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ABSTRACT

We present a GPU-based simulator engine that performs all steps of large-scale network simulations on a
commodity many-core GPU. Overhead is reduced by avoiding unnecessary data transfers between graphics
memory and main memory. On the example of a widely deployed peer-to-peer network, we analyze the
parallelism in large-scale application-layer networks, which suggests the use of thousands of concurrent
processor cores for simulation. The proposed simulator employs the vast number of parallel cores in modern
GPUs to exploit the identified parallelism and enables substantial simulation speedup. The simulator adapts
its configuration at runtime in order to balance parallelism and overheads to achieve high performance for a
given network model and scenario. A performance evaluation for simulations of networks comprising up to
one million peers demonstrates a speedup of up to 19.5 compared with an efficient sequential implementation
and shows the effectiveness of the runtime adaptation to different network conditions.

1 INTRODUCTION

When designing and tuning protocols to be deployed in large-scale networks, simulations can be applied
to predict the runtime behavior of the network. However, the runtime for large-scale simulations can
be prohibitively high. To counter this problem, parallel and distributed simulation divides the simulated
network into a number of logical processes (LPs), each simulated by an individual processor or core. The
runtime reductions achieved using parallel and distributed simulation vary depending on properties of the
modeled network as well as on the simulation hardware. If the overhead incurred by communication and
synchronization between LPs is low, large performance gains can be expected.

Large real-world networks are highly parallel systems that work in real-time. Thus, it should be possible
to simulate these systems efficiently by imitating their inherent parallelism. However, the reported success
in parallel and distributed simulation of large-scale networks varies immensely. In some cases, a large
speedup compared with a sequential simulation was achieved (Park, Fujimoto, and Perumalla 2004), while
in other cases there were modest or no performance gains (Dinh, Lees, Theodoropoulos, and Minson 2008,
Quinson, Rosa, and Thiery 2012). The low-latency interconnects of modern symmetric multiprocessing
(SMP) machines make it possible to achieve performance gains even for models considered as benefitting
little from parallelization if a sufficiently large number of processor cores can be allocated. However,
in addition to the costs incurred by the energy consumption of large processor counts, SMP systems are
typically in shared use within institutions and are accessed through a queuing system. Hence, the use of
SMP systems can be impractical if low turnaround times for individual simulation results are required.

In this paper, we present a GPU-based simulator that enables low turnaround times (“high-productivity
computing”) for simulations of large-scale application-layer networks by exploiting the large number of
parallel cores in modern commodity GPUs. By executing all steps of the simulation on the GPU and hence
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avoiding data transfers between graphics card memory and main memory, the costs for communication and
synchronization are reduced. To achieve high performance under various network scenarios, the simulator
adapts the number of nodes simulated in each LP based on performance measurements executed at runtime.
Hence, it is possible to investigate the behavior of an envisioned large-scale network protocol deployment
on commodity hardware efficiently with respect to both simulation runtime and energy consumption.

Our main contributions are the following.
1. Analysis of the parallelism in a large-scale peer-to-peer network: we investigate the immense

parallelism of large-scale application-layer networks on the example of the Kademlia protocol, which forms
the basis of one of the largest real-world peer-to-peer networks comprising millions of peers. Models of
peer-to-peer networks typically exhibit characteristics impeding straightforward parallelization: first, there
is a lack of clear subnetwork boundaries to be exploited for minimization of communication between LPs.
Second, the high level of abstraction commonly applied in the modeling of peer-to-peer networks leads
to low computational costs per simulated message, increasing the impact of simulation overheads. Still,
our analysis shows that on average, more than 7000 independent messages are processed concurrently in
a network of one million peers, suggesting the use of large numbers of processor cores for simulation.

2. Adaptive GPU-based network simulator: we present a fully GPU-based simulator that is able to
adapt to the conditions in a simulated network at runtime. Only small adjustments are required to port
a CPU-based sequential network model to the GPU-based simulator. Detailed measurements expose the
performance properties of the simulator and show significant runtime reductions up to a factor of 19.5.

The remainder of the paper is structured as follows. In Section 2, we introduce fundamental concepts
and discuss related work in the field of GPU-based simulation. In Section 3, we analyze the parallelism in
the evaluation network model. In Section 4, we describe the design and implementation of the proposed
GPU-based simulator. In Section 5, we evaluate the performance of the simulator and discuss remaining
challenges. Section 6 concludes the paper.

2 BACKGROUND AND RELATED WORK

In this section, we introduce parallel and distributed network simulation and the issue of synchronization
between processors. We introduce the use of GPUs for general-purpose computations. Finally, we discuss
existing work in the field of GPU-based network simulation.

2.1 Parallel Discrete-Event Network Simulations

In parallel discrete-event network simulations, the simulated network is partitioned into a number of logical
processes (LPs) so that a number of interacting processors share the computational load. For each LP, a
future event list (FEL) holds the events to be executed in timestamp order. Synchronization is required to
maintain the temporal relationships between events occurring in separate LPs. Commonly, synchronization
is achieved by executing only safe events that at the given point in simulated time can be guaranteed not
to trigger a future violation of timestamp order. The lookahead denotes the delta in simulated time up to
which events are safe according to properties of the simulated network.

A well-known round-based synchronization algorithm is YAWNS (Nicol 1993): each round begins
by determining the minimum timestamp tmin among all events in the simulation. Given a lookahead
value determined according to properties of the simulation model, the window of safe events is given by
[tmin, tmin + lookahead], in the following referred to as the lookahead window. The proposed GPU-based
simulator applies the YAWNS algorithm to the many-core domain.

2.2 General Purpose Computation on Graphics Processing Units

General purpose computation on graphics processing units (GPGPU) is a programming paradigm enabling
the utilization of the massively parallel hardware of modern graphics cards originally optimized for data-
parallel problems in the graphics domain for general computational tasks. The simulator presented in this
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paper was implemented based on the GPGPU framework NVIDIA CUDA. Hence, our brief introduction
to GPU architecture will follow NVIDIA’s terminology (NVIDIA Corporation 2013).

A CUDA hardware device contains a number of streaming multiprocessors (SMs), each comprising
a number of CUDA cores. Computational tasks are organized in thread blocks that are assigned to SMs
by a hardware scheduler. Threads are executed in groups of 32 called warps that execute in lockstep. If
a sufficient number of warps are to be executed, the hardware scheduler hides memory access latencies
by exchanging active warps in case of memory accesses. GPU functions, so-called kernels, are executed
using API calls from the CPU context. Kernel input and output data is transferred over the PCI-E bus. As
the data transfer bandwidth of the PCI-E bus is significantly lower than the bandwidth between the GPU
and graphics memory, frequent data transfers can limit the performance of CUDA programs. Additional
overhead is incurred for the exchange of the execution control between the GPU and the CPU.

CUDA hardware is classified by its compute capability (CC), a version number indicating a device’s
feature set. To allow for interaction between computations of different threads, barrier primitives synchronize
memory accesses between threads of the same block. Devices starting with CC 3.5 additionally support
memory access synchronization between threads of multiple blocks through so-called dynamic parallelism.
Devices prior to CC 3.5 support only API-based inter-block synchronization: when returning the control
flow from the GPU to the CPU, all previous writes to graphics memory are guaranteed to be visible to all
threads during future kernel executions. Hence, a need for frequent synchronization of memory accesses
is reflected by repeated control flow exchanges between the GPU and the CPU. Xiao et al. presented a
method enabling software-based inter-block synchronization from GPU code independently of dynamic
parallelism (Xiao and Feng 2010). When calling a new barrier function, a global variable is incremented
atomically by each block until all blocks wait at the barrier. Then, the barrier function terminates and the
threads of all blocks can access any data written to memory prior to the barrier call. To avoid deadlocks, only
as many thread blocks as there are SMs can be scheduled with this method, allowing for up to #SMs∗1024
threads with CC 2.0 and above. Without software-based synchronization, it is possible to schedule up to
655353 blocks for CC 2.0, and up to (231−1)3 blocks for devices with CC 3.0. We evaluate the proposed
simulator for both the API-based and the software-based synchronization method.

2.3 GPU-Based Network Simulation

Previous work differs from our proposed simulator in at least one of the following ways: first, all of the
previous works assume a fixed LP size for each simulation run. As we will show, adaptation of LP size
at runtime is critical to achieve high simulation performance when varying simulation scenarios. Second,
in most works, only some of the tasks involved in the simulation are performed on the GPU, requiring
repeated data transfers between the GPU and CPU contexts. Finally, some of the works exhibit significant
limitations in their generic applicability to arbitrary system models.

In 2006, Perumalla (Perumalla 2006) proposed alternatives for GPU-based discrete-event simulations
improving on a time-stepped execution method. While the proposed approach is shown to achieve high
speedup for a diffusion model, limitations in the GPU hardware available at the time restrict the parallelism
to events with identical timestamps, resulting in limited expected performance gains for arbitrary models.

In 2010, Park et al. (Park and Fishwick 2010) proposed a framework for purely GPU-based discrete-
event simulations, achieving a speedup close to 10. All events within a fixed amount of simulated time
are considered to occur simultaneously and are considered safe to be executed in parallel, thus introducing
a numerical error. Although the authors give analytical upper bounds for the introduced error, not all
simulation studies can tolerate the effects of the numerical error resulting from their method.

In 2011, Andelfinger et al. studied architectures enabling the use of GPUs to accelerate simulations
of wireless networks (Andelfinger, Mittag, and Hartenstein 2011). They proposed a hybrid CPU-GPU
architecture that executes events containing large amounts of data parallelism on a GPU, while performing
event scheduling tasks on a CPU. The proposed architecture exploits both data parallelism within single
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events as well as parallelism exposed by handling multiple events concurrently. However, the architecture
is not suited to exploit the fine-grained parallelism between large numbers of inherently sequential events.

In 2012, Kunz et al. (Kunz, Schemmel, Gross, and Wehrle 2012) presented a hybrid CPU-GPU simulator
to accelerate parameter studies. The authors propose aggregating events both within and across simulation
runs at the same time. A CPU-based event scheduler handles the choice of independent events to be
processed by the GPU in each upcoming simulation round. In our work, by performing all simulation steps
on the GPU, data transfers are reduced to the transfer of initial scenario parameters to the GPU memory
at the start of the simulation and the transfer of simulation results at the end of the simulation.

In 2013, Li et al. (Li, Cai, and Turner 2013) proposed a three-stage execution model for GPU-based
simulation. Events are executed optimistically and cancelled if causality violations are detected. The
approach is applicable only to models where event generation can be performed prior to event execution
and where no additional events need to be created during the simulation itself.

In the same year, Wenjie et al. (Wenjie, Yiping, and Feng 2013) proposed a synchronous conservative
time management algorithm for GPU-based simulation. After determining the lookahead window, safe
events are executed concurrently in multiple batches. Between batches, an attempt is made to exploit the
changed system state to mark some of the events outside the current lookahead window as safe, improving
simulation runtime by up to 30%. In our measurements, calculating a new lookahead window has proven
to be inexpensive compared with the other simulation steps. Therefore, in contrast to Wenjie et al., we
calculate a new lookahead window as soon as the remaining number of events in the lookahead window
is insufficient to efficiently utilize the GPU’s resources.

3 CASE STUDY: PARALLELISM IN KADEMLIA-BASED NETWORKS

In this section, we analyze the inherent parallelism of large-scale networks on the example of the Kademlia
protocol (Maymounkov and Mazières 2002) used to form a distributed hash table (DHT) for efficient lookup
of key-value pairs in an application-layer overlay network. Lookups of key-value pairs are performed by
iteratively querying peers with decreasing distance to the peers storing the value associated with the desired
key. A protocol parameter determines the number of queries to be performed concurrently during the
lookup. Kademlia forms the basis of the BitTorrent Mainline DHT, one of the largest peer-to-peer networks
in existence, currently comprising 6 to 10 million peers (Jünemann, Andelfinger, and Hartenstein 2011).
The DHT is used by the main BitTorrent network (Carothers, LaFortune, Smith, and Gilder 2006) to locate
nodes downloading specific files. Intuitively, parallelism in the DHT results from lookups performed by
different peers at the same time and from individual queries performed concurrently during each lookup.

We quantify the parallelism contained in the network model using critical path analysis (Berry and
Jefferson 1985). Based on event traces created during sequential simulation runs, event dependency graphs
as shown in Figure 1 are created. Dependencies model precedence requirements to enforce the temporal
relationships between events. For our purposes, there are two conditions under which an event depends on
another: either, one event is created by the other, or one event pertains to the same LP as the other and is
its immediate successor in simulated time. Events are ready to be processed once all their dependencies
have already been executed. In the figure, dashed ellipses indicate groups of events that become ready to
be executed at the same time and can hence be executed in parallel. Figure 1(a) shows the dependency
structure on the peer level, corresponding to the full parallelism in the network model. In Figure 1(b),
peers A and B are combined in one LP, which is reflected by reduced parallelism. We determine an upper
bound for the parallelism of the network model in a round-based fashion: in each round, from the set of
all events in the trace, we select those events that have no dependencies on any other event. In contrast to
traditional critical path analysis, in each round, we only consider events within the lookahead window. The
selected events can be executed safely: first, the creating event has already been processed and second,
there is no event with lower timestamp to be executed in the same LP. Dependencies of other events on
the selected events are removed and the selected events are eliminated. Under the assumption of equal
processing times per event, the average number of events eliminated per round gives an upper bound for
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Figure 1: Example of an event dependency graph for a simulation of a network of three peers on the peer
level (a), and when combining peers to form LPs (b).
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Figure 2: Critical path parallelism and utilization of LPs in a simulation of a Kademlia-based network for
different network sizes and varying the number of LPs.

the speedup achievable by parallel simulation. Of course, real-world simulation performance will typically
be significantly lower due to the overheads for communication and synchronization between processors.

In Figure 2(a), we plot the parallelism pmax in the Kademlia network model for a fixed lookahead of
10ms and a random assignment of peers to LPs. We vary the number of LPs l for three network sizes:
16,384, 131,072 and 1,048,576 peers, each peer performing a lookup every 30s on average, for 107 events
total. For up to 32 LPs, pmax scales almost linearly for all network sizes, pmax being larger than 80% of
l. The largest values for pmax are 290.0 with 16,384 peers, 1416.8 with 131,072 peers and 7117.4 with
1,048,576 peers. Figure 2(b) shows the utilization of the available LPs given by pmax/l. If a utilization
of more than 50% is desired, the largest achievable parallelism is 75.9 with 16,384 peers using 128 LPs,
313.1 with 131,072 peers using 512 LPs, and 1285.0 with 1,048,576 peers using 2048 LPs.

In summary, the Kademlia model contains substantial parallelism that could make use of hundreds or
thousands of processor cores. In the simulator evaluation in Section 5, we will investigate how much of the
identified parallelism can be translated to simulation speedup compared with a sequential implementation.

4 GPU-BASED NETWORK SIMULATOR

The main challenge in parallel simulation is the synchronization between LPs. As in the YAWNS algo-
rithm (Nicol 1993), the proposed simulator enforces timestamp order by alternating between two tasks:

1. Selection: from all events remaining to be executed, select the set of safe events that can be executed
without the possibility of causing a future violation of timestamp order.

2. Execution: execute the selected events, potentially creating new events.
The steps are repeated until a termination criterion, e.g, the execution of a configured number of events,

is satisfied. Executing these steps on a many-core GPU is associated with a number of challenges (C1-C4):
C1. Inter-block synchronization of memory accesses is required frequently during simulation runtime.

However, on the GPU, synchronization of memory accesses between thread blocks is a costly operation.
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C2. Dynamic allocation of memory from the GPU context is expensive, suggesting the use of statically
allocated memory regions. However, if transfers between graphics and main memory are to be avoided,
the limited amount of memory available must be managed so that it can hold the shifting simulation state.

C3. Graphics memory is optimized for high throughput instead of low access latency.
C4. The number of active threads required for efficient utilization of the GPU depends both on the

GPU device itself and on the code to be executed and cannot be easily determined prior to runtime.
We address C1 by comparing the performance of two different approaches to memory access synchro-

nization in our simulator implementation. In the purely GPU-based variant, this is reflected by a call to
the software-based synchronization method. In the API-based variant, a return of the control flow to the
CPU and a separate kernel launch are required for synchronization. Challenge C2 is addressed by using a
statically allocated memory region to hold FELs, and by adapting FEL sizes at runtime if size limits are
exceeded. Challenge C3 is addressed by representing FELs using a simple data structure that does not
require scattered memory accesses. To address C4, we employ performance measurements that allow the
simulator to balance the number of active threads with simulation overheads at runtime. In addition, the
Selection step is repeated if an insufficient number of safe events remain in the lookahead window.

4.1 Execution Procedure

Initially, a fixed number of simulated nodes is assigned to each LP. Initial events pertaining to the simulated
nodes are created and inserted into their respective LP’s FEL. Now, the simulation proceeds in a round-based
fashion as shown in Algorithm 1. Simulation steps that require subsequent inter-block synchronization in
every loop iteration are marked with [S].

Algorithm 1 Execution procedure of the GPU-based simulator engine.
repeat

determineLookaheadWindow() [S]
repeat

numEventsCurrentIteration ← selectSafeEvents()
handleSafeEvents() [S]
checkQueueOverflow()
numEventsTotal ← numEventsTotal + numEventsCurrentIteration [S]

until numEventsCurrentIteration < minEventsPerIteration
insertNewEvents() [S]

until numEventsTotal ≥ finalNumEvents

In the following, we describe each of the steps of the execution procedure in detail.
determineLookaheadWindow(): We determine the events that are safe to be executed by finding the

minimum timestamp tmin in any of the LPs’ FELs. All events with timestamps smaller than or equal to
tmax = tmin + lookahead are safe, as any new event created by a safe event will have a timestamp larger
than or equal to tmax. In the following, the interval [tmin, tmax] will be referred to as the lookahead window.

For each LP, the event at the LP’s FEL head is selected and a parallel reduction is performed to find
the lowest timestamp of all selected events: in each iteration, a number of concurrent threads calculate the
minimum of two remaining elements of input data each. This way, given a sufficient number of threads,
the global minimum is determined in log(n) iterations. If there are fewer threads t than there are LPs
l in the simulation, the parallel reduction is repeated dl/te times to cover all LPs’ earliest events. Our
implementation of the parallel reduction is based on (Sengupta, Harris, and Garland 2008).

The following three steps address the execution of safe events and repeated until fewer than a configured
number of safe events remain. Each step is repeated dl/te times, handling t LPs during each repetition.

selectSafeEvents(): Each thread selects an LP’s earliest safe event, if any. If there is no event in an
LP’s FEL or the earliest event is not safe, the thread remains idle during the current repetition.

handleSafeEvents(): All threads that have selected a safe event call the event handler defined by the
network model, passing the selected event as an argument. Each event has a type field and a memory
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Figure 3: During event execution, newly created events are appended to the target LP’ FEL. In a subsequent
step, the new events are inserted into the FEL in timestamp order.

region for event data. The model behavior is specified in the event handler function, which can in turn
delegate event handling of different event types to specified functions.

If new events are to be created, the event handler calls the simulator function enqueueEvent(). Any
new event is appended to the target LP’s FEL. In graphics card memory, FELs are represented as ring
buffers located in memory regions of equal size. Figure 3 shows the insertion of new events into a single
LP’s FEL. The FEL head is denoted by a circle, while the tail is denoted by a square. In enqueueEvent(),
new events are appended in an unsorted fashion. As multiple threads may create new events for the same
LP concurrently, the target LP’s FEL tail is advanced atomically before storing the new event at the new
tail position, eliminating the possibility of race conditions.

checkQueueOverflow(): When simulating only small numbers of peers in each LP, the limited amount
of memory available on the graphics card restricts the number of events that can be contained in a single
LP’s FEL. If load imbalances in the simulated network lead to an overflow of any LP’s FEL, excess
events are stored in a temporary buffer of fixed size shared by all LPs. The FEL overflow is resolved by
doubling the number of simulated network nodes, e.g., peers, per LP and thus combining the capacities of
neighboring FELs until all events fit into their respective LP’s FEL (cf. Section 4.2).

insertNewEvents(): As a last step before a new lookahead window is determined, the events enqueued
during the handleSafeEvents() step of the current round are inserted into FELs in timestamp order (cf.
Figure 3). In each iteration, each thread handles the insertion of all new events for a single LP.

4.2 Adaptation of Logical Process Size

In the simulator configuration, there is a tradeoff regarding the number of simulated network nodes assigned
to each LP. Low numbers allow the simulator to expose the parallelism in the network model (cf. Section 3),
but may lead to i) many idle threads if LPs’ FELs do not contain safe events in most rounds, ii) large
costs for aggregation of all FELs’ minimum timestamps for advancing the lookahead window. On the
other hand, large numbers of nodes per LP limit the exploitable parallelism and increase the overhead for
insertion of events into FELs, as the number of events in each FEL increases with larger LPs.

An optimal LP size depends on a number of factors: the dependencies between events as given by
the network model, the event density in simulated time, as well as hardware characteristics such as the
number of hardware threads available, the number of active threads required to exhaust the graphics card’s
memory bandwidth, and the costs for FEL management. Network model properties can vary during runtime
and in particular cannot be easily predicted prior to a simulation run, as determining the network model’s
runtime behavior is typically the main goal of the simulation study itself. Hence, for high performance,
the simulator should be able to adapt to the conditions of the network scenario at runtime.

LPs are resized as illustrated in Figure 4. First, each GPU thread aligns the FEL of one LP to the first
element of the reserved memory area. Then, if the number of nodes per LP is to be increased, events of
all LPs with index 2k+1 are appended at the tail of LPs with index 2k. Now, the LP count is halved and
insertNewEvents() is called to insert the new events into the sorted FELs. This way, both the number of
nodes assigned to each LP and the maximum number of events in each LP’s FEL is doubled. If the number
of nodes per LP is to be halved instead, each thread iterates over the events of one FEL, separating events
into two FELs, one for a new LP with index 2k, and one for a new LP with index 2k+1. As timestamp
order has already been established by previous simulation rounds, events can be copied to their new position
in the existing order. Halving the number of nodes per LP halves the maximum size of each FEL ( fmax)
as well. If an existing FEL holds more than fmax/2 events for one of the new lists it is to be split to, an
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Figure 4: To resize LPs, FELs are first aligned to the start of their respective memory area boundaries and
subsequently relocated according to the new boundaries.

overflow would occur. Hence, prior to a decrease in the number of nodes per LP, a check is performed to
guarantee that the new FELs will not exceed the memory bounds reserved for each ring buffer.

At runtime, each time the adaptation process is triggered, LPs are resized to handle one peer each.
Then, the simulator iterates over LP sizes up to a configured limit, for each LP size resuming simulation
and measuring the number of events executed per second of wall-clock time. Once measurements for all
configured LP sizes have been performed, LP size is adapted according to the largest measured number of
events per second until the next adaptation is triggered, e.g., after a fixed number of executed events.

4.3 Model Implementation

The Kademlia network model used for the evaluation of the GPU-based simulation engine was developed
for the reference CPU implementation first, and subsequently ported to the GPU. No efforts were made to
maximize GPU utilization by exposing data parallelism or to increase memory access efficiency through
reordering of data structures (NVIDIA Corporation 2013). Executing the model on the GPU required two
minor modifications: first, in the sequential simulator, global variables used to gather statistics about the
simulated network can be accessed directly from the event handling code. In the parallel case, multiple
threads may attempt to modify global variables concurrently. We achieve consistency by replacing write
accesses to global statistics variables with calls to corresponding atomic operations provided by CUDA.
Second, random numbers are required to generate lookups and to determine link latencies in the simulated
network. In the sequential case, random numbers are drawn from a single random number stream, leading
to a deterministic simulation and identical simulation results between runs when using the same random
number seed. In the parallel case, when employing a single random number stream, different random
numbers will be assigned to different threads depending on timing. Hence, as the memory footprint of
each random number stream is low, we create one random number stream per peer.

Apart from the changes for accessing global variables atomically and the separation of random number
streams, the network model code is identical between the CPU and the parallel GPU-based variants.

5 SIMULATOR EVALUATION

We evaluate the performance of the implementation of the proposed simulator engine with respect to
simulations of Kademlia-based networks by comparing three simulator variants: a GPU-based approach
using the CUDA API for memory access synchronization, a purely GPU-based approach using software-
based synchronization, and an optimized CPU implementation as a baseline. As processing time per event
in the evaluation network model is quite low at about 1µs or less depending on the scenario, a large portion
of simulation time is spent handling the FEL in the sequential variant. Hence, a meaningful comparison
requires an efficient FEL implementation. We used the map container class from the C++ standard library
to implement the FEL, which is the default in the well-known network simulator ns-3. Our test system
contains an NVIDIA GTX 660Ti graphics card with 1344 cores in 7 SMs, allowing us to assign 7168
threads to the purely GPU-based simulator variant (cf. Section 2.2). In the API-based simulator variant,
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Figure 5: Events executed per second of wall-clock time depending on the simulator variant and the amount
of traffic in the simulated network, varying the number of peers in the network.

we measured highest performance for 256 threads per block for any sufficiently large number of blocks.
In our experiments, we used dlinit/256e blocks, linit being the initial number of LPs.

We demonstrate the efficiency of the LP size adaptation mechanism by comparing the runtimes of
simulations using fixed LP sizes with simulations under the adaptation scheme. The performance plots
show averages over three runs per configuration and include 95% confidence intervals.

5.1 Speedup Measurements

Figure 5 shows the average number of events executed per second of wall-clock time, denoted as throughput,
for the three simulator variants depending on the number of peers in the simulated network. We vary the
computational load in the simulation by configuring different amounts of traffic: each peer executes lookups
with a delay in ms drawn from a uniform distribution on [0,dmax] between lookups. With smaller dmax,
the computational load of the simulation increases as more messages are generated per unit of simulated
time. In Figure 5(a), with dmax = 10m, we see that with 65,536 or fewer peers, the throughput of the CPU
simulator is higher than that of both GPU variants. However, with larger network sizes, the throughput
of the CPU variant decreases. Conversely, as we have seen in Section 3, simulations of larger networks
are associated with higher parallelism, achieving larger throughput on the GPU by better utilization of the
GPU’s resources. For a network of 1,048,576 peers, a simulation speedup of 4.3 was achieved by the
API-based GPU variant. With dmax at 1m and 10s, the GPU variant performed better than the CPU variant
in all scenarios. For dmax = 1m, the largest speedup was 13.5 with 1,048,576 peers. With dmax = 10s, the
largest speedup was 19.5 with 524,288 peers, with a throughput of 6.71∗106 events per second.

The event density and in consequence, the amount of simulated time covered by the simulator in a given
amount of wall-clock time, depends on the scenario configuration. With 1,048,576 peers and dmax = 10s,
simulated time progressed at a factor of 0.31 of wall-clock time. At dmax = 60s, the network could be
simulated in real time with a factor of 1.08. At dmax = 10m, about 2265s were simulated in 571s of
wall-clock time, a factor of 3.97. The largest factor measured was 52.93 with 16,384 peers and dmax = 10m.

For the GPU variants, there is a decrease in event throughput for networks of 1,048,576 peers incurred
by the time required for initially populating the simulated peers’ routing tables. Of course, the relative
impact of the initialization phase diminishes for runs covering larger periods of simulated time.

In almost all cases, the API-based GPU variant was more efficient than the purely GPU-based variant.
To determine whether the software-based synchronization itself is more inefficient than API-based synchro-
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Table 1: Percentage of runtime spent on simulation steps for dmax = 10s.

Network Size CPU API-Based GPU Pure GPU
Handle Other MinTs Handle Insert Other MinTs Handle Insert Other

16,384 Peers 29.4% 70.6% 7.4% 52.7% 39.7% 4.7% 2.9% 46.5% 48.1% 0.0%
131,072 Peers 27.5% 72.5% 2.3% 60.1% 36.9% 0.7% 1.4% 45.1% 53.5% 0.0%

1,048,576 Peers 40.0% 60.0% 1.5% 71.4% 26.8% 0.3% 0.3% 36.3% 61.1% 0.2%

nization, or whether the limited number of blocks allowed in the purely GPU-based variant is insufficient to
effectively hide memory access latencies, we configured the same number of threads for both GPU-based
simulator variants and studied the resulting throughput for all network sizes with dmax = 10s. Even though
the throughput of the API-based variant dropped by up to 12.7%, the API-based variant still achieved higher
throughput than the pure variant in almost all cases. Hence, we conclude that in our setup, software-based
memory access synchronization on the GPU is less efficient than API-based synchronization.

Table 1 lists the percentage of runtime spent on the different simulation steps for 16,384, 131,072 and
1,048,576 peers and dmax = 10s. For the CPU-based simulator, we distinguish two steps: event handling
(Handle) and overheads (Other), including, and dominated by, FEL management. For the GPU-based
simulator variants, there are four steps corresponding to the execution procedure described in Section 4.1:
calculation of the smallest global timestamp (MinTs), event handling (Handle), insertion of events into
FELs (Insert), and overheads (Other). While the CPU-based simulator spent 29.4% of its runtime executing
events with 16,384 peers, with 1,048,576 peers, this value increased to 40%. As total runtime increased
from 1134s to 3141s while the number of executed events is constant, we can see that both the processing
time per event as well as the FEL management overhead increased for larger networks. In the GPU-based
simulator, in addition to the benefits of the large number of cores of the GPU, a larger portion of runtime
was spent executing events than was the case for the CPU-based simulator. On the GPU, the results clearly
show the superiority of the API-based variant: while in the purely GPU-based variant, the relative overhead
for inserting events into FELs increases with larger network size, in the API-based variant, a larger portion
of runtime was spent on event execution with larger network sizes. In all cases, finding the global minimum
timestamp comprised only a small portion of the total runtime.

5.2 Optimal Logical Process Size

When assigning only a single peer to each LP, the parallelism of the Kademlia network is fully exploited
so that hundreds or thousands of events can be executed in each round (cf. Section 3). However, overheads
due to idle GPU cores and for event selection increase with larger LP counts. To show that the proposed
simulator successfully balances parallelism and overhead at runtime, Table 2 compares the throughput of
simulation runs with fixed LP size to runs using adaptive LP size. In each run, the LP size was adapted a
single time after initialization of the simulated network. The optimal fixed number of peers per LP varied
between 2 and 16. In general, the lower the traffic in the simulated network and the fewer events there are
per unit of simulated time, the more peers need to be aggregated in each LP to achieve best performance.
In almost all cases, the adaptive simulator implementation was able to select an efficient LP size and hence
closely approximated the largest throughput among the runs with fixed LP size. With 16,384 peers and
dmax = 1m, the adaptive simulator even slightly outperformed the best fixed-LP run. With 1,048,576 peers
and dmax = 10m, however, due to high variance of runtime performance, the chosen LP size achieved only
84.3% of the highest-throughput run. When increasing the duration of each performance measurement
from 105 to 106 events, 97.2% of the highest throughput was achieved. In the simulation run with the
largest throughput of 6.7∗106 events per second, due to the large traffic configured using dmax = 10s, even
more events can be executed in each round than in the configuration used in the critical path analysis of
Section 3. On average, about 15,600 events were executed per simulation round, while achieving an overall
speedup of 19.5. We expect to reduce the remaining gap between the immense parallelism in the network
model and the resulting simulation speedup by the optimizations to the simulator discussed in Section 5.3.
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Table 2: Comparing simulator throughput [106events/s] using fixed-sized and adaptive LPs.
Network Size 16,384 Peers 131,072 Peers 1,048,576 Peers

dmax 10s 1m 10m 10s 1m 10m 10s 1m 10m
2 Peers per LP 3.82 1.58 0.30 6.78 3.31 0.74 5.90 3.27 0.77
4 Peers per LP 3.51 1.61 0.32 6.49 3.98 1.02 5.79 4.18 1.25
8 Peers per LP 2.22 1.29 0.32 4.39 3.87 1.18 4.49 4.50 1.78

16 Peers per LP 1.09 0.81 0.26 2.34 2.59 1.18 2.86 3.50 2.08
Adaptive LP Size 3.51 1.62 0.32 6.48 3.86 1.17 5.77 4.49 1.75

Percentage of Best 91.8% 100.3% 99.4% 95.5% 96.9% 99.0% 97.7% 99.7% 84.3%

5.3 Discussion

While the proposed simulator exposes a large portion of the parallelism of the network model, a number
of challenges remain to be addressed: first, per-LP FELs are represented as ring buffers, incurring time
complexity in O(n) and large memory access overhead when inserting events into FELs, whereas access
to the FEL head is in O(1). Currently, the runtime adaptation of LP size implicitly determines the average
number of events in each FEL so that insertion overhead remains acceptable. We plan to explore the
performance of different data structures when accessed on a per-thread basis on the GPU in our future
work. Second, we have shown that the performance of the purely GPU-based variant of the simulator is
lower than that of the API-based variant. The dynamic parallelism feature of CUDA devices of compute
capability 3.5 allows for synchronization of memory accesses between all threads on the GPU. Hence,
if synchronization using dynamic parallelism is more efficient than API-based synchronization, higher
performance in the purely GPU-based simulator may be feasible. Third, the maximum size of the network
state and FELs is limited by the graphics memory available. Our current execution model allows for a
dynamic resizing of LPs to resolve FEL overflows. For large-scale network simulations, the simulator
could be extended to support multiple GPU devices while incurring some overhead for data transfers
over the PCI-E bus. Finally, the simulation performance depends on properties of the network model: as
graphics memory is optimized for high bandwidth instead of low latency, if there are sequences of scattered
memory accesses during event handling, large numbers of parallel events are required to allow for efficient
hiding of memory access latencies, limiting the benefit of GPU-based simulation for small-scale networks.
Additionally, as all threads of each warp operate in lock-step, heavy branching in the model code depending
on node states will impede performance. Hence, GPU-based simulations of models with large variation in
node behavior, such as state machine models of TCP connections, should be studied in future work.

6 CONCLUSION

In this paper, we proposed a GPU-based simulator enabling substantial runtime reductions for simulations of
large-scale networks. All steps of the simulation are performed on the GPU so that only minimal interaction
between the CPU and GPU execution contexts is required. To balance parallelism and simulation overheads,
the simulator adapts its configuration to the runtime conditions in the simulated network. We compared
two implementations of the simulator based on NVIDIA CUDA: in our experiments, higher performance
was achieved by a variant using the CUDA API for synchronization of memory accesses than when using a
software-based synchronization mechanism on the GPU. An analysis of a widely used peer-to-peer network
protocol showed that thousands of processor cores are necessary to fully exploit the parallelism inherent
in the network. Using a single commodity GPU, the proposed simulator enabled a simulation runtime
reduction by a factor of up to 19.5 compared with an efficient sequential simulator implementation.

Our future work will focus on exploring data structures to reduce event management overhead and on
alternative mechanisms for memory access synchronization.

ACKNOWLEDGEMENT

We acknowledge the valuable work of P. Pfaffe who explored parts of the GPU-based simulator design
space in his diploma thesis.

3481



Andelfinger and Hartenstein

REFERENCES

Andelfinger, P., J. Mittag, and H. Hartenstein. 2011. “GPU-Based Architectures and Their Benefit for
Accurate and Efficient Wireless Network Simulations”. In 19th Int’l Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems (MASCOTS), 2011, 421–424.

Berry, O., and D. Jefferson. 1985. “Critical Path Analysis of Distributed Simulation”. In Proceedings of
the 1985 SCS Multiconference on Distributed Simulation.

Carothers, C. D., R. LaFortune, W. D. Smith, and M. R. Gilder. 2006. “A Case Study in Modeling Large-
Scale Peer-to-Peer File-Sharing Networks Using Discrete-Event Simulation”. In Proceedings of the
International Mediterranean Modeling Multiconference, 617–624.

Dinh, T. T. A., M. Lees, G. Theodoropoulos, and R. Minson. 2008. “Large Scale Distributed Simulation of
P2P Networks”. In 16th Euromicro Conf. on Parallel, Distr. and Network-Based Processing, 499–507.

Jünemann, K., P. Andelfinger, and H. Hartenstein. 2011. “Towards a Basic DHT Service: Analyzing Network
Characteristics of a Widely Deployed DHT”. In Proceedings of the 20th International Conference on
Computer Communications and Networks (ICCCN), 1–7.

Kunz, G., D. Schemmel, J. Gross, and K. Wehrle. 2012. “Multi-Level Parallelism for Time- and Cost-Efficient
Parallel Discrete Event Simulation on GPUs”. In Proceedings of the 26th Workshop on Principles of
Advanced and Distributed Simulation, 23–32.

Li, X., W. Cai, and S. J. Turner. 2013. “GPU Accelerated Three-Stage Execution Model for Event-Parallel
Simulation”. In Proc. of the ACM SIGSIM Conf. on Principles of Advanced Discrete Simulation, 57–66.

Maymounkov, P., and D. Mazières. 2002. “Kademlia: A Peer-to-Peer Information System Based on the
XOR Metric”. In Peer-to-Peer Systems, Volume 2429 of Lecture Notes in Computer Science, 53–65.

Nicol, D. M. 1993. “The Cost of Conservative Synchronization in Parallel Discrete Event Simulations”.
Journal of the ACM 40 (2): 304–333.

NVIDIA Corporation 2013. NVIDIA CUDA C Programming Guide. Version 5.5, NVIDIA Corporation.
Park, A., R. M. Fujimoto, and K. S. Perumalla. 2004. “Conservative Synchronization of Large-Scale

Network Simulations”. In Proc. of the 18th Workshop on Parallel and Distributed Simulation, 153–161.
Park, H., and P. A. Fishwick. 2010. “A GPU-Based Application Framework Supporting Fast Discrete-Event

Simulation”. Simulation 86 (10): 613–628.
Perumalla, K. S. 2006. “Discrete-Event Execution Alternatives on General Purpose Graphical Processing

Units (GPGPUs)”. In Proc. of the 20th Workshop on Principles of Adv. and Distributed Sim., 74–81.
Quinson, M., C. Rosa, and C. Thiery. 2012. “Parallel Simulation of Peer-to-Peer Systems”. In CCGrid

2012 – The 12th IEEE/ACM Int’l Symposium on Cluster, Cloud and Grid Computing, 668–675.
Sengupta, S., M. Harris, and M. Garland. 2008. “Efficient Parallel Scan Algorithms for GPUs”. NVIDIA,

Santa Clara, CA, Tech. Rep. NVR-2008-003 (1): 1–17.
Wenjie, T., Y. Yiping, and Z. Feng. 2013. “An Expansion-Aided Synchronous Conservative Time Manage-

ment Algorithm on GPU”. In Proceedings of the ACM SIGSIM Conference on Principles of Advanced
Discrete Simulation, 367–372.

Xiao, S., and W.-c. Feng. 2010. “Inter-Block GPU Communication via Fast Barrier Synchronization”. In
2010 IEEE International Symposium on Parallel and Distributed Processing (IPDPS), 1–12.

AUTHOR BIOGRAPHIES

PHILIPP ANDELFINGER is a PhD candidate at the Karlsruhe Institute of Technology (KIT), Karlsruhe,
Germany. His research subject is the performance of parallel and distributed simulations of large-scale
computer networks. His email address is philipp.andelfinger@kit.edu.

HANNES HARTENSTEIN is a professor of computer science and a director of the Steinbuch Centre
for Computing at the Karlsruhe Institute of Technology (KIT), Germany. His research interests include
mobile and virtual networks, security, and information technology management. His email address is
hannes.hartenstein@kit.edu.

3482


