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Notation

Here we report the notations mostly used throughout this document.

M the number of processors.

N the number of tasks in the task set.

T the task set.

Utot the total utilization of the task set.

Umax the maximum utilization of the task set.

λtot the total density of the task set.

λmax the maximum density of the task set.

τi the ith task.

Ci the computation time of τi.

Ti the period (or minimum interarrival time) of τi.

Di the relative deadline of τi.

Λi the minimum between period and deadline, for task τi.

Ui the utilization of τi.

λi the density of τi.

Si the lower bound on the slack of τi.

Λi the same as Λi, but corrected with Si.

τ j
i the jth job of τi.

rj
i the release time of τ j

i .

dj
i the absolute deadline of τ j

i

f j
i the finish time of τ j

i

lji the laxity of τ j
i .

Ik(a, b) the interference suffered by τk in [a, b).

Ii
k(a, b) the interference suffered by τk due to τi in [a, b).

βi
k(()b − a) an upper bound on Ii

k(a, b)

Ni the number of jobs of τi in the part of βi
k(()b − a) called

body.

εi an upper bound on the part of βi
k(()b− a) called carry-in

of τi.

xiii



xiv NOTATION

DBF(τi, t) the demand bound function of τi in an interval of length
t.

δsum the load bound function of τi.

md(τi, t) the maxmin demand of τi in an interval of length t.

mℓ(T ) the maxmin load of τi.

mi the integrity requirement of τi.

FT the fault-tolerant mode.

FS the fail-silent mode.

NF the non-fault-tolerant mode.

Tm the subset of tasks requiring mode m.

Om the overhead to switch out of mode m.

P the period of the switch among all the modes.

Qm the length of the time slot dedicated to mode m.

Qsm the length of the time slot dedicated to mode m, decreased
by the overhead Om.

∆m the maximum delay suffered by mode m.

αm the rate provided to mode m.

Zm(t) the supply function of mode m in an interval of length t
(not in Appendix A).

Zm(t, t0) the supply function of mode m in [t0, t0 + t) (only in Ap-
pendix A).

minZm(t) the minimum supply function of mode m in an interval of
length t(only in Appendix A).

maxZm(t) the maximum supply function of mode m in an interval
of length t(only in Appendix A).



CHAPTER 1

Introduction

1. Technology invasion

Imagine the end of your working day. You turn off your laptop, while the
desktop will continue working on heavy simulations through the whole night.
After wearing your MP3 reader you walk to the bus stop. In the bus to the
railway station, the display shows the news of the day. At the railway station
the queue for the ticket is long, but you’re lucky, there are several automatic
ticket machines, so you can call home with your mobile, and inform you’ll
be there for dinner. The train departs, and after a while the voice of the
speaker announces your stop. You get off, reach your car, and drive to
your home listening the radio. Your GPS helps you in avoiding road works
and the relative queue, and you reach home in time for dinner. Thanks to
fridge, oven, and a bit of handiwork things are quickly on the table. Ready
to eat... and you stop... what an amazing amount of computations brought
you there?

The need for performance. In our everyday life, we are more and more
surrounded by electronics, in every possible aspect of life, technology is
breaking through. Moreover, electronic equipments are continually asked
for new services and new capabilities. The example of automotive is clar-
ifying: in only a few years, we assisted to the introduction of several new
improved services, such as ABS (Anti-lock Braking System), EBD (Elec-
tronic Brake-force Distribution), ASR (Acceleration Slip Regulation), ESP
(Electronic Stability Program) and AESP (Adaptive ESP), EPS (Electronic
Power Steering) and other X-by-wire services.

How can we provide all the required computation? We could think to
design new, improved, faster, powerful processors. But some problems arise:

• designing a new processor is a long and difficult task; we can clearly
modify a previous architecture, which ease the work, but important
problems remain, such as the testing phase;
• due to the time required to project, build and test the new pro-

cessor, time-to-market increases; this is absolutely not acceptable,
considering the speed at which in any technology related field new
products are proposed;
• new and faster processors are more subjects to faults than older

one; among the reasons we underline that an older processor has
surely been tested not only in the classical testing phase, but also on
the field, in months and years of use; as a consequence, problems of
such processors are known, and the designer can take care of them;
this is clearly not true for newer processors.

1



2 1. INTRODUCTION

There is another solution, which allows to use older processors and pro-
vide nevertheless the huge amount of computational power required by the
market: multiprocessors.

The need for integrity. Another important factor has to be taken in
mind: since electronics influences all aspects of our life, we are every day
more dependent to it. We particularly refer to “necessary” services, such as
safety critical aspects in automotive, medical or space applications, but it is
exactly the same with services usually considered less important: a faulty
fridge or wash machine can create serious problems, even if it probably
does not endanger the user. As a consequence, together with an increase in
computational power, also an increase in integrity guarantees is required.

Unfortunately, in this regard the single processor approach has a major
problem. Increases in speed and computational power are obtained essen-
tially through technology scaling, which is based on the shrink of several
physical characteristics of the processors. Considering, as example, the
lower voltage levels, it is clearly easier an undesired switch from a level
to another. The obvious consequence is that newer processors become more
prone to faults and soft errors, which is exactly the contrary of what the
market requires.

Again, using older processors would be much better, because of their
lower probability to faults. And so, again, multiprocessors are an effective
solution to provide higher performance and higher integrity. Moreover, mul-
tiprocessors can be used to provide additional integrity to the applications:
we can easily implement the concept of space replication, often used as a base
for fault-tolerance, by executing the same computation on more than one
processors and comparing the results. This approach to fault-tolerance is
clearly impossible on single processor platforms (although other techniques,
such as time replication, can clearly be adopted).

The need for control. Multiprocessors can provide the necessary amount
of computational power to any application. In this sense, in fact, it is suffi-
cient to add processors to reach any desired amount of computational power.
However, the problem we face is that controlling such a power is much more
difficult than controlling an equivalent single processor. Liu [Liu69] ob-
served that “few of the results obtained for a single processor generalize di-
rectly to the multiple processor case: bringing in additional processors adds
a new dimension to the scheduling problem. The simple fact that a task can
use only one processor even when several processors are free at the same
time adds a surprising amount of difficulty to the scheduling of multiple
processors”.

This is particularly true in safety critical fields, such as in automotive,
medical and space applications. In these fields, in fact, together with clas-
sical requirements such as performance, integrity and correctness, we have
another set of requirements to fulfill: time constraints. In such fields, one
of the main duties of the application is the control subsystem, which clearly
must react to changes in the environment within a certain time, otherwise
the result is not only useless but potentially catastrophic. This is the key
concept of a real-time system.
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Unfortunately, if controlling a set of processors conflicting for bus access
and shared resources is difficult, controlling them within certain prefixed
time is even worse, also considering the fact that a complete theory in this
field is still missing. For this reason, we believe research concerning the use
of multiprocessor platforms in real-time systems is a necessary step to be
done in the present and the near future. This thesis is completely dedicated
to this goal.

1.1. Multiprocessors and the market. The interest for multipro-
cessors is not only theoretical. In the last decade, an increasing number of
multi-core systems has been proposed in the embedded system domain as
well as in the high level computing market. The major hardware providers
are already developing the second generation of multi-processor chips, and
are spending a considerable amount of resources in the research for next-
generation parallel architectures.

The integration of multiple processors on a single chip constitutes one
of the most important innovations in the design and development of embed-
ded real-time systems. This is the solution adopted by, for instance, Texas
Instruments’s OMAP [Ins], NXP’s Nexperia [NXP], STMicroelectronics’s
Nomadik [STM], ARM’s MPCore [ARM], Sony-IBM-Toshiba’s Cell [Son],
and many others.

Moreover, FPGA based solutions, such as Altera’s Stratix [Alt] allow
to customize the hardware organization of the system. The developer can
choose the number of CPU cores, the buses and their connections to the
memory and peripherals. Some researchers have recently proposed hard-
ware implementations of some parts of the operating system [LSF, Fur00,
AB04, WA02, KSM03].

From the Real-Time community perspective, this kind of platforms rep-
resents an interesting workbench upon which validate the scheduling theory
for multi-processor systems.

2. Real-time systems

Real-time systems are nowadays widespread and present in a wide vari-
ety of fields, such as control systems, avionic and automotive applications,
environmental monitoring. Despite this fact, a clear and unified definition of
real-time system does not exist. A good definition, proposed by Alan Burns
and Andy Wellings in [BW01], is the following: “A real-time system is any
information processing system which has to respond to externally generated
input stimuli within a finite and specified period: the correctness depends not
only on the logical result but also on the time it was delivered; the failure to
respond is as bad as the wrong response”.

Whatever definition we consider, the key point of any real-time system
is predictability. In fact, since the correctness of results strictly depends on
the time they are delivered, it is essential to be able to guarantee that results
are produced within a certain and known time instant. In other words, the
system designer must be able to predict, at least in part, the evolution of
the system.
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Figure 1.1. Example of task, job and related parameters.

Clearly guarantees can be given only within a certain range of precision,
due to a series of events which are unpredictable by their nature. Exam-
ples are interrupts or cache and memory accesses. As a consequence, the
approach to the analysis of such systems is usually extremely pessimistic,
and guarantees are given in the worst-case, while the average case loses
importance.

2.1. Model. In order to allow the designer to analyze the system, it is
necessary to adopt a clear model for the application we want to describe.
Since at this level what is important is the time analysis, the model must
focalize essentially, if not solely, on timing aspects. As a consequence, func-
tional aspects are not taken into account.

The model should be based on two opposite requirements:

• it should be rich enough to be able to describe correctly and with a
sufficient degree of completeness the real world and the applications
it is required to model;
• it should be easy enough to allow to fully analyze it and give reliable

guarantees.

Meeting these two goals at the same time is quite hard. For this rea-
son usually the second requirement is favored, while several aspects of real
applications are not considered or hidden in gross overestimations and ap-
proximations.

In what follows, we introduce the main characteristics of the model we
adopt throughout this thesis. To help the understanding, we graphically
represent the parameters in Figure 1.1. However, in each chapter the model
will be repeated and integrated with other useful concepts.

Tasks. A real-time application is considered to be composed of a set T of
N real-time tasks τi, each of them composed of composed of base computa-
tions, called jobs, repeated from time to time. Each task is represented by
a set of parameters, briefly introduced below.

The computation time Ci of a task (also called execution time) represents
the time necessary to completely execute the task code. Since in general the
code includes cycles, conditional structures and different paths to follow,
the time necessary to complete is not fixed, and depends on a wide variety
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of factors. As a consequence, usually Ci represents the worst-case compu-
tation time. If preemptions are allowed (see Section 3.5) the code can be
interrupted and successively restarted, as is for job τ3

i in the figure.
Another important parameter is the period. In classical fields of appli-

cation of real-time systems, several parts of the application are required to
re-execute periodically. We could think, for example, to control systems, in
which the sensor reading or the control algorithm have to be repeated at
fixed time instants or with a fixed time interval between two consecutive
executions. This concept is included in parameter Ti, which represents the
period. In some cases, the period between two consecutive activations is not
fixed, only bounded from below. In such a case Ti represents the minimum
interarrival time, and the system is usually called sporadic. In the figure, τ2

i

is released exactly Ti time instants after τ1
i , while τ3

i is released later than
Ti time instants after τ2

i .
A third very important aspect is the time instant within which the task

must be completed. Parameter Di, called relative deadline, represents the
maximum acceptable distance between the task activation and the end of
the computation. The deadline Di can be smaller or greater than Ti (as
discussed in Section 3.4).

From the definitions, it is clear that Ci ≤ Di and Ci ≤ Ti, because in
the other case, the system could never complete all its executions in time.

Finally, from the above parameters, we can extract the utilization Ui of
the task, computed as Ui = Ci

Ti
, that gives an idea of the fraction of processor

that the task requires. The total utilization Utot, obtained by summing the
utilization of all the tasks, is a good estimation of the amount of computation
that the processor(s) should execute in order to meet all the requirements.

Jobs. Since a task is usually activated several times, with a periodic or
sporadic behavior, it does make sense to define separately the single activa-
tion and briefly introduce its parameters. We call each activation a job of

the task, and we use the symbol τ j
i to indicate job j of task i (or simply

Jk, if the task is not important). Moreover we use rj
i to identify the release

time, that is the time instant at which the jth activation of task i happens.
From this, and the relative deadline of the task, we obtain the absolute

deadline rj
i + Di = dj

i , which represents to time instant before which the

execution of the job must be completed. In the interval [rj
i , d

j
i ), the job must

be guaranteed to execute for at least Ci, the computation time of the task.

f j
i , usually called finish time, represents the time instant at which the job

actually completes its execution. It must be guaranteed that for each job

τ j
i of each task τi, f j

i ≤ dj
i . A job is said to be ready in the whole interval

[rj
i , f

j
i ), and by extension, a task is ready (or backlogged) whenever it has a

ready job.

2.2. Algorithms. In order to give any guarantees in a real-time sys-
tem, it is mandatory to have an high degree of control over the order in
which tasks are assigned to processor(s) for execution (in one word, sched-
uled). Classical scheduling algorithms for general purpose systems are First
In First Out (FIFO, which executes tasks in order of their arrival time) and
Round Robin (RR, which executes each task for a fixed amount of time
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before switching to the next one in a “round way”). Unfortunately, these
algorithms are not well-suited for real-time applications, meaning that they
are often not able to meet the real-time constraints required by the appli-
cation. This aspect of the problem has been deeply analyzed, and several
different scheduling algorithms have been proposed. Here we give a short
introduction on some of them that have a special importance in research
and for this thesis.

Generalized Processor Sharing (GPS). The idea is to assign each
ready job, in every time instant a share of the processor(s) equal to its
utilization. This is only a theoretical algorithm, since it is clearly impossible
to assign the same processor to more than one job in the same time instant.
However, it is an interesting algorithm for comparison reasons, since it is
able to obtain maximum utilization of the processors.

Fixed Priority (FP). Under FP, tasks are assigned offline a certain pri-
ority level, and each job of the task acquires the same priority. In every
time instant the jobs executed are the ones, among the ready jobs, with the
higher priority. The implementation of this algorithm is extremely simple,
and it is easy to analyze it and so give real-time guarantees. Its drawback is
that it is not able to guarantee full utilization, neither in single processors,
nor in multiprocessors.

Earliest Deadline First (EDF). Under EDF, the order of execution
does not depend on the tasks but directly on the jobs. In fact, once the
absolute deadline of ready jobs is known, the scheduling algorithm selects for
execution the jobs with the earliest deadline. The idea behind this algorithm
is clear: if job J1 has deadline before J2, it is more urgent to execute J1. This
algorithm, maintaining easy implementation and analysis, has also a very
good utilization bound on single processors (actually, under some hypothesis
it is known to be optimal, meaning that under such hypothesis it is able to
schedule every task set for which a correct schedule exists). Unfortunately,
this good behavior is not maintained moving to multiprocessor platforms,
due to anomalies that arise in the presence of more than one processor.

Earliest Deadline Zero Laxity (EDZL). Taking the lead from EDF,
but trying to improve its behavior on multiprocessor platform, the EDZL
algorithm is identical to EDF apart from one additional rule: whenever a
job reaches a critical instant, it is scheduled for execution despite the fact
that its deadline is not among the earliest ones. The formal definition is
not important for now, and is delayed to Chapter 2, where the algorithm
is analyzed. For now it is only important to underline that EDZL, at the
price of a slightly more complex implementation, and some tricky aspects
in the analysis, is able to provide great improvements in the behavior on
multiprocessor platforms.

Hybrid algorithms. We group under this name a series of scheduling
policies based on a mix of the characteristics of EDF and FP. The key idea
is to give some tasks maximum priority (executing them them as in FP)
and schedule the rest of the tasks as under EDF. The way the tasks to be
executed at high priority are chosen, generates a variety of slightly different
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algorithms. One example is EDF-US, where “US” means Utilization Sepa-
ration, in which a utilization threshold is given, and tasks with utilization
higher than the threshold are given higher priority. Another version uses
the density λi = Ci

min(Di,Ti)
, which represents a sort of upper bound on the

amount of computation that a task can require in an interval. The algo-
rithm takes the name of EDF-DS (Density Separation). A more interesting
approach is EDF-UM (Utilization Monotonic), proposed in [GFB03] under
the name PriD. The idea is easy: order tasks by utilization, and schedule the
first k tasks with high priority, and the rest using EDF. What is interesting
is the way k is chosen: k ∈ [0,M − 1] is the minimum value (if exists) such
that the remaining N − k lower utilization tasks can be scheduled on M − k
processors. In the worst-case, this algorithm supposes to assign to not more
than M − 1 tasks, one processor each, and schedules the rest of the tasks
on the rest of the processors. Due to its high degree of freedom in choosing
k, EDF-UM performs better than other similar algorithms. EDF-UM was
proposed for implicit deadlines systems, where Ti = Di, and so utilization
and density are the same. For arbitrary deadlines systems, a better ap-
proach is EDF-DM (Density Monotonic), that uses density at the place of
utilization. Since EDF-DM was shown to be best performer among several
global scheduling algorithms [Bak06b], it must be taken into account as a
term of comparison for other global scheduling algorithms.

Proportionate fair (Pfair). More than an algorithm, this is a class of
algorithms which are all based on the same key idea: fairness. Other al-
gorithms guarantee that in the long term each task occupies a share of the
processor(s) equal to its utilization. However, if we consider the short pe-
riod, the share of processor granted to one task can be extremely different
from its utilization. It can happen that light tasks (i.e. tasks with low
utilization) are granted 100% of the processor while heavy tasks (i.e. task
with high utilization) cannot execute at all. The idea under Pfair is to try to
grant a fair utilization of the processors in the short term as in the long term.
This approach allows Pfair algorithm to reach utilization bound unreachable
by other algorithms (and in particular the ones described above). However,
they pay this good behavior with a very complex analysis, and extreme im-
plementation problems (we are not aware of any working implementation,
so far). Two well-known problems are processors synchronization and very
high number of preemptions. It must be said, though, that while EDF, un-
der certain hypothesis is optimal on single processors but loses optimality
on multiprocessors, some Pfair algorithm is optimal on multiprocessors un-
der the very same hypothesis. This algorithm will be not considered in the
rest of this thesis: it has been shortly introduced here only for the sake of
completeness, due to the theoretical importance of such an algorithm.

2.3. Schedulability and feasibility. In order to provide the required
guarantees, it is necessary to develop analysis techniques, which, based on
the task set and platform parameters, are able to answer to a simple ques-
tion: will the task set execute without missing any deadline?.

If the answer refers to a specific scheduling algorithm, the problem under
consideration is usually called schedulability analysis. Instead, if we don’t
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focalize on any specific algorithm, but we refer to the simple fact that there
is (or not) a way to execute all the tasks within their deadlines, the problem
goes under the name of feasibility analysis. The following definitions capture
the difference between the two problems.

Definition 2.1. A real-time task set T is said to be schedulable on a
given hardware platform by a certain scheduling algorithm A if, for every
possible pattern of releases of jobs, once decisions on tasks to be executed
are taken basing on the rules of A, each job of each task completes before
its deadline.

Definition 2.2. A real-time task set T is said to be feasible on a given
hardware platform, for every possible pattern of releases of jobs, there exists
a scheduling algorithm A such that, once decisions on tasks to be executed
are taken basing on the rules of A, each job of each task completes before
its deadline.

The reference to all the possible release patterns is necessary to take
into account sporadic task systems, for which release times are not known
in advance. In such a case, we are interested in the behavior of the system
whatever happens at runtime, that is, for every possible release pattern.

Both problems are important for different reasons. It is clearly funda-
mental to study what a scheduling algorithm A is capable of, and in par-
ticular the guarantees it is able to provide. However, what is important is
not what A can do among all possible task sets, but what it can do among
all task sets for which a solution do exist. In this, feasibility analysis is
essential.

For both problems, the best solution would be a necessary and sufficient
test, that is a test which is able to give a clear answer in any case. Un-
fortunately, such analysis is usually very difficult or very long to complete.
For this reason it is common to find either only sufficient or only necessary
tests. In particular, the feasibility problem is usually solved by only nec-
essary tests which answer to the question “Is there an algorithm A that
correctly schedules the task set?”, with “No” or “Maybe yes”, but are not
able to give any information about the characteristics of A.

Instead, for the schedulability problem, what is generally proposed is
an only sufficient schedulability test, whose response to the question “Is
the task set schedulable by A?” is either “Yes” or “Maybe not”. Clearly,
since real-time systems need to be predictable, “Maybe not” is considered
perfectly equivalent to “No”.

There is another approach to the schedulability problem which is worth
to remember here: utilization and density bounds. The idea is to search,
for a certain scheduling algorithm A, what is the minimum value for the
total utilization or (density, in some cases) of the system for which we can
construct a non schedulable task set. If we are able to find such a bound,
we can claim that every task set with lower utilization is schedulable by A.
Utilization bounds can be useful for comparison reason, because one can have
an idea of what to expect from an algorithm of class of algorithms. However,
it must be said that non schedulable task sets used to prove the bounds are
often very special cases, which does not represent correctly the reality. For
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this reason the comparison should be done with care. In Section 3.7 we
consider again this problem and we present some known utilization bounds
for some classes of algorithms.

The difference between schedulability tests and utilization bounds is that
usually schedulability tests require much more information on the task set
parameters, but are able to provide a positive answer for a larger set of task
sets. However, schedulability tests and utilization bounds are in general
incomparable, meaning that there exist task sets for which the first provides
a positive answer while the second is negative, and vice versa. For this
reason the best approach is probably to mix them in the analysis.

3. Taxonomy

Several distinctive aspects can be considered in order to classify real-
time systems based on multiprocessor platforms. In what follow, we propose
some key elements and a short taxonomy derived based on them. Note that
some distinctions refer to base concepts of real-time systems, and are for
both single and multiprocessors, while some others are strictly related to
multiprocessor platforms.

We underline also that, together with the parameters proposed below,
it would be possible to classify real-time systems and tasks based on several
other aspects (jitter and/or offset are only examples). In what follows, we
prefer to consider only the most important aspects, or the ones that actually
influence this thesis.

3.1. Hardware. A first classification among real-time systems on mul-
tiprocessor platforms can be done considering the hardware selection, and
in particular the processors composing the platform. We can so distinguish
among

• identical multiprocessors: each processor is exactly identical to the
others; as a consequence, there is no difference in capabilities, or
in execution time required by tasks, so in principle each task can
be scheduled on any processor without distinction; at the moment,
this typology is by far the most considered in research, because
of its simplicity with respect to the other solutions; for this rea-
son, research related to identical multiprocessors is extremely vast
(see for example [Bak05, Bak06a, GFB03, BCL05a, BCL05b,
LGDG03, LDG04, BCPV96]);
• uniform multiprocessors: processors are identical, with the only

exception of the speed, represented by a parameter si; tasks can
execute on any processor, and the execution time is scaled de-
pending on the processor speed; examples of research in this field
are [Bar01, FGB01, AT07];
• heterogeneous multiprocessors: the set of processors includes cores

with different capabilities and different speeds; as consequence,
tasks can or cannot be executed on some cores; examples of such a
platform could be one that integrates a general purpose processor
and a DSP (digital signal processor) or a graphical coprocessor; due
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to their complexity, these platform are not yet considered enough
in research; we can cite for example [Bar04b, Bar04a].

In this thesis, we deeply focalize on identical multiprocessors.

3.2. Scheduling algorithms. Whenever more than one processor can
physically execute the same task, it is important to establish the link between
tasks and processors. This problem influences the characteristics of the
scheduling algorithm, and allows to divide among three classes of algorithms:
global, job-partitioned and task-partitioned algorithms.

Global algorithms are based on the idea that a task can migrate among
the processors, and so execute on different processors in different time in-
stants. For this reason, this class of algorithms is also known as of al-
gorithms with migration. In practice, all the jobs are queued in a single
global queue, and then extracted to be executed on any of the idle pro-
cessors. The possibility to migrate from a processor to another becomes
interesting when a job of a task is preempted by some higher priority job.
In such a situation, whenever a processor becomes idle, the preempted job
can restart executing on a different processor, instead of waiting for the
original processor to complete the higher priority job. Works in this field
consider for example classical single processor algorithms extended to multi-
processors, such as EDF-global [Bak03, Bak05, GFB03, BCL05a], and
FP-global [Bak03, Bak06a, BCL05b, ABJ01], together with algorithms
specifically designed for multiprocessors, such as EDZL [CLAL02, CB07]
or the Pfair class of algorithms [BCPV96, AS99, AS04b]. The suffix
“-global” is usually avoided, whenever it is clear that the algorithm we are
referring is the global version of a relative classical single processor algo-
rithm.

In task-partitioned algorithms (also called algorithm without migration),
before system start time, the task set is divided (partitioned) among the
processors, so that each task is strictly dedicated to only one processor, and
only on this processor can execute (that is, it cannot migrate to another pro-
cessor). For example, in [LGDG03, LDG04] the authors consider how to
partition tasks on processor (in an identical multiprocessor platform), and
what are the bounds on utilization for several partitioning policies, when FP
and EDF are used to schedule tasks. In [AT07] a similar problem is consid-
ered, although on uniform, instead of identical, multiprocessors. Algorithms
in this category are classical algorithms for single processor, integrated with
some partitioning policy, such as First Fit or First Fit Decreasing. In the
literature we find references to them as, e.g., EDF-FF and EDF-FFD, or
generically EDF-partitioned. An overall description of some of the most
known partitioning policies can be found in [LDG04]. Again, when the
context is clear, the suffix “-partitioned” is omitted.

Finally, job-partitioned algorithms are a sort of mix of the two preceding
classes, in that a task can migrate from one processor to another (as in global
strategies), but a job cannot (as in task-partitioned algorithms). That is,
a job can start executing on any idle processor, but once it selects one
processor it can execute only on it. Examples of such algorithms are only
modifications of global algorithms such as EDF-global or FP-global. Note
that when preemptions are not allowed, under global strategies, once a job
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starts executing, it will continue on the same processor up to completion.
As a consequence, in such a case, global and job-partitioned algorithms
coincide.

The three classes of algorithms have contrasting pros and cons. In global
strategies the processors are apparently better utilized, and the load is auto-
matically balanced. Moreover, it is well-known from the queuing theory that
using a single queue scheduler results in lower average response times than
having a queue for every single processor [GH98]. Further advantages of
the global approach can be found in [AJ00], where a convincing argument
shows that the average number of preemptions in a partitioned system is
typically higher than in a globally scheduled system.

However, well-known anomalies arise due to the introduction of real
competition among the tasks: an example is the Dhall’s effect [DL78], in
which light tasks can force a deadline miss on a heavy task, potentially
reducing the average processor utilization to 0. It has been shown, in this
sense, that algorithms known to be optimal on single processor systems
(such as EDF and FP), lose their optimality on multiprocessors. Another
important problem is related to cache and buses: whenever a task migrates
from one processor to another, the whole cache must be invalidated on one
processor and reloaded on the new one, possibly provoking loss in time
and heavy load on the buses. Moreover they require a dedicated, complex,
analysis, which discourages system designers to use them in real cases.

In contrast, task-partitioned algorithms are easier, since once tasks are
partitioned, the analysis reduces to the well-known single processor case, for
which research has proposed very good solutions. Unfortunately, difficulties
are only moved elsewhere, and in particular in the partitioning phase: the
problem of partitioning tasks among processors is equivalent to the classic
bin-packing problem, which is known to be NP-hard in the strong sense.
However, heuristics that propose good (although not optimal) solutions do
exist [Bar04a]. Another problem relates to the load balancing, which is
not automatic anymore. This means, for example, that if a task executes
for more than assumed in the analysis, all tasks in the same processor are
negatively affected. Instead, a global strategy can in general have a better
answer to such a problem. Moreover, the missing automatic balance is a
problem when tasks can join or leave the system at run-time. In such a
case, it is possible to have at the same time processors with heavy load and
almost idle processors.

Job-partitioned algorithms try to mix the two solutions, having the good
aspects of global scheduling but trying to reduce problems with caches and
bus traffic. This is based on the assumption that the most part of the
memory space of a task relates to the single job, so avoiding its migration,
while allowing migration of the task with its low memory footprint, could
be a good compromise. To the best of our knowledge, research in this field
is quite limited, and so we do not consider this solution in this thesis.

3.3. Task priorities. Once the class of the scheduling algorithm is se-
lected, every scheduling algorithm has the same base behavior: fulfilling the
constraints required by the algorithm class, execute the job(s) with higher
priority. The difference among the algorithms is usually in how priority is
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assigned to the jobs. This leads to another classification among real-time
systems on multiprocessors.

In task-fixed priority algorithms, the priority is statically assigned to
each task, and every job of the task has exactly the same priority; this leads
to a sort of ordering among the tasks. The scheduling algorithm which rep-
resents this class is FP. Once FP is selected, another aspect needs attention,
that is how the priorities are assigned. Examples are Rate Monotonic (RM)
which assigns higher priority to tasks with shorter periods (i.e. rates), and
Deadline Monotonic (DM) which is the same except that it is based on rel-
ative deadlines instead of periods. Both of these priority assignments are
known to be optimal for single processors (under some constraints), but
lose their optimality in multiprocessor systems. An interesting example of
a different priority assignment is RM-US [BCL05b] (RM with Utilization
Separation, where up to one task per processor with high utilization is as-
signed maximum priority, while the others are assigned as in RM). This
class of algorithms has some important characteristics: they are easy to
implement, and several working implementations do exist; their analysis is
relatively easy, since a clear relationship among tasks is given; moreover,
it is quite easy to tune them after a change in the application, since in
most cases only modifications in the priority assignment rule are in order,
while the scheduling algorithm (a much more critical component) remains
untouched.

Job-fixed priority algorithms assign priority not to the tasks but to the
jobs. An example of scheduling algorithm in this class is EDF, which assigns
higher priorities to the jobs based on their absolute deadlines (that is, earlier
deadline leads to higher priority). These algorithms maintain a quite easy
implementation and analysis, but introduce some flexibility, which allows to
increase the overall utilization of the processors.

Dynamic priority assignments allow to change the priority of tasks in
every moment, and so give the maximum flexibility to the platform. This
is the key aspect that allows these algorithms to reach extremely high uti-
lization factors, whereas the other classes are limited to very low values.
Unfortunately, due to this new flexibility, the analysis is usually very diffi-
cult. Moreover, the implementation tends to become more complex. Two
examples of such algorithms are EDZL and the Pfair class of algorithms.

In single processors, we usually have only task-fixed and job-fixed pri-
orities, because they are clearly easier to analyze and implement, but are
able, at the same time, to guarantee very good behavior. In multiprocessors,
dynamic priority algorithms are introduced to cope with the bad behavior
of the previous two classes, and in particular the inadequate results of global
strategies.

3.4. Periods and deadlines. Another factor to distinguish among dif-
ferent real-time systems on multiprocessors is the relation between period
and deadline of a task. In particular, we distinguish among

• implicit deadlines, if for each task the deadline is exactly equal to
the period;
• constrained deadlines, if deadlines are always less than or equal to

periods;
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• unconstrained deadlines, if no constraint is imposed on the values
of periods and deadline, that is deadlines can be less than, equal
to or greater than periods.

While this seems to be a minor aspect, it has at least two important
effects, for which some attention is required. For the implicit deadlines case,
analysis is relatively easy. When constrained deadlines are accepted, in the
analysis of a job we need to consider that there is an interval in which,
although a new job cannot arrive, the job under analysis cannot execute.
This introduces some intricacy in the analysis. In the unconstrained dead-
lines case, things become even worse. In fact, if a task has deadline greater
than the period, it could happen that one of its jobs is activated while the
deadline of the previous one has not yet passed, so two jobs of the same
task could be active at the same time. As a consequence, either the second
job is delayed up to the time the previous one finishes (this is the classical
approach) or two jobs of the same task execute at the same time, potentially
conflicting to a great extent for critical sections. This has two results: the
analysis is quite more difficult, and usually much more pessimistic, and the
operating system must be written with these peculiarities in mind, in order
to cope with possibly replicated state structures, buffers for values, and so
on.

At the moment, progress in research is usually in steps: first of all con-
sider implicit deadlines, then eventually extend to constrained deadlines
(quite common) and then possibly extend to unconstrained deadlines.

This classification is clearly valid for both single and multiprocessor sys-
tems. In the rest of this thesis, sometimes we use unconstrained deadline
tasks to identify only tasks with Di > Ti, while arbitrary deadline refers to
tasks with no constraint on deadlines. However, what we mean from time
to time should be clear from the context.

3.5. Preemptability. Another aspect which can deeply modify the
behavior of the system relates to the answer to this question: what happens
when a job arrives with priority higher than some of the executing jobs, and
no idle processors is present?

If the system allows preemptions, the lower priority job is descheduled,
and the new job takes its place. Instead, if preemptions are not allowed, the
higher priority job is forced to wait up to when one job finishes and a proces-
sor becomes idle. It is clear that preemptability improves the response time
for higher priority tasks at the expenses of lower priority tasks. However,
when a job is preempted in favor of another one, time is necessary to store
the context of the first and load the context of the second, in the so called
context switch. It must be said that, in the analysis, context switches are
usually not taken into account, due to the small amount of time required.
However, depending on the characteristics of the scheduling algorithm, the
number of preemption can be very high, increasing the bandwidth lost in
context switches. Moreover, since preemptions are usually not accounted
for, when their number raises, the inaccuracy increases, making the analysis
weaker.

Another problem that can show up in case of preemptions, is the fact
that jobs could be preempted when they are executing in critical sections,
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possibly forcing higher priority jobs to wait to enter the critical section. To
avoid this phenomenon, it is often the case that resource sharing protocols are
used to reduce the possibility to preempt lower priority jobs when they are
in critical sections, by fact introducing a sort of restricted preemptability.
Examples of these protocols for single processors are Priority Inheritance
and Priority Ceiling Protocol [SRL90], or Stack Resource Policy [Bak91],
while for multiprocessor we can remember some direct extensions of the last
two: Multiprocessor Priority Ceiling Protocol [RSL88] and Multiprocessor
Stack Resource Policy [GLDN01].

Despite the problems, the possibility to preempt lower priority tasks
in favor of higher priority ones is extremely useful. For this reason, the
approach is usually to allow preemptions and try to solve the problems it
introduces, through resource sharing processors and scheduling algorithms
with low number of preemptions (such as EDF and FP).

The model used in this thesis do not consider shared resources, and for
this reason we have no doubts in allowing preemptions. As a consequence,
in every time instant on an M -processors platform the M ready jobs with
higher priority are under execution.

3.6. Periodicity. A final distinctive aspect is the meaning of the pe-
riod of tasks. We can consider it as a real period, that is a new job of the
task is activated once every period, or we can consider it as a minimum
period (in this case it is usually called minimum interarrival time), which
guarantees that a new job will be activated not less than a period after the
previous one. In the two cases we talk about periodic and sporadic task
models.

As for the case of the relation among periods and deadlines, this dis-
tinction is less important than the others but introduces some modifications
in the analysis. The most important one is the fact that the schedulability
analysis for sporadic tasks loses in precision, and in particular is always only
sufficient. This is clear, since while a periodic task will be surely activated
once every period, this is not true for a sporadic task, which in the limit
could be never activated. That is, there exists always a pattern of releases,
such that a given task set is correctly scheduled. However, it would not
be correct to consider such a task set schedulable. This requires to slightly
modify the definition of schedulability and feasibility for a sporadic system:
a sporadic task set is schedulable (feasible) only if every possible pattern of
activations is schedulable (feasible).

As the one before, this classification relates to real-time systems on both
single and multiprocessor platforms.

3.7. Graphical classification. Based on the class of scheduling al-
gorithm and the task priority assignment, the following Table 1 has been
proposed in [CFH+04].

In the table, for each couple priority-migration some example of algo-
rithms are proposed. In particular we report in the table some of the al-
gorithms described in Section 2.2. In the same table, we report also the
utilization bounds (as described in Section 2.3) known so far for each class.
We remember that M is the number of processors in the platform, while
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Migration
Task-partitioned Job-partitioned Global

Priority

Task-fixed
FP-partitioned FP-global FP-global
U ≤ M+1

1+2
1

M+1

U ≤ M+1
2 U ≤ M+1

2

Job-fixed
EDF-partitioned EDF-global EDF-global

U = M+1
2 U ≤ M+1

2 U ≤ M+1
2

Dynamic not useful not useful
EDZL, Pfair

U = M

Table 1. Classification of real-time systems on multiprocessors

U is the total utilization of the task set. As said above, the meaning of
the bounds is that there exist task set with total utilization U arbitrarily
greater than the bound that cannot be correctly scheduled by any algorithm
belonging to that class. Whenever an equality is present (e.g., full migra-
tion and dynamic priority) it is also guaranteed that for each task set with
utilization up to the bound, there exist at least one algorithm in the class
able to schedule the task set. That is, the bound is “necessary and suffi-
cient”. Instead, in case of inequalities, the actual necessary and sufficient
bound is not known, but it is surely not greater than the reported value. We
underline that these bounds are valid for implicit deadline systems, while
if constrained or constrained deadlines are allowed, things are much more
complicated.

Analyzing the table, we can see that moving towards more freedom, we
can improve the bounds. As an example, Pfair (which has the maximum
freedom in both migration and task priority) is able to use up to 100% of the
processors, while any other global algorithm with less than dynamic priority
cannot reach a value higher than M+1

2 . Unfortunately, the price of this good
behavior is the extreme complexity in terms of implementation and analysis.

It is useful to repeat here that, despite the fact that theoretical bounds
for some classes is very low, their actual behavior is much better. For ex-
ample, while EDF-global has an extremely low upper bound on utilization
(in Chapter 2 we show that this bound is 1, and it is independent of the
number of processors), through schedulability analysis we can prove that
EDF is able to schedule an high number of task sets with higher utilization
than the bound.

4. Contributions and summary

Multiprocessors in real-time applications can really improve the behavior
of systems, and have great benefits. However, research is still far from being
able to provide enough guarantees. We believe this thesis is a good step in
the direction of exploiting multiprocessors at their best in real-time systems.
In particular, we propose and analyze the use of multiprocessors with two
goals in mind:

• improve the performance of systems: more processors means more
computational power that can be provided to the application, and
so, potentially, a better behavior;
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• improve the reliability of systems: more processors means the pos-
sibility to cross-check their work, verifying the correctness of the
results they produce, and try to solve the problem in the event of
faults and consequent errors.

In this thesis, we report results previously published in conference and
journal papers, together with some new and improved analysis. In the next
two chapters we consider the Performance Problem. In Chapter 2 we discuss
the topic of how to improve performance of systems through the introduction
of multiprocessors, and in particular we analyze the schedulability conditions
for three algorithms: EDF, FP and EDZL. In Chapter 3 we consider the
problem from the opposite side, that is the feasibility analysis: what are the
conditions under which a task set is schedulable by some algorithm? This
analysis helps in giving a better estimation of the algorithms we consider. It
is possible, in fact, to better distinguish between task sets which fail due to
scheduling algorithm and schedulability test, and task sets which fail due to
their own characteristics. Then, in the following two chapters we consider
the Integrity Problem, in which we want to tune a multiprocessor platform
in order to provide some fault-tolerance to the applications. In Chapter 4 we
suppose to use a task-partitioned algorithm, while in Appendix A we give
some ideas on how to tackle the same problem using a global algorithm.
Finally, in Chapter 5 we conclude and propose some future works.



CHAPTER 2

Performance Problem: schedulability analysis

1. Overview

Multiprocessor hardware platforms are becoming widespread and com-
monly used. One of the reason is that, given the current limits of hardware
technology, new increases in computational power can be obtained more
easily and in a cost-effective way by using more than one processor, rather
than a more powerful single processor technology.

However, while real-time systems on single processors have been thor-
oughly studied, and solutions exist for a wide variety of problems, a complete
theory of real-time scheduling for multiprocessor systems is still to come.

In this chapter, we will address the problem of scheduling real-time task
sets on identical multiprocessor platforms consisting of M processors. This
problem can be solved in two different ways: by partitioning tasks among
processors, or with a global scheduler. The differences among the two ap-
proaches have been discussed in Chapter 1. We prefer to tackle the case
of global scheduling algorithms, due to some advantages they have with re-
spect to partitioned ones, e.g. the fact that they automatically balance the
load on processors. Global scheduling algorithms maintain a global shared
queue for all processors, and jobs in the queue are ordered by priority. From
the queue, the M highest priority jobs are selected and executed on the
M processors. This way, it can happen that a job starts executing on one
processor and, after preemption and rescheduling, completes on a different
one. In such a case, we say that the job migrates between two processors.

Among global scheduling algorithms, it is worth to cite the Pfair class of
algorithms [BCPV96, AS99, AS04b], which is known to be optimal under
certain hypothesis. Such algorithms are based on the concept of quantum:
the time line is divided into equal-size intervals called quanta, and at each
quantum the scheduler allocates tasks to processors. A disadvantage of
this approach is that all processors need to synchronize at the quantum
boundary, when the scheduling decision is taken. Moreover, if the quantum
is small, the overhead in terms of number of context switches and migrations
may be too high. To avoid such overheads, some different solutions have
been proposed [AS04b].

We focus on different algorithms, and in particular EDF and FP, two
well-known scheduling algorithms developed for single processors, and suc-
cessively extended to multiprocessor platforms. Moreover, we will consider
EDZL, a recently proposed scheduling algorithm mainly based on EDF,
which has been developed specifically for multiprocessors.

The advantage of these algorithms is the relatively simple implementa-
tion and the minor overhead in terms of number of preemptions. However,
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many negative results are known for such schedulers. For example, it is
known that EDF is optimal on single processors, while it loses its opti-
mality on multiprocessor platforms. Moreover, with respect to partitioned
algorithms, the overhead of migrating a task from one processor to another
needs to be taken into account. In fact, in modern architectures, processors
have a local cache memory, and migrating a task may invalidate the content
of the cache.

Although global scheduling approaches seem to be complex or require
too much overhead, we think that in some case they can be a valid option.
For example, in some embedded processor architecture, with no cache and
with simpler structures, the overhead of migration has a lower impact on
the performance. Furthermore, in FPGA-based architectures, implementing
the scheduler in HW can further reduce the overhead.

From a theoretical point of view, we think that tackling the problem
of global scheduling with EDF and FP algorithms can help understanding
the general problem of scheduling in multiprocessors. In addition, it is also
worth to consider EDZL, since it has the advantage of being specifically
proposed for multiprocessor, and can so better exploit their benefits.

Contribution. In this chapter we address the problem of schedulability
analysis under EDF, FP and EDZL on multiprocessors. We propose two
schedulability tests for each of the algorithms. The first solution is O

(

N2
)

(where N is the number of tasks in the system), but does not provide an
important improvement with respect to older tests. Instead, the second
test, based on a recursive approach, has an higher worst-case complexity,
but provides interesting benefits. Through simulation, we also verified that
limiting the number of recursive steps does not strongly influences the re-
sults, while the complexity can be reduced to O

(

N3
)

in the worst-case. In
an extensive set of experiments, we compare the new proposed tests with
older solutions, in order to validate our results. Moreover, we compare the
couples algorithm-test, in order to provide an idea of the state of the art in
global scheduling on multiprocessors.

2. System model

In order to analyze the behavior of real-time systems on multiprocessor
platforms, it is necessary to provide an easy but complete system model.
Part of the model we will use in this chapter has been already introduced
in Chapter 1, but we repeat it here shortly for the sake of completeness.

We consider an application to be represented by a sporadic task set T ,
that is a collection of N sporadic tasks τi. Each task τi is defined by worst-
case execution time Ci, relative deadline Di and minimum interarrival time
Ti. It is often useful to define Λi = min (Di, Ti), in order to unify the
formulae for implicit, constrained and unconstrained deadline tasks. Note
that for each task τi, Ci ≤ Λi, since otherwise the task set would be trivially
infeasible.

Ui = Ci

Ti
represents the utilization of a task τi, while λi = Ci

Λi
represents

its density. By extension, Utot and λtot represent total utilization and total
density of the task set, respectively.
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Each task τi is composed of a potentially infinite series of jobs τ j
i , char-

acterized by release time rj
i , absolute deadline dj

i and finish time f j
i . A job

is defined ready in the whole interval between its release time and its finish

time, [rj
i , f

j
i ). In the presence of unconstrained deadlines we consider that

only one job of a task can execute in a certain time instant. That is, job τ j
i

cannot start executing until after f j−1
i . The release time sequence r is the

set of all release times of tasks in T (i.e., r = {rj
i : ∀i, j}). A valid release

times sequence r is a release time sequence where the minimum interarrival
time between two consecutive releases of a task is respected.

In each time instant t in which a job τ j
i is ready, we define the laxity

lji (t) as the amount of blocking time that the job can suffer without missing
its deadline. In other words, the laxity of a job is the difference between

time to deadline and remaining computation time. In formulae, if cj
i (t) is

the remaining computation time of job τ j
i , the laxity at time t is defined as

(2.1) lji (t) =
(

dj
i − t

)

− cj
i (t) .

A negative value of laxity means that the job will eventually miss its dead-
line, and a value equal to 0 means that the job must execute from t up to

dj
i , in order to be able to meet its deadline.

Based on the concept of laxity, we also define the slack Si, as the distance
between the finish time of one job of τi and its deadline, minimized over all
the jobs of τi. In formulae

Si = min
j

(

dj
i − f j

i

)

.

A negative value of Si represents the fact that the task is not schedula-
ble, while Si ≥ 0 guarantees the schedulability of the task. Goal of the
schedulability test is so to verify if, under the chosen scheduling algorithm,
∀i Si ≥ 0.

We say that a sporadic task set is feasible on M processors if, for every
valid release time sequence it is possible to schedule all the jobs so that no
deadline is missed. Instead, we say that a sporadic task set is schedulable
according to a given scheduling algorithm if, for every valid release time
sequence the schedule produced by following the rules of the algorithm is
such that no deadline is missed.

2.1. Blocking times. We consider only work conserving algorithms,
that is algorithms that never leave a processor idle if there is some ready
job to be executed. Due to this fact, if a job does not execute, it must be
because it is blocked by some other job. We call blocking time intervals the
time instants in which a job is ready but not executing.

Consider a schedulable task set with implicit and constrained deadlines.

Since each job has dj
i ≤ rj+1

i , in every time instant there can be only one
ready job of each task. In such a case a ready job can be blocked only by
the fact that all the M processors are busy executing higher priority jobs.
In this case, we say that the job (and its task) is priority-blocked.

In the case of unconstrained deadlines tasks, the situation is different,
because the finish time of a job could be after the release time of one (or
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more) successive job(s) of the same task. Since in such a case the newer
job can start executing only after the finish time of the previous job of the
task, it can happen that a job is blocked by a preceding job that has not yet
finished, despite the fact that some processor is idle. In this case, we say
that the job (and its task) is precedence-blocked.

2.2. Interference. Based on the blocking times defined above, we can
introduce the concept of interference. The interference on a task τk over an
interval [a, b] is the cumulative length of all intervals in which the task is
priority-blocked. We will denote such interference with Ik (a, b).

We also define the interference of a task τi on a task τk over an interval
[a, b), represented by Ii

k (a, b), as the cumulative length of all intervals in
which τk is priority-blocked, while τi is executing (which means that τi has
higher priority than τk). Notice that by definition:

(2.2) Ii
k (a, b) ≤ Ik (a, b) , ∀i, k, a, b.

We underline here that neither Ik (a, b) nor Ii
k (a, b) include in their def-

inition cases of precedence-blocking: they include only cases in which a job
of τk could actually execute, given that one of the processor were idle. As a
consequence, priority-blocking and interference could be used as synonyms.

2.3. Time division. To precisely define the notion of time, we follow
the common idea, described for example in [BC06a], of considering only
discrete time instants. That is, despite the fact that for mathematical con-
venience, points and durations in real time are modeled by real numbers,
in an actual system time is not infinitely divisible. The times of event oc-
currences and durations between them cannot be determined more precisely
than one tick of the system’s most precise clock. Therefore, any time value
t involved in scheduling is assumed to be a non-negative integer value and
is viewed as representing the entire interval

[t, t + 1)
def
= {x ∈ R : t ≤ x < t + 1}

The notation [a, b) is used for time intervals as a reminder that the
interval includes all of the clock tick starting at a but does not include the
clock tick starting at b.

These conventions allow the use of mathematical induction on clock
ticks for proofs, avoid potential confusion around end-points, and prevent
impractical schedulability results that rely on being able to slice time at
arbitrary time instants.

2.4. Scheduling algorithms. In this chapter, we analyze the behavior
of three global scheduling algorithms, EDF, FP, and EDZL. It is useful to
remind here their main characteristics.

EDF. Earliest Deadline First (EDF) schedules jobs according to their ab-
solute deadline. That is, there is a global queue in which the jobs are ordered
by absolute deadline, and in every time instant the jobs under execution are
the first M in the queue, where M is the number of processors. EDF is
known to be optimal on single processors, among job-fixed priority algo-
rithms, in the sense that it is able to schedule every task set schedulable by
any other job-fixed priority algorithm. Moreover, it has also a low number
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of preemptions, and it is relatively easy to implement. For all these reasons,
this is one the best algorithms for real-time systems on single processors.

Unfortunately, the optimality of EDF is lost moving to multiprocessors.
It has been proven that the utilization bound of EDF on M processors is
only 1

M . In fact there exist task sets with utilization arbitrarily close to 1
that are not schedulable on M processors. To see this, it is sufficient to
consider Example 1, in which a case of the so called Dhall’s Effect [DL78]
is shown.

Example 1. Consider the task set in the table below, composed of M+1
tasks τi, where ǫ is such that ǫ≪ K.

i Ci Di Ti

1 to M ǫ K − ǫ K − ǫ
M + 1 K K K

This task set is not correctly scheduled by EDF, since if all the tasks are
released together, the M jobs have higher priority and are scheduled first,
so that the last job will miss its deadline. However, the utilization of this
task set is only M ǫ

K−ǫ + K
K ≈ 1, for ǫ sufficiently smaller than K. ✷

Despite this fact, even if in the worst-case EDF performs very badly on
multiprocessors, it can be seen that the average behavior is much better than
this, in the sense that EDF is able to schedule a high number of task sets with
utilization greater than 1. For this reason, improvements in schedulability
tests are fundamental. Due to the need for guarantees of real-time systems,
a “good” scheduling algorithm with a poor schedulability test is as bad as
a “bad” scheduling algorithm.

FP. Under Fixed Priority (FP), jobs in the global queue are ordered based
on the priority statically assigned to the tasks at system startup. Then,
as for EDF, in every time instant the jobs under execution are the first
M in the queue. Among the possible priority assignment policies, Rate
Monotonic (RM, which assigns higher priority to shorter period Ti) and
Deadline Monotonic (DM, for which higher priority is assigned to shorter
relative deadline Di) are the best ones for single processors. In particular,
it has been proved that on single processors, they are optimum assignments
respectively for implicit deadlines and constrained deadlines. Moreover, as
for EDF, the number of preemptions they require is quite low.

Unfortunately, also FP with DM assignment (DM, for short) loses its
optimality on multiprocessors. The Dhall’s Effect [DL78] is present again,
as can be seen in Example 1, which perfectly applies to DM as well.

Without losing generality, from now on we consider that tasks are or-
dered by decreasing priority. That is, τi has higher priority than τj if i < j.

EDZL. To overcome the limits of EDF, Earliest Deadline Zero Laxity
(EDZL) has been suggested by Cho, Lee, Ahn and Lin [CLAL02]. The
idea is to mix the benefits of two well-known algorithms, EDF and Least

Laxity First (LLF). Considering that the laxity of τ j
i at a certain time t

represents the blocking time that the job can accept in the interval [t, dj
i )

without missing its deadline, LLF assumes that jobs with smaller laxity are
more urgent, and at each time t it schedules jobs according to their actual
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laxity at time t (in increasing order). Both EDF and LLF are optimal on
single processors, but EDF is preferred due to the number of preemptions:

• very low for EDF, due to the fact that it assigns job-fixed priorities,
which means that we can define a complete ordering among the
jobs, and preemptions can be required only by higher priority job
on lower priority ones;
• potentially infinite for LLF, because once two jobs have the same

priority, they start switching in every time instant (because only
one can execute at a time, and the laxity of the other decreases,
requiring the preemption).

On multiprocessors, both of them lose their optimality, and maintain
the number of preemptions, low for EDF, and high for LLF, but while the
utilization of EDF goes down to 1

M , that of LLF seems to remain high. To
the best of our knowledge, no utilization bound has been proposed till now.

EDZL takes the lead from the two algorithms. In “normal” situation,
EDZL follows the rules of EDF, i.e. it schedules jobs with earliest absolute
deadline. However, at certain “critical instants”, jobs are given maximum
priority, in order to save them from deadline miss. The critical instant rule
is based on LLF, in the sense that the critical instant is, for each job, the
instant in which the laxity of the job reaches 0, meaning that the job cannot
wait anymore to execute. The algorithm can be expressed as follows:

• order the jobs in the global queue as for EDF;
• whenever a job reaches zero laxity, move it to the head of the queue;
• schedule the first M jobs in the queue.

It is been shown [CLAL02] that this algorithm mixes the benefits of
EDF and LLF on multiprocessor: low number of preemption and high uti-
lization.

3. Summary of existing results

Recently, the problem of identifying schedulability conditions for real-
time task sets on multiprocessors has been thoroughly considered. The
problem has been addressed for both partitioned and global techniques.
Due to the advantages discussed in Chapter 1, we prefer to focus on the
global approach. For this reason, we report here some of the main results
for the schedulability on multiprocessor platforms under global scheduling
algorithms, focalizing on the algorithms we consider in the rest of this chap-
ter: EDF, FP and EDZL.

We want to underline that all the tests below are usually incomparable,
in the sense that none of them is strictly dominant with respect to the others,
and it is possible to find task sets schedulable (by the selected algorithm)
based on one test and not the other, for any pair of tests. For this reason,
the best solution would be to use all the tests at the same time.

3.1. Tests for EDF. First of all, we briefly recall some of the schedula-
bility tests proposed so far for multiprocessors when EDF-global is selected
as scheduling algorithm.
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DB-EDF. This test for EDF, also called GFB from the name of the au-
thors, is due to Goossens, Funk and Baruah [GFB03]. The test can be
classified among utilization and density bounds, since it is solely based on
the utilization of the task set and the maximum task utilization. The orig-
inal formulation, described in [GFB03], assumes an implicit deadline task
model, and consists of a single simple inequality that compares the total
utilization of the task set, Utot, with a bound which depends on the number
M of processors and the maximum task utilization Umax. Through a par-
allelism between the execution of a task set on a uniform and an identical
multiprocessor, the authors are able to prove the following theorem.

Theorem 3.1 (Original DB-EDF test). A periodic task set T with im-
plicit deadlines is schedulable by EDF upon an identical multiprocessors plat-
form composed of M processors with unitary capacity, if

(3.1)
∑

τi∈T

Ui ≤M (1− Umax) + Umax.

The test was proven to be tight for periodic implicit deadline systems,
in the sense that there exist task sets with total utilization exceeding the
bound by an arbitrarily small amount ǫ, that cannot be scheduled by EDF.

The test was then extended twice. The first extension, due to Bertogna,
Cirinei and Lipari [BCL05a], included cases of constrained deadlines sys-
tems, and allowed sporadic releases (instead of only strictly periodic ones).
The second extension, due to an observation by Baruah, closed the circle, in-
cluding also unconstrained deadline systems. The complete test is reported
in the following theorem.

Theorem 3.2 (Generalized DB-EDF test). A sporadic task set T with
arbitrary deadlines is schedulable by EDF upon an identical multiprocessors
platform composed of M processors with unitary capacity, if

(3.2)
∑

τi∈T

λi ≤M (1− λmax) + λmax.

From now on we will refer with DB-EDF to the generalized test described
in Theorem 3.2.

BAK-EDF. Another test for EDF was proposed [Bak03] and succes-
sively refined and generalized [Bak05] by Baker. As for DB-EDF the test
was initially proved for constrained deadlines systems, while the extension
included the case of unconstrained deadlines systems. Moreover, the sec-
ond version contained an extension in the analysis that, at the price of an
higher computational complexity, allowed to identify a larger set of schedu-
lable task sets. Here we report only the extended version. The test is more
complex than DB-EDF since it requires knowledge of all tasks parameters

(i.e., Ci, Di and Ti). The key idea is that a generic job τ j
k , usually called

the problem job, can miss its deadline only if all the jobs of other tasks with
higher priority can require an amount of computation which is sufficient to
force the problem job to wait until it is too late. The test is reported in the
following theorem, based on the restatement proposed by Baker and Cirinei
in [BC06c].
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Theorem 3.3 (BAK-EDF test). A sporadic task set T with arbitrary
deadlines is schedulable by EDF upon an identical multiprocessors platform
composed of M processors with unitary capacity, if, for every task τk, there
exists a positive value λ ≥ λk such that

(3.3)

N
∑

i=1

min
(

βi
k(λ), 1

)

≤M (1− λ) + λ

where

βi
k(λ)

def
=



















Ui

(

1 + max
(

0, Ti−Di

Dk

))

if Ui ≤ λ

Ui

(

1 + max
(

0, Ti−λDi/Ui

Dk

))

if Ui > λ and Di ≤ Ti

Ui

(

1 + max
(

0, Ti

Dk

))

if Ui > λ and Di > Ti

The test seems to be quite complex, due to the fact that apparently it
requires to consider every λ ≥ λk for each task τk. However, Baker showed
in [Bak05] that it is sufficient to consider λ ∈ {Ui : i = 1, . . . , N} ∪ {λk},
that is, not more than N + 1 possible values of λ for each task.

From now on we will use BAK-EDF to refer to this test.

3.2. Tests for FP.

DB-FP. Following an idea similar to the one which lead to the DB-EDF
test, Bertogna, Cirinei and Lipari proposed in [BCL05b] a density bound
for constrained deadlines systems scheduled by FP.

Theorem 3.4 (DB-FP test). A sporadic task set T with constrained
deadlines is schedulable by FP upon an identical multiprocessors platform
composed of M processors with unitary capacity, if

(3.4)
∑

τi∈T

λi ≤
M

2
(1− λmax) + λmax.

As we said, the density bound above as been proved only for constrained
deadlines systems. We underline the similarities between this density bound
for FP and the density bound expressed in DB-EDF. The only difference is
in the factor 2 in the right hand side. Unfortunately, due to this factor,
the behavior of this test for FP is extremely worse than those of DB-EDF.
For this reason, although from a theoretical point of view this test is quite
interesting, it is not really useful in practice.

From now on we will use DB-FP to refer to this test.

BAK-FP. Together with the EDF test described above, in [Bak03] Baker
proposed also a test for FP and constrained deadlines systems, based on the
very same analysis. As for the previous cases, the test was then extended,
and a new test was proposed in [Bak06a], which improved the analysis and
included the cases of unconstrained deadlines. The theorem below, based
on the restatement proposed by Baker and Cirinei in [BC06c], reports the
test.

Theorem 3.5 (BAK-FP test). A sporadic task set T with arbitrary
deadlines is schedulable by FP upon an identical multiprocessors platform
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composed of M processors with unitary capacity, if, for every task τk, there
exists a positive value λ ≥ λk such that

(3.5)
k−1
∑

i=1

min
(

βi
k(λ), 1

)

≤M (1− λ)

where

βi
k(λ)

def
=











Ui

(

1 + max
(

0, Ti−Ci

Dk

))

if Ui ≤ λ M
M−1

Ui

(

1 + max

(

0,
Ti−λ M

M−1
Di/Ui

Dk

))

if Ui > λ M
M−1

As for the BAK-EDF test, while the complexity appears high, Baker
showed that it is sufficient to consider a subset of the possible values for λ,
and in particular the values to be tested are only k values for each task τk,
λ ∈ {Ui : i = 1, . . . , k − 1} ∪ {λk}.

From now on we will use BAK-FP to refer to this test.

3.3. Unified test for EDF and FP. Based on the BAK-EDF and
BAK-FP tests, and the analysis proposed by Bertogna, Cirinei and Lipari
in [BCL05a] and [BCL05b] (and improved in the rest of this chapter),
Baker and Cirinei proposed, in [BC06c], a unified analysis for both EDF
and FP. The distinction between the two algorithms was completely included
in one parameter, γi in the theorem below, which reports the proposed test.

From now on, BAK-FP will refer to this test.

Theorem 3.6 (BC test). A sporadic task set T with arbitrary deadlines
is schedulable by EDF or FP upon an identical multiprocessors platform
composed of M processors with unitary capacity, if, for every task τk, there
exists a positive value λ ≥ λk such that one of the following criteria is
satisfied:

(3.6)

∑N
i=1 min

(

βi
k(λ), 1− λ

)

< M (1− λ)
∑N

i=1 min
(

βi
k(λ), 1 − λ

)

= M (1− λ) and ∃i|0 < βi
k(λ) < 1− λ

where

βi
k(λ)

def
=















0 if i ≥ k and under FP

Ui

(

1 + max
(

0, γi

Dk

))

if Ui ≤ λ and i < k or under EDF

Ui

(

1 + max
(

0, di+γi−λDi/Ui

Dk

))

if Ui > λ and i < k or under EDF

and

γi
def
=







−Di if i = k and under EDF

Ti − Ci if i < k and under FP

Ti − Ci if i < k and under EDF

We believe this test is very interesting from a theoretical point of view,
since it is able to unify, in a single analysis, the cases for two of the most used
algorithms in real-time theory. Unfortunately its behavior is not as good as
one could expect, particularly for EDF. When applied in conjunction with
FP, the test is able to prove the schedulability of a large number of task sets,
with respect to previous tests (and BAK-FP, in particular). Instead, when
EDF is selected, the test does not work very well, sometimes being outdone
by DB-EDF and sometimes by BAK-EDF. Probably due to this reason,
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apparently FP is able to correctly schedule more task sets than EDF, when
schedulability is verified with BC. The interested reader can find in [BC06c]
an extended set of simulations.

From now on we will use BC to refer to this test.

3.4. Tests for EDZL. To the best of our knowledge, so far there is
no schedulability test explicitly proposed for EDZL on multiprocessors. The
only valid tests for EDZL are a consequence of an observation by Park, Han,
Kim, Cho and Cho [PHK+05]. They proved (see Theorem 2 in [PHK+05])
that EDZL strictly dominates EDF, with the meaning that if a task set
is schedulable by EDF on a platform composed of M processors, it is also
schedulable by EDZL on the same platform, and there exist task sets schedu-
lable by EDZL and not by EDF. Intuitively, as noted by Cho, Lee, Ahn and
Lin [CLAL02], EDZL is actually an EDF algorithm with a “safety rule”
(the zero laxity rule) to be applied in critical situations. It means that the
scheduling of the two algorithm differs only in cases in which EDF fails
scheduling some tasks.

The direct consequence of this, is that each schedulability test for EDF
on an M -processors platform, is also a schedulability test for EDZL on
an M -processors platform. However, simulation studies have shown that
EDZL scheduling performs much better than EDF [CLAL02], so the high
inefficiency of this approach is evident. It would be much better to exploit
the differences between the two algorithms to propose an efficient test.

3.5. Summary of the tests. In Table 1 below we report the tests
proposed so far for EDF, FP and EDZL, together with the year and a ref-
erence to the papers where they have been proposed in different extensions.
Please remember that all these tests are in general incomparable, and the
best solution, from the point of view of schedulability, is to use all the tests
for a given algorithm together.

Deadlines
Implicit Constrained Unconstrained

Test
DB-EDF [GFB03] 2003 [BCL05a] 2005 Baruah 2005
BAK-EDF [Bak03] 2003 [Bak03] 2003 [Bak05] 2005
BCL-EDF [BCL05a] 2005 [BCL05a] 2005 This thesis 2007
BAK-FP [Bak03] 2003 [Bak03] 2003 [Bak06a] 2005
BCL-FP [BCL05b] 2005 [BCL05b] 2005 This thesis 2007
DB-FP [BCL05b] 2005 [BCL05b] 2005 To Be Done
BC [BC06c] 2006 [BC06c] 2006 [BC06c] 2006
EDZL [CB07] 2007 [CB07] 2006 [CB07] 2006

Table 1. Summary of existing schedulability tests for EDF,
FP, and EDZL.

Note that BCL-EDF, BCL-FP and EDZL were not discussed in the
summary because they are explained in details and extended in the rest of
this chapter. However, they are reported in the table for completeness.
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4. Predictability

An important subtlety in schedulability testing is that the so-called
“worst-case” execution time Ci of each task is just an upper bound, while
the actual computation times of different jobs of a task can vary. This leaves
open the possibility that the upper bound, or even the actual maximum exe-
cution time of a task may not actually be the worst situation with respect to
overall system schedulability. For multiprocessor scheduling, there are well-
known anomalies, where a job set is schedulable by a given algorithm, but
if the execution time of one or more jobs is shortened, the job set becomes
unschedulable.

Ha and Liu [HL94, Ha95] studied this problem, and were able to iden-
tify certain families of scheduling algorithms that are predictable with respect
to variations in job computation time. A scheduling algorithm is defined to
be completion-time predictable if, for every pair of sets J and J ′ of jobs
that differ only in the execution times of the jobs, and such that the exe-
cution times of jobs in J ′ are less than or equal to the execution times of
the corresponding jobs in J , then the completion time of each job in J ′ is
no later than the completion time of the corresponding job in J . That is,
with a completion-time predictable scheduling algorithm it is sufficient, for
the purpose of bounding the worst-case response time of a task or proving
schedulability of a task set, to consider each job of each task as having actual
execution times equal to the task’s worst-case execution time.

An important class of scheduling algorithms for which Ha and Liu were
able to prove completion-time predictability is that of preemptive migratable
fixed-job priority scheduling algorithms. Since both EDF and FP pertain to
this class of algorithms, we don’t need to consider this problem for them.
Unfortunately, while EDZL is preemptive and migratable, it does not have
fixed job priorities. Therefore, while we might suspect that EDZL could be
predictable with respect to computation time variations, a necessary first
step in looking for an EDZL schedulability test is to verify that. Piao, Han,
Kim, Park, Cho and Cho [PHK+06] addressed this question and showed
that EDZL is completion-time predictable on the domain of integer time
values. The result clearly also applies to any other discrete time domain.
We give a somewhat more self-contained and direct proof below.

Theorem 4.1 (Predictability of EDZL). The EDZL scheduling algo-
rithm is completion-time predictable, with respect to variations in execution
time.

Proof. We actually prove a stronger thesis; that is, if the only difference
between J and J ′ is that some of the actual job computation times are
shorter in J ′ than in J , then the accumulated computation time of every
uncompleted job in the EDZL schedule for J ′ is greater than or equal to
the accumulated computation time of the same job in the EDZL schedule
for J at every instant in time. It will follow that no job can have an earlier
completion time in J than in J ′, since the actual computation times in J
are at least as long as in J ′.

Suppose the above hypothesis is false. That is, there exist job sets J and
J ′ whose only difference is that some of the actual job computation times
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are shorter in J ′ than in J , and such that at some time t the accumulated
computation time of some uncompleted job is less with J ′ than with J . We
will show that this leads to a contradiction, and the theorem will follow.

Without loss of generality, we can restrict attention to the case where
J and J ′ differ only in the actual computation time of one job. To see
this, observe that between J and J ′ there is a finite sequence of sets of jobs
such that the only difference between one set and the next is that the actual
computation time of one job is decreased. Let J and J ′ be the first pair of
successive jobs in such a sequence such that at some time t the accumulated
computation time of some uncompleted job J is less with J ′ than with J .

Let t be the earliest instant in time after which the accumulated com-
putation time of some uncompleted job is less with J ′ than with J , and
let J be such a job. That is, up to t the accumulated computation time
of each uncompleted job in the schedule for J is less than or equal to the
accumulated computation time of the same job in the schedule for J ′, and
after time t the accumulated computation time of job J is greater with J
than with J ′.

Job J must be scheduled to execute starting at time t with J and not
with J ′. This means some other job J ′ is scheduled to execute in place of
J with J ′. That choice cannot be based on deadline, since the deadlines of
corresponding jobs are the same with J and J ′, so it must be based on the
zero-laxity rule. That is, J ′ has zero laxity at time t with J ′ but not with J .
However, that would require that J ′ has greater accumulated computation
time at time t with J than it does with J ′. This is a contradiction of the
choice of t. Therefore, the theorem must be true.

�

The property depicted above goes under several names, and with slightly
different definitions: predictability (Ha and Liu [HL94, Ha95]), robustness
(Mok and Poon [MP05]), sustainability (Baruah and Burns [BB06]). The
latter is actually a more general property that considers also the case of
variations in other system parameters.

5. Schedulability analysis

In this and the following sections, we will analyze the scheduling of real-
time task sets on multiprocessor platforms composed of M processors, taking
into account three different scheduling algorithms: EDF, FP and EDZL. The
analysis is similar for the three algorithms, as is the final schedulability test
proposed for each of them, so it will be conducted for all of them in parallel,
in order to better focus on the similarities and differences.

The analysis is mostly based on the line of reasoning used in [Bak03].
In order to clarify the methodology, we briefly describe the main steps that
will be followed to derive the schedulability tests:

(1) as in [Bak03], we start by assuming that a generic job τ j
k , called

the problem job, misses its deadline dj
k; moreover, we assume that

this is the first missed deadline in the system;
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(2) we identify a specific interval preceding the missed deadline dj
k,

called the overload window of τ j
k , in which the schedulability prob-

lem can be better tackled (Section 5.1);
(3) if we were able to precisely compute the interference suffered by

the problem job in the overload window, the schedulability test
would simply consist in verifying that it is not sufficient to force a
deadline miss, leading to a contradiction; unfortunately, computing
such interference is very difficult;

(4) therefore, we give an upper bound to the interference in the over-
load window and derive a sufficient schedulability condition for the
problem job, which is clearly valid for each job of τk (Sections 5.2
to 5.7); the difference among the scheduling algorithms will be
mainly exploited at this step;

(5) a complete, only sufficient, schedulability test is obtained by simply
repeating the same computation for each task: if no job of any
task can miss its deadline, then the system is clearly schedulable
(Section 6);

In Sections 5 and 6 we follow such line of reasoning. The test has com-
plexity O

(

N2
)

, and consists, for each task, in a sum over all the other tasks,
and a comparison. This test is based on a static estimation of the upper
bound of the interference Ii

k (a, b) of a task τi in the overload window of task
τk. In Sections 7 and 8, we will improve the test by introducing a recursive
approach that allows to give a better estimation of the upper bound of the
interference at the price of an higher complexity.

5.1. Overload window. The first step in the schedulability analysis
is to identify the interval we called overload window in which it is relatively
easy to analyze the schedulability of a task. Since it is very difficult to
estimate the precedence-blocking suffered by a task (apart for the case of
constrained deadlines), we decide to define the overload window as the in-

terval preceding the deadline dj
k of the problem job, in which the problem

job does not suffer precedence-blocking.
Once the overload window is identified, we need to find what is the

necessary condition in such an interval for a job τ j
k to miss its deadline dj

k.
Consider the example on three processors in Figure 2.1.

It is clear that τ j
k can miss its deadline only if the other jobs occupy

all the processors for a sufficient amount of time, which depends on Ck and
the interval we consider. This is at the base of an observation reported by
Baker in [Bak03], which is also the basis of [PSTW97]. We report it here,
generalized to be more useful for our case.

Observation 5.1 (Lower bound on blocking-time). Consider a job τ j
k

and a generic interval [dj
k − t, dj

k) of length t preceding its deadline, where

Ck ≤ t ≤ Dk. If τ j
k misses its deadline dj

k, the sum of the lengths of all

intervals in which τ j
k does not execute in [dj

k − t, dj
k) must exceed t− Ck.

The reason of the observation is clear. Consider an interval of length
greater than Ck, (t ≥ Ck) preceding the deadline, where the job is always

ready (t ≤ Dk ⇒ dj
k − t ≥ rj

k). If in such an interval the job has sufficient
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Figure 2.1. Necessary condition for a deadline miss.

time to execute (blocking time less than t−Ck), then τ j
k it is able to complete

before the deadline. We underline that in general the condition expressed
in the observation above is necessary but not sufficient for a deadline miss,

since the problem job could execute, in part or entirely, in the interval [rj
k, t).

Now we can map the above observation in our case, distinguishing be-
tween constrained deadlines (which includes also the case of implicit dead-
lines) and unconstrained deadlines.

Constrained deadlines. If τk has constrained deadline, as we observed in

Section 2.1, it can never be precedence-blocked in the whole interval [rj
k, d

j
k).

Since in this interval τ j
k requires to execute for Ck time instants, it is clear

that it can reach zero laxity only if it suffers priority-blocking for at least
Dk −Ck. By extension, it can reach negative laxity (and so eventually miss
its deadline) only if it suffers priority-blocking for more than Dk−Ck. Since
we consider discrete time, an equivalent condition for negative laxity is that
the priority-blocking is at least Dk − Ck + 1. The interval can be rewritten

as [dj
k−Dk, d

j
k), since by definition dj

k = rj
k +Dk. Note that, for implicit and

constrained deadlines systems, the condition expressed above is necessary
and sufficient for a job to reach zero (or negative) laxity.

Unconstrained deadlines. If τk has unconstrained deadline (i.e. Tk ≤
Dk), the above condition is not necessary anymore. In fact, in the interval

[rj
k, d

j
k) more than one job of τk can be ready, which means that the problem

job τ j
k can be precedence-blocked. It is very difficult to take into account

precedence-blocking, because it strictly depends on the finish times of the
jobs, which are usually not known in advance (and very difficult to compute
without actually simulating the system). However, since the problem job

is the first job missing a deadline, if we consider the interval [dj−1
k , dj

k), we
know that no jobs of τk preceding the problem job can be ready (as all the
previous deadlines expired). As a consequence, in this interval there can only
be priority-blocking, as in the preceding case. The length of this interval

is Tk, so the smaller interval in which τ j
k cannot suffer priority-blocking is

[dj
k−Tk, d

j
k). In order for the problem job to reach zero or negative laxity, it
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is necessary, although not sufficient, that the problem job cannot execute for

Ck time instants in this interval. In other words, the interval [dj
k − Tk, d

j
k)

is suitable as overload window for unconstrained deadline tasks, and the
problem job can reach zero laxity only if it suffers priority-blocking (i.e.
interference) for at least Tk − Ck in such an interval. Again, by extension,
the problem job must suffer priority-blocking for more than Tk − Ck (or at
least Tk − Ck + 1) in order to reach negative laxity and so eventually miss
its deadline. This condition is necessary but clearly not sufficient, because
the problem job could have started executing before this interval, and so it
could be able to complete in time despite the suffered priority-blocking.

Unification. We can unify the definition of overload window using pa-
rameter Λk, as below.

Definition 5.2 (Overload window). The overload window of a problem

job τ j
k is the interval of length Λk preceding its deadline dj

k. In formulae, it

is [dj
k − Λk, d

j
k).

The necessary condition for a job to reach, and surpass, zero laxity is
stated in the following lemma and corollary. It is valid indifferently for EDF,
FP or EDZL, but can also be easily extended for other algorithms or classes
of algorithms.

Lemma 5.3 (Necessary condition for negative laxity). A job τ j
k of a

task τk can reach negative laxity only if it suffers interference for at least

Λk−Ck +1 in the overload window [dj
k−Λk, d

j
k). In formulae, the condition

is

(5.1) Ik(d
j
k − Λk, d

j
k) ≥ Λk − Ck + 1.

Proof. Follows from the above discussion, and the definitions of Ik (a, b)
and Λk. �

We underline again that the Lemma would be clearly correct if we use,
instead of Equation (5.1),

(5.2) Ik(d
j
k − Λk, d

j
k) > Λk − Ck.

In fact, due to the time division explained in Section 2.3, Ik(d
j
k − Λk, d

j
k)

can assume only integer values, so the two are equivalent. We prefer to use
Equation (5.1), because it will be more useful in what follows.

Corollary 5.4 (Necessary condition for zero laxity). A job τ j
k of a task

τk can reach zero laxity only if it suffers interference for at least Λk −Ck in

the overload window [dj
k − Λk, d

j
k). In formulate, the condition is

(5.3) Ik(d
j
k − Λk, d

j
k) ≥ Λk − Ck.

Proof. Follows from the above discussion, and the definitions of Ik (a, b)
and Λk. �

Note that both conditions are necessary for arbitrary deadlines systems,
but become necessary and sufficient if we limit our attention to constrained
deadlines systems.
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Further notes on EDZL. The necessary conditions stated in Lemma 5.3
and Corollary 5.4 are clearly valid for any of the three scheduling algorithms
under consideration (EDF, FP and EDZL). However, for the EDZL case we
can improve the analysis.

For EDF, and FP, when a job reaches zero laxity, nothing is done to
prevent the deadline miss. For the EDZL case, instead, the priority of a
job with zero laxity is raised to the maximum and the job is scheduled
up to its deadline, completing in time. The only case in which it can be
preempted and miss its deadline is when there are more than M jobs in the
same situation. As a consequence, while it remains true that a deadline miss
can happen only when there exists a job for which Lemma 5.3 is true, we
also know that for the lemma to be verified, it must be the case that at the
end of the overload window of the problem job there are at least M other
jobs with zero laxity, for which then Corollary 5.4 must hold. If we were
able to exactly compute the interference, the presence of M other jobs with
zero laxity would be included in the interference. In fact, when the problem
job reaches zero laxity, it can suffer priority-blocking only from other jobs
with zero laxity, so the computation of the interference would take this fact
into account. Since we are forced to use upper bounds on interference, it is
necessary to verify separately the presence of at least M + 1 tasks that can
reach zero or negative laxity. This observation will be extremely useful to
improve the EDZL schedulability test.

5.2. Worst-case release times. The interference Ik(d
j
k − Λk, d

j
k) in

the overload window defined above cannot be easily computed. Moreover,
it depends on the specific job under analysis, which means that we should
compute it job by job. A possible solution is to use, instead of the actual
value of interference, an upper bound to the interference. From now on, we

call this upper bound βi
k(Λk). By definition, the interference Ii

k(d
j
k−Λk, d

j
k)

of τi on τ j
k in the overload window cannot be greater than the amount of

computation that τi requires in the same interval. More specifically, the
interference is composed only of computation of τi actually executed at a

priority higher than that of τ j
k .

The first step in computing βi
k(Λk) is to estimate what is the worst-

case situation for the release times of τi. As shown by Baker [Bak03], we
can assume that jobs of τi are released as soon as possible, one exactly
Ti time instants after the other. This situation, in fact, is clearly the one
that maximizes the amount of computation required by any task in a given
interval. Then, in order to compute the worst-case execution time in the
overload window, we need to determine which is the worst-case release time
sequence of the jobs of τi: in practice what is the alignment between the jobs

of τi and the problem job τ j
k that maximizes the computation time required

by τi in [dj
k − Λk, d

j
k).

The worst-case alignment depends on the scheduling algorithm selected,
since this changes the relation between the priorities, so we now split the
analysis, and consider the algorithms one by one. In all the three cases,
we propose the worst-case release sequence, and we show that shifting the
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releases forward or backward cannot increase βi
k(Λk). Due to the periodicity,

the maximum amount of shift we need to consider is Ti.

Worst-case for EDF. In the case of EDF, as noted by Baker [Bak03],
the worst-case release times sequence of τi is when one of the jobs of τi is

released at dj
k −Di, so that its deadline is aligned with the deadline of the

problem job. An example is represented in Figure 2.2. The execution of
each job is supposed to be exactly before its deadline: once the deadlines
are aligned as said above, this assumption increases to the maximum the

amount of computation requested in any interval ending at dj
k.

τk

τ1

τ2

dj
k − Λk dj

k

[dj
k − Λk, d

j
k)

Figure 2.2. Worst-case workload under EDF

In the figure, τ1 has constrained deadline, while τ2 has unconstrained
deadline. In [Bak03], Baker considered only the case of constrained dead-
lines, but in the figure we can see that there is no difference between the two
cases. Moving forward by an amount x ≤ Ti all the releases and deadlines
of τi, can increase βi

k(Λk) on the left side of the interval by a maximum of
min (x,Ci). However, on the right side we have a decrease of exactly one

job (whose deadline moves after dj
k, decreasing its priority). Instead, mov-

ing backward all the releases can only decrease on the left, while there is no
increase on the right. As a consequence, the worst-case is the one depicted

in the figure: periodic releases, one deadline aligned with dj
k and each job

executing exactly before its deadline.

Worst-case for FP. In [Bak03] Baker considered also the case of FP
(again, only for constrained deadlines systems), and showed that the worst-

case release sequence of τi is when one of the jobs of τi is released at dj
k−Ci,

so that its finish time f j
i can be aligned with the deadline of the problem

job. We claim that this is the worst-case release time sequence also for
unconstrained deadlines systems. The situation is reported in Figure 2.3 for
one constrained deadline task (τ1) and two unconstrained deadline tasks (τ2

and τ3).
Only tasks with priority higher than the problem job must be considered.

That is, in the analysis of τ j
k we consider only tasks τ1 to τk−1.

Comparing Figure 2.3 with Figures 2.2 and 2.4, it is evident that while in
EDF and EDZL we have a periodic situation in the worst-case executions, in
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Figure 2.3. Worst-case workload under FP

the case of FP things are more irregular: in a first interval from dj
k backward,

we have an initial set-up phase in which the execution of more jobs can be
packed one after the other, and only after a while the situation comes back
to be periodic as it is in EDF and EDZL. The total length of the set-up
clearly depends on the parameters of the tasks. The set-up involves the
execution of only one job, in the case of constrained deadlines (see τ1 in the
figure). For the case of unconstrained deadlines tasks, note that for τ3 job
J2 finishes Di − Ti before its deadline, J3 finishes Di − 2Ti + Ci before its
deadline and so on. The decreasing behavior is guaranteed by the fact that
Ci ≤ Ti (clearly if Ci = Ti, the task can fill with executions any interval). We
can continue packing executions up to when each added job finishes before
its deadline: the jth job can be added only if Di−(j + 1) Ti +jCi ≥ 0. From
this we obtain that the maximum number of jobs involved in the set-up is
⌊

Di−Ci

Ti−Ci

⌋

plus the last job J1, for a total length of
(⌊

Di−Ci

Ti−Ci

⌋

+ 1
)

Ci. This

formula can be verified for the tasks in the figure (see Example 2 below).
From the previous deadline backward, the behavior is periodic as is for EDF
and EDZL.

Example 2. Consider tasks τ1, τ2 and τ3 in Figure 2.3. The parameters
of the tasks are reported below.

i Ci Di Ti

1 7 15 19
2 7 24 19
2 7 24 11
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Task τ1 has constrained deadline and no set-up. Tasks τ2 and τ3 have
unconstrained deadline, and have set-up phase involving respectively 2 and
5 jobs. ✷

This behavior complicates the analysis, both here and in the computa-
tion of the upper bound of the interference.

If the overload window is shorter than the length of the set-up phase,
task τi is able to completely fill one processor in the interval of interest, so no
shift (backward or forward) is needed to increase the amount of computation
required by the task in the overload window. Let’s consider an overload
window larger than the length of the set-up phase.

Suppose to shift forward all the releases by an amount x ≤ Ci. On the
left side we obtain a maximum increase of x, but we have exactly the same
decrease on the right side. If the shift is x > Ci, we surely lose the last

job, since its release time is after dj
k. We can maintain all the other jobs,

by anticipating their execution. In fact, since the shift is assumed to be not
more than Ti, all the release times of job previously included in the overload
window (with the exclusion of the last job) remain at least Ci time instants

before dj
k. As an example, in Figure 2.3, see what happens to the release

time of J2 in the event of a forward shift of less than T3. We could increase
on the left side, because one job could enter the overload window. However,
since we are supposing that the overload window is longer than the set-up
phase, and x ≤ Ti, the increase cannot involve more than one job. That
is, the increase on the left side is surely counteracted by the decrease on
the right side. As a consequence, the shift forward does not increase the
maximum execution of τi in the overload window.

Consider now shifting backward. A shift of x ≥ Ti − Ci is necessary to
have an increase of at most x − (Ti − Ci) on the right side of the interval.
However, such a shift is guaranteed to impose a decrease of at least the same
amount on the left side depending on the position of the release times of τi

with respect to the starting point of the overload window. Again, the shift
does not increase the maximum execution of τi in the overload window.

As a consequence, the worst-case is the one depicted in Figure 2.3:
strictly periodic releases such that the last job can execute exactly between

its release time and dj
k, and all the other jobs executed as late as possible.

Worst-case for EDZL. The case of EDZL has been analyzed in [CB07].
The worst-case release time sequence of τi is the same as for EDF, that is

when one of the jobs of τi is released at dj
k − Di, so that its deadline is

aligned with the deadline of the problem job. For completeness, we repeat
here the analysis, referring to Figure 2.4.

Under EDZL, together with the jobs of τi with deadline in [dj
k −Λk, d

j
k),

we must consider the contribution of jobs with deadline after dj
k but with

zero-laxity. However, these jobs can contribute only after having reached
zero-laxity, which cannot happen before Ci time instants before their dead-
line (point A in Figure 2.4). This is equivalent to consider these jobs to
execute exactly before their deadline. In such a situation, only one job of τi

with deadline after dj
k could contribute to βi

k(Λk).
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Figure 2.4. Worst-case workload under EDZL

Consider now what happens when shifting the release times from the
situation depicted in the figure. Moving forward the releases by x ≤ Ti

means to decrease βi
k(Λk) on the right side. If the job does not execute

under zero-laxity, postponing its deadline means to reduce its priority, which
means that it cannot contribute anymore to βi

k(Λk). The loss would be Ci.
Instead, supposing the last job of Ti is executing at the end of its interval,
and so with high priority, the minimum loss is min (x,Ci). At the same time,
on the left side of the interval there is an increase of at most min (x,Ci).
Complexively, the shift forward does not increase the maximum execution
of τi in the overload window.

Even shifting backward does not increase the maximum execution of τi

in the overload window. An increase on the right side can be obtained only
if the shift is at least x ≥ Ti−Ci, and in such a case the increase cannot be
more than x− (Ti − Ci). In contrast, it is simple to see that on the left side
there is a decrease of at least the same quantity.

In the end, the worst-case release times sequence for EDZL is the same
as for EDF: strictly periodic releases such that one deadline is aligned with

dj
k, and jobs executing exactly before their deadline.

5.3. Interference estimation. From the worst-case release times se-
quences proposed in the previous section for the three algorithms, we can

now derive an upper bound of the interference Ii
k(d

j
k − Λk, d

j
k). Assuming

that the jobs execute as in the figures, the upper bound will be composed
of two distinct contributions:

• the body: a number Ni of jobs whose contribution is the complete
execution Ci

• the carry-in: at most one job, called carried-in job, whose contri-
bution could be less than the whole computation time Ci; we use
εi to refer to the upper bound of such contribution.

There are several possibilities to account for the two contributions. We
could consider one job to be part of the body whenever the overload window
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is large enough to include its release time. This solution is good for con-
strained deadline tasks, while it does not fit well for unconstrained deadlines
tasks, since we account for a job while a new one could already be accounted
for (see τ2 in Figures 2.2, 2.3 and 2.4). Another possibility is to consider the
deadline of the previous job, supposing that each job suffers the worst-case
precedence-blocking and so it is forced to execute only after the deadline of
the previous job). This has been the approach in [CB07]. We could also
suppose that each job executes exactly before its deadline, and so account
for a new job in the body if the overload window includes the whole execu-

tion (that is, it reaches dj
i − Ci). This is justified by the fact that, as we

saw, the situation in which each task execute as late as possible is the one
that maximizes the upper bound of the interference.

For what concerns the carry-in, we always suppose the worst-case sit-
uation: the carry-in job executes exactly before its deadline. As a conse-
quence, the carry-in contribution is limited by the length of the job, Ci, and
the length of the fraction of overload window in which the carry-in job can
execute.

We will not deepen this analysis, but we underline that, if the formulae
are well-defined, they account for the same base situation (the situation
in which all the jobs are packed in order to maximize the execution in
the overload window), so there is actually no difference among the three
approaches: what does change is only what is accounted for in the body and
in the carry-in, while the sum remains the same.

Due to mathematical simplicity, we prefer the second approach, and we
account for a new job in the body when the overload window includes the
deadline of the previous job. In Section 5.6 we report the formulae obtained
with the other approaches, and we show, with an example, that the final
result is the same.

EDF and EDZL have the same worst-case release time sequence, and
can be treated together. Instead, FP needs a dedicated analysis.

5.4. Upper bound for EDF and EDZL. Consider the release times
sequence in Figures 2.2 and 2.4. Since we want to account for a new job in
the body if the overload window is large enough to include the deadline of
the previous job, and the first deadline coincides with the end of the overload
window, the value of Ni can be computed as

(5.4) Ni =

⌊

Λk

Ti

⌋

.

With this choice for the body, the formula of Ni remains the same for
both constrained and unconstrained deadlines.

The carry-in contribution is bounded by Ci and the interval between
the start time of the overload window and the first deadline of τi inside the
overload window. In formula,

(5.5) εi = min (Ci,Λk −NiTi) .

For EDF and EDZL, we obtain the following upper bound of the inter-

ference provoked by τi in the overload window [dj
k − Λk, d

j
k) of the problem

job τ j
k :
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(5.6) Ii
k(d

j
k − Λk, d

j
k) ≤ βi

k(Λk) = NiCi + εi = NiCi + min (Ci,Λk −NiTi) .

As a consequence, the upper bound on interference when EDF of EDZL
are used, is expressed in the following system of equations:

(5.7)



















Ni =

⌊

Λk

Ti

⌋

εi = min (Ci,Λk −NiTi)

Ii
k(d

j
k − Λk, d

j
k) ≤ βi

k(Λk) = NiCi + εi

5.5. Upper bound for FP. The case of FP is complicated by the
presence of the set-up phase in which τi can completely fill one processor. If
the overload window is shorter than the set-up phase, we could easily con-
sider this fact in order to give an upper bound on the interference. However,
we prefer to cope with the computation of the upper bound exactly as in
the case of EDF and EDZL. Thanks to this fact, the math is easier, we can
unify the cases of constrained and unconstrained deadlines, and we main-
tain the similarities with the case of EDF and EDZL. In the set-up phase
we overestimate the interference, but this overestimation can be corrected
by considering that the interference is always bounded by the length of the
overload window. However, we will see that in the schedulability test this
bound is not necessary, since a more strict one is used in all the tests.

Consider the release times sequence in Figure 2.3, and suppose there are

no jobs of τ j
i prior to the ones in the figure. As for EDF and EDZL, we

want to account for a job in the body if the overload window is large enough
to include the deadline of the previous job. In this case, however, we must

include in the body also the jobs whose deadlines are after dj
k, but that are

anyway able to execute in the overload window. That is, we include also the

jobs with release time at least Ci time instants earlier than dj
k.

τk

τ1

dj
k − Λk dj

k

d0
i d1

i d2
i d3

i d4
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i d6
i

τ0
i τ1
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[dj
k − Λk, d

j
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Figure 2.5. Deadline positions under FP

As an example, consider Figure 2.5. τ2
i and τ3

i are included in the body
because, in the worst-case, they are supposed to completely execute respec-
tively in [d1

i , d
2
i ) and [d2

i , d
3
i ), and such intervals are completely included in
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the overload window. Instead, τ4
i to τ6

i are included in the body because,

even if they have deadline after dj
k, there is enough time between their re-

lease and dj
k for them to execute. The two subsets of jobs have in common

the fact that their deadlines fall in the interval (dj
k − Λk, d

j
k + Di − Ci].

The term Di − Ci in the right extreme of the interval descends from the

fact that the last job is released at rj
i = dj

k − Ci and so its deadline is at

rj
i + Di = dj

k −Ci + Di. As a consequence, the value of Ni can be computed
as

(5.8) Ni =

⌊

Λk + Di −Ci

Ti

⌋

.

As for EDF and EDZL, the value of Ni remains correct for both con-
strained and unconstrained deadlines.

The carry-in is bounded by the same values, although this time the
length of the interval in which the carried-in job executes is computed dif-
ferently. In particular, as in Equation (5.8), we add Di−Ci to the formula,
obtaining

(5.9) εi = min (Ci, (Λk + Di − Ci)−NiTi)

The larger positive term is offset by the larger value of Ni, so that the
final upper bound represents exactly the same concept: the length of the

interval between dj
k − Λk and the first deadline of τi inside the overload

window.
Recall that if the overload window is shorter than the set-up phase of τi,

we have to limit the value of βi
k(Λk) with the length of the overload window.

The upper bound of the interference provoked by τi in the overload window

[dj
k − Λk, d

j
k) of the problem job τ j

k , when FP is selected, is

(5.10) Ii
k(d

j
k − Λk, d

j
k) ≤ βi

k(Λk) = min (NiCi + εi,Λk) =

= min (NiCi + min (Ci, (Λk + Di − Ci)−NiTi) ,Λk) .

Summarizing, the upper bound of the interference for FP can be ex-
pressed by the following system:

(5.11)



















Ni =

⌊

Λk + Di − Ci

Ti

⌋

εi = min (Ci, (Λk + Di − Ci)−NiTi)

Ii
k(d

j
k − Λk, d

j
k) ≤ βi

k(Λk) = min (NiCi + εi,Λk) .

5.6. Alternative approaches. For the sake of completeness, in this
section we briefly report the formulae we obtain using other possible ap-
proaches to the computation of body and carry-in. Computing them is not
difficult, and requires to follow exactly the same steps as done in Sections 5.4
and 5.5.

Above, we supposed to account for a new job in the body if the overload
window includes the deadline of the previous job. Suppose now to use, as a

discriminant, the interval in which the job can surely execute: from rj
i to dj

i

for constrained deadlines, and from dj−1
i to dj

i for unconstrained deadlines.
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In such a case we obtain the following formulae for EDF and EDZL:

(5.12)



















Ni =

⌊

Λk − Λi

Ti

⌋

+ 1

εi = min (Ci,max (0,Λk −NiTi))

Ii
k(d

j
k − Λk, d

j
k) ≤ βi

k(Λk) = NiCi + εi

For FP, the formulae are as below:

(5.13)



















Ni =

⌊

(Λk + Di − Ci)− Λi

Ti

⌋

+ 1

εi = min (Ci,max (0, (Λk + Di − Ci)−NiTi))

Ii
k(d

j
k − Λk, d

j
k) ≤ βi

k(Λk) = min (NiCi + εi,Λk) .

The above equations reduce exactly to Equations (5.11) and (5.7) in the
case of unconstrained deadlines, since in such a case in both approaches
we consider a job in the body if the overload window includes the previous
deadline.

Instead, since Figures 2.2, 2.3 and 2.4 represent not only the worst-case
release time sequence but also the worst-case execution, we could think to
account for a new job in the body whenever the overload window includes
its entire execution in the worst-case. Following this approach, the formulae
for EDF and EDZL are

(5.14)



















Ni =

⌊

Λk − Ci

Ti

⌋

+ 1

εi = max (0,Λk −NiTi)

Ii
k(d

j
k − Λk, d

j
k) ≤ βi

k(Λk) = NiCi + εi.

Under FP, we obtain

(5.15)



















Ni =

⌊

(Λk + Di − Ci)− Ci

Ti

⌋

+ 1 =

⌊

Λk + Di − 2Ci

Ti

⌋

+ 1

εi = max (0, (Λk + Di −Ci)−NiTi)

Ii
k(d

j
k − Λk, d

j
k) ≤ βi

k(Λk) = min (NiCi + εi,Λk) .

Note that, as above, for FP the set-up phase is quite difficult to consider.
So we use a generic upper bound, valid in any case, and then we further limit
the obtained upper bound of the interference with the length of the overload
window.

In order to identify the three approaches, we call them respectively Di-
based, Λi-based and Ci-based upper bounds.

Remember that all the three approaches described above to compute an
upper bound on the interference bring to exactly the same upper bound, as
can be seen in the case of EDF and EDZL in Example 3 below. The dif-
ference among the three approaches is only in the mathematical complexity
of the formulae, and the fact that in the same time instant, depending on
the chosen approach, the job can be accounted for in the body or in the
carry-in.
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Figure 2.6. Worst-case execution of τi under EDF and EDZL

Example 3. Consider the worst-case release times sequence under EDF
and EDZL, for task τi in Figure 2.6 below.

In Table 2 we report the values of Ni, εi and βi
k(Λk) computed with

the three approaches described above, as functions of the length X of the

overload window [dj
k −Λk, d

j
k). We considered only boundary time instants,

at which the values are discontinuous. Clearly when X increases between A
and B, εi increases linearly as well in all the approaches, maintaining always
the same value, as it does between D and E and between G and H.

Point
A B C D E F G H I

Approach

Di-based
Ni 0 0 0 1 1 1 2 2 2
εi 0 Ci Ci 0 Ci Ci 0 Ci Ci

βi
k 0 Ci Ci Ci 2Ci 2Ci 2Ci 3Ci 3Ci

Λi-based
Ni 0 0 1 1 1 2 2 2 3
εi 0 Ci 0 0 Ci 0 0 Ci 0
βi

k 0 Ci Ci Ci 2Ci 2Ci 2Ci 3Ci 3Ci

Ci-based
Ni 0 1 1 1 2 2 2 3 3
εi 0 0 0 0 0 0 0 0 0
βi

k 0 Ci Ci Ci 2Ci 2Ci 2Ci 3Ci 3Ci

Table 2. Computation of βi
k(Λk) with the three approaches.

We can see that despite the differences in Ni and εi in different ap-
proaches, the final result for βi

k(Λk) is always the same. If we consider,

instead of task τi in the figure, a task with the same Ci and Di, but T
′

i > Di

(that is, an unconstrained deadline task), the worst-case execution does not
change with respect to the figure, and only the releases are anticipated. In
such a case, it is easy to see that Di-based and Ci-based approaches re-
main exactly the same, because they do not involve in any way the release
times. For what relates to the Λi-based approach, we said above that this
is equivalent to the Di-based approach for unconstrained deadlines, and so
it is equivalent to the previous ones.

✷
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An example for the case of FP would be slightly more complex, due to
the presence of the set-up phase. However, as for EDF and EDZL, we could
verify that Ni and εi can change in different approaches, but their changes
are balanced, so that the final result for βi

k(Λk) is not affected by the selected
approach.

5.7. Upper bound refinement. In the previous section, we proposed

upper bounds on the interference Ii
k(d

j
k − Λk, d

j
k) given by the amount of

computation that a task τi can require in the overload window. However,
this is quite pessimistic, and further analysis are in order to decrease such an
estimation. We can improve the upper bound of the interference as follows.
We underline that the results below are valid for all the algorithms under
analysis (EDF, FP or EDZL). Moreover, they can be extended to other
algorithms or classes of algorithms.

Let’s focus on the overload window of the problem job. Please recall
that in such an interval the problem job cannot suffer precedence-blocking.
Thus, every time it is blocked, it is blocked by priority. As a consequence,

in every time instant in which τ j
k is priority-blocked, the M processors must

be occupied by exactly M jobs of tasks other than τk, and each of these jobs
has priority higher than the problem job. Consequently, the respective M

values of interference Ii
k(d

j
k − Λk, d

j
k) increase. From this descends that

(5.16) Ik(d
j
k − Λk, d

j
k) =

∑

i6=k Ii
k(d

j
k − Λk, d

j
k)

M
.

Using this result we can prove the following lemma, which will be useful
in improving the estimation of interference.

Lemma 5.5 (Bound on considered interference). Ik(d
j
k−Λk, d

j
k) ≥ x ⇐⇒

∑

i6=k min
(

Ii
k(d

j
k − Λk, d

j
k), x

)

≥Mx

Proof. If. From the hypothesis, it follows that

Ik(d
j
k − Λk, d

j
k) =

∑

i6=k

Ii
k(d

j
k − Λk, d

j
k)

M
≥

≥
∑

i6=k

min
(

Ii
k(d

j
k − Λk, d

j
k), x

)

M
≥

≥
Mx

M
= x.

Only If. Let T
′

⊆ T be the set of tasks τi for which Ii
k(d

j
k −Λk, d

j
k) ≥ x,

and ξ the cardinality of T
′

. If ξ ≥ M the lemma directly follows, so we
consider only ξ < M .
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∑

i6=k

min
(

Ii
k(d

j
k − Λk, d

j
k), x

)

= ξx +
∑

τi /∈T ′

Ii
k(d

j
k − Λk, d

j
k) =

= ξx + MIk(d
j
k − Λk, d

j
k)−

∑

τi∈T
′

Ii
k(d

j
k − Λk, d

j
k) ≥

≥ ξx + MIk(d
j
k − Λk, d

j
k)− ξIk(d

j
k − Λk, d

j
k) =

= ξx + (M − ξ) Ik(d
j
k − Λk, d

j
k) ≥ ξx + (M − ξ) x = Mx.

�

The idea behind this Lemma is the following: if the interference suffered

by the problem job τ j
k is x, each one of the other tasks τi cannot contribute

to the sum of Equation (5.16) with more than x. Hence, in order to verify

the thesis (Ik(d
j
k − Λk, d

j
k) = x) we can consider each single interference

Ii
k(d

j
k − Λk, d

j
k) as to be limited by x. In other words, it is sufficient to

consider each contribution Ii
k(d

j
k − Λk, d

j
k) up to x, if we want to show that

the interference Ik(d
j
k − Λk, d

j
k) is at least x.

Note that if we use of > on both sides of the statement, the Only if part
of the lemma is not true anymore. Suppose that exactly M tasks contribute
to the interference suffered by τk, with a contribution y > x. Limiting each
single contribution to x, the strict equality holds in the sum on the right

side, even if the interference suffered by τk is Ik(d
j
k − Λk, d

j
k) > x. On the

contrary, it is sufficient to repeat the proof to verify that the If part of the
lemma remains correct if we substitute ≥ with >.

6. Schedulability tests

From the upper bounds on interference proved for EDF, EDZL and FP,
we can now propose a schedulability test for each scheduling algorithm. In
this section, we use the Di-based upper bound (i.e. Equations 5.7 and 5.11),
but it is easy to propose equivalent schedulability tests for the other solutions
described in Section 5.6.

6.1. EDF schedulability test. In order to propose a computable
schedulability test for EDF, it is sufficient to verify, using the upper bound
proposed in Section 5.4, if the interference can be sufficient to force a dead-
line miss. We obtain the following theorem.

Theorem 6.1 (BCL-EDF Test). A task set T is schedulable on M pro-
cessors by EDF if, for every task τk

(6.1)
∑

i6=k

min
(

βi
k(Λk),Λk − Ck + 1

)

< M (Λk − Ck + 1) .

where

βi
k(Λk) = NiCi + min (Ci,Λk −NiTi)

and

Ni =

⌊

Λk

Ti

⌋

.
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Proof. Suppose the inequality holds for τk. From Lemma 5.5 and the
upper bound on interference under EDF, given in Equation (5.7), we have

that Ik(d
j
k − Λk, d

j
k) < (Λk − Ck + 1) for each job of τk. As a consequence,

by Lemma 5.3 no job of τk can reach negative laxity and miss its deadline.
If that is true for every task, no deadlines can be missed in the system and
so the task set is schedulable. �

6.2. FP schedulability test. For FP, we can follow the same approach
as for EDF. However, we can take into account the fact that the M tasks
with higher priority can never miss their deadline, since they will always
have a processor assigned at the moment they are released (by preempting
a lower priority task, if necessary). As a consequence, we can limit our
attention to the other tasks. The obtained test is expressed in the theorem
below.

Theorem 6.2 (BCL-FP Test). A task set T is schedulable on M pro-
cessors by FP if, for every task τk (where tasks are ordered by priority and
k > M)

(6.2)
∑

i<k

min
(

βi
k(Λk),Λk − Ck + 1

)

< M (Λk − Ck + 1) .

where
βi

k(Λk) = NiCi + min (Ci, (Λk + Di − Ci)−NiTi)

and

Ni =

⌊

Λk + Di −Ci

Ti

⌋

.

Proof. Suppose the inequality holds for τk. From Lemma 5.5 and the
upper bound on interference under FP, given in Equation (5.11), we have

that Ik(d
j
k − Λk, d

j
k) < (Λk − Ck + 1) for each job of τk. As a consequence,

by Lemma 5.3 no job of τk can reach negative laxity and miss its deadline.
If that is true for every task, no deadlines can be missed in the system and
so the task set is schedulable. �

Note that the upper bound to the interference represented by βi
k(Λk)

does not include the minimum with Λk introduced in Equation (5.11). Such
bound was conceptually useful to avoid overestimations of the interference in
the set-up phase. However, as anticipated in Section 5.5, it becomes useless,
since the minimization in Equation (6.2) is more strict.

Note again that the sum in Equation (6.2) involves only tasks with
priority higher than the task τk under analysis. This seems to be a great
advantage of this test with respect to the equivalent test for EDF.

6.3. EDZL schedulability test. When EDZL is selected, the test
proposed for EDF in Section 6.1 could be used (since each test for EDF
is also a test for EDZL). However, such test can be greatly improved by
a fact underlined at the end of Section 5.1. As we said, when the system
is scheduled with EDZL, a deadline can be missed only if there can be at
least M + 1 jobs with zero laxity at the same time. This concept would be
hidden in the definition of interference, if we were able to compute it, but it
is lost in moving to the upper bound. We can re-introduce it by requiring
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the presence of at least M + 1 tasks for which the zero laxity condition is
reachable. The test can be expressed as in the theorem below.

Theorem 6.3 (EDZL Test). A task set T is schedulable on M processors
by EDZL unless there exist at least M + 1 tasks τk for which

(6.3)
∑

i6=k

min
(

βi
k(Λk),Λk − Ck + 1

)

≥M (Λk − Ck + 1) .

where
βi

k(Λk) = NiCi + min (Ci,Λk −NiTi)

and

Ni =

⌊

Λk

Ti

⌋

,

and for at least one of them the > strictly holds in Equation (6.3).

Proof. Suppose Equation (6.3) holds for less than M + 1 tasks. From
Lemma 5.5 and the upper bound on interference under EDZL, given in

Equation (5.7), we have that Ik(d
j
k − Λk, d

j
k) ≥ (Λk − Ck + 1) for less than

M + 1 tasks. As a consequence, by Corollary 5.4, less than M + 1 tasks
can reach zero laxity. Whenever one job of these tasks reaches zero laxity,
it is scheduled for execution and cannot be preempted, so it will not miss
its deadline. Hence, no deadline can be missed in the system.

Now suppose Equation (6.3) holds for at least M +1 tasks, but for none
of them it holds with the strict >. In such a case, by Lemma 5.3 no job can
reach negative laxity, and so there cannot be deadline miss. �

We have to note that this theorem is extremely pessimistic: what is
really important is not if M + 1 tasks can reach zero or negative laxity, but
if they can do that at the same time, which is a more stringent requirement.
Unfortunately, this condition is quite complicated to verify, and we are not
aware of any feasible approach to this problem, apart from the simulation
of the system.

6.4. Comments on the tests. To better understand the key idea
behind the schedulability tests proposed above, consider that we are not in-
terested in computing the actual worst-case interference for a job, but only
in verifying if it is greater or equal than Λk−Ck + 1 (which is the necessary
condition for a deadline miss, see Lemma 5.3). In order to verify this, it
is sufficient to consider, for each task τi a contribution to the interference
not greater than Λk − Ck + 1. If the sum of these bounded contributions
is greater than or equal to M (Λk − Ck + 1), then the total interference

Ik(d
j
k−Λk, d

j
k) is at least Λk−Ck +1 (by Lemma 5.5). In the other case, the

total interference cannot be greater than Λk −Ck, and so the task is surely
schedulable. The term (Λk − Ck + 1) in the minimum is one of the main
differences between our work published in [BCL05a] and [BCL05b] (in a
slightly different form) and the results presented in [Bak05] and [Bak06a].
Through experiments, it is easy to verify that this brings a substantial im-
provement on the schedulability test. In [BC06c], instead, the analysis by
Baker [Bak05, Bak06a] is integrated with the minimization of the inter-
ference described above, and the results are quite interesting, especially for
FP.
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It could appear that the use of the +1 in the formulae is superfluous,
and one could equivalently use

∑

min
(

βi
k(Λk),Λk − Ck

)

≤M (Λk − Ck)

Indeed, this is not true. Suppose that the interference to τ j
k is due to exactly

M tasks, and each of them contributes with Λk − Ck + x, with x ≥ 1
(remember that x is surely an integer, due to the time division). The total

interference Ik(d
j
k − Λk, d

j
k) is so Λk − Ck + x, and τ j

k is not schedulable,
due to Lemma 5.3. However, limiting to Λk−Ck the single contribution, we
would obtain that the sum on the left of the equation is exactly M (Λk − Ck)
and the test would be passed. Using the strict inequality and the +1 term
helps in avoiding this counter effect of the interference limitation, and gives
a further explanation of the discussion related to Lemma 5.3.

7. Improving the analysis through the slack

The theorems of the previous section suffer from the gross overestimation
of the carry-in done in Section 5.3. Through experiments, it is easy to see
that this almost counterbalances the improvements introduced by bounding
the interference with the term Λk−Ck +1, with respect, for example, to the
BAK-EDF test of Section 3.1. For this reason, it is of primary importance
to find a way to give a better estimation of the carry-in. With this goal
in mind, a further analysis of the meaning of Theorems 6.1, 6.2 and 6.3 is
useful. Consider for example the case of EDF, and, in applying the test of
Theorem 6.1, suppose that for a certain task τk we find that the inequality
holds, and in particular

(Λk − Ck + 1)−

∑

i6=k min
(

βi
k(Λk),Λk − Ck + 1

)

M
= x > 0.

This means not only that no job of τk will miss its deadline, but also that,

in the worst-case, each job τ j
k will finish at least ⌈x− 1⌉ time instants before

its deadline. That is,

(7.1) Sk ≥

⌈

(Λk − Ck)−

∑

i6=k min
(

βi
k(Λk),Λk − Ck + 1

)

M

⌉

.

To see this, remember that the sum represents an upper bound on the

interference Ik(d
j
k − Λk, d

j
k) that all the tasks other than τk can impose on

τ j
k , while the first term is the interference necessary to force a deadline miss.

If x ∈ (0, 1], considering the time division discussed in 2.3, we have that in
the overload window, in the worst-case, we have M processors occupied at
the same time for at most Λk −Ck, and only M − 1 processors occupied for
an additional interval of length 1. That is, in the overload window one of the

M processor is idle (and so will execute τ j
k) for at least Λk−(Λk − Ck) = Ci,

guaranteeing to complete τ j
k in time. It is straightforward to replicate the

reasoning for different values of x and different scheduling algorithms (using
the respective tests).

As an example, in Figure 2.7, we suppose to have 3 processors, and a
job of τk = (Ck = 5,Dk = 10, Tk > Dk) to be executed. Suppose the upper
bound on the interference computed is M (Λk − Ck + 1) = 17. This amount
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τ j
k

rj
k dj

k

[dj
k − Λk, d

j
k)

Dk − Ck

Figure 2.7. Example of slack

of computation, in the worst-case, is distributed among the processors as
in the figure, with 6 units of computation on 2 processors, and only 5 on

the third processor. In such a situation, τ j
k can complete its computation in

time by executing on the third processor.
The value computed with Equation (7.1) represents a lower bound on

the slack Sk of a task τk, as defined in Section 2. This lower bound can be
used when the task is the one under analysis, but also when the task is one
of the tasks contributing to the interference of another task under analysis.
From now on we refer to both the slack of τi and its lower bound with the
same symbol Si, specifying what we mean only when it is necessary.

We can use the proposed bound on the slack to improve the analysis
proposed in Theorems 6.1, 6.2 and 6.3, in three different aspects: not only
the estimation of the carry-in, but also the length of the overload window
and the number of jobs included in the body.

Due to the easier formulae we obtain after the improvements described
below, we prefer to start from the Λi-based upper bounds on interference
proposed in Section 5.6 (instead of the Di-based upper bound of Sections 5.4
and 5.5. We report them here to help the understanding. For EDF and
EDZL, we found (see Equation (5.12))

(7.2)



















Ni =

⌊

Λk − Λi

Ti

⌋

+ 1

εi = min (Ci,max (0,Λk −NiTi))

Ii
k(d

j
k − Λk, d

j
k) ≤ βi

k(Λk) = NiCi + εi

Instead, for FP, we had (as in Equation (5.13))

(7.3)



















Ni =

⌊

(Λk + Di − Ci)− Λi

Ti

⌋

+ 1

εi = min (Ci,max (0, (Λk + Di − Ci)−NiTi))

Ii
k(d

j
k − Λk, d

j
k) ≤ βi

k(Λk) = min (NiCi + εi,Λk) .

7.1. Improving the overload window. In Section 5.1, we identified
the overload window as the interval in which the problem job does not suffer
precedence-blocking. Thanks to the lower bound on the slack, the overload
window can be re-analyzed and possibly enlarged.
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For implicit and constrained deadline tasks, the slack analysis does not
help. In such a case, the start time of the overload window is fixed to the
release time of the job. This cannot be improved following the slack analysis,

since clearly τ j
k cannot execute before rj

k.

For unconstrained deadline tasks, we fixed to dj
k − Ti = dj−1

k the start
time of the overload window, basing on the fact that this is the first time

instant after which we are sure that τ j
k does not suffer precedence-blocking.

However, due to the reasoning above, we know that

f j−1
k ≤ dj−1

k − Sk = dj
k − (Tk + Sk) .

That is, we can enlarge the overload window by Sk. Clearly the problem job
cannot start executing before its release time, so the overload window must
be defined as

[dj
k − (Tk + Sk) , dj

k) ∩ [rj
k, d

j
k),

for a total length of min (Dk, Tk + Sk). This formula remains valid also for
implicit and constrained deadline tasks, considering that for such tasks Dk

will be always selected in the minimum.
Since from now on Λk = min (Dk, Tk) is substituted in several of the

formulae by the value min (Dk, Tk + Sk), from now on we define Λk =
min (Dk, Tk + Sk).

The different definition of the overload window allows to modify the
analysis, since Lemma 5.3 and the derived corollary can be modified to take
into account the new value. We obtain that a job can reach negative laxity

only if Ik(d
j
k − Λk, d

j
k) > Λk −Ck + 1.

From this, two modifications are derived in Theorems 6.1, 6.2 and 6.3:

• the right hand side of the inequalities in the schedulability tests is
increased of MSk, making it easier for a task τk to pass the test
and result to be schedulable;
• the upper bound on the interference of tasks other than τk has to

be computed in a different interval; since each task has an interval
Sk time instants larger, and could completely fill it, the left hand
side of the inequalities in the schedulability tests could increase by
at most NSk, making it more difficult for a task τk to pass the test.

The net result could be a loss, and computing a new lower bound on the
slack Sk would bring to a worse estimation. In such a case, it is not conve-
nient to take into account the new overload window. It is better to maintain
the length of the overload window that originated the best estimation for
the slack, in the hope that new bounds on the slack of other tasks allow for
improvements in the overload window of τk. However, the previous, higher,
lower bound on the slack remains valid, and can be used in the analysis of
other tasks. In other words, changing the length of the overload window
brings to a new estimation of the lower bound of the slack Sk: the lower
bound to be used in the formulae is the highest value computed so far, and
not necessarily the last one.

Note that this reasoning is valid also if at the first step we find a negative
bound for the slack. In such a case, as said above, it is not convenient to
take into account it to shrink the overload window, and we maintain the
original interval.
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7.2. Improving the body. In order to estimate the upper bound on
the interference, it is necessary to compute the number of job completely in-
cluded in the overload window. As we noticed above, increasing Sk modifies
the length of the overload window, forcing to recompute the value of Ni for
each task τi. However, if τi has unconstrained deadline, another interesting
modification is introduced by the increase in the lower bound on Si. In fact,

since a job τ j
i can execute in an interval whose length is increased (as for

τ j
k) to Λi, we can repeat the analysis of Section 5.3. As above, we split the

analysis for EDF and EDZL from the analysis for FP.

EDF and EDZL. The number of jobs included in the body, in the case
of constrained deadlines tasks, is not influenced by the introduction of the
slack. Instead, for unconstrained deadlines tasks, we want to account for a
new job in the body only if the overload window is large enough to include
the latest possible finish time of the previous job, that is the deadline mi-
nus the lower bound on the slack. The formula for Ni, valid for arbitrary
deadlines, becomes

(7.4) Ni =

⌊

Λk − Λi

Ti

⌋

+ 1

where the introduction of Si is hidden in the term Λi. Note that, as expected,
Si does not influence the value of Ni, if τi has constrained deadline. Note
also that in the formula we include also the new length of the overload
window, represented by Λk.

It must be noted that, if Si ≥ Λk, we could find Ni ≤ −1, which clearly
does not make sense. In effect, under EDF and EDZL if a task τi has
minimum slack greater than the overload window, it means that it cannot
contribute to the interference of the problem job. In fact, Si > 0 means
that the job can never reach zero laxity, so its priority depends only on
the position of its deadline. However, if Si > Λk, either the job has lower

priority (due to its deadline being after dj
k) or it finishes before dj

k − Λk

(that is, before the start time of the overload window. In such a case,

Ii
k(d

j
k − Λk, d

j
k) = 0, and the contribution of τi to the upper bound on

interference must be considered null.

FP. For the case of FP, the modification is similar. For constrained dead-
line tasks, there is no difference, since we should continue to consider a job
in the body if its release time is included in the overload window. Instead,
for unconstrained deadlines tasks, the job must be accounted for only if the
overload window includes the maximum finish time of the previous job. This
change requires, as above, the introduction of the factor Si in the formula of
Ni. The final formula, for arbitrary deadlines tasks, is based on the previous
defined value Λi, and is the following:

(7.5) Ni =

⌊

(

Λk + Di − Ci

)

− Λi

Ti

⌋

+ 1.

As for EDF and EDZL, the presence of Si is hidden in Λi, and is such that
it does not introduce modifications in the case of constrained deadlines.
Moreover, we introduced also Λk to represent the new overload window.
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In this case, the problem of negative values for Ni described for EDF
and EDZL cannot show up, because the term Di−Ci added to the formula
avoid this. In fact, by their meaning, Si ≤ Di − Ci, and so the formula is
always strictly non negative. In effect, we can expect this behavior: under
FP, a task with higher priority than τk can always produce some interference
independently on slack and deadline positions.

7.3. Improving the carry-in. The final difference introduced by the
lower bound on the slack relates to the original problem: better estimating
the carry-in. Since the carried-in job of τi finishes at least Si time instants
before its deadline, the interval in which it can execute inside the overload
window is reduced by the same amount. As a consequence, in bounding the
carry-in, the formula can become

(7.6) εi = min (Ci,max (0,Λk −NiTi − Si))

for EDF and EDZL, and

(7.7) εi = min
(

Ci,max
(

0,
(

Λk + Di − Ci

)

−NiTi − Si

))

for FP.

8. Schedulability tests: recursive approach

Using the results discussed above, we propose an improved sufficient
schedulability test, based on the fact that the value of any of the lower
bounds on the slacks directly depends on, and influences, the values of all
the others. The idea is to search, recursively, for the best possible estimation
of all the Si: at each step compute all the Si, and verify if the new values
can help in improving them in the next step. When no further improvement
is possible, the behavior depends on the scheduling algorithm selected, as in
the tests of Section 6:

• for EDF and FP, if all the lower bounds on the slacks are positive,
then no task can miss its deadline, and so the task set is schedulable;
instead if at least one task exists for which the lower bound on the
slack is non-positive, nothing can be said;
• for EDZL, if not more than M tasks can have non-positive slack,

then the task set is schedulable, while if at least M + 1 tasks can
have non-positive slack, then nothing can be said.

We can now express new schedulability tests based on the above discus-
sion. The core of the test, reported in Figure 2.8, takes the lead from the
systems of inequalities (7.2) for EDF and EDZL, and (7.3) for FP, in which
we include the improvements due to the slack.

In the core, for a task Ti we always take into account the higher estima-
tion of Si found so far. In the analysis of tasks other than Ti, the value of
Si is always used directly in the formuale. However, when Ti is under anal-
ysis, the best value of Si can be taken into account in two different ways.
We use parameter OW to chose between the two possibilities. If the last
estimation of the slack produced an increase, it is convenient to search for
new improvements in the largest possible overload window. Instead, if the
last recursive step resolved in a decrease, it is better to take into account
not the largest possible interval, but the one in which the best estimation
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CoreED (T ,M, τk, OW )

1 for each τi 6= τk ∈ T , do

2 Ni ← max
(

0,
⌊

OW −Λi

Ti

⌋

+ 1
)

3 βi
k ← NiCi + min (Ci,max (0,OW −NiTi − Si))

4 bound ←

⌈

(OW −Ck)−
∑k

i=1 min(βi
k
,OW −Ck+1)

M

⌉

5 return bound ;

CoreFP (T ,M, τk, OW )

1 for each τi 6= τk ∈ T , do

2 Ni ←
⌊

(OW +Di−Ci)−Λi

Ti

⌋

+ 1

3 βi
k ← NiCi + min (Ci,max (0, (OW +Di − Ci)−NiTi − Si))

4 bound ←

⌈

(OW −Ck)−
∑k

i=1 min(βi
k
,OW −Ck+1)

M

⌉

5 return bound ;

Figure 2.8. Core of the schedulability test for EDF and
EDZL, above, and FP, below.

of Si was computed, trying to improve the analysis only exploiting the im-
provements on the slack computed for the other tasks. See Section 7.1 for
further explanations on this topic.

Note also that the maximum taken at line 2 is necessary to cope with the
problem described in Section 7.2, of Ni possibly negative if the slack Si is
greater than the length of the overload window. Forcing Ni to 0 guarantees
also that the total contribution of τi is 0 (as we expect), since it forces to 0
also the carry-in.

8.1. Recursive Test. We propose Algorithm Recursive Test in Fig-
ure 2.9 as a generic schedulability test, that can be customized for the three
algorithms EDF, FP and EDZL. The test will be called respectively REDF,
RFP, or REDZL. The specialization is necessary in the following points:

• at lines 9 and 11 the CoreX procedure is CoreED for REDF and
REDZL, or CoreFP for RFP(see Figure 2.8);
• the termination test at line 19 depends on the algorithm: for REDF

and RFP the test is passed if all the tasks have strictly non negative
lower bound on the slack Sk; instead, for REDZL, the test is passed
if no more than M tasks have negative Sk;
• under FP, the M highest priority tasks can always find a processor

to execute, preempting some lower priority task if no idle processor
exists, and so they will always complete in time; as a consequence,
the tasks to be verified (line 7) are all the tasks for REDF and
REDZL, but only the tasks from M + 1 to N , for RFP;
• under FP the M highest priority tasks always finish Ci time instants

after the release, so the bound to their slack is always maximized to
Di−Ci. As a consequence, the initialization step at line 2 requires
to fix all the slacks Si to −1 (assume non schedulability, and try to
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Recursive Test (T ,M)

1 for each i do
2 initialize Si

3 OW New
i

← min (Dk, Tk)
4 OW Old

i
← min (Dk, Tk)

5 flagi ← TRUE
6 while some improvement is possible do
7 for each τk in T that requires verification do
8 if (flagk = TRUE) then
9 snew = CoreX

(

T ,M, τk,OW New

k

)

10 else
11 snew = CoreX

(

T ,M, τk,OW Old
k

)

12 if (snew ≥ Sk ) then
13 Sk ← sNew

14 flagk ← TRUE
15 OW Old

k
= OW New

k

16 OW New
k

= min (Dk, Tk + Sk)
17 else
18 flagk = FALSE
19 if (test is passed) do
20 return YES
21 return NO

Figure 2.9. Pseudo-code for the Recursive Test.

improve), for REDF and REDZL. For RFP the first M slacks are
maximized, while the others are fixed to −1.

In line 6, some improvement is possible if at the previous step at least
one of the lower bounds on the slack has been improved. In such a situation,
in fact, the improved value potentially allows for further improvements.

In the Recursive Test, at lines 9 and 11 we use alternatively two different
values for the overload window, depending on the previous result (parameter
flag, set at line 14 or at line 18). As explained above, this helps in considering
always the length of the overload window which, most probably, can give
the better results. Whenever we improve the estimation of the slack, we use
the largest possible overload window, while if we find an estimation which
is worse than the previous one, it is convenient, at the next step, to start
again with the overload window which provided the highest value for Sk.

Comparing Theorems 6.1, 6.2 and 6.3 with the Recursive Test in Fig-
ure 2.9, we note that the core part of the test is essentially the same, although
the formulae are mainly based on Λk and Λi, instead of Λk and Λi. The
main difference is in line 6 of the algorithm, which allows to use the acquired
knowledge about the lower bound on the slack of the tasks to improve the
analysis.

Another difference between the Recursive Test and the tests in Section 6
is the following. In the Recursive Test, at each step, we compute s1, then we
compute s2 using the improved estimation of s1 and the latest estimation of
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all the other Si, for s3 we use the new knowledge of s1 and s2, together with
the old values for the rest of the Si, and so on. As a consequence, even after
one single step, the Recursive Test improves with respect to the previous
tests. It should be clear, then, that the Recursive Test, in its three versions,
strictly dominates respectively BCL-EDF, BCL-FP, and EDZL, in the sense
that if a task set is declared schedulable by one of the tests in Section 6,
then it is declared schedulable by the Recursive Test, and there are task set
declared schedulable only by the Recursive Test.

Clearly we pay this increase in performance of the test with an increased
complexity, due to the recursive step. However, these tests are usually im-
plemented off-line, i.e. before the start time of the system. In such a case,
we can accept to spend some time in a more complex test, to gain in preci-
sion. We will discuss this issue more in depth in Section 9.3, basing on the
results of the experiments.

8.2. The Recursive Test and EDF-DM. The Recursive Test, spe-
cialized for EDF, has another interesting use in the schedulability analysis
of the hybrid algorithms described in Chapter 1, Section 2.2. As we said,
the idea of these hybrid algorithms is to mix EDF and FP in a single algo-
rithm, where a subset of tasks is given maximum priority, while the others
are scheduled by EDF. Algorithms of this class have their distinction in the
number and policy in which the high priority tasks are chosen.

We consider EDF-DM, one of the most known variants, but the same
reasoning is valid for several other possible algorithms based on the same
concept. The idea is to assign maximum priority to the k highest density
tasks, where k is chosen so that the rest of the tasks can be scheduled by
EDF. The test for this algorithm is based on a pessimistic assumption: the k
maximum priority tasks cannot occupy more than one processor each, so in
the worst-case the remaining N − k tasks are assigned the remaining M − k
processors. The theorem below reports the best schedulability test proposed
so far.

Theorem 8.1 (EDF-DM schedulability test). A task set T is schedulable
on M processors by EDF-DM if there exists a value k ≤ M − 1 such that
the N − k lower density tasks are schedulable by EDF on M − k processors.

Proof. Follows from the discussion above, by assigning maximum pri-
ority to the k highest density tasks. �

The best solution, so far, was to use DB-EDF to test the schedulability
under EDF of the lower priority tasks. Using our REDF, we are able to
prove schedulable with EDF-DM a larger amount of task sets.

9. Experimental results

In order to validate the proposed tests and compare their behavior with
the best existing tests, cited in Section 3, we ran a long series of simula-
tions, using different combinations of task parameters. We analyzed as well
the behavior of the tests varying the number of processors, the number of
tasks and the total system utilization. We report here only some of the
experiments, representative of the general behavior.
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The experiments reported in the figures were generated based on the
following characteristics of the tasks:

• 2, 4 and 8 processors;
• task utilization Ui extracted according to exponential distribution

with mean 0.25, 0.50 and 0.75, re-extracting tasks with Ui > 1;
• period Ti (and, implicitly, execution time Ci) extracted uniformly

in [1/Ui, 10000];
• deadline Di uniformly extracted between Ci and Ti, whenever we

focus on constrained deadlines;
• deadline Di uniformly extracted between Ci and 2Ti or between Ci

and 4Ti, whenever we accept arbitrary deadlines.

According to the time division explained in Section 2.3, we forced Ci, Di

and Ti of each extracted task to the nearest integer. Considering that the
largest period is 10, 000, we claim this does not really influences the results.

Initially, we extracted M + 1 tasks, verifying that the total utilization
was lower than M , and we applied all the tests to the task set. Then we
added a new task, and we applied again the tests to the new obtained task
set. This process was repeated as long as the total utilization was lower than
M . Then, a new initial set of M + 1 tasks was extracted. This procedure
was repeated until 1, 000, 000 task sets were extracted and tested.

Each graph represents the results of simulations on 1, 000, 000 task sets:
the X axis corresponds to the total utilization Utot of the task set, and
the Y axis corresponds to the number of task sets with Utot in the range
[X − 0.01,X + 0.01) that satisfy the tests. Each line represents the number
of task sets proved schedulable by one specific test. In all the graphs, the
thick line marked with “Total” represents the number of task sets extracted
with a given total utilization. Note that due to the procedure of extraction
of the tasks, it more probable to have high utilization task sets.

We compared our tests of Section 6 and the Recursive Test with previous
tests explained in Section 3, and in particular

• for EDF, DB-EDF and BAK-EDF;
• for FP, DB-FP and BC;
• for EDZL, none.

For EDF, we did not consider the BC test, since its results are quite poor.
For FP, in [BC06c] BAK-FP was shown to be outperformed by BC, and so
it was not considered. Moreover, since DB-FP is valid only for constrained
deadlines systems, it was included in the simulation only in such cases.

In all the simulations, we verified that the mean value of the exponential
distribution had a minor effect on the results. For this reason, the graphs
below report only the results of experiments where the mean value is 0.25.

9.1. Experiments. Through the experiments, we verified that while
BCL-EDF and BCL-FP do not provide interesting improvements, their re-
cursive equivalents offer an interesting enhancement in testing the schedula-
bility of task sets under EDF and FP. As expected, the three versions of the
Recursive Test performed always strictly better then BCL-EDF, BCL-FP
and EDZL, recognizing every task set recognized by the non recursive tests.
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Figure 2.10. EDF: 4 processors, Di ≤ Ti.
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Figure 2.11. EDF: 8 processors, Di ≤ Ti.

The good behavior of REDF and RFP is particularly evident when used
for constrained deadlines systems, where they are always the best tests for
both EDF and FP.

The advantages in using the Recursive Test are maximized for EDF.
Moreover, the gain of REDF with respect to other tests for EDF is empha-
sized as the number of processors increases. As an example, in Figures 2.10
and 2.11 we show the results for EDF, obtained for 4 and 8 processors.
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Figure 2.12. FP: 4 processors, Di ≤ Ti.
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Figure 2.13. FP: 8 processors, Di ≤ Ti.

The same situation for FP is reported in Figures 2.12 and 2.13. From
these experiments, it is clear that DB-FP, even if interesting from a theoret-
ical point of view, is not a good test to recognize task sets schedulable under
FP. Considering the difference between DB-FP and all the other tests, it is
confirmed the fact that while utilization and density bounds can be useful
for a fast comparison among the capabilities of different algorithms, they
can also lead to wrong conclusions: an high bound is a guarantee that the
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Figure 2.14. EDF: 2 processors, Di ≤ 4Ti.
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Figure 2.15. EDF: 8 processors, Di ≤ 4Ti.

algorithm performs generally well, while a low bound only guarantees that
the algorithm performs bad in some cases.

Moving to unconstrained deadlines systems, the good behavior of REDF
and RFP is maintained, especially for low utilizations, but the situation is
in general more complex.

Consider first of all EDF. Together with cases in which REDF can be
surpassed by DB-EDF and, in a few cases, BAK-EDF, we find also cases
in which the benefit from the use of REDF seems to be maximized. In
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Figure 2.16. FP: 4 processors, Di ≤ 2Ti.

Figure 2.14 we see that for 2 processors and Di ≤ 4Ti, DB-EDF and BAK-
EDF can identify more schedulable high utilization task sets than REDF.
At the same time, if we move to 8 processors (as shown in Figure 2.15), the
gain due to REDF is impressive (although due not only to its merit, but
also to the bad behavior of previous test).

As said above, we verified that REDF does not strictly dominate DB-
EDF in the sense that we found some schedulable task sets that DB-EDF
reveals while REDF does not. This is expected, considering the completely
different approach which lead to the proposition of the two tests. Moreover,
it was already shown in [BCL05a] that the BCL-like approach performs
very well in the presence of heavy tasks, while DB-EDF suffers from this,
and vice-versa. This trend is maintained in moving to REDF, but the ex-
treme improvement given by the recursive step allows to almost overrule the
advantages of DB-EDF. As a consequence, even if there are task sets for
which DB-EDF performs better than REDF, in our tests they were limited
to few cases in few experiments (less than an overall 4% of the number of
extracted task sets in the worst-case, shown in Figure 2.14).

For the case of FP, we verified that with unconstrained deadlines the
BC test performed better than our BCL-FP and RFP, and this effect was
more evident for Di ≤ 4Ti than for Di ≤ 2Ti. The reason of this seems to
be the fact that both BCL-FP and RFP must assume a very short overload
window (based on Tk), in which it is easier to find a job that can miss a
deadline. The length of the overload window was then increased in RFP
but apparently not enough. Instead, formulae for BC can use the deadline
Dk. Increasing the difference between deadline and period can increase the
performances of BC with respect to those of RFP. Related experiments are
shown in Figures 2.16 and Figures 2.17 (compare them with Figure 2.12
above, where constrained deadlines were assumed).
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Figure 2.17. FP: 4 processors, Di ≤ 4Ti.
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Figure 2.18. Improvements for EDF-DM: 4 processors,
Di ≤ 2Ti.

As said in Section 8.2, REDF can be used to improve the schedulability
test for EDF-DM and similar hybrid algorithms (see Chapter 1). We verified
such improvement through simulations. In Figure 2.18, we consider the case
of 4 processors and unconstrained deadlines (Di ≤ 2Ti). The figure reports
task sets schedulable by EDF-DM, using, as EDF test, DB-EDF, REDF,
and their union (EDF-DM in the figure).

In some cases with high utilization, the use of DB-EDF allows to rec-
ognize more task sets than using REDF. This behavior shows up only with
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Figure 2.19. EDZL: 2 processors, Di ≤ Ti.
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Figure 2.20. EDZL: 8 processors, Di ≤ 4Ti.

unconstrained deadlines, and increases as the difference between deadlines
and periods increases. However, the best solution is clearly to use the EDF
tests together, most of all considering the very low complexity of DB-EDF.

For EDZL, we cannot compare the tests with any previous test. We only
studied the overall behavior of EDZL and REDZL in different situations.
The generally good behavior was clear in every single graph. Figures 2.19
and 2.20 are only two examples.
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Figure 2.21. Global comparison: 2 processors, Di ≤ Ti.
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Figure 2.22. Global comparison: 4 processors, Di ≤ 2Ti.

9.2. Global comparison. It is worth to make a comparison among
different pairs algorithm-test, in order to give an idea of the overall situation.
We considered EDF with REDF, FP with RFP, EDF-DM with the union of
DB-EDF and REDF, and EDZL with REDZL.

In Figures 2.21, 2.22 and 2.23 we report three configurations, which differ
in the number of processors and the relation between deadlines and periods.

From the overall analysis (over 27, 000, 000 task sets divided in 27 dif-
ferent configurations) we verified that
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Figure 2.23. Global comparison: 8 processors, Di ≤ 4Ti.

• EDF can compete with FP only when Di ≤ 4Ti; since it is believed
that EDF performs better than FP (it has been shown in single
processors, but to the best of our knowledge no one proved it for
multiprocessors), the reason of the problem seems to lie in the tests;
the reason of this is probably related to the fact that for FP the
behavior of the M higher priority tasks is known, and the tests for
FP can take advantage of this knowledge.
• EDF and FP can compete with EDZL and EDF-DM only when

considering small number of processors; this is a clear advantage
of the two algorithms, more than the tests, which derives from the
fact that EDZL and EDF-DM are specifically proposed for multi-
processors;
• it must be underlined the impressive result of FP in Figure 2.21; in

such a case (low number of processors, and constrained deadlines),
FP behaves better than any other test; this is a problem of the
tests, which for EDZL and EDF-DM cannot gain much from the
multiprocessor (only two processors);
• for unconstrained deadlines, and high Utot, EDF-DM seems to be,

the best solution, although EDZL behaves very well;
• both EDF and FP have performances far beyond their utilization

bounds of 1
M ;

• both EDZL and EDF-DM have high performance despite the fact
that both their schedulability tests are based on extremely pes-
simistic assumptions; relaxing these assumptions could lead to im-
pressive results.

We want to underline that, in the general case, all proposed tests provide
results that are far from the necessary and sufficient test (i.e. the simula-
tion). To see this, we refer to [CB07], where a comparison is done between
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the results of the test and of the brute-force simulation, for both EDF and
EDZL. It is evident that a great distance remains, even after our improve-
ment proposed in this thesis, and we believe that there is still lot of space
for improvement.

9.3. Complexity. As we said in Section 8.1, the complexity of the
tests is not a real problem when the tests are performed off-line. Consider
that even in the worst case (8 processors and Di ≤ 4Ti), each test took less
than 4ms to execute, and a mean of 500µs was achieved, which means that
the complexity is a problem only in simulations, where each test is executed
to test some millions of task sets. However, it is important to consider how
long does each test takes, particularly in the case of the recursive tests, in
order to verify if the increase in complexity is counterbalanced by a sufficient
increase in performance.

Consider for the moment tests other than the recursive tests. It is easy
to see that they all have a very low computational complexity: DB-EDF and
DB-FP have complexity equal to O(N) (where N is the number of tasks),
BCL-EDF, BCL-FP, and EDZL are O(N2), while BAK-EDF and BC are
O(N3).

The complexity of the recursive test, by its nature, is not easily com-
putable. While the core of the test is O(N2), the problem is represented
by the recursive step. For this reason we chosed to evaluate the average
and maximum number of steps through experiments. We found a great dif-
ference in complexity among the three tests, and between constrained and
unconstrained deadline systems.

For constrained deadlines systems, during our experiments, over several
millions of task sets (each single experiment analyzed 1, 000, 000 task sets),
we verified that the maximum number of steps necessary to find an answer
(either a positive answer or a not improvable solution) was high only for
REDF, while for RFP and REDZL it was never more than 2N , and actually
near 1N . This offers some ideas of the actual average complexity of the test
when applied to constrained deadlines systems, which seems to be close to
O(N3) for RFP and REDZL. The reason of the difference between REDF
and the others is probably due to the following facts:

• RFP has a perfect estimation of the slack of the first M tasks even
before the first step; this gives an extra boost to the test, which is
able to find very good estimations of the slacks in only a few steps;
• REDZL can accept up to M tasks with non-positive slack, which

means that the test can rapidly converge to a positive answer;
• REDF has none of the previous mechanisms, and as a consequence

it can happen that the test suffers for a “slow start” (due to the
worst possible estimation of the slacks) and a “slow end”, contin-
uing to search for a positive solution, which in some case does not
even exist.

Further analyzing the case of FP, we noted the following behavior. Be-
fore the first step M tasks have perfect estimation of the slack. In the first

step, the (M + 1)th task has the best possible estimation for its slack. This

is due to the fact that the slack of the (M + 1)th task is influenced only by
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Figure 2.24. Comparison of results for REDF when the
number of step is limited.

previous tasks, for which the slack cannot be improved. So, in any case,
the estimation of SM+1 will never change. This line of reasoning can be
repeat for every task, which already in the first step is analyzed under the
best possible conditions. As a consequence, at the end of the first step, we
already have the best possible estimation for all the slack. That is, for con-
strained deadlines systems under FP the answer at the end of the first step
is definitive. The test is so only O(N2). Unfortunately, this good behavior
is not maintained for unconstrained deadlines systems, due to the fact that
in such a case the estimation of the slack for tasks other than the first M
can change, mainly due to the change in the length of the overload window.

The pessimistic estimation of the overload window for unconstrained
deadlines systems affect the Recursive Test for all the three algorithyms.
The maximum number of steps required to reach an answer explodes for all
the three cases, reaching values over 1000N . It must be said that REDF
continues to be the worst, while REDZL is the best of the three, proving
that the early termination condition explained above is extremely useful also
from this point of view.

However, it must be said that while the maximum number of steps was
excessively high, this happened in very few cases, and the average was always
between 0.8N and 2.3N . As a consequence, we believe that we could solve
the complexity problem by limiting the number of steps, with a loss in the
number of verified task sets of only some decimal. In order to verify this
hypothesis, we repeated some of the experiments, limiting the number of
steps to only 5N (that is, after 5N steps, we considered not schedulable the
task set), 3N and 1N , and compared the new and old results.

In Figure 2.24 we report the result of one comparison for REDF in
the case of 4 processors, Di ≤ 4Ti, and 1, 000, 000 task sets. The figure is
magnified for task set utilizations between 1.3 and 2.7, the only region where
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a difference was perceivable. Only a small difference can be seen, and only
when the step number is limited to N . We conducted the same comparison
for RFP and REDZL and, as expected, the difference was even smaller.

10. Conclusions

In this chapter we tackled the problem of schedulability analysis of global
scheduling systems, where the scheduling algorithm is chosen among EDF,
FP and EDZL.

We proposed two different sets of schedulability tests for all the three
scheduling algorithms. For EDF and FP, the first tests (BCL-EDF and
BCL-FP), at the price of the same computational complexity, do not really
improve the results of previously known tests proposed by Goossens, Funk
and Baruah [GFB03] and Baker and Cirinei [BC06c]. However, they are
the base for the proposition of the second test, the Recursive Test of Sec-
tion 8. This new test has an higher complexity, but has a good improvement
with respect to previous tests.

For the particular case of REDF, its good performance helps in improv-
ing not only for EDF, but also for EDF-DM, an hybrid between EDF and
FP proven to perform very well in global scheduling of real-time tasks on
multiprocessors.

The case of EDZL is more interesting, because, while it is known that
the scheduling algorithm performs very well (and in particular it strictly
dominates EDF), we are not aware of any other schedulability test presented
so far for such an algorithm. Also for EDZL, we presented two tests, one
O(N2) test equivalent to BCL-EDF and BCL-FP and one based on the same
Recursive Test as above. Even with the first test, we are able to recognize
more task sets schedulable with EDZL then task set schedulable with EDF
or FP verified with the Recursive Test. When using the Recursive Test,
EDZL overrules EDF and FP, and compares very well also with EDF-DM.

Future improvements for these two algorithms should relate to the ve-
rification and correction of some gross overestimations in the analysis. For
EDZL, an important goal would be to verify not only that M + 1 tasks can
reach zero laxity, but also that they can have zero laxity “at the same time”.
For EDF-DM, we could improve the analysis in two directions. First of all
by considering that in general the k high priority tasks don’t require k full
processors, but only fractions of them, which leaves more space for the rest
of the tasks. Second improvement could be the research for a better choice
of the k tasks: instead of only considering the k tasks with highest density,
searching for the tasks that actually suffer more from the parallel execution
(by fact, considering different hybrid algorithms).

An important improvement, which could allow to improve at the same
time the tests for all the algorithms, should be done in the estimation of the
overload window. In fact, it can be noted that in some sense assuming each
task to suffer the worst-case precedence-blocking is equivalent to consider
each task to have deadline Di shortened to the period Ti, and to be released
Di−Ti time instants later, therefore losing the benefits that can derive from
the enlargement of the deadline. The recursive computation introduced in
the Recursive Test of Section 8 is a first step in the direction of improving
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such estimation. Another possibility could be, for example, to enlarge the
research for the lower bound on the slack not only on the overload window,
but in the whole interval between release and deadline of a task.

Considering the limits of the tests proposed, due to the pessimistic hy-
pothesis we were forced to do, it is clear that EDZL and EDF-DM are two
of the best known algorithms for global scheduling of real-time tasks upon
multiprocessor platforms, and our tests are an important step forward in
their analysis.



CHAPTER 3

Performance Problem: feasibility analysis

1. Overview

In the previous chapter we considered the problem of how to guarantee
the schedulability of sets of sporadic real-time tasks under three different
scheduling algorithms: EDF, FP and EDZL. In this chapter we consider
the opposite problem: what is the necessary condition for the feasibility of
scheduling a set of independent sporadic hard-deadline tasks?

Recall that schedulability analysis considers if a specific scheduling al-
gorithm A can correctly schedule a task set on a given platform, while
feasibility analysis verifies if such a scheduling algorithm A can exist.

Several sufficient tests have been derived for the schedulability of a spo-
radic task set on a multiprocessor using a given scheduling policy, such as
FP-global or EDF-global [ABJ01, Bak05, Bak06a, BFB05, BCL05a,
BCL05b, GFB03, SB02]. For example, it can be shown that a set of inde-
pendent periodic tasks with implicit deadlines (that is, ∀i Di = Ti ) will not
miss any deadlines if it is scheduled by EDF-global policy on M processors,
provided that the total utilization Utot not exceed M (1− Umax) + Umax,
where Umax is the maximum single-task processor utilization. In Chapter 2
we provide some new tests for EDF-global, FP-global and EDZL that help
in improving the number of task sets recognized as schedulable.

One difficulty in evaluating and comparing the efficacy of such schedula-
bility tests has been distinguishing the causes of failure. That is, when one
of these schedulability tests is unable to verify that a particular task set is
schedulable there are three possible explanations:

(1) the problem is with the task set, which is not feasible, (i.e., not able
to be scheduled by any policy);

(2) the problem is with the scheduling policy, in the sense that the task
set is not schedulable by the given policy, even though the task set
is feasible;

(3) the problem is with the test, which is not able to verify the fact
that the task set is schedulable by the given policy.

To the best of our knowledge, there are no known algorithms other than
“brute force” enumeration that can distinguish the above three cases.

The following facts are fairly well known:

• A sporadic task set T is feasible on M processors (with the GPS
algorithm described in Chapter 1) if λtot ≤M ;
• A sporadic task set T is not feasible on M processors if Utot > M ;

Baruah and Fisher [BF05] showed that δsum ≤M is a necessary condi-
tion for the feasibility of the task set T composed of N tasks on a platform

67
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with M unit-capacity processors, where

δsum
def
= sup

t>0

∑N
i=1 DBF(τi, t)

t

and

DBF(τi, t)
def
= max

(

0,

(⌊

t−Di

Ti

⌋

+ 1

)

Ci

)

Fisher, Baker, and Baruah [BFB05, FBB06] showed how to approxi-
mate the load bound function δsum efficiently, in polynomial time, and that
the criterion δsum > M was significantly more effective than the criterion
Utot > M as a test of infeasibility when tested on several large collections of
pseudo-randomly generated task sets.

In this chapter we derive an improvement on the above load bound
function, which allows the detection of a strictly larger range of infeasible
task sets, including the example below.

Example 4. Consider the task set below.
i Ci Di Ti DBF(τi, 1)
1 2 2 4 0
2 1 1 2 1
3 1 1 2 1

Since δsum = 2 ≤ M = 2, the task set cannot be declared infeasible on
2 processors. ✷

The task set in the example above is clearly infeasible on M = 2 proces-
sors (since all three tasks should execute in [0, 1)), but δsum = 2. The prob-
lem is that DBF(τ1, 1) = 0 under-estimates the real demand of task τ1 in the
interval [0, 1). Task τ1 must execute for one unit of time in the interval [0, 1)
in order to meet its deadline at 2. The effective combined demand of the
three tasks over this interval should be 3, not 2. The phenomenon observed
above was recognized previously by Johnson and Maddison [JM74]), who
used the term “throwforward” to describe the amount of execution time that
a task with later deadline, like τ1, must complete before an earlier deadline
of another task, like τ2 and τ3.

The new load bound function mℓ(T ) defined here is similar to δsum, but
differs by using DBF(τi, t)+max (0, t− (jpi + di − ei)) instead of DBF(τi, t).
The additional term corrects for cases of under-estimation of the actual
worst-case computational load of an interval like the example above, by
taking into account the throwforward of jobs whose deadlines may occur past
the end of the interval. That way, in the Example 4 above, mℓ = 3 > M = 2
and so the task set is correctly declared infeasible.

Contributions. The work described in this chapter has been previously
published in [BC06a], while an extended version can be found as a Technical
Report at [BC06b]. Here we report the following contributions:

(1) we show how to recognize a significant number of infeasible task
sets, by computing a new load-bound function and determining
whether the load bound exceeds the available number of processors;

(2) we show that the new load bound retains the property of the δsum

load bound of Baruah, Mok, and Rosier [BMR90] that mℓ ≤ 1 is
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a necessary and sufficient condition for single-processor feasibility,
and a necessary and sufficient test of single-processor EDF sched-
ulability;

(3) we provide empirical evidence of the degree of improvement in abil-
ity to detect infeasible task sets using the new load-bound function,
as compared to the previously-defined load bound function δsum;

(4) we provide an algorithm for computing the new load-bound func-
tion to any specified degree of accuracy within polynomial time;

(5) we provide empirical evidence that the new algorithm can be com-
puted at least as efficiently as the best previously known algorithm
for computing δsum;

(6) we verify on some examples taken from the previous chapter the
benefits obtained in using the load-bound function during the esti-
mation of the behavior of scheduling algorithms on multiprocessor
platforms.

2. System model

In order to make this chapter self-contained, we report here briefly the
system model under consideration. A sporadic task set T is a collection
of sporadic tasks {τ1, τ2, . . . , τN}, where each task τi is characterized by a
worst-case execution time Ci, a relative deadline Di and a minimum interar-
rival time Ti. To cope with implicit, constrained and unconstrained deadline
tasks, we also define Λi = min (Di, Ti). We assume that for each task τi,
Ci ≤ Λi, since otherwise the task set would be trivially infeasible. Tasks are
also characterized by their utilization Ui = Ci

Ti
and their density λi = Ci

Λi
,

while Utot and λtot represent respectively total utilization and total density
of the task set.

Each task τi generates a potentially infinite sequence of jobs τ j
i , each

of them with release time rj
i , absolute deadline dj

i and finish time f j
i . We

call release time sequence r the set of all release times of tasks in T (i.e.,

r = {rj
i : ∀i, j}). Moreover, we consider a release time sequence to be valid,

if the minimum interarrival time between two consecutive releases of a task
is respected. Whenever not specified, we assume the release time sequence
to be valid.

A sporadic task set is feasible on M processors if, for each possible
release time sequence there is a schedule for M processors that meets all the
task deadlines. A task system is schedulable according to a given scheduling
algorithm if, for every possible release time sequence the algorithm produces
a schedule that meets all the task deadlines.

Moreover, we remember that, as in Chapter 2, we consider to be able to
schedule only at non-negative integer clock ticks t (despite the fact that real
numbers are usually used to model the system). In this chapter, t represents
the whole interval

[t, t + 1)
def
= {x ∈ R|t ≤ x < t + 1}

Consequently, [a, b) represents the set of clock ticks from a up to b, and b
is not included. As we said in the previous chapter, due to this choice, we
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can use mathematical induction on clock ticks for proofs, avoiding poten-
tial confusion around end-points, and preventing impractical schedulability
results that rely on being able to slice time at arbitrary points.

3. The maxmin load

Given a sporadic task τi and a release time sequence, the minimum
demand of τi in any specific time interval is defined to be the minimum
amount of time that τi must execute within that interval in order to meet
all its deadlines.

Note that this definition of the minimum demand of a task does not
presume any specific scheduling policy, and it takes into account release
times and deadlines both inside and outside the interval. In the latter respect
this definition of minimum demand is different from the definition of demand
on which the definition of δsum above is based; in δsum only tasks with
deadlines and release times inside the interval are considered.

�����
�����
�����

�����
�����
�����

t

0 3 7 ���
���
���

���
���
���

��
��
��

��
��
��

t

0 3 7
(a) (b)

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

t

0 3 7 10
(c)

���
���
���

���
���
���

���
���
���

���
���
���

0

1 2

3 7
(d)

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

�����
�����
�����

�����
�����
�����

0

1

3 7 10 14

16

17
(e)

Figure 3.1. Minimum demand examples.

Example 5. Consider a task τi = (Ci = 2,Di = 3, Ti = 7) and the re-
lease time sequence 0, 7, 14. Figure 3.1 shows the minimum demand of τi

for several intervals. The diagonally shaded areas show the most favorable
position of τi’s execution in the schedule for minimizing the work done in
the given interval while still meeting deadlines. The cross-hatched areas
indicate the portion of that work that cannot be moved outside the given
interval without missing a deadline.

(a) The minimum demand of the interval [0, t) is zero for t ≤ 1, since it
is possible to meet all deadlines and not start any jobs of τi before
time 1.
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(b) The minimum demand of the interval [0, t) is 2 − (3− t) for 1 <
t ≤ 3, since the first job of τi can execute for at most 3 − t time
instants between t and the deadline 3.

(c) The minimum demand of the interval [0, t) is 2 for 3 < t ≤ 8, since
execution of the second job does not need to start until time 8 in
order to meet the deadline at time 10.

(c) The minimum demand of the interval [1, 2) is zero, since half the
execution of the first job can be done before the start of the interval
and the other half can be postponed until after the interval.

(e) The minimum demand of the interval [1, 16) is 4, since the first
job cannot do more than one unit of execution before time 1, the
second job cannot be postponed past 10, and the third job cannot
postpone more than one unit of execution past 16.

✷

Given a sporadic task τi and a time duration t, the maxmin demand
md(τi, t) of τi for intervals of length t is defined to be the maximum of the
minimum demand of [a, a+t), taken over all the valid release time sequences
and all interval start times a ≥ 0.

The maxmin load of a set T of N sporadic tasks is

mℓ
def
= sup

t≥0

N
∑

i=1

md(τi, t)/t

From the requirement that Ci ≤ Λi, it is clear that md(τi, t)/t ≤ 1, and
so the above least upper bound sup is well defined.

For purposes of analysis, it is helpful to think in terms of intervals that
start at time zero.

Given a sporadic task τi and a time duration t, the canonical demand
cd(τi, t) of τi for intervals of length t is defined to be the minimum demand of

the interval [0, t) with periodic releases starting at time zero (that is rj
i = jTi

for each j = 0, 1, 2, . . .).

Theorem 3.1 (Critical zone). For any set T of sporadic tasks and any
t ≥ 0, md(τi, t) = cd(τi, t).

Proof. Let r̂ be any release time sequence and [a, a+ t) be any interval
of length t. Consider any single task τi. It is enough to show that the
minimum demand of τi in [a, a+ t) under r̂ is no greater than the minimum

demand of τi in [0, t) under the canonical release time sequence (where rj
i =

jTi for each j = 0, 1, 2, . . .). This is done by a series of modifications to
the release time sequence r̂, each of which does not reduce the minimum
demand.

Step 1. Without loss of generality, delete from r̂ all the release times that

do not contribute to the minimum demand of τi in [a, a + t), and let b
def
= r̂1

i
be the release time of the first job of τi that contributes to that minimum
demand.

Step 2. The next step is to show that the minimum demand of τi in [a, a+
t) under r̂ is no greater than the minimum demand with strictly periodic
releases starting at b. If there are any release times in r̂ that are farther apart
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than Ti, shifting those releases closer to the start of the interval [a, a + t)
(maintaining the release time sequence valid) cannot decrease the minimum
demand in the interval. Therefore, it is sufficient to limit consideration to

cases where r̂j
i = b + jpi.

Step 3. The next step is to show that the minimum demand in [a, a + t)
will not be decreased by shifting all the release times so that the first release
occurs at a. If b ≥ a, it is clear that the minimum demand in [a, a + t)
will not be decreased by next shifting all the release times down by b − a.
Therefore, it only remains to show that if b < a the minimum demand in
[a, a + t) will not be decreased by shifting all the release times up by a− b,
so that the first release occurs at a.

Since this is the most complex part of the proof we provide two different
ways to cope with it: a more intuitive description (Step 3a), and a more
formal proof (Step 3b).

Step 3a. Note that the shift has different effects near the beginning and
the end of the interval, and in particular the minimum demand of the task

• near a tends to be increased by the shift;
• near a + t tends to be decreased by the shift.

In order to show that the overall minimum demand in [a, a + t) is not
decreased, we consider separately the consequences of the shift at the be-
ginning and at the end of the interval [a, a + t), and we compare the two
results.

Since the job of τi released at b contributes to the minimum demand
of τi in [a, a + t), it must be that b + Ci > a. The next release of τi

is at b + Ti ≥ b + Ci > a (since Ci ≤ Λi). Moreover, due to the minimum
interarrival time constraint, there is no release in [b−Ti, b), so no job released
before b can be impacted by the shift (that is, after the shift they cannot
contribute to the minimum demand, so it was safe to delete them from r̂
in Step 1). As a consequence, if we consider what happens near a after the
shift, only the job released at b changes its contribution to the minimum
demand, which means that the minimum demand near a is increased by
exactly the shift amount, a− b.

Consider now what happens near the end of the interval, where the
overall minimum demand tends to be decreased. The minimum demand of
jobs near a + t is the amount of execution that cannot be postponed until
after a+t. The latest that each job can be postponed is the interval of length
Ci immediately preceding its deadline. These intervals are non overlapping,
since the job deadlines are all separated by Ti, and Ci ≤ Λi ≤ Ti. Due to
this fact, the shift cannot decrease the minimum demand near the end of
the interval more than the shift amount, a− b.

So, any decrease in minimum demand near a+ t is offset by the increase
near a. As a further note, consider that in the particular case that the same
job is influenced by both the increase near a and the decrease near a + t,
the overall reasoning remains valid, and so even in this case shifting all the
release times up by a − b does not decrease the minimum demand of τi in
[a, a + t).
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Step 3b. The first job released before a that makes a nonzero contribution
to the minimum demand is released at b, so b + Ci > a. Since Ci ≤ Λi ≤ Ti,
the next release of τi cannot occur earlier than b + Ci, so the one and
only job of τi released before a that contributes to the minimum demand
is released at b. Note also that jobs released before b cannot increase their
contribution to the minimum demand due to the shift, since even after the
shift they are released earlier than a− Ti (due to the minimum interarrival
time constraint), which means that they can complete their execution before
a (again, Ci ≤ Λi ≤ Ti). Since their contribution remains 0 even after the
shift, it was safe to delete them from r̂ in Step 1.

Consider now the following cases for the value of the relative deadline
Di of τi.

(1) Di ≥ a − b + t: in this case, since b + Di ≥ a + t, the deadline of
the job of τi released at b is after the end of the interval [a, a + t).
This case is illustrated by Figure 3.1(d). Every successive job of
τi, even if released inside [a, a+ t), can completely execute between
b + Di and its deadline (which, for the minimum interarrival time
constraint, cannot be before b+Di +Ti), so they do not contribute
to the minimum demand. It means that the minimum demand of
task τi in [a, a + t) before and after the shift is formed by only the
contribution of the job released at b. The minimum demand of the
job before the shift is the execution time of the task, Ci, minus
what can be completed before the interval, a− b, minus what can
be completed between the end of the interval and the deadline,
(b + Di)− (a + t). The total is Ci− (a− b)− ((b + Di)− (a + t)) =
Ci−Di + t. After the shift, the minimum demand is the execution
time of the task Ci, minus what can be completed after the interval,
((a + Di)− (a + t)). The total is again Ci− ((a + Di)− (a + t)) =
Ci−Di + t. So in this case the shift does not change the minimum
demand.

(2) t ≤ Di < a − b + t: before the shift, the job of τi released at
b has its deadline inside [a, a + t) (since b + Di < a + t), so its
contribution to the minimum demand is the execution time of the
task, Ci, minus what can be completed before the interval, a−b, for
a total of Ci − (a− b). After the shift, the job is released at a and
has its deadline at a + Di, after the end of the interval a + t. The
contribution changes to its execution time, Ci, minus what can be
executed after a+t, Di−t, for a total of Ci−(Di − t). The net result
is an increase in the minimum demand equal to (a− b)− (Di − t)
(which is always positive, since Di < a− b + t).

Consider now the contribution of the successive jobs. Since, as
said above, these jobs cannot be released before a, their minimum
demand is the amount of execution that cannot be postponed un-
til after the end of the interval. The latest that each job can be
postponed is the interval of length Ci immediately preceding its
deadline. These intervals are non-overlapping, since the job dead-
lines are all separated by Ti, and Ci ≤ Λi. For the same reason,
they are surely after the deadline b + Di of the job of τi released at
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b. So, their contribution is at most equal to (a + t)− (b + Di), i.e.
the length of the interval [b + Di, a + t). Note that, for what we
said above, the interval is well-defined, and its length is a positive
number. After the shift, the whole contribution of these jobs is
postponed after the interval [a, a + t), so their contribution goes to
0, for a maximum net decrease of (a + t)− (b + Di).

The decrease in the contribution of the jobs released after a,
is offset by the increase computed above for the job released at
b. Again, in this case the shift does not decrease the minimum
demand. Note also that while the increase is sure, the decrease is
only the worst-case, so the shift not only cannot decrease the whole
contribution, but can potentially increase it.

(3) Di < t: before the shift, exactly as above, the contribution of the
job of τi released at b is Ci − (a− b). After the shift, the job of
τi released at b is completely executed inside the interval [a, a + t)
(since its deadline is at a + Di < a + t) so its contribution to the
minimum demand is incremented by exactly the shift amount a−b.

Consider now the contribution of the successive jobs. Exactly
as we say above, the contribution of these jobs is the amount of
execution not postponed until after a+ t, they are postponed up to
the intervals of length Ci exactly before their deadlines, and these
intervals are non-overlapping. After the shift, the above sequence
of Ci-length intervals has been shifted by a − b, so the maximum
amount of minimum demand that is shifted from inside to outside
the interval is a− b.

Again, after the shift, any decrease in minimum demand of the
jobs released after a is offset by the increase of the job released at b.
So, even in this last case the shift does not decrease the minimum
demand.

Since in no case the shift can decrease the minimum demand, we can
shift all the release times so that the first job contributing to the minimum
demand is released exactly at a.

Step 4. The last step is to observe that the minimum demand in [a, a+ t)
by periodic releases starting at a is the same as the minimum demand in
[0, t) with periodic releases starting at zero.

�

The following necessary condition for feasibility of a sporadic task set
follows very directly from the above definitions and theorem.

Theorem 3.2 (Infeasibility test). If a set T of sporadic tasks is feasible
on M processors for every valid release time sequence, then mℓ ≤M .

Proof. Suppose mℓ > M . By the definition of mℓ, there is some time
duration t for which

∑N
i=1 md(τi, t)/t > M . By the definition of mℓ and

Theorem 3.1 above, given the canonical release time sequence of each task
(that is, strictly periodic releases starting at 0), the total execution time in
[0, t) must exceed Mt, which is a contradiction. �
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By Theorem 3.2, the condition mℓ ≤M is necessary for the feasibility of
a sporadic task set T over an M -processors platform. While this condition
is not sufficient for feasibility in general it is sufficient as well as necessary
for the case M = 1.

Corollary 3.3 (Feasibility test for one processor). If mℓ ≤ 1 then T
is schedulable on a single processor.

Proof. The proof is by contradiction. Suppose there is a task set T for
which mℓ ≤ 1, and a valid release time sequence such that with EDF τk is
the first task missing a deadline, and the missed deadline is at time t.

Let [t − ∆, t) be the maximal busy interval with endpoint t, that is,
the longest interval ending at t for which there are continually one or more
uncompleted jobs with deadlines in [t − ∆, t). It follows that [t − ∆, t) is
the release time of a job with deadline in [t −∆, t) and the only jobs that
execute in this busy interval are jobs that are released in [t−∆, t) and have
deadlines in (t−∆, t]. Since t is a missed deadline of τk, ∆ ≥ Dk.

Let md (τi,∆, t) denote the total minimum demand (defined in Section 3)
of the jobs of τi in the time interval of length ∆ starting at t (i.e., [t−∆, t)),
and let Wi(t − ∆, t) denote the sum of the execution times of all the jobs
of τi that have both release time in [t −∆, t) and deadline in (t −∆, t]. It
follows from the definitions that md (τi,∆, t) ≥Wi(t−∆, t).

Since τk misses a deadline at t,

N
∑

i=1

md (τi,∆, t) ≥

N
∑

i=1

Wi(t−∆, t) > ∆

By the definition of maxmin demand, md (τi,∆) ≥ md (τi,∆, t), and so

N
∑

i=1

md (τi,∆) /∆ ≥

N
∑

i=1

md (τi,∆, t) /∆ > 1

By the definition of mℓ,

mℓ = sup
t≥0

N
∑

i=1

md(τi, t)/t ≥
N
∑

i=1

md (τi,∆) /∆ > 1

which contradicts the assumption that mℓ ≤ 1.
�

Unfortunately, mℓ ≤ m is not a sufficient condition for the feasibility of
task sets on multiprocessors, as can be seen in the example below.

Example 6. Consider the task set below.
i Ci Di Ti

1 1 1 2
2 1 1 2
3 2 3 3

The task set illustrates why the result of Corollary 3.3 does not generalize
to multiple processors. For this task set, mℓ = 2 = M (computed for t = 1
or t = 3), which means that it cannot be declared infeasible. However, the
task set is clearly not feasible on M = 2 processors. The problem is that τ3
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needs to execute for two time units in the interval [0, 3) and there are two
time units of execution time available, but the only two units of execution
time available run in parallel on two different processors. ✷

4. How to compute maxmin demand

In order to be able to use Theorem 3.2 as a test of infeasibility, it is
necessary to compute the function mℓ. The first step is to compute md(τi, t).
We can do that for any t as follows:

Theorem 4.1 (Maxmin demand). For any sporadic task τi and time
duration t,

(4.1) md(τi, t) = jtCi + max (0, t− (jtTi + Di − Ci))

where

jt
def
= max

(

0,

⌊

t−Di

Ti

⌋

+ 1

)

Proof. By Theorem 3.1, computing md(τi, t) is the same as computing
cd(τi, t). Let jt be the number of jobs of τi that must execute to completion
entirely within [0, t). It follows that jt = 0 if-and-only-if t < Di. For jt ≥ 1
the deadline of the jtth job falls on or before t and the deadline of the next
job falls after t, that is

(jt − 1) Ti + Di ≤ t < jtTi + Di

t−Di

Ti
< jt ≤

t−Di

Ti
+ 1

Since jt is an integer,

jt =

⌊

t−Di

Ti

⌋

+ 1

Whether some portion of the execution of the jt+1th job must complete
in [0, t) depends on whether t−(jtTi + Di − Ci) > 0 (i.e., whether the jt+1th
job has “throwforward” on t [JM74]).
Case 1: If t− (jtTi + Di − Ci) ≤ 0 then the jt+1th job can complete by the
deadline without executing at all in the interval [0, t). This case is shown in
Figure 3.2(a).
Case 2: If t − (jtTi + Di − Ci) > 0 then the jt+1th job cannot com-
plete by the deadline jtTi + Di unless it has already completed at least
t − (jtTi + Di − Ci) execution by time t. This is case is shown in Fig-
ure 3.2(b).

Taking the maximum of these two cases, and adding jtCi for the execu-
tion times of the first jt jobs, we obtain Equation (4.1).

�

Note that the function md(τi, t) defined here is similar to DBF(τi, t). It
differs only in being larger by max (0, t− (jTi + Di − Ci)) (the throwforward
term). Therefore, prior techniques for computing rapid approximations to
DBF(τi, t) [AS04a, BFB05, FBB06] can be modified to fit md(τi, t). In
particular, the function md(τi, t) can be approximated within a tolerance
of Ui (Ti − Ci) for sufficiently large t, as in Lemma 4.2 below (consider Fig-
ure 3.3 for a graphical explanation of the lemma).
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Figure 3.2. The two cases of the proof of Theorem 4.1.
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Figure 3.3. md (τ2, t) with lower and upper bounds.

Lemma 4.2 (Bounds on the maxmin demand). For any sporadic task τi,
if t ≥ Di then

(4.2) Ui (t−Di + Ci) ≤ md(τi, t) < Ui (t−Di + Ti)

Proof. Since t ≥ Di, by Theorem 4.1, jt =
⌊

t−Di

Ti

⌋

+1 ≥ 1 and md(τi, t)

is the maximum of two functions, given by jtCi and jtCi + t− jtTi−Di +Ci,
which coincide at all the points t such that t = jtTi + Di − Ci for some
integer jt.

The value of md(τi, t) is constant with respect to t and has the value
jtCi when

(jt − 1) Ti + Di ≤ t < jtTi + Di − Ci

It increases linearly with t and has the value t−Di− jt (Ti − Ci) + Ci when

jtTi + Di − Ci ≤ t < jtTi + Di

Therefore, md(τi, t) is bounded above by the linear interpolation of the
points where md(τi, t) changes from increasing to constant and bounded
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below by the linear interpolation of the points where md(τi, t) changes from
constant to increasing. The upper bound can be obtained by interpolating
the values of md(τi, t) at the points t = (jt − 1)Ti + Di.

md(τi, t) = jtCi =
t−Di + Ti

Ti
Ci = Ui (t−Di + Ti)

and the lower bound can be obtained by interpolating the values of md(τi, t)
at the points t = jtTi + Di − Ci.

md(τi, t) = jtCi =
t−Di + Ci

Ti
Ci = Ui (t−Di + Ci)

�

Note that the upper bound for DBF(τi, t) (see [BFB05, FBB06]) is
the same as for md(τi, t), but the lower bound for DBF(τi, t) is smaller by
UiCi.

Example 7. Consider the task set below.

i Ci Di Ti

1 2 3 7
2 2 6 5

The zig-zag dotted line in Figure 3.3 shows the function md(τi, t) for τ2.
The solid lines are the upper and lower bounds of Equation (4.2). ✷

5. How to approximate maxmin load

Calculating mℓ requires the research of the maximum of the function
∑N

i=1 md(τi, t)/t over an unbounded range of real numbers t. This can be
done efficiently because it is possible to show that there is a finite range of
values of t at which the maximum of

∑N
i=1 md(τi, t)/t can occur.

Observe that md(τi, t) alternates between constant intervals and inter-
vals of linear increase. The changes from increasing to constant occur at
the points jTi + Di, for j = 1, 2, . . .. This behavior is maintained sum-
ming all the contributes from different tasks, so the function

∑N
i=1 md(τi, t)

is made up of constant segments and linearly increasing segments. Each
constant segment begins at one of the points jTi + Di, for j = 1, 2, . . . and
i = 1, 2, . . . , N . After the sum is divided by t, there are peaks at those same
points, as shown in Example 8.

Example 8. Consider the task set given in Example 7. Figure 3.4 shows
md (τ1, t) (thin solid line), md (τ2, t) (dotted line), and md (τ1, t)+md (τ2, t)
(heavier solid line). Changes from increasing to constant are at 3, 10, 17, . . .
for τ1, and 6, 11, 16, . . . for τ2. At the same points the sum decreases its
slope. In Figure 3.5 the same values are divided by t, and the peaks are at
the same points. ✷

Lemma 4.2 provides the following bounds for md(τi, t)/t, for t ≥ Di,
within a tolerance of Ui (Ti − Ci) /t:

(5.1) Ui

(

1 +
Ci −Di

t

)

≤
md(τi, t)

t
≤ Ui

(

1 +
Ti −Di

t

)
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Figure 3.4. md (τ1, t), md (τ2, t), and their sum.
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Since the value of the upper bound expression (on the right above) tends
to Ui for sufficiently large t, the global maximum is at one of the early peaks.
The question is how far to look.

By computing md(τi, t) exactly for small values of t and using the above
linear approximations for large values of t, the search space for the maximum
can be limited to a size that is polynomial in the length of the task set. The
technique is analogous to that used to compute δsum in [FBB06], which is
based on an earlier work by Albers and Slomka [AS04a] for uniprocessor
feasibility analysis.
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For an approximation to md(τi, t)/t from below, suppose to define the
function gǫ(τi, t) as follows

(5.2) gǫ(τi, t)
def
=







md(τi, t)/t, if t < max
(

Di, N
Ui(Ti−Ci)

ǫ

)

Ui

(

1 + Ci−Di

t

)

otherwise

Note that the approximation can be done from either above or below,
depending on whether one is interested in proving infeasibility (for M pro-
cessors) or feasibility (for a single processor). However, the latter is not very
interesting, since the δsum test is already sufficient for the single-processor
case. Therefore, we only describe in full the approximation from below.
For the approximation to md(τi, t) from above one just needs to replace

Ui

(

1 + Ci−Di

t

)

by Ui

(

1 + Ti−Di

t

)

.

If t < max
(

Di, N
Ui(Ti−Ci)

ǫ

)

, md(τi, t)/t− gǫ(τi, t) = 0 ≤ ǫ
N . Otherwise,

from Equation (5.1) it follows that, for every t ≥ 0,

0 ≤ md(τi, t)/t− gǫ(τi, t)

≤
Ui (Ti − Ci)

t
≤

ǫ

N

Summing, we obtain

(5.3) 0 ≤

N
∑

i=1

md(τi, t)/t−

N
∑

i=1

gǫ(τi, t) ≤ ǫ

Let

ĝǫ(T )
def
= sup

t≥0

N
∑

i=1

gǫ(τi, t)

It follows from Equation (5.3) that

ĝǫ(T ) ≤ mℓ ≤ ĝǫ(T ) + ǫ

Observe that gǫ(τi, t) is monotonic with respect to t except at the points

where
⌊

t−Di

Ti

⌋

makes a jump, that is, only at values t = kTi + Di such that

t < N Ui(Ti−Ci)
ǫ , for k = 0, 1, 2, . . . and i = 1, 2, . . . , N . Therefore, local

maxima of
∑N

i=1 gǫ(τi, t) can occur only at such points. The set S (T , ǫ) of
such points can be described as follows:

(5.4)

{

kpi + di | 0 < k <
NUi (Ti − Ci)

ǫTi
−

Di

Ti
, 1 ≤ i ≤ N

}

Therefore,

ĝǫ(T ) = max
t∈S(T ,ǫ)

N
∑

i=1

gǫ(τi, t)

and since gǫ(τi, t) ≤ md(τi, t)/t,

ĝǫ(T ) ≤ max
t∈S(T ,ǫ)

N
∑

i=1

md(τi, t)/t ≤ mℓ
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The value ĝǫ(T ) can be computed by evaluating
∑N

i=1 gǫ(τi, t) at each of
the points in S (T , ǫ). Given any fixed tolerance ǫ > 0, and assuming that
each for each task τi, Ui ≤ 1, Equation (5.4) provides the following bound
on the number of points t ∈ S (T , ǫ).

N
∑

i=1

NUi (Ti − Ci)

ǫTi
−

Di

Ti
=

N
∑

i=1

NUi

ǫ
−

N
∑

i=1

(

NU2
i

ǫ
+

Di

Ti

)

≤
N

ǫ
Utot

A straightforward implementation of
∑N

i=1 gǫ(τi, t) has O(N) complex-
ity, so the total complexity is O(N2Utot/ǫ). Note that since Utot ≤ N ,
O(N2Utot/ǫ) ∈ O(N3/ǫ). As a consequence, the runtime of the algorithm
Approximate-mℓ is polynomial in the number N of tasks in T and 1/ǫ,
and is independent of the task parameters.

Note further that in an application the number of processors M is known
and one can assume that Utot ≤M , so O(N2Utot/ǫ) ∈ O(N2M/ǫ).

Additional heuristics, based on the following two lemmas, can often re-
duce the actual running time below the O(N2M/ǫ) worst-case bound.

Lemma 5.1 (Relations among feasibility functions). For any sporadic
task set T ,

Utot ≤ δsum ≤ mℓ ≤ λtot

Proof. It was shown in [FBB06] that Utot ≤ δsum ≤ λtot. The func-
tion mℓ defined here is similar to δsum, but differs by using md(τi, t) =
DBF(τi, t) + max (0, t− (jTi + Di −Ci)) instead of DBF(τi, t). Therefore,
it is clear that δsum ≤ mℓ, and so only the upper bound needs to be proved.

If t < Di then, from the definition of md(τi, t),

md(τi, t) = max (0, t−Di + Ci)

This is non-decreasing with respect to t, and so the maximum value of
md(τi, t)/t for t ≤ Di is Ci/Di ≤ λi.

If t ≥ Di, then, from Equation (5.1),

md(τi, t)

t
≤ Ui

(

1 +
Ti −Di

t

)

If Ti ≥ Di the term Ti−Di

t is non-increasing with respect to t, and so for
t ≥ Di,

md(τi, t)

t
≤ Ui

(

1 +
Ti −Di

Di

)

=
Ci

Di
= λi

If Ti < Di the term Ti−Di

t is increasing with respect to t, so the least
upper bound is the limit for large t.

md(τi, t)

t
≤ lim

t→∞

md(τi, t)

t
= Ui = λi

It follows that the least upper bound of
∑N

i=1 md(τi, t)/t is bounded by
λtot. �

We underline that Lemma 5.1 above simplifies the proof of Corollary 3.3.
In fact, based on the fact that δsum ≤ mℓ, and considering the well-known
fact that T is schedulable by EDF on one processor if δsum ≤ 1 [BHR90], we
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clearly obtain that if mℓ ≤ 1, then δsum ≤ 1 and the task set is schedulable
by EDF on a single processor.

Another condition for early termination of the search for mℓ is based
on the fact that md(τi, t)/t tends to Ui for sufficiently large t (cfr. Equa-

tion (5.1)), and so the difference between Utot and
∑N

i=1 md(τi, t)/t gives an
upper bound on t. This is expressed in Lemma 5.2 below.

Lemma 5.2 (Upper bound on maxmin load research). If

(5.5) Utot + γ ≤

N
∑

i=1

md(τi, t)

t

for some γ > 0, then

(5.6) t ≤
N
∑

i=1

Ui max (0, Ti −Di)

γ

Proof. It follows from Equation (5.1) above that if t ≥ Di then

md(τi, t)

t
≤ Ui

(

1 +
Ti −Di

t

)

≤ Ui

(

1 +
max (0, Ti −Di)

t

)

There are two other cases:

(1) If t < Di − Ci then

md(τi, t)

t
= 0 ≤ Ui

(

1 +
max (0, Ti −Di)

t

)

(2) If Di−Ci ≤ t < Di then, since Ui ≤ 1, Ui (t−Di) ≥ t−Di, and so

md(τi, t)

t
=

t−Di + Ci

t

≤
Ui (t−Di) + Ci

t
=

Ui (t−Di) + UiTi

t

= Ui

(

1 +
Ti −Di

t

)

≤ Ui

(

1 +
max (0, Ti −Di)

t

)

Therefore,

(5.7)

N
∑

i=1

md(τi, t)

t
≤ Utot +

∑N
i=1 Ui max (0, Ti −Di)

t

Composing Equations (5.5) and (5.7) yields

Utot + γ ≤ Utot +

∑N
i=1 Ui max (0, Ti −Di)

t

from which Equation (5.6) follows.
�

Pseudo-code for the algorithm Approximate-mℓ is given in Figure 3.6.
The initial value given to mℓ in line 1 is based on the relation mℓ ≥ Utot

from Lemma 5.1. The algorithm incorporates two heuristics, both applied
in line 8, that permit the computation of mℓ to terminate without looking
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Approximate-mℓ (T , ǫ)

1 mℓ← Utot

2 Dmax ← maxn
i=1 Di

3 limit ← max (S (T , ǫ))
4 for each t ∈ S (T , ǫ), in increasing order do

5 mℓ← max
(

mℓ,
∑N

i=1 md(τi, t)/t
)

6 if (t > Dmax) then

7 limit ← min
(

limit ,
∑N

i=1 Ui max (0, Ti −Di) / (mℓ−Utot)
)

8 if ((t ≥ limit) or (mℓ > λtot(T )− ǫ)) then
9 return mℓ

10 return mℓ;

Figure 3.6. Pseudo-code for approximate computation of
mℓ from below.

at all the elements of S (T , ǫ). One of these is the relationship mℓ ≤ λtot,
from Lemma 5.1, which allows to return immediately if the maximum of
md(τi, t) over the range of values examined exceeds λtot − ǫ. The other
heuristic allows to return immediately if the range of values examined so far
exceeds the value of limit computed at line 7, based on Lemma 5.2.

Note again that the above computation approximates mℓ from below, for
use in proving a task set is not feasible on M processors. Similar reasoning
can be used to approximate mℓ from above, with similar runtime complex-
ity. The technique of approximation from above is explained in more detail
in [FBB06], in the context of computing δsum.

6. Empirical performance

It is clear that the new load-bound function mℓ is an improvement over
δsum for screening out infeasible task sets, since we have shown in Lemma 5.1
that δsum ≤ mℓ and we have shown by Example 4 that in some cases mℓ > M
while δsum ≤M .

To get a sense of how often the difference between these two functions
is enough to matter, we ran experiments on a large number of pseudo-
randomly chosen sets of tasks. The experiments compared the number of
task sets eliminated by the new load-bound function against the number
eliminated by the old load-bound function δsum. We report here only the
more significant results of such experiments.

Figures 3.7, 3.8, and 3.9 show the result of experiments on 1, 000, 000
pseudo-randomly generated task sets with uniformly distributed utilizations
and uniformly distributed constrained deadlines, with total utilizations lim-
ited to Utot ≤ M for M = 2 and 8. Each graph is a histogram in which
the X axis corresponds to values of Utot and the Y axis corresponds to the
number of task sets with Utot in the range [X,X + 0.01) that satisfy a given
criterion.

• For the top line, which is unadorned, there is no additional crite-
rion. That is, the Y value is simply the number of task sets with
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X ≤ Utot < X + 0.01. The experiments did not include any task
sets with Utot > M , since they are clearly not feasible.
• For the second line, decorated with large boxes, the criterion is

δsum ≤ M . The Y value is the number of task sets that might be
feasible according to this criterion. The space between this line and
the first indicates how many task sets are detected as infeasible.
• The third line, decorated with small solid squares, corresponds to

the criterion mℓ ≤M . The Y value is the number of task sets that
might be feasible according to this criterion. The region between
this line and the one above it indicates the improvement in recog-
nition of infeasible task sets due to using mℓ, as compared to δsum.
It can be seen that the condition mℓ ≤ M identifies significantly
more infeasible task sets than the condition δsum ≤ M , especially
for systems with a large number of tasks and processors.
• The bottom line, decorated with small circles, corresponds to the

criterion λtot ≤ M . This indicates how many task sets at each
utilization level are definitely feasible according to this criterion.
The region between this line and the one above it indicates the
number of task sets whose feasibility remains indeterminate using
the simple tests described here.

λtot ≤ M

mℓ ≤ M

δsum ≤ M

total cases

Utot/M(%)

0
0

5000

10000

15000

20000

25000

20 40 60 80 100

Figure 3.7. Histograms for Utot ≤ 2, M = 2.

However, we must say that the major benefits from the introduction of
the load-bound function (both δsum and mℓ relate to constrained deadline
systems. To see this, suppose to have a task set in which all the deadlines
are greater than the periods. In such a case, the only working screening
method is Utot ≤M , since a deadline larger than the period only give more
freedom to the tasks. As a consequence, the feasibility is limited only by the
utilization. This means that the load-bound function improves the analysis
of only constrained deadlines tasks.
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Figure 3.8. Histograms for Utot ≤ 4, M = 4.
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Figure 3.9. Histograms for Utot ≤ 8, M = 8.

Another important aspect is the computational complexity of our al-
gorithm. Figure 3.10 shows the number of iterations taken by algorithm
Approximate-mℓ to compute mℓ and the number of iterations taken to
compute δsum. For fairness in comparison, δsum was approximated from
below, using an algorithm similar to Approximate-mℓ. Note that this is
distinct from the algorithms for approximating δsum reported in [FBB06]
because the primary subject of interest was feasibility, and we are approxi-
mating from below because the current subject of interest is infeasibility.

Observe that the computation of mℓ converges faster than the compu-
tation of δsum. Since the algorithms are virtually the same, the reason for
the faster convergence is that the linear function used to estimate the error
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mℓ ≤ M

δsum ≤ M

log2 (iterations)
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Figure 3.10. Iterations to compute load-bound for Utot ≤ 4.
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Figure 3.11. Relation of lower bound for DBF(τi, t) and
md(τi, t) for τ2 of Example 7.

for md(τi, t) is larger than that for DBF(τi, t). This is illustrated for the
task τ2 of Example 7 in Figure 3.11. The thick solid zigzag line is the func-
tion md (τ2, t) and the thick dashed straight line is the corresponding lower
bound. The thinner solid stepped line is the function DBF(τ2, t) and the
thin dashed straight line is the corresponding lower bound.

7. Improvements in simulations

The possibility to recognize a task set as infeasible (that is, not schedu-
lable whatever scheduling algorithm we decide to use), is particularly useful
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in the estimation and comparison of the performances of the scheduling al-
gorithms. Consider for example the global comparison among algorithms
done in the previous chapter. In the analysis of Figures 2.21, 2.22 and 2.23
of Chapter 2, we were forced to conclude that, despite the interesting im-
provement we have done in detecting schedulable task sets with different
algorithms and tests, the situation remained quite bad for high utilizations.
While this is true (and partly expected, considering the pessimistic hypoth-
esis at the base of the tests), the situation for constrained deadline systems
is better than presented in such experiments. As an example, we report
below the same experiment of Figure 3.12, with the only difference that we
implemented also the feasibility test described in this chapter (see Chapter 2
for a complete description of the test generation method).

 0
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Figure 3.12. Global comparison on feasible task sets: 2
processors, Di ≤ Ti, exponential distribution with mean 0.25.

The results clearly show that while we are still far from the optimality,
the gap is less than previously shown.

8. Conclusion

The new load-bound function mℓ provides a more accurate and more
rapidly computable method than has been known before for detecting that
a sporadic task set is infeasible. The value of this result is in narrowing the
area of uncertainty, between the task sets that can be verified as feasible
(e.g., by showing they are schedulable according to some specific algorithms
such as EDF, Pfair, or others) and those that are not schedulable.

Although the method for computing mℓ is only approximate, an approx-
imation is adequate for all practical purposes. In any real application of a
schedulability test one needs to allow a margin of safety, to account for such
factors as errors in predicting the worst-case task execution times, inaccu-
racy of the timer used to schedule the tasks, and preemption delays due to
critical sections.
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Incidental to the main objective of this research, it turned out that the
condition mℓ ≤ 1 is also a necessary and sufficient test for feasibility and
EDF schedulability of sporadic task sets on single processors systems. This
confirms that mℓ is a consistent and natural refinement of δsum. Moreover,
since the approximate computation of mℓ (from below) converges faster than
δsum, it would seem to have a practical advantage.

The problem of finding an efficient feasibility test that is both necessary
and sufficient for multiprocessor systems, or to show that this problem is
NP-hard, appears to remain open.



CHAPTER 4

Integrity Problem: the partitioned approach

1. Overview

Multiprocessors are usually dedicated to improving performances of the
systems through parallel execution of different activities at the same time
instant. However, there is another interesting possibility to exploit multipro-
cessor platforms: providing fault-tolerance to safety-critical applications. In
such applications, the event of deadline misses or wrong results produced is
not only undesirable, but potentially dangerous for life. As a consequence,
it is necessary to guarantee both timeliness and reliability. Examples are
easily found in space or medical applications, in which a fault can endanger
the life of the involved people, and lead to extreme waste of money for the
loss of expensive equipments.

This is not a new problem, but its importance is increasing in recent
years, due to technology scaling. It is well-known [Bau01, SKK+02], in
fact, that technology scaling sensitizes electronic devices to external disturbs.
Reasons of this fact relate to several aspects of scaling, such as lower voltage
levels, lower capacitances, higher working frequency. The overall effect is the
growth of the probability that alpha particles, atmospheric neutrons and
similar low energy particles cause temporary bit-flipping in memory and
logic circuits (so called soft errors). For this reason, tolerance to soft errors
is bound to become a major aspect in system design. We underline that while
this is particularly true for safety-critical systems, the same requirement for
fault-tolerance applies to almost every field. In fact, as the probability to
faults raises, non-critical applications must demonstrate a certain degree of
fault robustness, as well.

The classical way of providing fault-tolerance on multiprocessor plat-
forms is to use time and/or space redundancy. In time redundancy, the
same software is executed two or more times on the same CPU, and the
produced results are compared. However, final results could be influenced
by the effective instants of execution, possibly leading to several different,
although correct, results. In such a case, the comparison is difficult. If,
for example, the computation depends on external values read from sen-
sors, clearly the time of computation is essential. Note that in general it is
not even safe to store the read values, because usually data samples have
a predefined, and possibly short, time validity. In space redundancy, on
the contrary, the same software is executed at the same time on different
CPUs. One solution based on this idea is to execute replicas in lock-step:
each involved processor executes the same code at the same time (i.e., step
by step), and every result is compared, instantly revealing differences in
each single instruction. To simplify the circuitry one idea is to reduce the
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comparison points, for example considering only I/O operations. This way,
we also obtain that comparisons can be completely implemented outside the
processor (e.g., at the interconnection between processor and bus). This is
very useful, because there is no need to re-design the processor, with several
positive effects:

• processor design is a very difficult, long and expensive task; avoid-
ing it allows to save money and time;
• a new processor requires deep testing procedures, in particular

when employed in safety-critical applications; instead, processors
already on the market are deeply tested by both specific testing
procedures (before market) and use (after market); in such a case,
a new testing phase can be avoided;
• the time-to-market is reduced, since the design and test phase is

avoided;
• platform upgrades are easier, since a new, more powerful processor

can be integrated in the platform easily.

By using these techniques, it is possible to implement a fault-tolerant
system (with more than 2 CPUs and by using an appropriate voting or
fault-masking mechanism), or a fail-silent system (with two CPUs and a
comparator) where the fault is simply detected but not corrected. In both
cases, the fault-tolerant behavior is achieved at the cost of a reduced com-
putational power.

This approach is usually static, in the sense that the configuration does
not vary in time (i.e., processors are coupled or independent for the whole
platform life). Hence the fault-tolerance characteristics and the performance
are not adjusted on the application requirements. However, such a limitation
may be too restrictive because not all software tasks are fault-critical. In
general, applications consist of a mixture of fault-tolerant, fail-silent and
non-fault-tolerant tasks. It would be desirable to use the multiprocessor
platform at its best: as a replicated hardware platform for fault-tolerant and
fail-silent tasks; as a parallel processor platform for the non-fault-tolerant
tasks. Unfortunately, in classical fault-tolerant systems, such a degree of
flexibility is not allowed.

Contributions. In this chapter we describe a technique, first published
in [CBLF07], based on dynamic on-line reconfiguration of a 4-processors
multicore hardware platform, to achieve a trade-off between performance
(through parallelism) and fault-tolerance (through hardware replication).
Our technique consists in dividing the time-line into time slots, each one
dedicated to the service of a different class of tasks: fault-tolerant tasks
that require hardware replication, fail-silent tasks, and non-fault-tolerant
tasks that require parallelism. At each slot, we dynamically reconfigure the
hardware platform to support a certain degree of replication or parallelism.
To guarantee the schedulability of each class of tasks in its slot, we apply
the theory of hierarchical scheduling [LB04, SL03, FM02].

Based on that, we propose a technique to configure the platform to
achieve different goals. We then propose two examples: first we show how to
tune the platform to minimize the processor bandwidth wasted in overhead;
then we consider how to maximize its flexibility at run-time.
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In this chapter we apply this technique to partitioned scheduling algo-
rithms for multiprocessor platforms, such as EDF and FP. However, it would
be desirable to extend such techniques to use also global scheduling algo-
rithms such as EDF-global, FP-global or EDZL. In Appendix A we consider
some of the problems we face to achieve this extension.

1.1. Related works. The problem of fault-tolerance in multiprocessor
systems has been thoroughly addressed. Two main branches are usually
proposed: on one side, building stronger hardware platforms, capable to
resist to faults and continue their work at the same or at a degraded level;
on the other side, making the application able to recover from faults, either
by time or space redundancy.

The literature about hardware fault-tolerance techniques is extremely
vast, and an exhaustive analysis is almost impossible. To protect the ap-
plication from faults, a general approach is redundancy. The idea is to
introduce redundant copies of the elements to be protected (processors or
other components), and exploit them in the event of a fault.

We focus our research on the so called lock-step configuration, in which
the redundancy is used for both fault detection and recovery. In a lock-step
configuration (explained in more detail in Section 2.4), two or more proces-
sors execute the same code cycle by cycle, and a dedicated circuitry compares
the results. When a fault is detected, recovery can be performed via SW
(e.g., checkpoints and re-execution) and/or HW (e.g., reconfiguration of the
application on the remaining processors).

Far from being only a theoretical technique for providing fault-tolerance
in multiprocessor platforms, the lock-step approach has been applied in
several commercial systems. The core of the Sequoia computer [Ber88]
was a large set of Processor Elements, each one composed of two Motorola
MC68020 operating in lock-step and a comparator testing the identicalness
of the results. In more recent years, the lock-step idea is exploited, e.g., as
part of the Continuous Processing Technology implemented in the Stratus
ftServer family of products. Similarly, in the HP NonStop Advanced Archi-
tecture it is possible to configure two Intel Itanium processors to work in
lock-step [NSA].

Similar solutions exist also for embedded systems. Xilinx produces the
Virtex-II Pro FPGA, based on two IBM PowerPC 405, and uses the FPGA
as the core of its ML310 Embedded Development Platform. One of the
proposed applications for the ML310 Platform is a processor lock-step for
fault-tolerant applications [NG]. The IBM PowerPC 750GX processor in-
cludes a lock-step facility [Els, PPC], which integrates all the circuitry, from
comparator to data steering, necessary for the connection of two identical
processors in lock-step.

A major disadvantage in the way this technique is implemented in com-
mercial systems is the lack of flexibility: despite the fact that every system is
composed of tasks with different integrity requirements, the fault-tolerance
techniques do not vary in time. In this sense, the architecture we propose is
extremely more flexible, since its fault-tolerance techniques can be tuned on
the specific application, limiting the necessary loss in computational power.
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In the field of software fault-tolerance techniques, scheduling algorithms
with safety characteristics are particularly interesting. A long series of
works from the Real-Time Systems Research Group at University of York,
and summarized in [Pun97, Lim03], propose different solutions for the
schedulability of real-time task sets under fixed priority, considering various
assumptions on faults and fault-tolerance techniques. Another interesting
approach is based on the well-known concept of primary/backup [CB98,
MMG94], in which, for each critical task in the system, a backup copy
(which provides a degraded service) is activated when a fault impairs the
primary one. Analysis is conducted to guarantee that either the primary or
the backup copy is able to complete before the deadline of the primary copy.
That way, results are anyway produced in time.

2. System model

The goal of our analysis is to propose a methodology to configure a
multiprocessor platform so that it is able to resist to faults, and in particular
to soft errors. In what follows, the considered model is explained, taking
into account the characteristics of faults, the software architecture and the
hardware platform.

2.1. Fault model. We limit our attention to soft errors in multiproces-
sor systems. As explained earlier, soft errors are transient errors in memory
or logic due to, e.g., alpha particles, neutrons or similar low energy parti-
cles. Due to the nature of soft errors, we consider each fault to be transient,
which means that the faulty condition lasts for a limited and short time in-
terval, after which traces of the fault remain only in possible wrong values.
Moreover, since soft error rates statistically guarantee that time between
two failures is sufficient to perform simple recovery operations, we assume
that only one fault can affect the system at a time. This allows us to rely
on the single transient fault assumption.

In a multicore environment all cores are integrated in the same chip.
Hence one could think that a single faulty event could bring to simultaneous
or correlated errors in different processors. Under the hypothesis that only
soft errors influence the system, this problem does not show up, since a
single particle can strike only one core. This means that even in a multicore
environment the single transient fault assumption does make sense.

It is outside the scope of this work to discuss how a fault can be recov-
ered. Informally, we can say that since the fault is transient, the recovery
involves three steps:

(1) waiting for the end of the fault;
(2) correcting data errors due to tasks aborted in an inconsistent state

or wrong results written by non protected tasks;
(3) restarting some of the non-protected tasks that were influenced by

the fault.

Note also that if permanent faults are taken into account, the approach
becomes much more difficult. The first step, in fact, must be to distinguish
between permanent and transient faults; this is usually done through in-
tegrity routines, that deeply test the state of the system, or the part of the
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system involved in the fault. Once the nature of the fault has been detected,
the system needs either recovery (for transient faults) or reconfiguration (for
permanent faults).

2.2. Operating modes. An environment prone to faults must be pro-
tected to avoid potentially catastrophic situations. It is clear, though, that
not all the parts of the application have the same criticality, and different
aspects can require different levels of fault-robustness. Consider an applica-
tion which controls a car engine and shows its activity on a screen. While we
could accept the visualization to be degraded, the control algorithm must
produce the correct result despite the presence of faults. This idea is ex-
pressed by the concept of operating mode (or mode, for short). Intuitively,
different parts of the application require to execute in distinct modes, every
one characterized by a specific degree of tolerance to faults. In particular,
under the single transient fault assumption, the following 3 modes can be
required:

• in fault-tolerant mode (FT) the system is not damaged by the
presence of a fault, i.e. wrong results can never be produced; ad-
ditional resources are necessary in order to identify the fault and
either correct it, or isolate it; in the second case, extra resources
are also necessary to produce the correct result;
• in fail-silent mode (FS), in case of a fault, the system (or the

faulty part of it) is made silent, in order to avoid errors and wrong
results to propagate; resources must be dedicated to both identifi-
cation and isolation of the fault;
• in non-fault-tolerant mode (NF) no fault-tolerance guarantee is

given, i.e. the behavior of the system in the presence of a fault
is unpredictable; since nothing is done to protect the system, the
resources requirement is the minimum possible, that is all the re-
sources can be dedicated to increase performance.

Note that this classification is strictly dependent on the hypothesis, and
may change if, for example, we relax the single transient fault assumption.
As a short example, if we suppose that up to 2 faults can affect the platform
at the same time, there could be an operating mode in which tasks are
guaranteed to tolerate the first fault, and become silent after the second.

2.3. Application model. The model we consider here is the sporadic
task model with constrained deadlines introduced in Chapter 1. That is,
an application consists of a set of N independent real-time tasks to be exe-
cuted on a multiprocessor platform. A real-time task τi is characterized by
worst-case computation time Ci, minimum interarrival time Ti and relative
deadline Di (such that Di ≤ Ti). Ui represents the utilization Ci

Ti
of task τi.

For any given subset of tasks T we denote its utilization by U (T ) and we
naturally set it equal to

∑

τi∈T
Ui. Finally, it is important to point out that

we consider all the tasks to be independent, i.e. they do not share data with
critical sections.

Depending on its desired robustness to faults, every task requires to
execute in one of the modes described in Section 2.2, and is defined to be a
fault-tolerant (FT), fail-silent (FS) or non-fault-tolerant (NF) task. Based on
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the required mode represented by parameter mi, tasks are then partitioned
into three sets: TFT for FT tasks, TFS for FS tasks, and TNF for NF tasks. In
formulas











TFT = {τi|mi = FT}

TFS = {τi|mi = FS}

TNF = {τi|mi = NF}

We assume that the task set is fixed and known before run-time, i.e. no
task is dynamically created or deleted from the system.

Given an hardware platform able to provide the modes described above,
the goal of this work is to schedule the application such that for every task
no deadline is missed and the required mode is guaranteed.

2.4. Hardware architecture. The hardware architecture is based on
the concept of lock-step. The generic lock-step configuration is composed
of two identical processors and a checker. The two processors execute the
same instructions cycle by cycle, so that in a fault free situation their local
contextes remain synchronized. Meanwhile, the checker compares all the
outputs from the processors: if the outputs are the same, it is assumed
that there are no faults, so the access to the bus is granted, and memory
is read or written; otherwise, the access is blocked and an error signal is
raised. One possible implementation of such an architecture is represented
in Figure 4.1. We have a master, CPU 1, which controls the bus activity,
while CPU 2 acts as a slave: it receives instructions and data from the bus
only as a consequence of the master’s requests, executes them and sends its
output to the checker. The checker can so compare data on the bus due to
the master’s activity, and data received from the slave. In the occasion of a
difference, the checker can block the bus.

CPU 1

CPU 2 Checker

Memory

Figure 4.1. Lock-step architecture

The lock-step architecture guarantees that a fault in one processor is in-
tercepted before it can propagate to the main memory (or to the input/out-
put subsystem), hence the memory integrity is preserved. Of course, it is
possible to force more than two processors to execute the same code, build-
ing the so called redundant lock-step, and obtaining a more robust channel.
In such a channel, the checker can not only compare the outputs and reveal
a fault, but it can, through voting, identify the correct value, and grant the
access to the bus to the right processor(s). In practice, at the price of an
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additional processor and a more complex checker, we obtain a fault-tolerant
channel.

Exploiting the lock-step concept, and slightly modifying the Shared
Memory Dual Lock-Step Architecture proposed in [BFM+03] by Baleani,
Ferrari, Mangeruca, Sangiovanni-Vincentelli, Peri and Pezzini, we consider
an hardware platform composed of 4 processors and a shared memory ar-
chitecture, depicted in Figure 4.2.
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Figure 4.2. The hardware platform

The key element in the platform is the checker, which conceptually in-
tegrates three aspects: the comparison of the results provided by the pro-
cessors, the control of the bus and memory access, and the reconfiguration
of the platform.

The checker can change on-line its internal configuration, in order to pro-
vide to the application the three operating modes described in Section 2.2.
At each instant, the 4 processors can work in one of the following modes:

• all 4 in one redundant lock-step channel, to provide the FT mode:
due to the single fault assumption, only one processor can fail, so
the correct result can be guessed by majority; the 4 processors build
a single fault-tolerant channel;
• coupled in 2 lock-step channels, providing the FS mode: again only

one processor in a couple can fail, so after a fault a mismatch be-
tween the two outputs is immediately revealed and the channel is
blocked; the two couples realize two independent fail-silent chan-
nels;
• all 4 in parallel, implementing the NF mode: the 4 processors work

independently, and no fault-tolerance guarantees are given, whereas
the highest computational power is delivered.

From now on, we use processor and channel to identify both the physical
entity and the virtual entity composed of one or more processors, and able
to provide a certain degree of integrity. The meaning should always be clear
from the context.



96 4. INTEGRITY PROBLEM: THE PARTITIONED APPROACH

The modes are provided to the application by periodically switching
from a mode to another, maintaining a sort of temporal separation between
different modes. We call mode switch the on-line change of the system
configuration between two modes. So, in every time interval, one of the
modes is selected, and only tasks requiring that mode can execute. How the
reconfiguration of the platform is actually performed is not investigated.

In practice, the time line is divided into intervals of length P , each one
composed of three slots of length QFT, QFS and QNF, one for each mode
respectively. Accordingly, the subset TFT will be executed during the first
slot of length QFT (when a redundant lock-step channel is built), the subset
TFS during the second slot of length QFS (on the two lock-step channels
implemented), and the subset TNF during the last slot of length QNF (when
4 independent processors are present).

Another aspect we have to consider is that the mode switch requires some
operations, such as task state synchronization and data storing. Hence OFT,
OFS and ONF represent respectively the overheads when switching out of
modes FT, FS and NF. Moreover, we define the sum of the three overheads
Otot = OFT +OFS +ONF. Note that the overhead consumes part of the time
available to the respective subset, so the generic overhead Om is included in
the slot Qm. This leads to the definition of Q̃m = Qm−Om as the amount of
time available to the tasks in the generic mode m. The notation is depicted
in Figure 4.3.

FT mode FS mode NF mode

OFT OFS ONF

QFTQFT QFS QNF

Q̃FT Q̃FS Q̃NF

P

Figure 4.3. Switching between modes

However, it must be noted that whenever the platform switches from a
mode to another, it is necessary to synchronize the processors. This is par-
ticularly expensive whenever we switch from a configuration with more chan-
nels and less fault-tolerance guarantees to a configuration with less channels
and more fault-tolerance guarantees (i.e. when we switch from NF to any
other mode or from any mode to FT). In fact it can happen that one channel
finishes its activity later than the others, due for example to atomic oper-
ations, in which case it is required that the faster channel(s) wait for the
slower one to be ready. In our analysis, this waiting time can be taken into
account through the overheads. As said above, the whole synchronization
and reconfiguration work is performed inside the checker.

We point out that in FT mode, 3 processors are sufficient to provide a
fault-tolerant channel. Thus, it might be possible to use the 4th processor
for running NF tasks. However, this additional degree of flexibility would
complicate both the hardware management circuitry and the operating sys-
tem. Thus, to simplify the platform management, we prefer to maintain the
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modes separated in time. Please note that from this point of view, there
is no difference between considering all the 4 processors together in a fault-
tolerant channel, and using only 3 processors for the fault-tolerant channel
and shutting down the 4th processor.

We underline that, while the platform under consideration has only 4
processors, the analysis below is easy to extend to any number of processors.

Fault protection. In order to provide any level of fault-robustness to the
application, it is necessary to protect the whole platform from faults, includ-
ing memory, bus, interrupt controllers and every other hardware component.

The redundancy of processors allows to detect and/or mask faults in
standard commercial processors, without requiring any new, very expensive,
processor design.

It must be noted, though, that if the fault happens on a processor cur-
rently executing independently (i.e. the platform is working in NF mode),
the fault is surely not detected until the next mode switch. If we also con-
sider that the fault is transient by assumption, it is possible that the system
never reveals the fault. Therefore, an NF task executing on the faulty pro-
cessor may generate incorrect results. We accept this, since it is consistent
with the requirements described in Section 2.3.

The checker and the crossbar switch are special purpose circuits, so they
can be protected via dedicated fault-tolerance techniques, for example self-
checking or fault-free design. The same reasoning is valid for other smaller
circuits, such as the interrupt controllers, which might be protected via
replication or (due to the relatively low gate count of their logic) dedicated
fault-tolerance techniques. Finally, memories and buses are protected using
Error Correction Codes (ECCs) in order to retain error masking capabilities
on these components when operating in lock-step mode.

3. Design methodology

The proposed architecture opens a new wide range of possibilities for
exploiting the trade-off between fault-tolerance, implemented by hardware
replication, and computational power, provided by parallel execution. When
tuning the fault-tolerant platform, we assume to know in advance the set of
tasks to be executed and their desired robustness to faults. The final design
must guarantee that each task completes within the assigned deadline, and
executes in the required mode (NF, FS or FT).

When the platform provides some degree of parallelism (i.e. during
modes FS and NF) it is necessary to decide how to schedule the tasks on the
multiprocessor. As described in Chapter 1, two main classes of algorithms
are known in the literature: the partitioning [LDG04, Bar04a] and the
global [SA02] strategies. In this chapter, we focus on the partitioned scheme
(in which each task is statically assigned to one processor), whereas the
analysis of global strategies is considered in Appendix A. Moreover, since
the goal of this paper is the tuning of the platform once the characteristics of
the application are known, we consider the tasks to be manually partitioned.
In Section 5 we briefly analyze this problem.

During NF mode, four processors are available. Hence the tasks in TNF

are partitioned into the 4 subsets T 1
NF, T

2
NF, T 3

NF and T 4
NF, depending on the
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processor they will run on. Similarly the tasks in TFS are partitioned into
the 2 subsets T 1

FS and T 2
FS. Finally, during FT mode only one channel is

available hence no further partition is required.
Once tasks are partitioned, the schedulability problem leads to the well

studied case of one single processor. However each subset of tasks can only
run during the dedicated mode, which is allocated only a fraction of the
total available time. A considerable amount of efforts have been recently
dedicated to the study of such a problem. This scheduling problem is gen-
erally referred to as hierarchical scheduling. In the next section, we recall
the most significant results which will be borrowed from the literature.

Before this, let us formally define the problem: given a set of real-time
tasks τi = (Ci, Ti,Di,mi) defined as in Section 2.3, and a 4-processors hard-
ware platform as described in Section 2.4, and assuming that the switch-
ing overhead for mode m is Om, and a partitioning scheduling strategy is
adopted, what are the parameters (P and Qm for each mode m) of the
operational modes that guarantee the schedulability of each task τi in the
required mode mi?

3.1. Hierarchical Scheduling. As shown in Figure 4.3, Q̃FT, Q̃FS,
and Q̃NF represent respectively the amount of time actually available to
TFT, TFS, and TNF tasks in each period P .

We remark that the tolerance to faults of the system is higher when Q̃FT

dominates the other values. On the other hand, greater values of Q̃NF max-
imize the delivered computational power, since four processors are available
in NF mode.

The overall goal of this design methodology is to find the best balance
between these two opposite needs. More formally, the admissible values of
(QFT, QFS, QNF) must be correctly tuned to guarantee that all the tasks τi

complete within their respective deadlines Di.
We can estimate the computational power provided during each mode

by a supply function, which is defined as follows.

Definition 3.1. Given a mode m ∈ {FT,FS,NF}, the supply function
Zm (t) of the mode m is the minimum amount of time provided during the
mode m in any interval whose length is t. Formally,

Zm (t) = min
t0
{time provided in [t0, t0 + t] during mode m}.

The introduction of the supply function is very useful for verifying the
schedulability of real-time tasks, because it provides a minimum time guar-
antee which is granted under any circumstances. The idea of the supply
function has been already exploited both in the field of real-time [LB04,
SL03, AP04] and in networking [LBT01]. In Figure 4.4 we show the
supply function for a generic mode m.

Lemma 3.2 (Supply function, from [LB04]). The supply function of a
generic mode m ∈ {FT,FS,NF} is

(3.1) Zm (t) =

{

j Q̃m if t ∈ [j P, (j + 1) P − Q̃m)

t− (j + 1)
(

P − Q̃m

)

otherwise

where j =
⌊

t
P

⌋

.
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Figure 4.4. The supply function

From the supply function Zm (t) of each mode, we derive two impor-
tant features: the rate αm, which roughly denotes the fraction of processor
available for mode m, and the delay ∆m, which is the maximum amount
of time a task executing during mode m could be forced to wait without
being served. See [LB04, FM02] for a more formal definition of these two
quantities.

It is possible to prove [LB04] that the relationship between (αm,∆m)
and the mode parameters is:

(3.2) αm =
Q̃m

P
∆m = P − Q̃m

The values of αm and ∆m are useful, since they introduce the following
simple lower bound of the supply function

(3.3) Z ′
m (t) = max (0, αm (t−∆m)) ,

as can be noticed in Figure 4.4. Since we always have Z ′
m (t) ≤ Zm (t),

assuming Z ′
m (t) as supply function is safe, meaning that every solution

feasible with Z ′
m (t) is always feasible with Zm (t). However, for simplicity,

we consider the supply function equal to Z ′
m (t), and from now on Zm (t)

will denote the supply function of Equation (3.3). The full consideration of
the exact Zm (t) does not present any conceptual difficulty, but it is only
tedious to develop the math properly.

Through Zm (t), we have characterized the amount of computation that
can be provided during the modes FT, FS and NF. Next we focus on the
schedulability condition of the task subsets.

3.2. Schedulability analysis. The schedulability condition of sets of
tasks running under a server characterized by some supply function has
been already investigated in the literature. See for example [FM02, SL03,
SRLK02]. In this work, we consider the opposite problem: given a task
set, what are all the possible supply functions which guarantee the task
deadlines?
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In what follows, we propose solutions to the problem for two different
scheduling algorithm: FP and EDF. However, we could extend the following
analysis to every scheduling algorithm for which it is possible to express the
schedulability condition on a server characterized by Zm (t).

FP scheduler. If tasks are scheduled by fixed priorities the feasibility
condition of a task set T allocated to a mode m, characterized by a rate αm

and a delay ∆m is provided by the following theorem.

Theorem 3.3 (FP schedulability under Zm (t), Theorem 3 in [LB04]).
A task set T = {τ1, τ2, . . . , τN} is schedulable by Fixed Priorities (FP) in
the mode m, described by (αm,∆m), if:

(3.4) ∀τi ∈ T ∃ t ∈ schedPi ∆m ≤ t−
Wi (t)

αm

where

(3.5) Wi (t) = Ci +
∑

τj∈hp(T ,τi)

⌈

t

Tj

⌉

Cj

and (i) schedPi is the set of scheduling points of task τi as defined in [BB04]
and (ii) hp (T , τi) is the set of tasks in T with a higher priority than τi.

The set of scheduling points schedPi is defined as follows.

Definition 3.4. Set schedPi is defined as Pi−1 (Di), and the latter is
recursively defined as:







P0 (t) = {t}

Pi (t) = Pi−1

(⌊

t

Ti

⌋

Ti

)

∪ Pi−1 (t)

where tasks are assumed to be ordered by decreasing priority.

schedPi is the smallest set of points where Equation (3.4) must be
checked for the task τi to be schedulable. That is, if we don’t find a point
in schedPi for which Equation (3.4) is fulfilled, there is no possibility to find
such a point elsewhere, so the task is not schedulable in mode m. Clearly,
since we search for the existence of at least one value of t which fulfills the
equation, whenever we find one such point t, there is no need to continue the
research. A complete detailed explanation can be found in [BB04]. Here
we propose only an example on how the set schedPi is practically computed.

Suppose to compute schedP4 for task τ4 in Figure 4.5. We start from
the first deadline of τ4, d4 and for each higher priority task (all the other
tasks, in this case) we select the last release before d4. That is, r4

1, r3
2 and r3

3

join d4 in the set. Then, for each of the new points we repeat the procedure.
That is, due to r3

3 we add to the set r3
2 and r3

1, and due to r3
2 we add r2

1

(although it was already present). No new point is added from r4
1, since τ1

is the highest priority task. Finally, repeating for r3
2 we would add again r3

1

to the set schedP4 = {d4, r
3
3, r

3
2 , r

3
1, r

4
1}.

Substituting in Equation (3.4) the expressions of αm and ∆m from Equa-
tion (3.2), we obtain

∧

τi∈T

∨

t∈schedPi

P − Q̃m ≤ t−
Wi (t)

Q̃m

P
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τ1

τ2

τ3

τ4

d4

r2
1 r3

1 r4
1

r2
2 r3

2

r2
3 r3

3

Figure 4.5. Example of computation of schedPi

By performing a sequence of algebraic manipulations we find that
∧

τi∈T

∨

t∈schedPi

P Q̃m − Q̃2
m ≤ t Q̃m − P Wi (t)

∧

τi∈T

∨

t∈schedPi

Q̃2
m + (t− P ) Q̃m − P Wi (t) ≥ 0

∧

τi∈T

∨

t∈schedPi

Q̃m ≥

√

(t−P )2+ 4P Wi (t)−(t−P )

2

and then, by recalling the meaning of logic operators, we find the following
explicit relationship between the lengths of the time slots Q̃m and the period
P :

(3.6) Q̃m ≥ max
τi∈T

min
t∈schedPi

√

(t−P )2+ 4P Wi (t)−(t−P )

2

Notice that the right hand side of Equation (3.6) depends on the period
P , the parameters of the task set (through Wi (t)), and the adopted sched-
uling policy, which is fixed priorities. We can then compact Equation (3.6)
in a very convenient way as follows

(3.7) Q̃m ≥ minQ (T ,FP, P )

where all the complex dependencies of Equation (3.6) are hidden in the
function minQ.

EDF scheduler. If tasks are scheduled by EDF then we can use the results
of hierarchical scheduling when the local scheduler is EDF [SL03, Bin04].
If the supply function has a rate αm and a delay ∆m, then Theorem 3.5
ensures the feasibility of a task set under EDF.

Theorem 3.5 (EDF schedulability under Zm (t), from [Bin04]). A task
set T = {τ1, τ2, . . . , τN} is schedulable by Earliest Deadline First (EDF) in
the mode m, described by (αm,∆m), if:

(3.8) ∀t ∈ dlSet (T ) ∆m ≤ t−
W (t)

αm



102 4. INTEGRITY PROBLEM: THE PARTITIONED APPROACH

where

(3.9) W (t) =

N
∑

i=1

max

{⌊

t + Ti −Di

Ti

⌋

, 0

}

Ci

and dlSet (T ) is the set of all deadlines up to the minimum common multiple
of all Ti of the tasks in T .

We underline that, on single processors, the classical approach to analyze
sporadic systems is to consider their periodic equivalent (that is, a task
set in which all the tasks release jobs as soon as possible, fulfilling the
minimum interarrival requirement). In fact, on single processors it is easy to
verify that this is the worst-case for the demand bound function expressed in
Equation (3.9). Under this hypothesis, the schedule is periodic with period
of length equal to the minimum common multiple of all Ti, which justifies
the choice of dlSet (T ) in the theorem. It is easy to verify that the proposed
schedulability test is the so called Processor Demand Criterion [BHR90]
applied to a fraction of the processor instead of the whole processor.

Notice that the previous formulation also applies to task sets with static
offset and jitter. However, we develop all our results in the simpler case
of no offset/jitter, because the full treatment does not present theoretical
problem but the math is heavier (see [Bin04] for further details).

Using the same arguments which led to Equation (3.7), we can equiva-

lently find the conditions on the time quantum Q̃m such that the mode m
can feasibly schedule all the tasks allocated to it if they are scheduled by
EDF. In fact we have

(3.10) Q̃m ≥ minQ (T ,EDF, P )

where in this case

(3.11) minQ (T ,EDF, P ) = max
t∈dlSet(T )

√

(t−P )2+ 4P W (t)−(t−P )

2

Finally note again that by the same arguments we could consider all the
possible scheduling algorithms for which a schedulability condition can be
expressed over a server described by a supply function Zm (t).

3.3. Integration between modes. Until now, we have only consid-
ered a generic task set T in isolation and the relationship between the time
quantum Qm of different slots is neglected. Now we want to combine the
equations which describe the feasible time quanta to find all the feasible
(QNF, QFS, QFT). Let us generically denote by alg the scheduling algorithm
adopted to schedule the tasks.

During FT mode, the quantum QFT must be large enough to schedule
within the deadlines all the tasks in TFT. Recalling that Q̃FT = QFT −OFT,
the condition on QFT is

(3.12) QFT −minQ (TFT, alg, P ) ≥ OFT

During FS mode the platform is configured to offer computational re-
sources equivalent to two processors (i.e., it has two channels). Hence the
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time quantum QFS must accommodate the tasks of both the sets T 1
FS and

T 2
FS. The feasibility of both the sets is ensured by selecting QFS as follows

(3.13) QFS − max
i∈{1,2}

minQ
(

T i
FS, alg, P

)

≥ OFS

By doing so, in fact, the allocated quantum satisfies the feasibility condition
of both T 1

FS and T 2
FS.

Finally, following the same previous arguments, the tasks allocated in
NF mode do not miss any deadline if the following condition is verified

(3.14) QNF − max
i∈{1,2,3,4}

minQ
(

T i
NF, alg, P

)

≥ ONF

All the three Equations (3.12), (3.13) and (3.14) define a lower bound
to the admissible values for the time quanta as a function of the period
P . A larger time quantum could be assigned to a mode, but this clearly
influences the parameters of the other modes and/or the total period P .
The relationship between the time quanta of different modes and the period
can be expressed by summing side by side the three inequalities above. We
obtain the following interesting condition on the period P :

(3.15) P −
∑

m∈{FT,FS,NF}

max
i=1,...,numPm

minQ
(

T i
m, alg, P

)

≥ Otot

where numPm is the number of available channels in mode m.
Note that a value of P fulfilling Equation (3.15) does not necessarily

determine a feasible solution, unless the lengths of the time quanta satisfy
also the three Equations (3.12), (3.13), and (3.14). However, this problem
shows up only in case of a wrong selection of QFT, QFS and QNF, while it
is guaranteed that once P is chosen to satisfy Equation (3.15), a solution
for the values of the time quanta does exist. The 4 relationships must be
considered as a set of instruments that support the designer during the
selection of the parameters. The final choice depends on the specific goal
the designer wants to achieve.

In order to clarify the application of the proposed technique, in the
next section we show how two different design goals bring to two different
solutions.

4. Example of Application

We consider an application composed of 13 real-time tasks requiring
different operating modes. Table 1 reports the operating mode required by
each task, the task index, the computation times, and the periods.

Mode NF FS FT

i 1 2 3 4 5 6 7 8 9 10 11 12 13
Ci 1 1 1 2 6 1 1 2 1 1 1 1 2
Ti 6 8 12 10 24 10 15 20 4 12 15 20 30

Table 1. The task set data

For simplicity, we assume the task set to have implicit deadlines although
our proposed method well applies also to constrained deadlines system. We
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are also considering the problem of extending the analysis to unconstrained
deadlines systems.

NF tasks are partitioned to the four processors available in NF mode as
T 1

NF = {τ1}, T
2
NF = {τ2, τ3}, T

3
NF = {τ4} and T 4

NF = {τ5}. Similarly, FS tasks
need to be partitioned in two groups, one for each fail-silent channel. The
two subsets are T 1

FS = {τ6, τ7, τ8} and T 2
FS = {τ9}. All FT tasks run on a

unique fault-tolerant channel and are not partitioned.
Once the tasks are partitioned on the processors, a scheduling algorithm

must be selected. In this example we explore both FP and EDF as scheduling
algorithms. For the case of FP, we assign Rate Monotonic (RM) priorities,
i.e. tasks with shorter period have higher priority.

We highlight that these choices can be also mixed together, in the sense
that the scheduling algorithm for any of the subsets can be either EDF or
FP with RM, or FP with some other priority assignment, or even some
other scheduling algorithm, provided that the schedulability analysis in the
framework of the hierarchical scheduling is developed also for this third
algorithm. In fact, from the analysis of each task we obtain bounds on the
acceptable values: mixing different algorithms requires only to fulfill all the
bounds.

After the task partitioning and a suitable selection of the scheduling
algorithms, Equation (3.15) describes all the feasible values of periods P .
A Matlab routine to compute all the feasible periods resulting from Equa-
tion (3.15) has been developed by Enrico Bini, and can be found on the
Web at http://feanor.sssup.it/~bini/faultMP/. Figure 4.6 shows the
region of feasible periods for both EDF and FP. Notice that, as expected,
the EDF region is larger than the FP one, because it is well known that
every FP schedulable task set is also schedulable under EDF.
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Figure 4.6. Determining the feasible periods



4. EXAMPLE OF APPLICATION 105

The feasible regions are above the zero, because Otot ≥ 0 and hence,
below the zero it wouldn’t exist any feasible period P . If the overhead is
0 then the maximum feasible period P is 3.176 if using EDF and 2.381 if
FP (points ① and ② in the figure). From the figure we can also find the
maximum admissible total overhead to have a feasible solution which is 0.201
when using EDF and 0.129 when FP (points ③ and ④ ).

Let us suppose a realistic example where the total overhead is an inter-
mediate value, e.g. 0.05 (also depicted in Figure 4.6). A first possible design
goal may be to minimize the bandwidth wasted in overhead Otot

P .
This goal is achieved selecting the maximum feasible period. If the adopted
scheduler is EDF, the maximum period is 2.966 (point ⑤ ). In correspon-

dence to this period we can now find the admissible values of Q̃FT, Q̃FS and
Q̃NF from Equation (3.12), (3.13) and (3.14) respectively (see Table 2(b)).

(4.1)























Q̃FT ≥ 0.820

Q̃FS ≥ 1.281

Q̃NF ≥ 0.815

Q̃FT + Q̃FS + Q̃NF = 2.966 − 0.05 = 2.916

In order to make the reader confident of the correctness of these results
we remind that a necessary condition for the schedulability of a task set T
is that the allocated bandwidth is not smaller than the task set utilization
U (T ) (Table 2(a)). Let us verify that this is true for all the subsets of tasks.
For TFT we have that

Q̃FT

P
= 0.276 ≥ U (TFT) =

1

12
+

1

15
+

1

20
+

2

30
= 0.267

so the bandwidth provided in TFT is sufficient to execute all the tasks re-
quiring fault-tolerance capabilities. For TFS and TNF, we have to consider
that since the bandwidth provided must be sufficient to serve every subset
of TFS and TNF, we obtain the following inequalities:

Q̃FS

P
= 0.432 ≥ max

i=1,2
U
(

T i
FS

)

= 0.267

Q̃NF

P
= 0.275 ≥ max

i=1,...,4
U
(

T i
NF

)

= 0.250

Since this design choice does minimize the bandwidth wasted in the mode
switches, it provides the higher amount of unused bandwidth in each mode,
because the time quanta are allocated at their maximum.

By following this design goal, Equations (3.12), (3.13) and (3.14) must
hold with the equal sign and selecting any larger time quantum would bring
to violations in one or more constraints. This phenomenon happens because
we have selected a period value on the boundary of the feasible region,
which means that there is only one acceptable selection of values for the
time quanta. This solution, however, may present a critical aspect: if we
allow tasks to dynamically arrive and leave the system, we can only take
advantage of the unused bandwidth on each mode, but the length of the
time quanta cannot be modified at all.
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Instead there may be design scenarios where some tasks arrive dynami-
cally and it would be very convenient to shrink or enlarge the time quanta.
How do we proceed in this hypothesis? What does the goal of our design
become?

Informally speaking, we would like to select the period such that the
time quanta can vary as much as possible at run-time. Basically we
would like to redistribute, if necessary, the most possible bandwidth among
the modes. Let us explain graphically how to do it. In Figure 4.6, for
every value of P , the value on the curve represents the minimum sum of the
lengths of the slots, as obtained from Equations (3.12), (3.13) and (3.14).
Instead, the point (P,Otot) for the same value of P represents the maximum
sum, as obtained from Equation (3.15). So, the vertical distance from any
point (P,Otot) to the boundary represented by the curve measures the slack
amount in Equation (3.15), i.e. the acceptable variability in the slot lengths.
The slack bandwidth is maximum when the ratio between the slack amount
and the period P is maximum (indicated in Figure 4.6 by the maximum
slope of the dashed line). The solution found in this case is reported in
Table 2(c).

P Otot Q̃FT Q̃FS Q̃NF slack
(a) required utilization 0.267 0.267 0.250

(b)
length 2.966 0.050 0.820 1.281 0.815 0.000
allocated utilization 1.000 0.017 0.276 0.432 0.275 0.000

(c)
length 0.855 0.050 0.230 0.252 0.220 0.103
allocated utilization 1.000 0.059 0.269 0.294 0.257 0.121

Table 2. Possible design solutions

Notice that 12.1% of the bandwidth can be redistributed dynamically,
although in this case the allocated bandwidth for each slot is much tighter
to the required amount. Note also that, as expectable, while the overhead
remains constant, its bandwidth increases.

As a final remark, please notice that all the computations are developed
in the case of an EDF scheduler. The same reasoning applies to the FP
scheduling algorithm as well.

5. Partitioning tasks among processors

Whenever there is more than one channel at disposal (that is, in FS and
NF modes), an important aspect to consider in system design is how tasks
can be partitioned . As we noted in Section 3, this problem is very delicate,
since it can strongly influence the overall result.

To notice the criticality of the partitioning, let us consider again the
example of Section 4, and suppose that task τ2 is moved to T 4

NF and τ8 and
τ9 are interchanged. The resulting partitioning is the following:

• T 1
NF = {τ1}, T

2
NF = {τ3}, T

3
NF = {τ4}, and T 4

NF = {τ2, τ5}, in NF;
• T 1

FS = {τ6, τ7, τ9} and T 2
FS = {τ8}, in FS;

• TFT = {τ10, τ11, τ12, τ13}, in FT.
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It is clear that the rate αm of every mode must be sufficient to serve all
the subsets requiring that mode. That is, it must be that ∀i,m αm ≥
U
(

T i
m

)

. However, it is easy to verify that under the partitioning proposed
above, we should have αNF > 0.375, αFS > 0.417, and αFT > 0.267.
The sum is greater than 1, so there is no choice of parameters which can
guarantee the application under such a partitioning, and the reason is the
wrong partitioning.

The manual solution is feasible only in simple cases (as our example
was), since when the number of tasks to be partitioned raises it is very dif-
ficult to find a good solution. Here we propose and shortly discuss some of
the solutions proposed so far. We underline that neither of them is opti-
mal with respect to any of our specific goals. As we said in Chapter 1, the
simple partitioning problem is already known to be NP-hard in the strong
sense [Pap81], the mix of partitioning problem and mode parameters re-
search is almost impracticable.

Classical approaches to the problem of partitioning are based on policies
such as First Fit (FF, where a task is assigned to the first processor that
can schedule it), Best Fit (BF, assignment to the processor where there is
more space), Worst Fit (WF, assignment to the processor where there is
less space after the assignment), or the associated Ordered versions, where
tasks are ordered, usually by decreasing utilization, prior to searching for
the right processor. An overall description and analysis of these techniques
can be found in [LDG04].

Unfortunately, these approaches do not always fit our problem. In par-
ticular FF and WF tend to fill a processor before starting with a new one,
which means that they maximize the utilization of some processor (requiring
high rate for the modes) leaving some other almost free.

BF could be a suitable policy, especially if we consider the Decreasing
version which tends to balance the utilization of all the involved processors.
However, due to the delicateness of the problem, we believe it is better to
consider a different technique, based on combinatorial optimization, pro-
posed in [Bar04a]. The key idea of this technique, based on previous works
by Potts [Pot85] and Lenstra, Shmoys and Tardos [LST90], is to represent
the partitioning problem as the optimization problem reported below, where
the goal is to minimize the maximum per-processor utilization.

Minimize U subject to











∑M
j=1 xj

i = 1 ∀i = 1 to N
∑N

i=1 xj
iUi ≤ U ∀j = 1 to M

xj
i ≥ 0 is an integer ∀i = 1 to N, j = 1 to M

In the equations above, xj
i represents the fact that task τi is assigned

(xj
i = 1) or not (xj

i = 0) to processor j. Considering that xj
i is a non-

negative integer (constraint 3), the first equation guarantees that each task
is assigned to 1 and only 1 processor, while the second equation computes
the utilization of each processor. Using this technique, we tend to overthrow
the constraint on the rate due to the task subsets utilization, and so we can
guarantee the maximum freedom in the selection of the αm parameters. A
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complete description of this technique is out of the scope of this work, the
interested reader can find it well-described in the original paper [Bar04a].

We want to underline again that our methodology is influenced by the
partitioning technique only in the solutions it can find, while the steps to
be followed are exactly the same for every possible partitioning technique.

6. Conclusions

In this chapter, we propose a flexible management scheme of an iden-
tical multiprocessor platform for scheduling periodic real-time tasks with
integrity requirements. We are not aware of any previous attempt to dy-
namically reconfigure a hardware architecture in different operating modes
(lock-step or parallel) to support at the same time integrity requirements by
means of hardware replication, and parallel execution for high performance.
Thanks to an hardware platform capable of exploiting a high parallelism
as well as a high replication, we propose a methodology which improves
these capabilities through flexibility, allowing to achieve the best trade-off
between the two opposite possibilities. The proposed analysis allows to face
and solve the configuration problem with different goals in mind, such as
minimizing the overhead or maximizing on-line flexibility.

Our algorithm is a first step towards a complete methodology for design-
ing real-time fault-tolerant systems based on a multiprocessor. As explained
in Section 5, the partitioning problem needs to be approached as integral part
of the whole system design, instead of a small problem solved in advance
with known techniques. This would enable to search for the optimum in the
whole design space instead of on the reduced space obtained after the allo-
cation of tasks to processors. Also, a future direction of investigation will be
to explore the possibility of providing different fault-tolerance services dur-
ing the same time quantum per period, as well as the same fault-tolerance
service during more than one time quantum per period, improving flexibility
of the platform at the cost of an higher complexity in the analysis.

Other modeling and analysis problems needs to be addressed. The most
urgent is the need to model interacting tasks, i.e. tasks that share resources
through mutex semaphores and tasks interacting through remote procedure
calls (RPC). We also need to better address the fault-recovery phase. We
plan to combine our methodology with existing software techniques for fault-
recovery (as checkpointing and primary-backup). Moreover, we are investi-
gating on-line reconfiguration algorithms to recover as many tasks as it is
possible after a fault.

Finally, in Appendix A we explore the possibility of using global sched-
uling algorithms in substitution of the partitioned one considered so far.



CHAPTER 5

Conclusions

In this thesis we coped with the problem of how to exploit the power of
symmetric multiprocessor platforms (SMP) to improve the behavior of real-
time systems. The analysis has been conducted in two different directions.
From one side we considered how to improve the performances of the systems
from the point of view of computational power provided. From the other
side, we tackled the goal of providing to the applications some integrity
guarantees.

1. Performance

In an attempt to guarantee higher performances to real-time application
by using multiprocessors, we considered two different problems that require
attention: schedulability and feasibility (more precisely, infeasibility).

Schedulability. We first analyzed the behavior of real-time systems when
scheduled by three well-known global scheduling algorithms (EDF, FP and
EDZL). After discussing previous results in the field, we proposed tests to
verify the schedulability of a given task set when one of the three algorithms
is used. Between the two tests proposed for each scheduling algorithm, the
first has lower complexity but worse results, while the second test, at the
price of an average complexity of approximately O(N3), is able to recognize
more schedulable task sets than with previous tests.

We have validated our results through an extensive set of simulations,
which took into account possible differences in the performances of the sched-
ulability tests when several parameters of the system change. In particular,
we verified how the tests perform when

• the number of processors changes from 2 to 8;
• the mean utilization of the single tasks changes from 0.25 to 0.75;
• the deadlines of the tasks are constrained or unconstrained.

Analyzing the simulation, we are convinced that the proposed sched-
ulability tests are a step forward in the analysis of real-time systems on
multiprocessors. However, it was also evident that in general our tests are
not strictly better than previous tests. Although our tests have usually bet-
ter results, the tests are in general incomparable: we found not only cases
in which one task set was recognized by one test and not the others and
vice-versa, but also cases in which the percentage of schedulable task sets
was higher for one test than for the others and vice-versa. For this reason,
apparently the best solution would be to mix the tests and use all of them
to maximize the percentage of task set declared schedulable.

Feasibility. The second analysis relates to the opposite problem: the re-
search for conditions that guarantee that a task set will eventually miss

109
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some deadline, whatever scheduling algorithm we decide to use. Thanks to
this analysis, it is possible to distinguish between task sets that cannot be
correctly scheduled, and task sets for which it is possible to find a schedule
such that all the deadlines are meet.

This kind of analysis is based on two motivations. From one side, such
analysis helps in speeding up simulations, since it allows to discard infeasible
task sets without even considering them. Moreover, it allows to verify the
overall behavior of the schedulability tests evaluating them only on feasible
task sets. From the other side, this analysis could help in the verification of
applications: if we find that a given application is not correctly scheduled,
through a feasibility test, we can (partly) discriminate between unfeasible
task sets and poor-performing pairs scheduling algorithm/schedulability test.
It remains open the problem of how to discriminate between a poor algo-
rithm and a poor test. For this goal, the only solution seems to be to further
improve the schedulability analysis.

In the field of feasibility analysis, in this thesis we discuss a new necessary
feasibility condition which allows to recognize as infeasible strictly more task
sets than with previous tests, narrowing the region of uncertainty. We have
to underline that the test is only necessary, in the sense that a task set that
passes the test could be feasible, but it is not guaranteed to be so.

2. Integrity

The second goal of this thesis was to consider how to exploit multiproces-
sors to provide some degree of integrity guarantees to real-time applications.
The key idea was to use multiprocessors to provide space redundancy to the
applications. In practice, we suppose to force more than one processor to
execute the same code at the same time, in a lock-step configuration, and we
compare their results, instantly revealing any single fault. That way at the
price of a reduced computational power, we can provide different integrity
guarantees, depending on the requirements of the application. The problem
usually faced with such solutions is the excessive rigidity of the platform,
that offers the same level of integrity to all its parts. We addressed the
problem by supposing to be able to reconfigure the platform at predefined
time instants, switching from a configuration to another in a periodic way,
in order to provide in different time instants different trade-offs between
fault-tolerance and performance.

We took into account a platform that, in different time slots, can be
configured to be equivalent to

• 4 non-fault-tolerant processors;
• 2 fail-silent processors;
• 1 fault-tolerant processor.

Based on this reconfigurable platform, in the thesis we provided a method-
ology that allows to tune the platform on the specific application. The goal
is to find the set of values for the lengths of the slots that guarantee that
each task can meet all its deadlines and execute in the required slots (that
is, with the required integrity guarantees). In particular, through our design
technique, it is possible to find a mathematical description of the space of the
solutions (the acceptable lengths of the slot), supposed that FP-partitioned
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or EDF-partitioned are used to schedule the tasks. Moreover, using the de-
scribed technique, it is possible to select the best values for different goals
in mind, such as minimizing the overhead lost in reconfiguration, or maxi-
mizing the flexibility of the platform.

To the best of our knowledge, no previous work allowed to exploit recon-
figurable multiprocessor platforms to provide at the same time real-time and
fault-tolerance guarantees, in a trade-off between performance and integrity.

3. Future works

The work of this thesis provided answers to several open questions in
multiprocessors research. However, it also opened the doors to an incredible
amount of possible improvements, and problems to solve.

We improved the number of task sets recognized schedulable, and the
number of task sets recognized infeasible. However, there is still a wide gap
in between. One future step in research is surely to shrink (and hopefully
fill) this gap. The most promising path, in this sense, is probably to take
into account scheduling algorithms specifically developed for multiprocessors
(instead of extensions of algorithms for single processor), such as EDZL or
EDF-FP. However, despite the common idea that EDF and FP are poor
scheduling algorithms for multiprocessor, it seems that they can indeed have
quite good results, so another goal is to continue the improvement of their
schedulability tests.

Progress in schedulability tests for global scheduling algorithms is a pre-
requisite to use them in reconfigurable multiprocessor platforms. We plan
to consider this step in order to take advantage from the characteristics of
global scheduling in such platforms. Appendix A considers this problem and
suggests some aspects to investigate.

Last but not least goal is unification. Throughout the thesis we used
different hypothesis on task sets and scheduling algorithms. For example,
we supposed unconstrained deadlines to cope with schedulability analysis,
whereas we accepted only constrained deadlines for integrity. Another ex-
ample is the fact, already discussed, that we used in one case global algo-
rithms and in the other case partitioned algorithms. The final result should
be a unification and relaxation of all the assumptions, in order to give the
maximum flexibility in all possible applications.

4. Conclusion

As we have shown, through multiprocessors it is possible to provide any
necessary improvement in computational power provided to the requiring
applications, but we can also offer different degrees of safety and protection
from faults. Moreover, it is also possible to mix the two previous require-
ments, offering at the same time both real-time and fault-tolerance guaran-
tees. However, several problems need yet to be addressed and solved, and
several aspects require improvements to be really useful.

We believe that multiprocessors can really be the answer for the dra-
matically increasing request for integrity and performance. There is only
one need: research must go on.





APPENDIX A

Integrity Problem: hints on the global approach

1. Overview

In Chapter 4 we described a methodology to exploit multiprocessors to
provide integrity guarantees to the applications, taking into account the fact
that different parts of the application can have different requirements. For
this reason, we considered the application divided into three subsets, FT

for tasks requiring fault-tolerance, FS for tasks requiring fail-silence, and
NF for tasks without any particular integrity requirement. The hardware
platform is then configured differently for each subset: as a single fault-
tolerant channel for FT tasks, as two fail-silent channels for FS tasks, and
as four non-fault-tolerant channels for NF tasks. That way the platform is
able to provide, in every moment, the best trade off between performance
and integrity.

One important limitation in the proposed methodology is the fact that
whenever more than one channel is present (i.e. in FS and NF modes), we
use a partitioned approach to schedule tasks on the processors (see Chap-
ter 1). This approach has its best advantage in the fact that once the tasks
are partitioned among the processors, the problem reduces to a series of sin-
gle processor schedulability problems, for which well-known solutions exist.
However, there are also several drawbacks, overcame by the other possible
approach: global scheduling.

Among the drawbacks of partitioned algorithms with respect to global
ones, we specially underline the fact that while the former requires to take
into account system balance, the latter automatically balances the load
among the processors. This is particularly useful for applications in which
tasks can join and leave the system at runtime. This characteristic assumes
an even more significant importance in the reconfigurable platforms we con-
sider. Since the parameters that guide the reconfiguration, i.e. P and Qm for
each mode (see Chapter 4), are tuned on the application at a certain time
instant, whenever some task joins or leaves the system, a retuning could
be necessary. In such a case, the automatic load balance offered by global
scheduling algorithms improves the flexibility of the system, simplifying this
aspect and possibly avoiding the need for platform reconfiguration.

Another aspect relates to the moment in which one fault is revealed.
The work described in our thesis is based on the single transient fault as-
sumption described in Chapter 4: whenever a fault appears, we suppose to
know that it is only a temporary problem, which will eventually be solved
without the need for our intervention. In the real world, however we cannot
completely rely on this assumption, so after a fault is detected, some in-
quiry procedure should be activated, to verify the nature of the fault. In the
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meanwhile, for safety reasons, we should assume that the channel involved
in the fault is broken and lost, and so reconfigure the load on the remaining
processors. This procedure is clearly much easier under the presence of an
automatic load balance system such as the one provided by global scheduling
algorithms.

The model we took into account in the previous chapter is simple. It is
based on only 3 modes, and the system periodically switches from one mode
to the other. In such a case, each task can execute only in a well-defined
time interval, which depends on the operational mode required by the task
and the parameters of the system, so the partitioning phase is affordable,
and very good heuristics exist to solve the problem. If we suppose to have
a more complex system model, for example because there are more than
4 processors, the number and characteristics of the modes can be different
and possibly more diversified. In this situation, partitioning the tasks among
the processors can be much more difficult. Global scheduling could, again,
simplify the system configuration.

For all these reasons, it is of primary importance to extend our plat-
form reconfiguration technique to the case of global scheduling algorithms,
in order to allow future extensions to different typologies of faults, task set
models, and hardware configurations. This research is long and difficult,
most of all because of the delay in global scheduling research. In this ap-
pendix, we consider some of the problems we have to face before proposing
a complete methodology (as done in Chapter 4), and we give some hints on
possible solutions to these problems.

We underline that this appendix represents part of our work-in-progress
in the field of multiprocessors for integrity. As a consequence, we are forced
not to deepen details, and remain at a higher level of description. Goal of
this appendix is more to raise questions than to offer complete answers.

1.1. System Model. In this appendix, we take into account the same
model considered in Chapter 4. We briefly list here the main characteristics.

• fault model: single transient fault assumption;
• operating modes: fault-tolerant mode FT, fail-silent mode FS, non-

fault-tolerant mode NF;
• application model: task set T comprised of N tasks τi, each one

characterized by computation time Ci, constrained deadline Di,
period Ti and required integrity mode mi, and composed of poten-

tially infinite jobs τ j
k ;

• hardware architecture: 4-processors platform, reconfigurable in 3
different configurations to provide 4 NF processors, 2 FS processors
or 1 FT processor.

We call slot the interval between two reconfigurations in which a certain
mode is provided to the application. Moreover, we define pattern of the slots
the infinite series of periodic reconfigurations from one mode to another,
performed by the hardware platform. Note that, due to the periodicity,
the pattern of the slots is easily represented by little information: the base
sequence of the slots, the length of each slot, and the starting slot.
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We also redefine the concept of supply function expressed in Defini-
tion 3.1 of Chapter 4. In this appendix, we prefer to use three different def-
initions to name the minimum, maximum and actual computational power
provided in a given interval. The definition is based on the knowledge of the
pattern of the slots, introduced above.

Definition 1.1 (Supply Function). Given a mode m ∈ {FT,FS,NF},
the supply function Zm (t, t0) of the mode m is the amount of time provided
during the mode m in the interval of length t starting at time s. Formally,

Zm (t, t0) = {time provided in [t0, t0 + t] during mode m}.

From this the definitions of minimum supply function minZm (t) and max-
imum supply function maxZm (t) follow:

minZm (t) = min
t0
{Zm (t, t0)}.

maxZm (t) = max
t0
{Zm (t, t0)}.

Note that what in Chapter 4 was called supply function, here becomes
the minimum supply function. Note also that, by definition, in every time
instant t

minZm (t) ≤ Zm (t, t0) ≤ maxZm (t) .

We define the remaining computation time cj
i (t) of a job τ j

i as the
amount of computation that the job has still to execute at time t. This
quantity clearly depends on the schedule.

Finally we define the laxity ljk (t) of a job τ j
i as the difference between

time to deadline and remaining computation time. The laxity represents
the time that a job can waste not executing, and still be able to meet its

deadline. Usually, the laxity of τ j
k is defined

(1.1) ljk (t) =
(

dj
k − t

)

− cj
k (t) .

For any other missing concept that we use in this appendix we refer
to the rest of the thesis, were these concepts have been thoroughly used.
Moreover, we underline again the fact that here we want only to discuss
problems and possible solutions: we prefer to sacrifice some mathematical
precision and severity for the benefit of clearness.

2. Global scheduling algorithms for fault-tolerance

The first step in the analysis is to understand the behavior of a global
scheduling algorithm in the particular situation we consider, that is when
only a fraction of the processor is dedicated to a task subset. As in Chapter 2,
we consider three global scheduling algorithms: EDF, FP and EDZL.

For the case of EDF and FP, there is no need to modify the scheduling
algorithms due to the fact that only a fraction of processor is used. Both of
the algorithms, in each time instant, schedule for execution the tasks with
higher priority, and the priority is assigned as usual (absolute deadline for
EDF, or static assignment for FP). The only difference is the fact that, since
each task requires a specific fault-tolerance mode mi, the algorithms can
chose tasks only in the subset of tasks requiring the mode under execution.
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While there is no need to modify the rules of EDF of FP to use them
on a fault-tolerant multiprocessor, EDZL requires some further discussion.

The key idea which allows EDZL to strictly dominate over EDF, and
have its good behavior, is the fact that when a job reaches a critical instant,
its priority is raised to the maximum, in order to be able to complete before

its deadline. The critical instant for τ j
k is an instant such that if τ j

k does not
start executing immediately, it will eventually miss its deadline: the instant

t̂ such that the remaining execution time of the job, cj
k

(

t̂
)

is equal to the

maximum computation time the multiprocessor can provide to τ j
k before its

deadline dj
k.

Suppose to use EDZL in a dedicated multiprocessor system. Since one

of the processors can be completely dedicated to the execution of τ j
k , the

computation time provided to the job in any interval starting at t is exactly

the length of the interval, dj
k− t. For this reason the critical instant t̂ is such

that dj
k − t = ck

(

t̂
)

, which is equivalent to say that the laxity ljk (t) of the
job is 0. From this the name usually given to the Critical Instant Rule of
Zero Laxity Rule.

However, in a reconfigurable multiprocessor platform such as the ones
we consider, this is not a sufficient condition. In fact, the system is forced to
switch from one configuration to another in a periodic way, so that it is not
true anymore that one of the processors can be completely dedicated to the
execution of one specific job. The processor can be dedicated to one specific
job only when the system is configured to execute in the mode m required by
the task of the job under consideration. This forces to redefine the Critical
Instant Rule or, more precisely, to modify the definition of laxity. In what
follows, we propose two different approaches.

2.1. Critical Instant Rule: supply function. Whenever a job τ j
k

with mk = m is released, it is easy to compute the jitter between its dead-

line dj
k and the periodic pattern of the slots. In particular, it is possible to

compute the interval between dj
k and the next reconfiguration of the plat-

form to mode m. Based on that, it is also possible to compute, in every

time instant t, the supply function Zm

(

t, rj
k

)

, representing the actual com-

putational power provided to mode m before dj
k.

One possibility is so to consider, as Critical Instant, the instant t̂ in

which the remaining execution time cj
k

(

t̂
)

is equal to the value of the supply

function Zm

(

dj
k − t̂, t̂

)

computed at the same time t̂. This is equivalent to

redefine the laxity as

(2.1) ljk (t) = Zm

(

dj
k − t, t

)

− cj
k (t) ,

while the Critical Instant Rule remains the same: the priority of a job is
raised whenever the laxity of the job reaches 0.

Note that this definition remains coherent to the original definition of
laxity given in Equation (1.1) for dedicated multiprocessors, since clearly in

such platforms Zm

(

dj
k − t, t

)

= dj
k − t.
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This approach as the advantage that the rule is exact, as it was in the

original formulation. In fact it remains true that a job τ j
k reaching the

Critical Instant at t̂ can meet its deadline if and only if it executes in every

time instant in [t̂, dj
k) in which the platform is configured in mode m. The

problem with this approach is that, since Zm (t, s) depends on the release
time of the job, the rule is actually different for each job of each task, and
should be computed for each job at the moment of its release.

2.2. Critical Instant Rule: minimum supply function. It would
be interesting to find a definition of the Critical Instant Rule which does
not change for every job of a task. For this goal, we could base the def-
inition on the minimum supply function minZm (t), instead of the supply
function Zm (t, s). The use of minZm (t) allows to unify the definition of
critical instant for each job of a task, since the value of minZm (t) does not
depend on the phase between release time of a job and mode switch of the
platform. Note that the minimum supply function does not even depend on
the specific task, but only on the mode m we consider. So, for two differ-
ent jobs executing in the same mode, the only difference is the value of the

remaining execution time cj
k (t).

Again, we maintain the same Critical Instant Rule, while the definition
of critical instant changes due to a different definition of laxity. In particular,
the laxity becomes

(2.2) ljk
(

t̂
)

= minZm (t)− cj
k (t)

ant the critical instant is a time instant t̂ such that ljk
(

t̂
)

= 0.
Remember that in Chapter 4 we considered two different definitions of

the minimum supply function in the parameters P and Qm of the mode m.
We first gave an exact definition:

(2.3) minZm (t) =

{

j Q̃m if t ∈ [j P, (j + 1) P − Q̃m)

t− (j + 1)
(

P − Q̃m

)

otherwise

where j =
⌊

t
P

⌋

.
Then we proposed the following simplified version:

(2.4) minZ ′
m (t) = max

(

0,
Q̃m

P

(

t−
(

P − Q̃m

))

)

,

We underline that the Critical Instant Rule remains valid for both def-
initions of the minimum supply function. We also underline that in both
cases, while we gain in consistency (among different jobs and tasks) we lose
in precision. In fact, since the minimum supply function minZm (t) repre-
sents only the minimum amount of time provided to a job, the actual time
provided to the job, represented by the supply function Zm (t, s) can be more
than the minimum. This means that in general the job could start executing
later than the critical instant and still meet its deadline. This fact will be
considered in the next section to verify the correctness of the rule.
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2.3. Correctness of the Critical Instant Rule. Another problem
must be considered when we want to use EDZL to schedule tasks on a flexible
multiprocessor platform. While in a dedicated multiprocessor system we
are sure to be able to raise the priority whenever the Critical Instant Rule
requires so, this could be not true on a flexible multiprocessor platform. The
problem lies in the fact that the critical instant could be reached while a
different mode is running. In order to show that the rule is anyway correct
we have to verify that one of the following is true:

• the critical instant t̂ cannot be reached for τ j
k , unless the system is

running in mode mk;

• although τ j
k can reach the critical instant t̂ even if the system is not

running in mode mk, it is safe to raise the priority of the job later,
and in particular when the platform is reconfigured to mode mk.

We can show that this is true for both possible definitions of the Critical
Instant Rule and the laxity.

Zm (t, t0) approach. Consider a job τ j
k with mk = m, and assume that the

scheduling is based on the Critical Instant Rule given in Section 2.1. The
laxity, defined in Equation (2.1), depends on two elements: the remaining
computation time, and the actual computation time provided, represented

by the supply function Zm

(

dj
k − t, t

)

. When mode m is not running, the job

under analysis cannot execute, so cj
k (t) is constant. However, since mode

m is not running, Zm

(

dj
k − t, t

)

does not change, since no computational

power is provided to mode m. As a consequence, the laxity remains constant,
and the critical instant t̂ cannot be reached. So, the Critical Instant Rule
can apply only during mode m, when the priority can be correctly raised,
guaranteeing for a correct behavior.

minZm (t) approach. Suppose, instead, to take advantage of the defini-
tion of laxity given in Equation (2.2), which involves the minimum supply
function minZm (t) at the place of the supply function. As in the previous

case, cj
k (t) cannot decrease when m is not running, so it remains constant.

However, this could be not true for minZm (t). In fact the value of the min-
imum supply function depends on the position of the mode switches under
the worst-case alignment between the pattern of the slots and the release

of τ j
k . As a consequence, the value of minZm (t) depends not on the actual

pattern of the slots but on the worst-case, and so can decrease even if mode
m is not running. This leads to the fact that the critical instant t̂ could be
reached while mode m is not running, forcing the rule to be delayed up to
the start time of next slot of mode m (from now on t∗ ≥ t̂).

Despite this fact, the Critical Instant Rule can be delayed up to the
next slot of mode m, without endangering the timeliness of the system. In
fact consider the relation between the values of Zm (t, s) and minZm (t). By
their definitions, minZm (t) ≤ Zm (t, s). This relation is true at time t̂, when
the Critical Instant Rule should be applied. This means that, if one takes
into account the time actually provided in mode m (instead of the minimum
one represented by minZm (t)), the job does not need to start immediately
to execute, in order to meet its deadline. Moreover, since when mode m is
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not running Zm (t, s) remains constant, it comes out that at time t∗, when
a new slot of mode m starts

minZm (t∗) ≤ Zm

(

t∗, dj
k − t∗

)

= Zm

(

t̂, dj
k − t̂

)

.

This means that, even if the Critical Instant Rule applies at time t̂ ≤ t∗,

it is safe to start executing τ j
k with maximum priority only at time t∗. In

fact,

cj
k

(

t̂
)

= minZm

(

t̂
)

≤ Zm

(

t∗, dj
k − t∗

)

,

and so the time actually provided in mode m before dj
k is sufficient for the

task to meet its deadline.

3. Schedulability analysis

The next step in using global scheduling algorithms of Chapter 2 on
flexible multiprocessor platforms such as the ones described in Chapter 4, is
to study schedulability conditions under which task sets are guaranteed to
meet all their deadlines. At this stage, we suppose the platform to be stati-
cally tuned, and we only want to verify if the task set is correctly schedulable
on such a tuned platform. The following step should be to guide the tuning
as we did in Chapter 4.

The analysis must be necessarily based on some schedulability test for
dedicated multiprocessors, such as the ones we proposed in Chapter 2. Un-
fortunately those tests, while improving the past situation in schedulability
analysis, remain quite far from the necessary and sufficient condition. As
a consequence, their use inevitably introduces some pessimism in the anal-
ysis, and forces a loss in our platform tuning. We prefer to focalize on the
non-recursive version of the tests, due to the fact that at this stage the
improvement obtained through the recursive step is counterbalanced by an
extreme intricacy in the analysis. We prefer to avoid it, here, considering
that the goal of this appendix is not to give a full, working, procedure,
but only to provide some ideas on the path to follow, and underline some
problems we have to face.

Basing on the schedulability tests of Chapter 2, Section 6, we want to:

• compute the idle time that a problem job τ j
k has in its overload

window, considering the pattern of the slots under which it exe-
cutes;
• compute the upper bound on interference that jobs of tasks other

than τk can produce in the overload window of τ j
k , again taking

into account the pattern of the slots imposed by the tuning;
• verify if the interference is sufficient to force a deadline miss for the

problem job.

It is necessary to verify what is the worst-case situation for the release
times of the jobs. That is we need to understand what is the worst-case
alignment among release time of the problem job, release time of all the
other jobs, and pattern of the slots.
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3.1. Worst-case release times. This 3-elements alignment is in gen-
eral quite complex to study. For the case of EDF, the situation is made
easier by an observation: whatever the positions of the slots are, a task τi

has maximum upper bound on the interference Ii
k provoked on τ j

k when dj
k

is aligned with the deadline of one job of τi. This can be verified by the
usual release shifting analysis conducted in Chapter 2. Shifting forward all
the releases leads to the loss of a complete job near the end of the interval
without a sufficient increase near the start time of the interval, while shifting
backward cannot increase near the end of the interval but could decrease
near the start time. The proof is completed by the observation that the
described behavior does not depend on the pattern of the slots (although
the amount of the increases and decreases clearly does).

The main consequence of this fact is that in the case of EDF the research
for the worst-case alignment does not involve anymore three elements, but
only two: the releases of all the jobs and the pattern of the slots.

Unfortunately, the above reasoning does not directly map on FP or
EDZL. The problem lies in the fact that while the worst-case for EDF de-
pends only on the deadlines, which are not influenced by the pattern of the
slots, the worst-case for either FP of EDZL is defined taking into account
also the intervals in which the jobs actually execute, which depends on the
pattern of the slot.

The situation for EDZL is even clearer if we consider to adopt the Critical
Instant Rule based on the real laxity (Section 2.1), since in such a case the
priority of the tasks directly depends on the position of the slots. It means
that in the research for the worst-case alignment, all the three elements must
be considered together.

For this reason, here we focalize only on EDF, for which an easier solution
exists, while we leave for the future a detailed analysis of the cases of FP
and EDZL.

3.2. Worst-case slot positioning. Once the worst-case alignment be-
tween problem job and interfering tasks is established, we need to study the
relation between such an alignment and the pattern of the slots.

This study must be guided by two opposite needs: from one side mini-

mizing the computational time provided to the problem job τ j
k in the over-

load window; from the other side maximize those provided to the interfering
jobs, that way maximizing the upper bound on their interference.

Taking the lead from these two needs, the solution we propose here is
to consider the two problems separately. With this approach, the solution
is quite simple:

• the minimum computational power provided to τ j
k in any interval

of length t is given by the value of the minimum supply function
minZm (t);
• the maximum computational power provided to tasks interfering

with τ j
k in any interval of length t is bounded by the value of the

maximum supply function maxZm (t).

3.3. Sketch of schedulability test. Using the results above, we can
propose here a sketch of a possible test to verify the schedulability of a
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task set under EDF, when only a fraction of an M -processor can be used.
We underline that what we report below is only a possible direction of
investigation, and not yet a clear result to be used in practice.

The first bound above helps us in re-analyzing Lemma 5.3 of Chap-
ter 2, which gives a necessary condition for a job to reach negative laxity.
Informally, in a reconfigurable platform as the one we consider, it is true

that τ j
k can reach negative laxity only if it suffers interference for at least

minZm (Λk)− Ck + 1 in the overload window.
For what relates the second bound above, it can be used to limit the

interference Ii
k(d

j
k − Λk, d

j
k) provoked by task τi to the problem job in its

overload window.
We can mix the above results. We obtain that, when EDF is used to

schedule a task set on an M -processor, a job of τk can miss its deadline only
if
(3.1)
∑

i6=k

min
(

βi
k(Λk),maxZm (Λk)− Ck + 1

)

≥M (minZm (Λk)−Ck + 1)

In this formula, modified from Equation (6.1) (Theorem 6.1 in Chapter 2),

βi
k(Λk) is an upper bound on the interference Ii

k(d
j
k − Λk, d

j
k), given by

βi
k(Λk) = NiCi + min (Ci,Λk −NiTi) ,

and Ni is the number of jobs completely executed in the overload window,
and is computed as

Ni =

⌊

Λk

Ti

⌋

.

From this, a schedulability test follows by simply verifying that the above
condition is false for any task τi in the task set.

4. Comments and future research

The proposed test is quite similar to the test proposed for EDF when
an M -processor is at full disposal of the application. However, it is only a
starting point, that needs improvements in several aspects.

It is evident that the assumptions on the position of the slots are ex-
tremely pessimistic, since we assume separately the worst-case for the right
and the left side of Equation (3.1). That is, we consider the situation that
maximizes the sum on the left side, and the situation that minimizes the
value on the right side. However, these two cases are not likely to happen
together. As a consequence, an important direction to study is the research
for the alignment of the pattern of the slots that actually minimizes the dif-
ference between the two sides of the equation. During this research, there is
another aspect that requires to be taken into account. A job of τi included
in the body of βi

k(Λk) is guaranteed to be able to execute completely in the
overload window, despite the position of the pattern of the slots. This is
done in the schedulability analysis of τi (that is, when we consider a job of τi

to be the problem job). Instead, if we consider the carry-in, this is not true
anymore. In fact it could happen that, in the whole interval between start
time of the overload window and deadline of the carried-in job, the system
never run in mode m. In such a situation, the carry-in should be considered



122 A. INTEGRITY PROBLEM: HINTS ON THE GLOBAL APPROACH

equal to 0, which at the moment is not done. Since considering this aspect
allows to decrease the interference estimation of job τi, it can offer another
way to improve the test and the analysis.

The improvements proposed above are only minor ones. The real goal
in our future research is much more ambitious: extend the analysis to the
best tests for all the three, and possibly other, global algorithms, and use
the analysis not only to test the schedulability, but also to guide the tuning
of the platform.
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