CGAAAACAGCAAUUACCUUUGC-3’ A v2.1. 

miR-1292 5’- TGGGAACGGGTTCCGGCAGACGCTG-3’ B v3.0. 
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primary tumors must be made with caution. These two cell lines have significant different 

features, namely their sensitivity to hormonal stimuli (172). LNCaP is considered to be androgen-

sensitive and PC-3 manifests a castration-resistant phenotype (androgen-independent). 

Furthermore, their origin also differs: LNCaP cell line is originated from lymph node metastasis and 

PC-3 is originated from lumbar metastasis in Caucasian males. Both cell lines used in this study 

were kindly provided by Prof. Ragnhild A. Lothe, from the Department of Cancer Prevention at The 

Institute for Cancer Research at Oslo, Norway. 

All PCa cell lines were grown using the recommended medium and correspondent 

supplements, which can be consulted in Table 3, as well as 1% of penicillin-streptomycin (P-S) 

(GIBCO®, Life TechnologiesTM, Carlsbad, CA, USA). Cell culture flasks were kept at 37oC and 5% CO2, 

inside a humidifying chamber. The use of a dissociation reagent, TrypLE™ Express (GIBCO®), 

allowed cells harvesting and culture in the appropriate number of 75 cm3 cell culture flasks 

(Sarstedt, Nümbrecht, Germany). All cell lines were routinely tested by a specific multiplex PCR for 

contamination by Mycoplasma spp. 

 

Table 3. PCa cell lines growth conditions: used mediums and respective supplements. 

PCa Cell Line Growth Medium Supplements 

LNCaP RPMI-1640 
10 % Fetal bovine serum (FBS) 

PC-3 F-12 + RPMI-1640 

 

 

4.2.2. MYC Gene Silencing 

MYC gene silencing in PC-3 cell line was achieved through the use of particles carrying the 

pGIPZ lentiviral vector containing a shRNA sequence targeting MYC (Thermo Scientific) that 

functions as a small interfering RNA (siRNA) (Figure 22). Three different shRNAs were used, 

although their specific sequence was not revealed by the Thermo Scientific Company. As a 

negative control, one scrambled siRNA (sh-scramble RNA) sequence was used, with the same 

nucleotide composition as the three shRNAs randomly ordered. This sequence was designed so it 

would have no known target in the PC-3 cell line’s genome. The use of a negative control is 
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important, so that sequence-specific silencing can be distinguished from non-specific effects that 

the particles may have on the cells. 

 

 

 

 

Briefly, cells were cultured on a 24-well plate at a density of 5 x 104 cells/ml (1 ml per 

well), in complete growth medium, supplemented with fetal bovine serum (FBS) and P-S. Plates 

were incubated overnight at 37oC and 5% CO2 in a humidifying chamber. At day 1, growth medium 

was removed and 15 μL of the lentiviral particles were added, together with 250 μL of serum-free 

media supplemented with 5 µg/mL of polybrene, which increases the efficiency of transfection. 

Five hours after transfection, 1 ml of complete growth medium was added to each well. After 48 

hours from the transfection, cells were incubated with growth medium supplemented with 

puromycin, at a concentration of 2 µg/mL for LNCaP and 4 µg/mL for PC-3. Puromycin was used as 

a selection agent, since the used lentiviral vectors included the gene responsible for the resistant 

phenotype to this antibiotic. Fresh selective medium was added to the cells every 2-3 days.  

 The above-described procedure did not lead to a significant reduction of the MYC gene 

expression. This was probably caused by the fact that not all cells successfully incorporated the 

lentiviral vector, giving rise to a cell population heterogeneous for MYC expression. Therefore, 

clonal selection was performed with the previously transfected cells. Briefly, cells were counted 

and cultured, in selective medium, in 96-well plates, at a density of 1 cell/well. Clonal propagation 

proceeded until cells were able to fill 75 cm3 cell culture flasks. Clonal selection was not possible 

for LNCaP cell line since growth was not achievable from a single cell, probably due to the lack of 

paracrine stimuli and factors. At this moment, MYC silencing was confirmed in PC-3 both by RT-

qPCR and Western Blot. 

 

 

Figure 22. pGIPZ lentiviral vector [Adapted from: Thermo Scientific GIPZ Lentiviral sh-MYC, 

provided by Thermo Scientific]. 
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4.2.3. RNA Extraction – TRIzol® Reagent Method 

Cell culture flasks (75 cm3) at 100% confluence with transfected PC-3 cells originated by 

clonal selection and propagation were harvested with a dissociation reagent, TrypLE™ Express 

(GIBCO®) and centrifuged for 5 minutes at 1,200 rpm. Cell pellets were ressuspended in 1 mL of 

PBS (GIBCO®), and centrifuged for 5 minutes at 1,200 rpm. The supernatant was discarded and cell 

pellets were stored at -80oC. 

Total RNA from PC-3 cell line was extracted by TRIzol® Reagent, according to manufacturer 

instructions. In brief, cell pellets were defrosted on ice and ressuspended in 1 mL of TRIzol® 

Reagent. A 0.9 mm needle was used to homogenize the cell suspension and, after that, samples 

were incubated for 5 minutes at room temperature. Finally, 200 μL of chloroform (Sigma-Aldrich®) 

were added. Samples were briefly vortexed for about 15 seconds and incubated for 3 minutes at 

room temperature. Tubes were then centrifuged at 11,900 g for 15 minutes at 4oC. The upper 

transparent phase containing RNA was transferred to a new tube RNase-free and 500 μL of 100% 

isopropanol (Merck) were added. Tubes were vigorously shaken by inversion and RNA 

precipitation was achieved by a 10 minutes incubation of the tubes at room temperature, followed 

by a 10 minutes centrifugation at 11,900 g at 4oC. Supernatant was discarded and RNA pellets 

were washed with 1 mL of 75% ethanol. Samples were briefly vortexed and centrifuged for 5 

minutes at 8,600 g at 4oC. To enhance pellet washing, the ethanol addition step and the 

centrifugation that followed were repeated. Finally, supernatant was discarded and RNA pellets 

were dried during 15 to 20 minutes. Next, pellets were eluted in 40 μL of RNA storage solution (1 

mM sodium citrate, pH 6.4) (Ambion®, Life TechnologiesTM, Foster City, CA, USA). RNA 

concentrations and purity ratios were determined using a NanoDrop ND-1000 spectrophotometer 

(NanoDrop Technologies). RNA quality was assessed by electrophoresis and RNA samples were 

stored at -80oC. 

 

4.2.4. RNA Extraction – miRNeasy Mini Kit 

 Total RNA from cells and tissues, extracted through the TRIzol® Reagent method, is not 

appropriate for posterior microarray analysis. For that reason, total RNA from the PCa cases used 

in the preliminary microarray and from PC-3 cells was extracted according to a more appropriate 

protocol, using the miRNeasy Mini Kit (Qiagen, Limburg, Netherlands), according to manufacturer 

instructions.  
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Briefly, 700 μL of QIAzol Lysis Reagent were added to the samples (cell pellets, previously 

obtained and washed with PBS, in the case of PC-3 cells, or fresh tissue for PCa cases), followed by 

homogenization [by vortex, in the case of PC-3 cells, and disposable pestles attached to a cordless 

motor (VWR International), in the case of fresh tissues], to allow sample disruption. Samples were 

then incubated at room temperature for 5 minutes and 140 μL of chloroform (Sigma-Aldrich®) 

were added, following vigorous vortexing for 15 seconds. Samples were incubated at room 

temperature for 3 minutes, followed by a 15 minutes centrifugation at 12,000 g and 4oC. The 

upper aqueous phase was transferred to a new collection tube, to which 525 μL of 100% ethanol 

were added. For each sample, a total of 700 μL were loaded into the RNeasy® Mini columns in a 2 

ml collection tube, which were centrifuged for 15 seconds at room temperature at 8,000 g. From 

this step on, flow-through in the collection tubes was immediately discarded after centrifugation. 

This step was repeated until the entire sample was loaded in the column. Then, 700 μL of RWT 

Buffer were added to the RNeasy Mini columns, followed by another centrifugation of 15 seconds 

at room temperature at 8,000 g (optional step, if the sample is composed by cultured cells). Then, 

500 μL of Buffer RPE were loaded onto the RNeasy Mini column, followed by a centrifugation of 15 

seconds at room temperature at 8,000 g. The previous step was repeated, with a centrifugation of 

2 minutes at room temperature at 8,000 g. Collection tubes were discarded and each column was 

transferred to a new 2 ml collection tube, followed by a centrifugation of 1 minute at room 

temperature at maximum speed. The columns were transferred to a new 1.5 mL collection tube, 

and 30 µL of RNase-free water were added to each column. Columns and collection tubes were 

centrifuged for 1 minute at room temperature at 8,000 g. To obtain maximum RNA concentration, 

the previous step was repeated, with an additional 30 µL of RNase-free water. RNA concentrations 

and purity ratios were determined using a NanoDrop ND-1000 spectrophotometer (NanoDrop 

Technologies). RNA quality was verified by electrophoresis and RNA samples were stored at -80oC. 

 

4.2.5. cDNA Synthesis 

In order to evaluate MYC transcript expression in PC-3 cells upon silencing protocol, cDNA 

was synthesized from total extracted RNA. A cDNA synthesis was performed using the High 

Capacity cDNA Reverse Transcription Kit (Applied Biosystems®). Briefly, distilled water was added 

to a final volume of 10 μL to each RNA sample (1,000 ng) in a nuclease-free PCR tube. On ice, to 

each tube were also added: 2 μL of 10X RT Buffer, 0.8 μL of dNTP Mix (100 mM), 2 μL of 10X RT 
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Random Primers, 1 μL of MultiScribeTM Reverse Transcriptase, 1 μL of RNase Inhibitor and 3.2 μL of 

nuclease-free water. Afterwards, tubes were gently vortexed and briefly centrifuged. Reverse 

transcription was performed in a Veriti® Thermal Cycler (Applied Biosystems®). Thermal-cycling 

conditions consisted in: 10 minutes at 25oC, 120 minutes at 37oC and 5 minutes at 85oC. Samples 

were then stored at -20oC. 

 

4.2.6. MYC Expression Assay 

MYC transcript levels were quantified by RT-qPCR in PC-3 cells. Samples of cDNA were 

diluted 10X in distilled water and reactions were carried out in 96-well plates using a 7500 Real-

Time PCR system (Applied Biosystems®). Briefly, in each well, 10 μL of TaqMan® Universal PCR 

Master Mix (Applied Biosystems®), 1 μL of TaqMan® Gene Expression Assay, specific for MYC 

(Applied Biosystems®), and 9 μL of previously diluted cDNA sample were added. Each sample was 

run in triplicate, and, in every plate, two negative template controls were included. According to 

the manufacturer instructions, the running method consisted in: 2 minutes at 50oC, followed by a 

stage of 10 minutes at 95oC, for enzyme activation, and 40 cycles composed of a denaturation 

stage at 95oC for 15 seconds and an annealing/extending stage at 60oC during 60 seconds. 

Analysis to ascertain MYC silencing was performed using ΔΔCt method, where PC-3 cells 

treated with sh-scramble RNA particles, from now on addressed to as sh-scramble, were used to 

normalize results for PC-3 cells treated with shRNA particles specific for MYC, from now on 

addressed to as sh-MYC. Beta-glucuronidase (GUSβ), a housekeeping gene, was used as a 

reference gene to normalize results obtained for the MYC gene. Moreover, miRNAs that were 

chosen for further validation were also quantified in these same samples and normalized 

according to the same method. As previously mentioned, mean values for RNU6B housekeeping 

gene were used for normalization. In these experiments, fold variation of the target genes was 

obtained using the following formula: 

 

 

 

ΔΔCt = (ΔCtTarget Gene – ΔCtReference Gene) - (ΔCtTarget Gene – ΔCtReference Gene) 

sh-MYC PC-3 Cells sh-scramble RNA PC-3 Cells 
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4.2.7. Protein Extraction 

 Protein was extracted from whole-cell lysates using the radioimmuno precipitation assay 

(RIPA) (Santa Cruz Biotechnology Inc., Dallas, TX, USA). Briefly, growth medium was removed from 

25 cm3 cell-culture flasks, and cells were washed with 2 mL of PBS to allow removal of residual 

culture medium. RIPA buffer was prepared, on ice, in an appropriate volume: 10 μL of 

phenylmethylsulfonyl fluoride (PMSF) protease inhibitor, 10 μL of sodium orthovanadate 

phosphatase inhibitor and 20 μL of protease inhibitor cocktail (PIC) per mL of 1X RIPA Lysis Buffer 

(Santa Cruz Biotechnology Inc.). After PBS removal from cell-culture flasks, 100 μL of 1X RIPA Lysis 

Buffer were added to each flask. Cells were scrapped with the help of a cell scrapper (Santa Cruz 

Biotechnology Inc.), to promote cell detachment and lysis. Cells were collected to a 1.5 mL tube, 

which was gently shaken every 5 minutes while incubating on ice for 15 minutes. After that, tubes 

containing cell lysates were centrifuged for 30 minutes at 13,000 rpm at 4oC. Supernatant was 

carefully transferred to a new 1.5 mL tube. Extracted protein samples were stored at -20oC. 

 

4.2.8. Protein Quantification 

Concentration of total protein from the previously obtained cell lysates was determined 

using the Pierce BCA Protein Assay Kit (Thermo Scientific), according to manufacturer instructions. 

This is a detergent-compatible formulation based on bicinchoninic acid (BCA) for the colorimetric 

detection and quantitation of total protein. The purple-colored reaction product of this assay is 

formed by the chelation of two molecules of BCA with one cuprous ion (176). This water-soluble 

complex exhibits a strong absorbance at 562nm that is nearly linear with increasing protein 

concentrations over a broad working range (20-2,000 µg/mL). Briefly, a series of bovine serum 

albumin (BSA) dilutions were prepared, in PBS, with well-known protein concentrations and were 

later used as standards to create a non-linear regression, correlating absorbance at 562nm and total 

protein concentration. Cell lysates were diluted 5X, on ice, in PBS to a final volume of 25 µL. Both 

BSA standards and diluted samples were incubated for 30 minutes at 37oC, inside a humidifying 

chamber, after receiving 200 µL of a mixture of Reagent A and Reagent B, combined in a 50:1 

proportion. Upon completion of the incubation period, 200 µL of each diluted sample and BSA 

standard was transferred to a 96-well plate (Ratiolab®, Dreieich, Germany). Samples and BSA 

standards absorbance was red at 562nm, in the high-performance, filter-based multimode 

microplate reader FLUOstar Omega (BMG Labtech, Ortenberg, Germany). A four-parameter fit 
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model was used for curve-fitting the samples 562nm absorbance to the non-linear regression built 

from the BSA standards, and to determine sample total protein concentration. 

 

4.2.9. Western Blot 

 MYC gene silencing and alterations in the protein levels of EGFR and MTOR were assessed 

by Western Blot analysis. Briefly, to 10 µg of total protein, in the case of MYC, and 30 µg in the 

case of EGFR and MTOR, completed with PBS up to a final volume of 20 µL, were added 5 µL of 5X 

loading buffer. Samples were heated for 5 minutes at 95oC to promote protein denaturation, 

briefly centrifuged and finally loaded in a 10% sodium dodecyl sulfate polyacrylamide gel, for 

further electrophoresis (SDS-PAGE). Protein separation was achieved with a voltage of 120 V at 

room temperature. Proteins were blotted onto 0.2 µm nitrocellulose membranes (Bio-Rad 

Laboratories Inc., Hercules, CA, USA) for 1 hour at a voltage of 50 V at 4oC. After that, membranes 

were blocked for one hour at room temperature, while shivering, with a 5% milk solution in TBS-T. 

Membranes were incubated overnight at 4oC with primary antibody: rabbit monoclonal antibody 

for c-Myc (Abcam®), in a dilution of 1:5000, rabbit monoclonal antibody for mTOR (Cell Signaling 

Technology, Inc., Danvers, MA, USA), in a dilution of 1:1000, and rabbit monoclonal antibody for 

EGFR (Kinexus, Vancouver, Canada), in a dilution of 1:3000, in 5 mL of 5% milk in TBS-T, in a 15 mL 

tube with rotational agitation. Membranes went through three washing steps of 10 minutes in 

TBS-T, before being incubated with the secondary antibody, goat anti-rabbit and goat anti-mouse 

immunoglobulin G (IgG) (H+L) horseradish peroxidase (HRP) conjugate (Bio-Rad Laboratories Inc.), 

in a dilution of 1:300 in 5 mL of 5% milk in TBS-T, for 1 hour with rotational agitation at room 

temperature, in a 15 mL tube. Membranes were washed for three additional 10-minute periods in 

TBS-T, while shaking. After that, membrane developing was performed with the ClarityTM Western 

ECL Substrate (Bio-Rad Laboratories Inc.) and AmershamTM Hyperfilm ECL (GETM Healthcare, 

Buckinghamshire, United Kingdom), to which membranes were exposed. 

 Beta-actin, or β-actin (ACTB), was used as a loading control, to ensure equal protein 

loading in the gel. Membrane stripping was achieved with a washing step of 15 minutes, with 

vigorous agitation, in Antibody Erasing Buffer (Komabiotech, Seoul, South Korea), followed by five 

additional washing steps of 5 minutes, with agitation, with distilled water. Membranes were 

probed with the primary antibody, mouse β-actin (Sigma-Aldrich®), in a dilution of 1:8000 in 5 mL 
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of 5% milk in TBS-T in a 15 mL tube, for 30 minutes at room temperature, with rotational agitation. 

After that, membranes went through three washing steps of 10 minutes in TBS-T, before being 

incubated with the secondary antibody, goat anti-mouse IgG (H+L) HRP conjugate (Bio-Rad 

Laboratories Inc.), in a dilution of 1:300 in 5 mL of 5% milk in TBS-T, for 15 minutes with rotational 

agitation at room temperature, in a 15 mL tube. Membranes were washed for three additional 10-

minute periods in TBS-T, while shaking. After that, membrane developing was performed. 

 

4.3. Regulatory Network between c-Myc and MicroRNAs – In Silico 

Analysis 

 

In silico analysis was performed to calculate the probability of c-Myc to bind to the 

promoters of genomic regions where validated miRNAs are inserted, based on a recently reported 

c-Myc binding sequence and its respective binding matrix (177). MiRNA genomic location and 

promoter sequence, with a length of 5000 base pairs (bp) upstream of the gene transcription start 

site, were obtained from Genome Browser database. The number of transcription factor binding 

sites was retrieved with the help of ConSite web-based tool, after the alignment between miRNA 

promoter sequence and c-Myc binding sequence. Here, results are based on the integration of 

binding site prediction, generated with high-quality transcription factor models, and cross-species 

comparison filtering (phylogenetic footprinting) (178). The number of c-Myc binding sites in the 

miRNA gene promoter region was determined with an identity threshold of 95%. 

Additionally, in silico analysis was performed to predict whether any of the validated 

miRNAs targets MYC gene. For such prediction, miRWalk database was used, which integrates 

information provided by eight different databases, including miRanda, PICTAR and TargetScan. For 

each predicted target of a given miRNA, miRWalk retrieves a score, corresponding to the number 

of databases in which that same target is listed. Targets mentioned in the present study were 

considered when listed in, at least, one of the mentioned databases. 
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4.4. Statistical Analysis 

 

 Non-parametric tests were used to ascertain statistical significance for the all the 

performed comparisons, since biological samples usually do not follow the shape of a normal 

Gaussian distribution. 

Kruskal-Wallis test (KW) was used for comparisons between more than two non-related 

groups, and Mann-Whitney U test (MW) was used in pair-wise comparisons. These tests were 

used both in clinical samples and in vitro studies. When comparing multiple groups, Bonferroni’s 

correction was applied in subsequent paired comparisons, dividing the P-value by the number of 

comparisons performed (0.017, in the case of the present study).  

Sign test, another non-parametric test, was used for comparisons between matched 

samples from the same individual in study. 

Fisher’s exact test was used in the analysis of contingency tables, i.e., to assess whether 

the proportion of a certain variable was statistically significant between different groups. The P-

value calculated in this type of test is exactly correct, being preferable than the one calculated in 

the chi-square test, since it can be applied to sample groups of any size (179).  

Additionally, Somer’s D ordinal measure of association was used to assess the existence of 

a statistical relationship between two ordinal variables. The value of this coefficient, which can 

vary from -1 to 1, indicates if the compared variables move to the same (when the coefficient is 

positive) or opposite (when the coefficient is negative) directions. 

P-values were considered statistically significant when inferior to 0.05. Statistical analyses 

were performed using SPSS software, version 22.0 (IBM-SPSS Inc., Chicago, IL, USA). Graphs were 

built using GraphPad Prism 5.0 software (GraphPad Software Inc., La Jolla, CA, USA). 
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5. Results 

 

5.1. Assessment of c-Myc Protein Levels in Clinical Samples 

 

IHC for assessment of c-Myc protein levels was performed in a total of 254 tissue samples 

(198 PCa primary tumors, 42 PINs and 13 MNPTs). Table 4 summarizes the score distribution 

obtained for each group of samples, and illustrative examples of different immunostaining scores 

are shown in Figure 23. A significant increase of c-Myc protein levels was apparent from MNPTs to 

PIN lesions, and from the latter to primary PCa. The score distribution of c-Myc immunostaining 

across the three groups of clinical samples is illustrated in Figure 24 - A. 

 

 

 

 

 

 

 

MNPTs 

≤ 10 % 10 % < - ≤ 50 % > 50 % 

Figure 23. Representative images of c-Myc immunostaining in PCa, PIN and MNPT clinical samples. 
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Tumors 
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Table 4. Immunohistochemical expression of c-Myc in a series of of primary PCa, PIN lesions and MNPTs. 

 Negative Positive 

Clinical Sample Group 
≤ 10 % (+1) 

N (%) 

10 % < - ≤ 50 % (+2) 

N (%) 

> 50 % (+3) 

N (%) 

MNPTs 13 (100 %) - - 

PIN lesions 21 (50 %) 16 (38.1 %) 5 (11.9 %) 

PCa primary tumors 74 (37.4 %) 83 (41.9 %) 41 (20.7 %) 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24. Distribution of c-Myc protein (A), by immunohistochemistry, and of MYC transcript (B), by RT-qPCR, levels 

in a series of PCa, PIN lesions and MNPTs, grouped according to c-Myc protein immunostaining. (*** p < 0.001; ** p < 

0.01; * p < 0.017; ns – non-significant). 

  

Statistically significant differences were observed concerning MYC transcript and 

respective protein levels across the three groups of immunostaining scores, indicating that, in 

general, c-Myc protein levels follow the same trend of the transcript (Figure 24 – B). In pairwise 

comparisons, however, statistical significance was only observed between ≤ 10% / 10% < - ≤ 50% 

and ≤ 10% / > 50% score groups (p < 0.017 and p < 0.01, respectively). 

A B 
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5.2. Confirming MYC Silencing 

 

MYC silencing in PC-3 cells was confirmed at the transcript level by RT-qPCR and at the 

protein level by Western Blot, in two distinct biological replicates. A reduction of 82.90% in MYC 

transcript levels was achieved in sh-MYC PC-3 cells (Figure 25 – A), and a clearly visible reduction 

was also observed at protein level (Figure 25 – B). 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25. Confirmation of MYC gene silencing in PC-3 cell line. A – Relative expression of the MYC transcript (RT-

qPCR, normalized to GUSβ); B – c-Myc protein expression (Western blot, immediate exposure). 
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5.3. Expression Levels of Selected MicroRNA Candidates in PC-3 

Cells with Permanent MYC Silencing 

 

To further explore the regulatory network established between MYC and the selected 

miRNA candidates, alterations in expression levels of these molecules were assessed in sh-MYC 

PC-3, by comparison to sh-scramble RNA PC-3 cells (Figure 26). Overall, a significant reduction in 

expression levels was observed for all candidate miRNAs, although this was more dramatic for 

miR-126*, almost reaching 100%. Thus, permanent MYC silencing led to a significant decrease of 

the expression levels of the selected miRNA candidates. Subsequently, expression levels of the 

selected miRNAS were determined in the series of PCa, PIN lesions and MNPTs. 

 

 

 

 

 

 

sh-scramble 

RNA PC-3 Cells 
sh-MYC PC-3 Cells 

Figure 26. Expression levels of selected miRNA candidates in PC-3 cells with permanent MYC silencing 

(RT-qPCR, normalized to RNU6B). 
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5.4. Validation of Selected MicroRNA Candidates 

 

Further validation was only accomplished for miR-27a* and miR-126*, since very low 

expression levels of miR-570 and miR-1292 in the clinical samples impaired the amplification 

reaction. Both miR-27a* (Figure 27 - A) and miR-126* (Figure 27 - B) were significantly 

underexpressed in PIN lesions (p < 0.001 and p < 0.017, respectively) and PCa (p < 0.001, for both 

miRNAs), compared to MNPTs, as well as in PCa compared to PIN lesions (p = 0.01 and p < 0.001, 

respectively).  

 

 

 

 

 

 

 

A B 

Figure 27. Expression levels of selected miRNA candidates, after validation, in a series of PCa, PIN lesions 

and MNPTs. A – miR-27a*; B – miR-126* (RT-qPCR, normalized to RNU6B). (*** p < 0.001; ** p < 0.01; * p 

< 0.017; ns – non-significant). 
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5.5. MicroRNA Status of Matched PINs and Primary Tumors 

 

From the total number of PIN lesion samples, 37 of them matched with a primary tumor, 

i.e., both samples derived from the same patient, although this does not imply a relation of 

causality between them, but rather reflects a common origin from the same prostate tissue. A 

non-parametric signal test was then performed to assess differences in expression levels of miRNA 

candidates between matched PINs and primary tumors. For miR-27a* and miR-126*, expression 

levels were significantly higher in the PIN lesions, compared to the respective PCa (p < 0.05 and p < 

0.001, respectively). These results are graphically represented in Figure 28, where the ratio 

between miR-27a* (Figure 28 – A) or miR-126* (Figure 28 – B) expression levels in primary tumors 

and in the respective PIN lesions is depicted. 

 

 

 

 

 

 

 

 

 

B A 

Figure 28. Relative expression levels of miR-27a* (A) and miR-126* (B) in paired PIN lesions and PCa samples (miRNA 

expression in tumors normalized to the expression in the matched PINs, assessed by RT-qPCR and normalized to 

RNU6B). 
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n.a., not applicable / not available 

5.6. Association Between c-Myc and Validated MicroRNA 

Expression Levels and Clinicopathological Parameters 

 

The data of different clinicopathological parameters from all clinical samples tested in this 

study are depicted in Table 5. 

Table 5. Clinical and pathological data of the patients included in this study. 

 

Clinicopathological 

Parameter 

PCa 

(n = 198) 

PIN 

(n = 43; 37 matched 

with a PCa) 

MNPT 

(n = 13) 

Age (years), 

median (range) 

64 

(49 - 75) 

65  

(51 - 75) 

64  

(49 - 80) 

PSA (ng/mL), 

median (range) 

8.10 

(2.66 - 35.50) 
n.a. n.a. 

Pathological Stage, N (%) 

pT2 
110 

(55.6 %) 
n.a. n.a. 

pT3a 
65 

(32.8 %) 
n.a. n.a. 

pT3b 
23 

(11.6 %) 
n.a. n.a. 

Gleason score, N (%) 

< 7 
67 

(33.8 %) 
n.a. n.a. 

= 7 
115 

(58.1 %) 
n.a. n.a. 

> 7 
16 

(8.1 %) 
n.a. n.a. 
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Concerning age, no statistically significant difference between PCa and MNPT samples was 

verified. Furthermore, a statistically significant association was disclosed between c-Myc protein 

levels and both PSA blood levels and GS (p < 0.05, for both clinicopathological parameters). The 

calculated Somer’s D coefficients revealed that higher c-Myc protein levels were associated with 

higher serum PSA and GS (0.157 and 0.131, respectively). Considering miRNA-27a* expression 

levels, a statistically significant difference was observed between GS < 7 and GS ≥ 7 groups (p < 

0.01), revealing lower expression of this miRNA in less aggressive tumors, with GS < 7 (Figure 29). 

On the other hand, no statistically significant association was found between miR-126* expression 

levels and any of the clinicopathological parameters. 

 

 

 

 

 

 

 

 

 

 

Figure 29. Association between miR-27a* expression levels and the GS of the PCa primary 

tumor samples (RT-qPCR, normalized to RNU6B). (*** p < 0.001; ** p < 0.01; * p < 0.05; ns – 

non-significant). 
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5.7. Association Between Validated MicroRNAs Expression and c-

Myc Protein Levels 

 

Differential expression of c-Myc protein was observed among the three groups of clinical 

samples (p < 0.001). Moreover, when expression levels of candidate miRNAs were compared 

among c-Myc immunoscore groups, a statistically significant difference was only observed for miR-

126*. Although a trend for decreased expression is apparent across groups of increasing 

immunoscore, statistical significance was only achieved for the differences between the < 10% and 

the > 50% c-Myc immunoscore groups (p < 0.01) (Figure 30).  

 

 

Figure 30. MiR-126* expression levels, assessed by RT-qPCR and normalized to RNU6B, in a series of PCa, PIN lesions 

and MNPTs, grouped according to c-Myc protein expression, assessed by immunohistochemistry. (*** p < 0.001; ** p 

< 0.01; * p < 0.017; ns – non-significant). 
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5.8. Regulatory Network Between c-Myc and Validated MicroRNAs 

– In Silico Analysis 

 

In a previously published study, c-Myc was reported as a transcriptional activator of the 

miR-23a/24-2/27a cluster, in breast cancer cell lines (180). We performed in silico analysis that 

revealed the presence of two c-Myc binding sites at the promoter region of this cluster. As for the 

promoter region of the gene allocating miR-126*, no information concerning c-Myc binding has, so 

far, been published. Nevertheless, the same in silico analysis revealed one c-Myc binding site at 

this promoter region. 

 Regarding previously reported targets of the validated miRNAs, a study performed in a 

different cancer model identified miR-126* as a translational regulator of MYC (171). In silico 

analysis revealed that MYC is a putative target for miR-126* regulation. Interestingly, two 

additional genes, MYCBP and MYCBP2, codifying for Myc-binding proteins, which are closely 

associated with c-Myc activity, were identified as putative targets of miR-126* regulation. MYCBP 

codifies for a protein that activates c-Myc-mediated transcription (181). This protein is able to bind 

to the N-terminal region of c-Myc and stimulate the activation of E box-dependent transcription. 

On the other hand, no information was found in the literature concerning MYC as a possible target 

of miR-27a* and the in silico analysis did not indicate MYC as a putative target of miR-27a*. 
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5.9. Alterations in Expression Levels of MiR-27a* Known Targets 

 

Upon MYC silencing in PC-3 cells, an impressive reduction in the expression levels of the 

four candidate miRNAs was observed. To further explore the biological impact of this reduction in 

PCa and in signaling pathways reported to be involved in prostate carcinogenesis, the expression 

levels of some of the known targets of those four miRNAs were assessed at protein level, through 

western blot analysis. The mechanistic target of rapamycin (MTOR) and the epidermal growth 

factor receptor (EGFR) and have been described as targets of miR-27a* (182), in head and neck 

squamous cell carcinoma cell lines, participating in a signaling axis that is frequently deregulated in 

different types of cancer (183, 184). Both mTOR and EGFR proteins displayed increased expression 

in sh-MYC PC-3 cell total protein extracts, compared to sh-scramble RNA PC-3 cells (Figure 31). 
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Figure 31. Western blot analysis of miR-27a* protein targets mTOR and EGFR in total 

protein extracts from sh-scramble and sh-MYC PC-3 cells (5 minutes exposure). 
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6. Discussion 

 

Occupying the second position in terms of incidence and being in the top-ten when it comes 

to mortality among men worldwide, PCa represents one of the most prominent types of cancer 

(47). Additionally, the lack of sensitivity and specificity of widely used serum PSA levels as a 

biomarkers for PCa screening, leads to the overdiagnosis and overtreatment of the disease (185). 

Thus, it is critical to ascertain the level of threat that a diagnosed PCa poses to that particular 

patient. The identification of biomarkers associated with disease progression could be helpful for 

that purpose. However, many key players involved in the molecular pathways contributing to PCa 

initiation and progression remain unveiled. Therefore, the study of the basic biology of PCa is 

critical, since the identification of novel promising molecular targets may improve current 

diagnostic and therapeutic approaches, as well as to allow for the development of novel and more 

effective targeted therapies. 

 In the recent years, Epigenetics became a major field of research when it comes to 

understanding the biology of several diseases, including cancer (1). Since its discovery, 

deregulation of microRNAs biogenesis and function has been associated with progression of 

various tumors, including PCa (82). These small non-coding RNA molecules seem to control the 

expression of essential genes involved in every cellular process (77, 143) and the study of 

differential expression patterns of many of these molecules between tumor and normal tissue 

helped to clarify their role in neoplastic transformation and progression, turning miRNAs into 

powerful diagnostic, prognostic and therapeutic tools. 

 Abnormal activation of the MYC oncogene may occur through several distinct 

mechanisms, including gene rearrangement and amplification, and it is currently recognized as a 

major key player in many cellular pathways leading to the development of various types of 

neoplasia, including PCa (186-188). Indeed, the c-Myc transcription factor, which can 

simultaneously act as a transcription activator or repressor, greatly contributes to neoplastic 

transformation, by targeting genes with critical functions in cell cycle, cell differentiation, growth, 

metabolism, protein synthesis, adhesion, migration, angiogenesis and many others processes 

(189-196). More recently, efforts have been made to establish a connection between c-Myc and 

miRNA regulation, within the tumor progression context, in PCa as well as in other cancer models 
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(30, 34, 197). In fact, not only has c-Myc been reported to activate or repress the transcription of 

several miRNA containing genes and of genes encoding for miRNA biogenesis machinery, but also 

several miRNAs seem to be able to regulate c-Myc expression (29, 34, 37, 171, 198). This suggests 

the existence of a complex regulatory network established between MYC oncogene and several 

miRNAs, which tightly controls the expression levels of target genes in a normal cell but, once 

deregulated, may represent a key element for cancer development. 

 The main aim of this Master Thesis was to identify and validate novel miRNAs with a 

relevant role in prostate carcinogenesis, as well as to ascertain the possibility of such candidate 

miRNAs expression being regulated by c-Myc. 

 Firstly, MYC expression levels were assessed, at transcript (RT-qPCR) and protein (IHC) 

level, in a series of 198 PCa, 43 PIN lesions and 13 MNPTs. It should be emphasized that the 

normal prostate tissues used in this study as control were collected from patients not harboring 

PCa, whereas, in most of the studies with similar objectives, tissue localized adjacently to the 

tumor frequently serves as control. The use of such tissues, however, is not suitable, since both 

genetic and epigenetic alterations, including altered miRNA expression, have been reported to 

occur in morphologically normal cells adjacent to tumor foci (79). Globally, the distribution of MYC 

expression in our study is in agreement with previous publications: MYC increased expression is 

observed both in PIN lesions and prostate primary tumors, compared to normal tissue samples 

(188, 199). These results are also in agreement with the well-known oncogenic role of MYC, whose 

overexpression is considered an important event in prostate carcinogenesis (188, 200). 

Additionally, higher c-Myc protein levels were statistically associated with increased serum PSA 

levels and GS value, which are associated with worse disease outcome (201, 202). These results 

are also in line with the alleged prognostic value of c-Myc overexpression owing to its association 

with biochemical recurrence and patients’ survival (199, 200, 203, 204).  

 Expression levels of MYC, at both transcript (RT-qPCR) and protein (Western Blot) level, 

were also characterized in six different PCa cell lines, which provided valuable information for 

future in vitro studies. From the analyzed cell lines, PC-3 and LNCaP were chosen for posterior 

MYC silencing, since they displayed the highest expression levels in the hormone-resistant and 

hormone-responding groups, respectively. However, at this point, effective silencing was only 

accomplished in PC-3 cells. The candidate miRNAs - miR-27a*, miR-570 and miR-1292 - were 

selected after careful analysis of both the results obtained in the miRNA microarray and the data 

already published by other researchers. Although it did not surfaced in the array, miR-126* was 
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also included because it has been reported to target and regulate MYC expression in multiple 

myeloma cells (171). In sh-MYC PC-3 cells, general downregulation of these four miRNA was 

apparent, supporting our hypothesis that they constitute potential targets for c-Myc regulation. 

Interestingly, c-Myc has already been reported to bind and activate transcription of the miR-23a-

27a-24-2 cluster (180), although in a different cancer model. On the other hand, the observations 

concerning miR-126* might seem paradoxical, as in another cancer model this miRNA was shown 

to target MYC mRNA, causing a decrease in c-Myc protein expression (171). However, in PC-3 cells, 

MYC knockdown led to an almost complete depletion of miR-126* levels, implying a causal 

relationship. Remarkably, complex feedback regulatory loops between c-Myc and several miRNAs, 

namely miR-9*, has been described in Burkitt lymphoma, in which MYC translocation is recognized 

as the main event leading to tumorigenesis (28, 197). In such cases, c-Myc and specific miRNAs 

reciprocally control each other’s expression and jointly generate differential gene expression 

patterns that ultimately contribute to tumor development. We are, thus, tempted to speculate 

whether a similar mechanism occurs in PCa cells, involving c-Myc and miR-126*. However, it 

should be taken into account that the observed miRNA downregulation may also represent an 

indirect consequence or cellular adaptation to MYC knockdown. 

After analyzing the effects of MYC silencing in the selected miRNA expression levels in PC-3 

cells, further miRNA candidate validation was attempted in a series of primary PCa, PIN lesions and 

MNPTs. However, this was only accomplished for miR-27a* and miR-126*, because no successful 

amplification reaction for miR-570 and miR-1292 was obtained, despite their identification in the 

miRNA microarray. This might be due to very low levels of those two miRNAs in prostatic tissues, 

highlighting the importance of microarray validation through different techniques, as microarray 

and RT-qPCR methodologies have different detection sensitivities (205). Concerning miR-27a*, 

available information about its role in cancer is scarce. This miRNA is part of the intergenic miR-

23a-27a-24-2 cluster, located in the short arm of the chromosome 19, where no chromosome 

alterations have been reported, so far, in PCa (206). Interestingly, the miR-23a-27a-24-2 cluster 

has been previously reported to be androgen-regulated in PCa cell lines (207) and the same cluster 

was previously showed to be targeted by c-Myc regulation in breast cancer cells (180). Moreover, 

c-Myc-mediated transcriptional activation of the miRNAs contained in that cluster led to increased 

invasion and migration capacity of breast cancer cells, although the precise role of miR-27a* in 

tumorigenesis was not addressed. Intriguingly, this miRNA has been classified as tumor suppressor 

in the head and neck squamous cell carcinoma, by targeting multiple elements of the 
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EGFR/Akt1/mTOR signaling pathway (182). In this particular type of cancer, miR-27a* was found to 

be underexpressed both in cancer cell lines and clinical tumor samples. Our study is the first to 

identify miR-27a* as a possible key player in prostate carcinogenesis and possible target of c-Myc 

regulation in this particular cancer model. Expression levels of this miRNA were significantly lower 

in PIN lesions compared to the normal tissues and in PCa compared to PIN, which is considered a 

PCa precursor. This pattern of expression is very suggestive of a miRNA with tumor suppressive 

functions, which is in agreement with previous findings in a different cancer model (182). 

Moreover, samples with higher c-Myc expression display lower levels of miR-27a*, further 

suggesting a relationship between those two molecules, which at this time we could not 

substantiate statistically. 

Concerning miR-126*, an intronic product of the vascular endothelial EGF-like 7 (EGFL7) 

gene, which maps to 9q, no chromosome-level alterations have been described for this particular 

locus in PCa (206). Previous studies strongly suggest a tumor suppressive role for this miRNA in 

prostate carcinogenesis and other cancer models, through the regulation of genes with important 

roles in cell proliferation, migration and invasion (208). The low expression levels of miR-126* and 

its complementary mature form, miR-126, have been reported to contribute to the development 

of PCa and other cancer types (82, 209, 210). Additionally, induced expression of this miRNA leads 

to translational repression of prostein or prostate cancer-associated protein 6 (SLC45A3), which 

correlates with a reduced migration and invasion capacity of LNCaP cells, in which miR-126* is 

naturally absent (125). As previously mentioned, miR-126* was also reported to target and repress 

the translation of MYC mRNA molecules, in a different cancer model (171). Nevertheless, our 

study is the first to address c-Myc regulation of miR-126* in primary PCa. Similarly to miR-27a*, 

expression levels of miR-126* significantly decrease from MNPTs to PINs to PCa, also suggesting a 

tumor suppressive role. On the other hand, a significant association between miR-126* expression 

levels and c-Myc protein levels was depicted, further supporting the existence of a complex 

regulatory interaction between MYC and miR-126* in PCa. 

As previously pointed out, several aspects should be taken into careful consideration 

concerning analysis of results from miRNA microarray assays. Microarray analysis has been widely 

used for miRNA profiling, allowing for the simultaneous detection of multiple differentially 

expressed miRNAs in the same sample set (205). Results obtained in microarray analysis, however, 

require further validation, usually by means of RT-qPCR. Thus, data obtained from those two 

different methodologies may yield discordant results (211). At a first glance, the expression 
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patterns we observed for miR-27a* and miR-126* across the three groups of clinical samples 

might be surprising, given that both miRNAs were identified as overexpressed in PCa cases 

harboring elevated MYC transcript levels. However, the fact that lower expression levels of miR-

27a* and miR-126* were observed in primary PCa and PIN lesions, compared to normal tissues, 

could not have been predicted by the microarray, since only PCa samples, but not MNPTs or PINs 

were included in the analysis. Additionally, microarray analysis was performed based on MYC 

transcript information, since data regarding c-Myc protein levels across the series of clinical 

samples was not available, at the time. Additionally, the use of a reduced number of samples in 

the microarray may also contribute to increase the bias associated with this technique. 

Considering the limited information regarding the role of miR-27a* and miR-126* in 

prostate carcinogenesis, we verified whether miRNA downregulation upon MYC silencing in PC-3 

cells might have a relevant biological impact. As previously mentioned, miR-27a* represses the 

translation of key players of the EGFR/Akt1/mTOR signaling axis, widely deregulated in various 

solid tumors, including PCa (212, 213). Also, no prior association has ever been made between the 

genes encoding for any of those proteins and c-Myc transcription factor. After assessing EGFR and 

MTOR protein levels by Western blot, an upregulation of both these protein was observed in sh-

MYC PC-3 cells, in which MYC knockdown was previously shown to decrease miR-27a* levels. 

These findings further support the previously reported role of this miRNA in translational 

repression of both EGFR and mTOR proteins. Strikingly, it also highlights the importance of this 

miRNA in the regulation of signaling pathways that are relevant in prostate carcinogenesis.  

Finally, it is noteworthy that both validated miRNAs constitute the passenger strand of the 

dsRNA precursor molecule. Until recently, only the leading strand was thought to play a relevant 

biological role within the cell. However, recent publications have identified several miRNA 

passenger strands as key regulators of many essential cellular processes and pathways (214). 

Considering our results, a simple model explaining the interplay between c-Myc and miR-

27a* / miR-126* in PCa seems unlikely. On the one hand, MYC silencing in PC-3 cells leads to miR-

27a* / miR-126* downregulation, suggesting that c-Myc activates their transcription, whereas in 

prostate tissues, the opposite trend is observed across three distinct groups of clinical samples, in 

which higher c-Myc protein levels are associated with reduced expression of both miRNAs, 

indicating a repressive role of c-Myc. Although cancer cell lines are widely used as valuable in vitro 

cancer models, they fall short in mimicking the complex biology of primary tumors (215). These in 

vitro models, which are relatively homogenous and with well-established features and origin, are 
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studied in a controlled environment that lacks many aspects present in the extremely complex and 

heterogeneous tumor context (e.g., the tumor microenvironment does not exist in cell culture). It 

should be recalled, however, that the interaction of c-Myc and miR-27a* and miR-126* was 

predicted by our in silico analysis, unveiling c-Myc binding sites at miR-27a* / miR-126* promoter 

regions. Interestingly, two other putative targets of miR-126* regulation, MYCBP and MYCBP2, 

were predicted in silico. These proteins represent an additional regulatory mechanism of c-Myc 

activity, through their capacity to bind to the N-terminal of this transcription factor and, 

consequently, to stimulate c-Myc-dependent transcription mechanisms (181). 

Thus, a hypothetic model, represented in Figure 32, may be proposed, linking our 

(apparently) contradictory observations. In normal cells, expression of c-Myc leads to miR-27a* / 

miR-126* expression, creating a negative feed-back loops that tightly tunes MYC activity within 

the cell. MiR-126* would be able to regulate c-Myc expression and activity both directly, by 

inhibiting its translation into a functional protein, and indirectly, by controlling the expression 

levels of genes codifying for proteins with an important role in c-Myc activation (MYCBP and 

MYCBP2). In a cancer cell in which c-Myc is overexpressed (e.g., due to gene amplification), miR-

27a* and miR-126* expression might also be stimulated but their levels remain low, as generally 

observed for tumor suppressor miRNAs (21). It has been previously demonstrated that c-Myc 

overexpression leads to a widespread downregulation of miRNA levels, eventually through 

impairment of miRNA biogenesis (28, 34, 170). In this scenario, miR-27a* and miR-126* 

downregulation might further contribute to increase c-Myc expression and ultimately favor tumor 

progression. Additional functional studies are required to confirm this hypothetic model. 

 

Figure 32. Biological interplay between c-Myc and miR-27a*/miR-126* in normal and tumor 

prostate cells - proposed hypothetic model. 
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7. Conclusion and Future Perspectives 

 

In this study, expression levels of two poorly characterized miRNA molecules, putatively 

regulated by c-Myc, were assessed in a large series of primary PCa, PIN lesions and MNPTs. The 

observed expression patterns are in line with previous publications, in which both miRNAs have 

been considered to play tumor suppressive functions in different cancer models.  

Altered miRNA expressions upon MYC silencing in PC-3 cell line allowed for the 

establishment of an association between c-Myc and the selected miRNA, concerning the existence 

of a regulatory network. The opposite expression patterns of c-Myc protein and both miRNAs in a 

large series of clinical samples, as well as the in silico prediction of c-Myc binding sites at these 

miRNAs promoter region, also suggest a mechanistic interplay between these molecules in PCa. 

However, additional studies are mandatory to validate the previously mentioned association and 

to determine its real biological importance in prostate carcinogenesis. 

In the near future, and taking in consideration our findings, a new microarray analysis will 

be carried out to broaden previous results and to identify new candidate miRNAs, which can be 

further validated in the same series of clinical samples used in the present study. In this second 

analysis, total RNA extracted from MNPTs will also be included, together with total RNA extracted 

from more PCa primary tumors expressing either high or low MYC protein levels. Total RNA 

extracted from both sh-scramble RNA and sh-MYC PC-3 cells will also be included in this new 

analysis, and it should provide more reliable information concerning miRNA altered expression 

potentially due to c-Myc regulation.  

 Silencing of MYC will also be attempted in additional PCa cell lines, such as LNCaP, as 

initially intended. Since different cell lines mirror different features, stages and behaviors of PCa, it 

is important to assess the effects of MYC knockdown in these different in vitro models to better 

understand the complex miRNA regulation. 

To confirm the existence of a real interaction between c-Myc and the selected miRNAs, 

functional assays, such as luciferase assay and chromatin immunoprecipitation (ChIP) analysis, will 

be performed in both sh-scramble and sh-MYC PC-3 cells. 
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Finally, to assess the biological impact of miR-27a* and miR-126* in prostate carcinogenesis, 

silencing and induced expression of these miRNAs will be carried out in PCa cell lines, and its 

impact will be evaluated by means of phenotypic assays. 
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