
Exploiting the Potential of Standard Convolutional Autoencoders

for Image Restoration by Evolutionary Search

Masanori Suganuma 1 2 Mete Ozay 2 Takayuki Okatani 2 1

Abstract

Researchers have applied deep neural networks to

image restoration tasks, in which they proposed

various network architectures, loss functions, and

training methods. In particular, adversarial train-

ing, which is employed in recent studies, seems

to be a key ingredient to success. In this paper,

we show that simple convolutional autoencoders

(CAEs) built upon only standard network compo-

nents, i.e., convolutional layers and skip connec-

tions, can outperform the state-of-the-art meth-

ods which employ adversarial training and so-

phisticated loss functions. The secret is to search

for good architectures using an evolutionary algo-

rithm. All we did was to train the optimized CAEs

by minimizing the ℓ2 loss between reconstructed

images and their ground truths using the ADAM

optimizer. Our experimental results show that this

approach achieves 27.8 dB peak signal to noise

ratio (PSNR) on the CelebA dataset and 33.3 dB

on the SVHN dataset, compared to 22.8 dB and

19.0 dB provided by the former state-of-the-art

methods, respectively.

1. Introduction

The task of image restoration, which is to recover a clean im-

age from its corrupted version, is usually an ill-posed inverse

problem. In order to resolve or mitigate its ill-posedness,

researchers have incorporated image priors such as edge

statistics (Fattal, 2007), total variation (Perrone & Favaro,

2014), and sparse representation (Aharon et al., 2006; Yang

et al., 2010), which are built on intuition or statistics of

natural images. Recently, learning-based methods which

use convolutional neural networks (CNNs) (LeCun et al.,

1998; Krizhevsky et al., 2012) were introduced to overcome

1RIKEN, Tokyo, Japan 2Tohoku University, Sendai,
Japan. Correspondence to: Masanori Suganuma <sug-
anuma@vision.is.tohoku.ac.jp>.

Proceedings of the 35
th International Conference on Machine

Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

the limitation of these hand-designed or simple priors, and

have significantly improved the state-of-the-art.

In these studies, researchers have approached the problem

mainly from two directions. One is to design new network

architectures and/or new loss functions. The other is to

develop new training methods, such as the employment of

adversarial training (Goodfellow et al., 2014). Later stud-

ies naturally proposed more complicated architectures to

improve the performance of earlier architectures. Mao et

al. (2016) proposed an architecture consisting of a chain

of symmetric convolutional and deconvolutional layers, be-

tween which they added skip connections (Srivastava et al.,

2015; He et al., 2016). Tai et al. (2017) proposed an 80-

layer memory network which contains a recursive unit and

a gate unit. Yang et al. (2017) proposed an image inpainting

framework that uses two networks: one for capturing the

global structure of an image, and one for reducing the dis-

crepancy of texture appearance inside and outside missing

image regions. While many studies employ the ℓ2 distance

between the clean and recovered images, some propose to

use new loss functions such as the perceptual loss to obtain

perceptually better results (Johnson et al., 2016; Ledig et al.,

2017).

There are also studies on the development of new training

methods. A recent trend is to use adversarial training, where

two networks are trained in an adversarial setting; a genera-

tor network is trained to perform image restoration, and a

discriminator network is trained to distinguish whether an

input is a true image or a restored one. The first work em-

ploying this framework for image inpainting is the context

encoder of Pathak et al. (2016). They minimize the sum

of a reconstruction loss over an encoder-decoder network

for restoring intensities of missing pixels and additionally

an adversarial loss over a discriminator network. Iizuka

et al. (2017) proposed an improved framework in which

global and local context discriminators are used to gener-

ate realistic images. While the above studies require the

shapes of missing regions (i.e., masks) for training, Yeh et

al. (2017a) proposed a method which does not need masks

for training. Their method first learns a latent manifold of

clean images by GANs and search for the closest encoding

of a corrupted image to infer missing regions. Despite its

Exploiting the Potential of Standard Convolutional Autoencoders for Image Restoration by Evolutionary Search

success in various application domains, GANs have several

issues, such as difficulty of training (e.g., mode collapse),

difficulty with evaluation of generated samples (Lucic et al.,

2017), and theoretical limitations (Arora et al., 2017).

A question arises from these recent developments: what is

(the most) important of these ingredients, i.e., the design of

network architectures, loss functions, and adversarial train-

ing? In this study, we report that convolutional autoencoders

(CAEs) built only on standard components can outperform

the existing methods on standard benchmark tests of image

restoration. We achieve this by employing an evolutionary

algorithm (Suganuma et al., 2017) to exploit the potential

of standard CAEs, which optimizes the number and size of

filters and connections of each layer along with the total

number of layers. We did not use adversarial training or any

sophisticated loss; all we did was to train the discovered

architecture with the standard ℓ2 loss using the ADAM opti-

mizer (Kingma & Ba, 2015). The contribution of this study

is summarized as follows:

• We show that simple CAEs built upon standard compo-

nents such as convolutional layers and skip connections

can achieve the state-of-the-art performance in image

restoration tasks. Their training is performed by mini-

mization of a standard ℓ2 loss; no adversarial training

or novel hand-designed loss is used.

• We propose to use an evolutionary algorithm to search

for good architectures of the CAEs, where the hyper-

parameters of each layer and connections of the layers

are optimized.

• To the best of our knowledge, this is the first study

of automatic architecture search for image restoration

tasks. Previous studies proposed methods for image

classification and tested them on the task.

2. Related Work

2.1. Deep Learning for Image Restoration

Deep networks have shown good performance on various

image restoration tasks, such as image denoising (Xie et al.,

2012; Zhang. et al., 2017), single image super-resolution

(SISR) (Dong et al., 2014; Ledig et al., 2017), deblurring

and compressive sensing (Xu et al., 2014; Kulkarni et al.,

2016; Mousavi & Baraniuk, 2017), in addition to those

mentioned in Section 1. In particular, recent studies tend to

rely on the framework of GANs (Goodfellow et al., 2014)

for training to improve accuracy or perceptual quality of

restored images, e.g., (Pathak et al., 2016; Yeh et al., 2017a).

2.2. Automatic Design of Network Architectures

Neural networks have been and are being designed manually,

sometimes with a lot of trial and error. Recently, increasing

attention is being paid to automatic design of network ar-

chitectures and hyperparameters (Miikkulainen et al., 2017;

Xie & Yuille, 2017; Liu et al., 2017; Brock et al., 2018; Liu

et al., 2018). The recent studies are roughly divided into

two categories; those based on evolutionary algorithms and

on reinforcement learning.

The employment of evolutionary algorithms for neural ar-

chitecture search has a long history (Schaffer et al., 1992;

Stanley & Miikkulainen, 2002). In the past, the weights

and connections of neural networks are attempted to be

jointly optimized, whereas in recent studies, only architec-

tures are optimized by evolutionary algorithms, and their

weights are left to optimization by SGD and its variants.

Real et al. (2017) showed that evolutionary algorithms

can explore the space of large-scale neural networks, and

achieve competitive performance in standard object clas-

sification datasets, although their method relies on large

computational resources (e.g., a few hundred GPUs and

ten days). Suganuma et al. (2017) proposed a designing

method based on cartesian genetic programming (Miller &

Thomson, 2000), showing that architectural search can be

performed using two GPUs in ten days.

Another approach to neural architecture search is to use

reinforcement learning. There are studies that employ the

REINFORCE algorithm, policy gradient, and Q-learning

to learn network topology (Zoph & Le, 2017; Baker et al.,

2017; Zhong et al., 2017; Zoph et al., 2017). These reinforce-

ment learning-based approaches tend to be computational

resource hungry, e.g., requiring 10-800 GPUs.

In this study, we employ the method of Suganuma et al.

(2017) due to its computational efficiency, although we

think that other recent light-weight methods could also be

employed. As their method was tested only on classification

tasks as in other similar studies, we tailor it to designing

CAEs for image restoration tasks. As will be described, we

confine the search space to symmetric CAEs, by which we

make it possible to design competitive architectures with

a limited amount of computational resource (using 1 to 4

GPUs in a few days).

2.3. Evaluation Methods for Image Restoration

There is a growing tendency that perceptual quality rather

than signal accuracy is employed for evaluation of image

restoration methods (Ledig et al., 2017; Yeh et al., 2017a).

The shared view seems to be that employment of adver-

sarial training and/or sophisticated loss such as the percep-

tual loss tends to deliver sharper and more realistic images,

while their pixel-to-pixel differences (e.g., PSNR) from

Exploiting the Potential of Standard Convolutional Autoencoders for Image Restoration by Evolutionary Search

their ground truths tend not to be smaller (or sometimes

even larger). In this study, however, we stick to the pixel-to-

pixel difference due to the following reasons. First, which

evaluation measure should be used depends on for which

purpose we use these “image restoration” methods. For a

photo-editing software, looking more photo-realistic will be

more important. For the purpose of ‘pure’ image restoration

in which the goal is to predict intensities of missing pixels, it

will be more important that each pixel has a value closer to

its ground truth (see examples of inpainting images of num-

bers in Figure 2). Second, popular quality measures, such

as mean opinion score (MOS), need human raters, and their

values are not easy to reproduce particularly when there

are only small differences between images under compari-

son. Finally, we also note that our method does sometimes

provide sharper images compared to existing methods (see

examples of inpainting images with random pixel masks in

Figure 2).

3. Evolutionary Convolutional Autoencoders

3.1. Search Space of Network Architectures

We consider convolutional autoencoders (CAEs) which are

built only on standard building blocks of ConvNets, i.e.,

convolutional layers with optional downsampling and skip

connections. We further limit our attention to symmetric

CAEs such that their first half (encoder part) is symmetric

to the second half (decoder part). We add a final layer to ob-

tain images of fixed channels (i.e., single-channel grayscale

or three-channel color images) on top of the decoder part,

for which either one or three filters of 3 × 3 size are used.

Therefore, specification of the encoder part of a CAE solely

determines its entire architecture. The encoder part can have

an arbitrary number of convolutional layers up to a specified

maximum. Each convolutional layer can have an arbitrary

number and size of (single-size) filters, and is followed by

ReLU (Nair & Hinton, 2010). Additionally, it can have an

optional skip connection (Srivastava et al., 2015; He et al.,

2016; Mao et al., 2016), which connects the layer to its

mirrored counterpart in the decoder part. To be specific, the

output feature maps (obtained after ReLU) of the layer are

passed to and are element-wise added to the output feature

maps (obtained before ReLU) of the counterpart layer. We

can use additional downsampling after each convolutional

layer depending on tasks; whether to use downsampling is

determined in advance, and thus is not selected by architec-

tural search, as will be explained later.

3.2. Representation of CAE Architectures

Following (Suganuma et al., 2017), we represent architec-

tures of CAEs by directed acyclic graphs defined on a two-

dimensional grid. This graph is optimized by the evolution-

ary algorithm explained below, where the graph is called

idnode 1 2 3
0 0 1 0 4 0 7 1

4
……

M*N+1
9

node type T connection C
(input node id)

Genotype

Phenotype
conv

(64, 1×1)

conv
(64, 3×3)

conv
(128, 5×5)

conv
(256, 3×3)

conv
(128, 1×1)

conv
(256, 5×5)

input output

conv
(64, 5×5)

conv
(64, 1×1)

conv
(256, 5×5)

9 (=M*N)
8

output node

outputinput

5

conv
(64, 3×3)

conv
(128, 1×1)

conv
(256, 5×5)

conv
(256, 5×5)

conv
(128, 1×1)

conv
(64, 3×3)

1

2

3

4

5

6

7

8

9

CAE

Figure 1. An example of a genotype and a phenotype. A phenotype

is a graph representation of a network architecture, and a genotype

encodes a phenotype. They encode only the encoder part of a

CAE, and its decoder part is automatically created so as to be

symmetrical to the encoder part. In this example, the phenotype is

defined on the grid of three rows and three columns.

phenotype, and is encoded by a data structure called geno-

type (Eiben & Smith, 2003).

Phenotype A phenotype is a directed acyclic graph de-

fined on a two-dimensional grid of M rows and N columns;

see Figure.1. Each node of the graph, which is identified

by a unique idnode in the range [1,MN] in a column-major

order of the grid, represents a convolutional layer followed

by a ReLU in a CAE. An edge connecting two nodes rep-

resents the connectivity of the two corresponding layers.

The graph has two additional special nodes called input and

output nodes; the former represents the input layer of the

CAE, and the latter represents the output of the encoder part,

or equivalently the input of the decoder part of the CAE.

As the input of each node is connected to at most one node,

there is a single unique path starting from the input node

and ending at the output node. This unique path identifies

the architecture of the CAE, as shown in the middle row

of Figure 1. Note that nodes depicted in the neighboring

two columns are not necessarily connected. Thus, the CAE

can have different number of layers depending on how their

nodes are connected. Since the maximum number of layers

(of the encoder part) of the CAE is N , the total number of

layers is 2N + 1 including the output layer. In order to con-

trol how the number of layers will be chosen, we introduce a

hyper-parameter called level-back L, such that nodes given

in the n-th column are allowed to be connected from nodes

given in the columns ranging from n−L to n−1. If we use

smaller L, then the resulting CAEs will tend to be deeper.

Genotype A genotype encodes a phenotype, and is manip-

ulated by the evolutionary algorithm. The genotype encod-

ing a phenotype with M rows and N columns has MN + 1

Exploiting the Potential of Standard Convolutional Autoencoders for Image Restoration by Evolutionary Search

genes, each of which represents attributes of a node with

two integers (i.e., type T and connection C). The type T

specifies the number F and size k of filters of the node, and

whether the layer has skip connections or not, by an integer

encoding their combination. The connection C specifies

the node by idnode that is connected to the input of this

node. The last (MN + 1)-st gene represents the output

node, which stores only connection C determining the node

connected to the output node. An example of a genotype is

given at the top row of Figure 1, where F ∈ {64, 128, 256}
and k ∈ {1× 1, 3× 3, 5× 5}.

3.3. Evolutionary Strategy

We use a simple form of the (1 + λ) evolutionary strategy

(Miller & Thomson, 2000) to perform search in the archi-

tecture space. In this strategy, λ children are generated from

a single parent at each generation, and the best performing

child compared to its parent becomes the new parent at the

next generation. The performance of each individual (i.e., a

generated CAE), called fitness, is measured by peak signal

to noise ratio (PSNR) between the restored and ground truth

images evaluated on the validation dataset. The genotype is

updated to maximize the fitness as generation proceeds.

The details are given in Algorithm 1. The algorithm starts

with an initial parent, which is chosen to be a minimal CAE

having a single convolution layer and a single deconvolution

layer.

At each generation, λ children are generated by applying

mutations to the parent (line 5). We use a point mutation

as the genetic operator, where integer values of the type T

and connection C of each gene are randomly changed with

a mutation probability r. If a gene is decided to be changed,

the mutation operator chooses a value at random for each T

and C from their predefined sets.

The generated λ children are individually trained using the

training set. We train each child for I iterations using the

ADAM optimizer (Kingma & Ba, 2015) with learning rate

lr, and a mini-batch size of b (line 6). For the training loss,

we use the mean squared error (MSE) between the restored

images and their ground truths. After the training phase is

completed, the performance of each child is evaluated on

the validation set and is assigned to its fitness value (line

7). Finally, the best individual is selected from the set of

parent and the children, and replaced the parent in the next

generation (line 9− 12). This procedure is repeated for G

generations.

We can obtain a single unique path starting from the input

node and ending at the output node using our representation.

The computed unique path represents the architecture of the

CAE. We call nodes on this path functioning nodes. As some

(in fact, most) of nodes in a phenotype are not functioning

Algorithm 1 Evolutionary strategy for a CAE.

1: Input: G (number of generations), r (mutation proba-

bility), λ (children size), S (Training set), V (Validation

set).

2: Initialization: (i) Generate a parent, (ii) train the

model on the S, and (iii) assign the fitness Fp using

the set V .

3: while generation < G do

4: for i = 1 to λ do

5: childreni ←Mutation(parent, r)

6: modeli ← Train(childreni, S)

7: fitnessi ← Evaluate(modeli, V)

8: end for

9: best← argmax
i=1,2,...,λ {fitnessi}

10: if fitnessbest > Fp then

11: parent← childrenbest

12: Fp ← fitnessbest
13: else

14: parent←Modify(parent, r)

15: end if

16: generation = generation+ 1
17: end while

18: Output: parent (the best architecture of CAEs found

by the evolutionary search).

nodes and do not express the resulting CAE, the mutation

has the possibility of affecting only non-functioning nodes,

i.e., the CAE architecture does not change by the mutation.

In that case, we skip the evaluation of the CAE and apply

the mutation operator repeatedly until the resulting CAE

architecture does change. Moreover, if the fitness values

of the children do not improve, then we modify a parent

(Miller & Thomson, 2000; Miller & Smith, 2006); in this

case, we change only the non-functioning nodes so that the

realized CAE (i.e., functioning nodes) will not change (line

14).

4. Experimental Results

We conducted experiments to test the effectiveness of our

approach. We chose two tasks, image inpainting and denois-

ing.

4.1. Details of Experiments

4.1.1. INPAINTING

We followed the procedures suggested in (Yeh et al., 2017a)

for experimental design. We used three benchmark datasets;

the CelebFaces Attributes Dataset (CelebA) (Liu et al.,

2015), the Stanford Cars Dataset (Cars) (Krause et al., 2013),

and the Street View House Numbers (SVHN) (Netzer et al.,

2011). The CelebA contains 202, 599 images, from which

Exploiting the Potential of Standard Convolutional Autoencoders for Image Restoration by Evolutionary Search

we randomly selected 100, 000, 1,000, and 2,000 images

for training, validation, and test, respectively. All images

were cropped in order to properly contain the entire face,

and resized to 64× 64 pixels. For Cars and SVHN, we used

the provided training and testing split. The images of Cars

were cropped according to the provided bounding boxes,

and resized to 64× 64 pixels. The images of SVHN were

resized to 64× 64 pixels.

We generated images with missing regions of the following

three types: a central square block mask (Center), random

pixel masks such that 80% of all the pixels were randomly

masked (Pixel), and half image masks such that a randomly

chosen vertical or horizontal half of the image was masked

(Half). For the latter two, a mask was randomly generated

for each training minibatch and for each test image.

Considering the nature of this task, we consider CAEs en-

dowed with downsampling. To be specific, the same counts

of downsampling and upsampling with stride = 2 were

employed such that the entire network has a symmetric

hourglass shape. For simplicity, we used a skip connection

and downsampling in an exclusive manner; in other words,

every layer (in the encoder part) employed either a skip

connection or downsampling.

4.1.2. DENOISING

We followed the experimental procedures described in (Mao

et al., 2016; Tai et al., 2017). We used grayscale 300 and

200 images belonging to the BSD500 dataset (Martin et al.,

2001) to generate training and test images, respectively. For

each image, we randomly extracted 64×64 patches, to each

of which Gaussian noise with different σ = 30, 50 and 70
are added. As utilized in the previous studies, we trained a

single model for all different noise levels.

For this task, we used CAE models without downsampling

following the previous studies (Mao et al., 2016; Tai et al.,

2017). We zero-padded the input feature maps computed in

each convolution layer not to change the size of input and

output feature space of the layer.

4.2. Configurations of Architectural Search

For the proposed evolutionary algorithm, we chose the mu-

tation probability as r = 0.1, the number of children as

λ = 4, and the number of generations as G = 250. For

the phenotype, we used the graph with M = 3, N = 20
and level-back L = 5. For the number F and size k of

filters at each layer, we chose them from {64, 128, 256} and

{1 × 1, 3 × 3, 5 × 5}, respectively. During an evolution

process, we trained each CAE for I = 20k iterations with

a mini-batch of size b = 16. We set the learning rate lr of

the ADAM optimizer to be 0.001. Following completion

of the evolution process, we fine-tuned the best CAE using

the training set of images for additional 500k iterations, in

which the learning rate is reduced by a factor of 10 at the

200k and 400k iterations. We then calculated its perfor-

mance using the test set of images. We implemented our

method using PyTorch (Paszke et al., 2017), and performed

the experiments using four P100 GPUs. Execution of the

evolutionary algorithm and the fine-tuning of the best model

took about three days for the inpainting tasks and four days

for the denoising tasks.

4.3. Comparison with Existing Methods

4.3.1. INPAINTING

As mentioned above, we follow the experimental procedure

employed in (Yeh et al., 2017a). In the paper, the authors

reported the performances of their proposed method, Se-

mantic Image Inpainting (SII), and Context Autoencoder

(CE) (Pathak et al., 2016). However, we found that CE can

provide considerably better results than those reported in

(Yeh et al., 2017a) in terms of both PSNR and visual quality.

Thus, we report here PSNR and SSIM values of CE that we

obtained by running the authors’ code1. In order to calculate

SSIM values of SII, which were not reported in (Yeh et al.,

2017a), we run the authors’ code2 for SII.

In order to further validate effectiveness of the evolutionary

search, we evaluate two baseline architectures; one is the

architecture generated by a random search (RANDOM),

and the other is the architecture having the same depth as

the best performing architecture found by our method but

having the constant number (64) of fixed size (3× 3) filters

in each layer with a skip connection (BASE). In the random

search, we generate ten architectures at random in the same

search space, and report the average PSNR and SSIM values

of them. All other experimental setups are the same.

Table 1 shows the PSNR and SSIM values obtained using

five methods on three datasets and three masking patterns.

Our method (i.e., the CAE optimized by the evolutionary

algorithm) is referred as E-CAE. We run the evolutionary al-

gorithm three times, and report the average accuracy values

of the three optimized CAEs. As we can see, our method

outperforms the other four methods for each of the dataset-

mask combinations. It should also be noted that CE and

SII use mask patterns for inference; to be specific, their net-

works estimate only pixel intensities of the missing regions

specified by the provided masks, and then they are merged

with the unmasked regions of clean pixels. Thus, the pixel

intensities of unmasked regions are identical to their ground

truths. On the other hand, our method does not use masks;

it outputs a complete image such that the missing regions

are hopefully inpainted correctly. We then calculate the

1 https://github.com/pathak22/context-encoder
2https://github.com/moodoki/semantic image inpainting

Exploiting the Potential of Standard Convolutional Autoencoders for Image Restoration by Evolutionary Search

Ground
truth

Input

E-CAE

Figure 2. Examples of inpainting results obtained by E-CAE (CAEs designed by the evolutionary algorithm).

Table 1. Inpainting results. Comparison of two baseline architectures (RANDOM and BASE), Context Autoencoder (CE) (Pathak et al.,

2016), Semantic Image Inpainting (SII) (Yeh et al., 2017a), and CAEs designed by our evolutionary algorithm (E-CAE) using three

datasets and three masking patterns.

PSNR SSIM

DATASET TYPE RANDOM BASE CE SII E-CAE RANDOM BASE CE SII E-CAE

CENTER 15.3 27.1 28.5 19.4 29.9 0.740 0.883 0.912 0.907 0.934
CELEBA PIXEL 25.5 27.5 22.9 22.8 27.8 0.766 0.836 0.730 0.710 0.887

HALF 12.7 11.8 19.9 13.7 21.1 0.549 0.604 0.747 0.582 0.771

CENTER 17.1 19.5 19.6 13.5 20.9 0.704 0.767 0.767 0.721 0.846
CARS PIXEL 17.0 19.2 15.6 18.9 19.5 0.533 0.679 0.408 0.412 0.738

HALF 13.0 11.6 14.8 11.1 16.2 0.511 0.541 0.576 0.525 0.610

CENTER 23.5 29.9 16.4 19.0 33.3 0.819 0.895 0.791 0.825 0.953
SVHN PIXEL 29.0 40.1 30.5 33.0 40.4 0.687 0.899 0.888 0.786 0.969

HALF 11.3 12.9 21.6 14.6 24.8 0.574 0.617 0.756 0.702 0.848

Ground
truth

Input

E-CAE

Figure 3. Examples of blurry reconstructions generated by E-CAE.

PSNR of the output image against the ground truth without

identifying missing regions. This difference should favor

CE and SII, and nevertheless our method performs better.

Sample inpainted images obtained by E-CAE along with the

masked inputs, and the ground truths are shown in Figure 2.

As we choose the same images as those used in (Yeh et al.,

2017a), the readers can easily check differences in visual

quality from CE and SII. It is observed overall that E-CAE

performs stably; the output images do not have large errors

for all types of masks. It performs particularly well for

random pixel masks (the middle column of Figure 2); the

images are realistic and sharp. It is also observed that E-

CAE tends to yield less sharp images for images with a filled

region of missing pixels. However, E-CAE can infer their

contents accurately, as shown in the examples of inpainting

images of numbers (the rightmost column of Figure 2); CE

and SII provide either obscure images of numbers which are

difficult to recognize, or sharp images of wrong numbers;

see Figure 18 and 21 of (Yeh et al., 2017b). Figure 3 shows

several examples of difficult cases for E-CAE.

4.3.2. DENOISING

We compare our method with two baseline architectures

(i.e., RANDOM and BASE described in Section 4.3.1) and

two state-of-the-art methods; RED (Mao et al., 2016) and

MemNet (Tai et al., 2017). Table 2 shows PSNR and SSIM

values for three versions of the BSD200 test set with differ-

ent noise levels σ = 30, 50, and 70, where the performance

values of RED and MemNet are obtained from (Tai et al.,

2017). Our method again achieves the best performance for

all cases except a single case (MemNet for σ = 30). It is

worth noting that the networks of RED and MemNet have

30 and 80 layers, respectively, whereas our best CAE has

only 15 layers (including the decoder part and the output

layer), showing that our evolutionary method was able to

find simpler architectures that can provide more accurate

results.

An example of an image recovered by our method is shown

Exploiting the Potential of Standard Convolutional Autoencoders for Image Restoration by Evolutionary Search

Table 2. Denoising results on BSD200. Comparison of results of two baseline architectures (RANDOM and BASE), RED (Mao et al.,

2016), MemNet (Tai et al., 2017), and E-CAE.

PSNR SSIM

NOISE σ RANDOM BASE RED MEMNET E-CAE RANDOM BASE RED MEMNET E-CAE

30 27.25 27.00 27.95 28.04 28.23 0.7491 0.7414 0.8019 0.8053 0.8047
50 25.11 24.88 25.75 25.86 26.17 0.6468 0.6229 0.7167 0.7202 0.7255
70 23.50 23.22 24.37 24.53 24.83 0.5658 0.5349 0.6551 0.6608 0.6636

Ground truthInput E-CAE

Figure 4. Examples of images reconstructed by E-CAE for the

denoising task. The first column shows the input image with noise

level σ = 50.

in Figure 4. As we can see, E-CAE correctly removes the

noise, and produces an image as sharp as the ground truth.

4.4. Analysis of Optimized Architectures

Table 3 shows the top five best performing architectures

designed by our method for the image inpainting task us-

ing center masks on the CelebA dataset and the denoising

task, along with their performances measured on their test

datasets. One of the architectures best performing for each

task is shown in Figure 5. It is observed that although their

overall structures do not look very unique, mostly due to the

limited search space of CAEs, the number and size of filters

are quite different across layers, which are hard to manually

determine. Although it is difficult to give a general inter-

pretation of why the parameters of each layer are chosen,

we can make the following observations: i) regardless of

the tasks, almost all networks have a skip connection at the

first layer, implying that the input images contain essential

information to yield accurate outputs; ii) 1 × 1 convolu-

tion seems to be important ingredients for both tasks; 1× 1
conv. layers dominate the denoising networks, and all the

inpainting networks employ two 1 × 1 conv. layers; iii)

when comparing the inpainting networks with the denoising

networks, we observe the following differences: the largest

filters of size 5× 5 tend to be employed by the former more

often than the latter (2.8 vs 0.8 layers in average), and 1× 1
filters tend to be employed by the former less often than the

latter (2.0 vs. 3.2 layers in average).

4.5. Effects of Parameters of Evolutionary Search

The evolutionary algorithm has several parameters, two of

which, i.e., the mutation probability (r) and the number of

children (λ), tend to have particularly large impact on the

performance of the optimized E-CAEs. Using the center

mask inpainting task on the CelebA dataset, we analyze

their impact in detail in this subsection.

Effect of mutation probability Employment of a larger

mutation probability (r) will change the structures of CAEs

more drastically at each generation, and make the process

of architecture search less stable. On the other hand, a large

mutation probability will contribute to reduce the possibility

of being trapped in local optima. Figure 6 (a) shows the

relation between different mutation probabilities and the

performances of CAEs obtained by using them; their perfor-

mances are calculated on the validation set. It is observed

from the plots that smaller mutation probabilities tend to

deliver lower accuracy at initial generations, but eventually

provide higher accuracy after a sufficient number of gen-

erations are generated. The best result was obtained for

r = 0.1.

Effect of number of children Employment of a larger

number (λ) of children will enable us to perform search in a

wider subspace of the architecture space at each generation,

but at the expense of larger computational cost per gener-

ation. Figure 6 (b) shows the relation between different

λ values (λ = 1, 2, 4, 8, and 16) and the performances of

the optimized CAEs. The best performance is obtained for

λ = 4 using a sufficient number of generations, but there

is not much difference in the final PSNR results obtained

by different number of children. Interestingly, even the evo-

lution performed using λ = 1, which uses the minimum

computational cost per generation, yields a competitive re-

sult. Specifically, it took 1.68 days on one P100 GPU for

training, and achieved PSNR = 29.80 on the test set after

fine-tuning of the model.

5. Conclusion

In this paper, we have first introduced an evolutionary al-

gorithm that searches for good architectures of convolu-

tional autoencoders (CAEs) for image restoration tasks. We

have then shown that the CAEs designed by our algorithm

Exploiting the Potential of Standard Convolutional Autoencoders for Image Restoration by Evolutionary Search

Table 3. Best performing five architectures of E-CAE. C(F, k) indicates that the layer has F filters of size k × k without a skip

connection. CS indicates that the layer has a skip connection. This table shows only the encoder part of CAEs. For the denoising, the

average values of PSNR and SSIM of three noise levels are shown.

Architecture (Inpainting) PSNR SSIM

CS(128, 3)− C(64, 3)− CS(128, 5)− C(128, 1)− CS(256, 5)− C(256, 1)− CS(64, 5) 29.91 0.9344
C(256, 3)− CS(64, 1)− C(128, 3)− CS(256, 5)− CS(64, 1)− C(64, 3)− CS(128, 5) 29.91 0.9343
CS(128, 5)− CS(256, 3)− C(64, 1)− CS(128, 3)− CS(64, 5)− CS(64, 1)− C(128, 5)− C(256, 5) 29.89 0.9334
CS(128, 3)− CS(64, 3)− C(64, 5)− CS(256, 3)− C(128, 3)− CS(128, 5)− CS(64, 1)− CS(64, 1) 29.88 0.9346
CS(64, 1)− C(128, 5)− CS(64, 3)− C(64, 1)− CS(256, 5)− C(128, 5) 29.63 0.9308

Architecture (Denoising) PSNR SSIM

CS(64, 3)− C(64, 1)− C(128, 3)− CS(64, 1)− CS(128, 5)− C(128, 3)− C(64, 1) 26.67 0.7313
CS(64, 5)− CS(256, 1)− C(256, 1)− C(64, 3)− CS(128, 1)− C(64, 3)− CS(128, 1)− C(128, 3) 26.28 0.7113
CS(64, 3)− C(64, 1)− C(128, 3)− CS(64, 1)− CS(128, 5)− C(128, 3)− C(64, 1) 26.28 0.7107
CS(128, 3)− CS(64, 1)− C(64, 3)− C(64, 3)− CS(64, 1)− C(64, 3) 26.20 0.7047
CS(64, 5)− CS(128, 1)− CS(256, 3)− CS(128, 1)− CS(128, 1)− C(64, 1)− CS(64, 3) 26.18 0.7037

Conv
(128, 5)

Conv
(128, 1)

Conv
(256, 5)

Conv
(256, 1)

Conv
(64, 3)

Conv
(128, 3)

Conv
(64, 5)

Deconv
(256, 5)

Deconv
(128, 1)

Deconv
(128, 5)

Deconv
(64, 3)

Deconv
(256, 1)

Deconv
(64, 5)

Deconv
(128, 3)

Deconv
(3, 3)

Conv
(128, 3)

Conv
(64, 1)

Conv
(128, 5)

Conv
(128, 3)

Conv
(64, 1)

Conv
(64, 3)

Conv
(64, 1)

Deconv
(128, 5)

Deconv
(64, 1)

Deconv
(128, 3)

Deconv
(64, 1)

Deconv
(128, 3)

Deconv
(64, 1)

Deconv
(64, 3)

Deconv
(1, 3)

Conv
(128, 5)

Conv
(128, 1)

Conv
(256, 5)

Conv
(256, 1)

Conv
(64, 3)

Conv
(128, 3)

Conv
(64, 5)

Deconv
(256, 5)

Deconv
(128, 1)

Deconv
(128, 5)

Deconv
(64, 3)

Deconv
(256, 1)

Deconv
(64, 5)

Deconv
(128, 3)

Deconv
(3, 3)

Conv
(128, 3)

Conv
(64, 1)

Conv
(128, 5)

Conv
(128, 3)

Conv
(64, 1)

Conv
(64, 3)

Conv
(64, 1)

Deconv
(128, 5)

Deconv
(64, 1)

Deconv
(128, 3)

Deconv
(64, 1)

Deconv
(128, 3)

Deconv
(64, 1)

Deconv
(64, 3)

Deconv
(1, 3)

Figure 5. One of the best performing architectures given in Table 3 for inpainting (upper) and denoising (lower) tasks.

27.7
27.8
27.9
28

28.1
28.2
28.3
28.4
28.5
28.6
28.7
28.8
28.9
29

0 25 50 75 100 125 150 175 200 225 250

0.10
0.25

0.50
0.75
1.00

0.01
0.05

generations

(a) Mutation probability

PS
NR

29.0

28.8

28.6

28.4

28.2

28.0

27.8

PS
NR

0 25 50 75 100 125 150 175 200 225 250
27.7
27.8
27.9
28

28.1
28.2
28.3
28.4
28.5
28.6
28.7
28.8
28.9
29

0 25 50 75 100 125 150 175 200 225 250

λ=1
λ=2
λ=4
λ=8
λ=16

(b) The number of children

generations

29.0

28.8

28.6

28.4

28.2

28.0

27.8

0 25 50 75 100 125 150 175 200 225 250

PS
NR

Figure 6. Improvement of PSNR of E-CAE by increasing number of generations obtained using the evolutionary algorithm for (a) different

mutation probabilities, and (b) different number of children. The center mask inpainting task on the CelebA dataset is used. PSNR is

calculated using the validation set.

outperform the state-of-the-art networks for image inpaint-

ing and denoising, despite the fact that these networks are

built on combination of complicated architectures with very

deep layers, (multiple) hand-designed losses, and adversar-

ial training; our CAEs consist only of standard convolutional

layers with optional skip connections, and they are simply

trained by the ADAM optimizer to minimize standard ℓ2
loss. Although our CAEs have simple architectures, their

space is still very high-dimensional; CAEs can have an ar-

bitrary number of layers, each of which has an arbitrary

number and size of filters as well as whether to use a skip

connection. Our evolutionary algorithm can find good archi-

tectures in this high-dimensional space. This implies that

there is still much room for exploration of search spaces

of architectures of classical convolutional networks, which

may apply to other tasks such as single image colorization

(Zhang et al., 2016), depth estimation (Eigen et al., 2014; Xu

et al., 2017), and optical flow estimation (Ilg et al., 2017).

Exploiting the Potential of Standard Convolutional Autoencoders for Image Restoration by Evolutionary Search

Acknowledgements

This work was partly supported by CREST, JST Grant

Number JPMJCR14D1, and the ImPACT Program “Tough

Robotics Challenge” of the Council for Science, Technol-

ogy, and Innovation (Cabinet Office, Government of Japan).

References

Aharon, M., Elad, M., and Bruckstein, A. k-SVD: An algo-

rithm for designing overcomplete dictionaries for sparse

representation. IEEE Transactions on Signal Processing,

54(11):4311–4322, 2006.

Arora, S., Ge, R., Liang, Y., Ma, T., and Zhang, Y. Gener-

alization and equilibrium in generative adversarial nets

(gans). In ICML, pp. 224–232, 2017.

Baker, B., Gupta, O., Naik, N., and Raskar, R. Designing

neural network architectures using reinforcement learn-

ing. In ICLR, 2017.

Brock, A., Lim, T., Ritchie, J. M., and Weston, N. Smash:

one-shot model architecture search through hypernet-

works. In ICLR, 2018.

Dong, C., Loy, C. C., He, K., and Tang, X. Learning a

deep convolutional network for image super-resolution.

In ECCV, pp. 184–199, 2014.

Eiben, A. E. and Smith, J. E. Introduction to Evolutionary

Computing, volume 53. SpringerVerlag, 2003.

Eigen, D., Puhrsch, C., and Fergus, R. Depth map prediction

from a single image using a multi-scale deep network. In

NIPS, pp. 2366–2374, 2014.

Fattal, R. Image upsampling via imposed edge statistics. In

SIGGRAPH, 2007.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,

Warde-Farley, D., Ozair, S., Courville, A., and Bengio,

Y. Generative adversarial nets. In NIPS, pp. 2672–2680,

2014.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual

learning for image recognition. In CVPR, pp. 770–778,

2016.

Iizuka, S., Simo-Serra, E., and Ishikawa, H. Globally and

locally consistent image completion. In SIGGRAPH, pp.

107:1–107:14, 2017.

Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A.,

and Brox, T. Flownet 2.0: Evolution of optical flow

estimation with deep networks. In CVPR, 2017.

Johnson, J., Alahi, A., and Fei-Fei, L. Perceptual losses for

real-time style transfer and super-resolution. In ECCV,

pp. 694–711, 2016.

Kingma, D. P. and Ba, J. L. Adam: A method for stochastic

optimization. In ICLR, 2015.

Krause, J., Stark, M., Deng, J., and Fei-Fei, L. 3d object

representations for fine-grained categorization. In ICCV

Workshops (ICCVW), pp. 554–561, 2013.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet

classification with deep convolutional neural networks.

In NIPS, pp. 1097–1105, 2012.

Kulkarni, K., Lohit, S., Turaga, P., Kerviche, R., and Ashok,

A. Reconnet: Non-iterative reconstruction of images

from compressively sensed measurements. In CVPR, pp.

449–458, 2016.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 86(11):2278–2324, 1998.

Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham,

A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang,

Z., et al. Photo-realistic single image super-resolution

using a generative adversarial network. In CVPR, pp.

4681–4690, 2017.

Liu, C., Zoph, B., Shlens, J., Hua, W., Li, L., Fei-Fei, L.,

Yuille, A., Huang, J., and Murphy, K. Progressive neural

architecture search. arXiv:1712.00559, 2017.

Liu, H., Simonyan, K., Vinyals, O., Fernando, C., and

Kavukcuoglu, K. Hierarchical representations for ef-

ficient architecture search. In ICLR, 2018.

Liu, Z., Luo, P., Wang, X., and Tang, X. Deep learning face

attributes in the wild. In ICCV, pp. 3730–3738, 2015.

Lucic, M., Kurach, K., Michalski, M., Gelly, S., and Bous-

quet, O. Are gans created equal? a large-scale study.

arXiv:1711.10337, 2017.

Mao, X., Shen, C., and Yang, Y. Image restoration using

very deep convolutional encoder-decoder networks with

symmetric skip connections. In NIPS, pp. 2802–2810,

2016.

Martin, D., Fowlkes, C., Tal, D., and Malik, J. A database

of human segmented natural images and its application

to evaluating segmentation algorithms and measuring

ecological statistics. In ICCV, pp. 416–423, 2001.

Miikkulainen, R., Liang, J. Z., Meyerson, E., Rawal, A.,

Fink, D., Francon, O., Raju, B., Shahrzad, H., Navruzyan,

A., Duffy, N., and Hodjat, B. Evolving deep neural net-

works. In GECCO, 2017.

Miller, J. F. and Smith, S. L. Redundancy and computational

efficiency in cartesian genetic programming. IEEE Trans-

actions on Evolutionary Computation, 10(2):167–174,

2006.

Exploiting the Potential of Standard Convolutional Autoencoders for Image Restoration by Evolutionary Search

Miller, J. F. and Thomson, P. Cartesian genetic program-

ming. In EuroGP, pp. 121–132, 2000.

Mousavi, A. and Baraniuk, R. G. Learning to invert: Signal

recovery via deep convolutional networks. In ICASSP,

pp. 2272–2276, 2017.

Nair, V. and Hinton, G. E. Rectified linear units improve

restricted boltzmann machines. In ICML, pp. 807–814,

2010.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B.,

and Ng, A. Y. Reading digits in natural images with

unsupervised feature learning. In NIPS workshop on

deep learning and unsupervised feature learning, 2011.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,

DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,

A. Automatic differentiation in pytorch. In NIPS Work-

shop, 2017.

Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., and

Efros, A. A. Context encoders: Feature learning by in-

painting. In CVPR, pp. 2536–2544, 2016.

Perrone, D. and Favaro, P. Total variation blind deconvolu-

tion: The devil is in the details. In CVPR, pp. 2909–2916,

2014.

Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y. L.,

Tan, J., Le, Q. V., and Kurakin, A. Large-scale evolution

of image classifiers. In ICML, pp. 2902–2911, 2017.

Schaffer, J. D., Whitley, D., and Eshelman, L. J. Combina-

tions of genetic algorithms and neural networks: A survey

of the state of the art. In COGANN, pp. 1–37, 1992.

Srivastava, R. K., Greff, K., and Schmidhuber, J. Training

very deep networks. In NIPS, pp. 2377–2385, 2015.

Stanley, K. O. and Miikkulainen, R. Evolving neural net-

works through augmenting topologies. Evolutionary Com-

putation, 10(2):99–127, 2002.

Suganuma, M., Shirakawa, S., and Nagao, T. A genetic

programming approach to designing convolutional neural

network architectures. In GECCO, pp. 497–504, 2017.

Tai, Y., Yang, J., Liu, X., and Xu, C. Memnet: A persistent

memory network for image restoration. In CVPR, pp.

4539–4547, 2017.

Xie, J., Xu, L., and Chen, E. Image denoising and inpainting

with deep neural networks. In NIPS, pp. 341–349, 2012.

Xie, L. and Yuille, A. L. Genetic CNN. In ICCV, pp.

1379–1388, 2017.

Xu, D., Ricci, E., Ouyang, W., Wang, X., and Sebe, N.

Multi-scale continuous crfs as sequential deep networks

for monocular depth estimation. In CVPR, pp. 5354–5362,

2017.

Xu, L., Ren, J. S., Liu, C., and Jia, J. Deep convolutional

neural network for image deconvolution. In NIPS, pp.

1790–1798, 2014.

Yang, C., Lu, X., Lin, Z., Shechtman, E., Wang, O., and Li,

H. High-resolution image inpainting using multi-scale

neural patch synthesis. In CVPR, pp. 6721–6729, 2017.

Yang, J., Wright, J., Huang, T. S., and Ma, Y. Image super-

resolution via sparse representation. IEEE transactions

on Image Processing, 19(11):2861–2873, 2010.

Yeh, R. A., Chen, C., Lim, T. Y., Schwing, A. G., Hasegawa-

Johnson, M., and Do, M. N. Semantic image inpainting

with deep generative models. In CVPR, pp. 5485–5493,

2017a.

Yeh, R. A., Chen, C., Lim, T. Y., Schwing, A. G., Hasegawa-

Johnson, M., and Do, M. N. Semantic image inpaint-

ing with deep generative models. arXiv:1607.07539v3,

2017b.

Zhang., K., Zuo, W., Chen, Y., Meng, D., and Zhang, L.

Beyond a gaussian denoiser: Residual learning of deep

cnn for image denoising. IEEE Transactions on Image

Processing, 26(7):3142–3155, 2017.

Zhang, R., Isola, P., and Efros, A. A. Colorful image col-

orization. In ECCV, pp. 649–666, 2016.

Zhong, Z., Yan, J., and Liu, C. Practical network blocks

design with Q-Learning. In arXiv: 1708.05552, 2017.

Zoph, B. and Le, Q. V. Neural architecture search with

reinforcement learning. In ICLR, 2017.

Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. Learning

transferable architectures for scalable image recognition.

arXiv:1707.07012, 2017.

